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Abstract

The ever-increasing amount of SAR data motivates the development of automatic processing chains to fully exploit the oppor-

tunities offered by these large databases.

The InSAR Mass processing Toolbox for Multidimensional time series (MasTer) is an optimized tool to automatically download

SAR data, select the interferometric pairs, perform the interferometric mass processing, compute the geocoded deformation

maps, invert and display the velocity maps and the 2D time series on a web page updated incrementally as soon as a new image

is available.

New challenges relate to data management and processing load. We address them through methodological improvements dedi-

cated to optimizing the InSAR pair selection.

The proposed algorithm narrows the classical selection based on the shortest temporal and spatial baselines thanks to a coher-

ence proxy and balances the use of each image as Primary and Secondary images thanks to graph theory methods.

We apply the processing to three volcanic areas characterized with different climate, vegetation and deformation characteris-

tics: the Virunga Volcanic Province (DR Congo), the Reunion Island (France) and the Domuyo and Laguna del Maule area

(Chile-Argentina border).

Compared to pair selection based solely on baseline criteria, this new tool produces similar velocity maps while reducing the

total number of computed differential InSAR interferograms by up to 75\%, which drastically reduces the computation time.

The optimization also allows to reduce the influence of DEM errors and atmospheric phase screen, which increase the signal-

to-noise ratio of the inverted displacement time series.
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Abstract20

The ever-increasing amount of SAR data motivates the development of automatic pro-21

cessing chains to fully exploit the opportunities offered by these large databases. The22

InSAR Mass processing Toolbox for Multidimensional time series (MasTer) is an opti-23

mized tool to automatically download SAR data, select the interferometric pairs, per-24

form the interferometric mass processing, compute the geocoded deformation maps, in-25

vert and display the velocity maps and the 2D time series on a web page updated incre-26

mentally as soon as a new image is available. New challenges relate to data management27

and processing load. We address them through methodological improvements dedicated28

to optimizing the InSAR pair selection. The proposed algorithm narrows the classical29

selection based on the shortest temporal and spatial baselines thanks to a coherence proxy30

and balances the use of each image as Primary and Secondary images thanks to graph31

theory methods. We apply the processing to three volcanic areas characterized with dif-32

ferent climate, vegetation and deformation characteristics: the Virunga Volcanic Province33

(DR Congo), the Reunion Island (France) and the Domuyo and Laguna del Maule area34

(Chile-Argentina border). Compared to pair selection based solely on baseline criteria,35

this new tool produces similar velocity maps while reducing the total number of com-36

puted differential InSAR interferograms by up to 75%, which drastically reduces the com-37

putation time. The optimization also allows to reduce the influence of DEM errors and38

atmospheric phase screen, which increase the signal-to-noise ratio of the inverted displace-39

ment time series.40

Plain Language Summary41

Development of satellite remote sensing greatly helps to mitigate natural hazard42

in remote or dangerous areas like volcano-tectonic regions or landslide-prone regions. In43

particular, Synthetic Aperture Radar Interferometry (InSAR) offers the possibility to44

measure ground surface displacements with millimeter resolution. Several methods ex-45

ist to benefit from the large amount of data to perform time series of ground deforma-46

tion with sub-centimeter resolution. However, the ever-increasing number of available47

images poses new challenges (e.g. to process the large amount of data, to manage large48

databases and to extract useful information in near-real time for operative purposes).49

MasTer is a fully automatic tool able to provide updated velocity maps and displacement50

time series resulting from the processing of satellites radar images, which are regularly51

acquired by space agencies. Hereby, we present a methodological development to speed52

up the processing and improve the signal-to-noise ratio of the obtained ground deforma-53

tion time series. This is achieved by optimizing the InSAR pair selection. By also reduc-54

ing the storage space and raw-memory requirements, it allows processing longer time se-55

ries with the same computational infrastructure. The proposed algorithm, written in Python,56

is included in the MasTer toolbox, though it can easily be adapted for other time series57

software.58

1 Introduction59

Classic differential Radar Interferometry (InSAR) processing consists in estimat-60

ing the ground surface displacements by measuring the phase offsets between two Syn-61

thetic Aperture Radar (SAR) signals acquired with the same imaging geometry at two62

different epochs (Massonnet & Feigl, 1998). Since the first interferogram computed in63

the 1990’s, the diversity of SAR sensors and the amount of SAR data available has in-64

creased exponentially, which motivated the development of time series methods such as65

Persistent Scatterer Interferometry (PSI) (Ferretti et al., 2000, 2001) and Small Base-66

line Subset (SBAS) (Berardino et al., 2002).67

PSI-like methods measure the displacement at stable point scatterers (usually man-68

made structures). To identify only the stable scatterers, such methods consider inter-69
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ferometric pairs with large perpendicular baselines. On the contrary, SBAS-like meth-70

ods consist in selecting interferometric pairs satisfying small spatial and temporal base-71

lines to derive a time series of displacement estimated on a given time interval. The small72

baseline criterion aims at optimizing the coherence on surfaces made of uniform scatterer73

distributions. To exploit the very large amount of data provided by space agencies, semi-74

automatic or automatic time series of ground deformation methods are developed either75

using PSI or SBAS techniques, or both, such as LiCSBAS (Morishita et al., 2020), MintPy76

(Yunjun et al., 2019), SNAP-StaMPS (Delgado Blasco et al., 2019), P-SBAS (Elefante77

et al., 2013; De Luca et al., 2015), or SqueeSAR (Ferretti et al., 2011).78

Here we use MasTer toolbox, which is a fully automatic, unsupervised processing79

chain (Derauw et al., 2020; d’Oreye et al., 2021) based on the Multidimensional Small80

Baseline Subset (MSBAS) method (Samsonov & d’Oreye, 2012, 2017; Samsonov et al.,81

2017, 2020), which is a 2D/3D extension of the SBAS method. Thanks to a set of shell82

scripts, MasTer allows the automation from the Single Look Complex (SLC) images down-83

load up to the 2D decomposition of ground deformation time series (vertical and hor-84

izontal). Interferograms and deformation maps are computed using the MasTer Engine,85

which is an extension of the CSL InSAR Suite (CIS) Software (Derauw, 1999).86

Considering N successive SAR acquisitions acquired in a given geometry, it is the-87

oretically possible to form N(N−1)
2 interferometric pairs. However, as revisit time decreases88

(e.g. thanks to the use of SAR satellite constellations), or simply because N increases,89

computing all the pairs theoretically available quickly becomes a time-consuming and90

computationally heavy task. Moreover, when the spatial and temporal baselines increase,91

many low coherence pairs are useless. Seasonal effects may also affect numerous pairs.92

Tao et al. (2018) show that the quality and quantity of multi-temporal differential in-93

terferograms used to produce a deformation time series using the SBAS-based StaMPS94

method affect its accuracy, and that processing a larger number of interferograms does95

not always provide better results.96

It is hence of prime importance to select the optimal list of interferometric pairs.97

The challenge is 1) to minimize the total number of interferograms to compute in order98

to maximize the processing efficiency, 2) to keep only the best-quality interferograms to99

improve the accuracy of the deformation measurement. Classical SBAS-like methods aim100

to retrieve the temporal evolution of the ground surface deformation from a selection of101

pairs based on a critical value of the perpendicular baseline in order to minimize the co-102

herence loss due to spatial decorrelation. Additionally, the short temporal baseline se-103

lection minimizes the effect of the temporal decorrelation. However, results from such104

a selection might be degraded by possible seasonal fluctuation of coherence (e.g. rain,105

snow,...).106

Several solutions were proposed to improve the pair selection. Yang et al. (2012);107

Pepe et al. (2015) propose an algorithm relying on Simulated Annealing to select a De-108

launay triangulation in the temporal/perpendicular baseline plane that maximize a cost109

function based on the coherence values of interferometric pairs. The semi-automatic se-110

lection of optimum image pairs (SASOIP) method (Zhang et al., 2018; Wu et al., 2019)111

evaluates the coherence of point targets in a small feature region as a criterion to increase112

the quality of the selected pairs. Using also a coherence threshold criterion, Ishitsuka et113

al. (2016) propose to determine the optimal baseline on a pixel-by-pixel basis. This en-114

ables the use of a greater number of interferometric pairs for highly coherent pixels and115

a minimal number of interferometric pairs for noisy pixels. Such a procedure increases116

the number of pixels available for surface displacement mapping.117

However, none of these methods is optimal to increase both the processing efficiency118

and the accuracy of the time series. They require the computation of the coherence map119

for every pair, including those that will not be selected, and/or they do not ensure that120
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the selection avoids splitting the data into several subsets and creating gaps in the time-121

baseline plot.122

In this study, we present a new algorithm that aims at optimizing the pair selec-123

tion by limiting the total number of interferograms to be computed, restricting the pro-124

cessing to the interferograms with the best quality without decreasing the deformation125

time series accuracy, and by balancing the usage of each image as Primary and Secondary126

images to improve the signal-to-noise ratio. The algorithm is tested by comparing sev-127

eral inversions performed using the MSBAS method within the MasTer toolbox, though128

it can easily be adapted for other time series software.129

The proposed method considers the time-baseline plot as a directed graph with the130

nodes representing the SAR acquisition dates and the arcs representing interferometric131

pairs. Using this formalism, we developed an algorithm to extract an optimized subgraph.132

In order to drive the pair selection, we weight the arcs using a coherence proxy based133

on a function of the spatial and temporal baselines. Such a proxy avoids computing the134

coherence map of all possible interferograms as it can be calibrated by computing the135

coherence maps for a subset of pairs (ideally longer that a seasonal cycle).136

We tested the algorithm on three volcanic areas : the Domuyo-Laguna del Maule137

(DLM) area (Chile-Argentina boundary), the Reunion Island (France) and the Virunga138

Volcanic Province (VVP) area (Democratic Republic of Congo) (Fig. 1). It is important139

to note that the maximum temporal and spatial baselines (BT and BP respectively) used140

to build the time-baseline graphs to be optimized in these 3 cases studies must be con-141

sidered as for demonstration purpose. They must not be taken as default values for all142

studies. Appropriate values of baselines must be chosen with care and depend on the type143

of target (ground cover and seasonal conditions), the type of expected signal to be mea-144

sured, the satellite orbital characteristics, the potential errors such as the “fading sig-145

nal” (Ansari et al., 2020), the computer resources available etc. It is the responsibility146

of the user to chose these appropriate baselines values carefully taking into account these147

criteria while maintaining as much as possible a gap-less time-baseline graph. We remind148

in the Supporting Information (Text S1) some basic concepts that could assist the user149

to select these baselines values.150

2 Geological settings and InSAR data availability of 3 test-sites151

The three areas are different in term of climate, expected signal of deformation, backscat-152

tering properties and temporal decorrelation characteristics. We mainly used data from153

the Sentinel–1 constellation available in the three areas. On the VVP, we also compare154

the algorithm performance with additional data from RADARSAT and COSMO-SkyMed155

satellites.156

2.1 Domuyo and Laguna del Maule (Chili-Argentina)157

Laguna del Maule (LDM) volcanic complex (Talca province, Chile) and Domuyo158

volcano (Neuquén province, Argentina) are located in the Southern Andes. On both vol-159

canoes, large rates of surface uplift were recently detected by satellite geodetic measure-160

ments : up to 30 cm/yr on Laguna del Maule (Fournier et al., 2010; Feigl et al., 2014;161

Singer et al., 2014; Le Mével et al., 2015) and 15 cm/yr in LOS on Domuyo (Astort et162

al., 2019; Lundgren et al., 2020; Derauw et al., 2020). Although it is mostly a desert area,163

Fig. 2 show that the excellent InSAR coherence quickly decreases when the time delay164

between acquisitions increases. It also clearly reveals a seasonal effect with strong decor-165

relation during austral winter (June-Aug.) because of the important snow falls affect-166

ing these high altitude regions of the Andes while images from summer to summer re-167

cover a satisfying coherence level. Sentinel–1 acquires SAR images on a regular basis since168

October 2014. In this study we use 340 images acquired in IW mode along the ascend-169
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Table 1. InSAR data availability. The table contains, for each acquisition mode used in this

study (col. 1), the total number of available images (N, col. 2), the time delay between two ac-

quisitions (in days, col. 3), the period spanned by the data set (col.4), the temporal (BT ) and

spatial (BP ) baseline criteria used in the original time series processing (col. 5) and the total

number of interferometric pairs before (col. 6) and after optimization (col. 7).

Area Images δt Time span BT /BP Pairs Pairs BT /BP
Sat. Mode Orbit (N) (days) (yyyy-mm-dd:yyyy-mm-dd) (days/m) BT /BP opt. 3 or opt. 3/4

Domuyo
S1 IW A18 NT 140 24/12a 2014-10-30:2020-11-27 450/20 798 376/471

CT 0.24 99 231 181
MVCP 0.25 124 700 337
MVCP 0.30 96 385 240
MVCP 0.35 68 206 150
MVCP 0.40 59 174 124

S1 IW D83 NT 200 24/12/6b 2014-10-23:2020-11-26 450/20 1868 557/707
CT 0.24 153 782 358

MVCP 0.25 179 1718 500
MVCP 0.30 146 1219 400
MVCP 0.35 115 841 321
MVCP 0.40 95 625 261

Reunion
S1 SM A144 125 12 2016-10-10:2020-10-30 50/50 291 275
S1 SM D151 119 12 2016-10-11:2020-12-01 50/50 241 235
S1 IW A144 122 12 2016-10-04:2020-11-24 70/70 412 334
S1 IW D151 120 12 2016-10-05:2020-11-25 70/70 385 313

VVP
CSK A 459 4 2011-04-15:2020-05-21 200/200 2453 1248/1570
CSK D 516 4 2011-04-13:2020-05-18 200/200 2861 1439/1804

RS F2F D 76 72/24c 2010-03-28:2019-06-09 400/400 618 222/285
RS F21N D 42 24 2009-12-15:2014-04-17 400/400 277 122/156
RS UF A 77 24d 2012-03-03:2019-05-26 400/400 829 228/300

S1 IW A174 226 24/12/6e 2014-10-17:2020-12-02 400/20 2575 649/840
S1 IW D21 141 24/12f 2014-10-07:2020-11-22 400/20 826 383/481

Acronyms:
A = Ascending; D = Descending, SM = Strip Map; IW = Interferometric Wide Swath
S1 = Sentinel–1; CSK = CosmoSkyMed; RS = RADARSAT
F2F = Fine; F21N = Fine; UF = UltraFine
NT = No Threshold
CT = Coherence Threshold for pair rejection
MVCP = Minimum Value of Coherence Proxy for image rejection

a24 days then 12 days since May 2017 then 6 days since Aug. 2020.
b24 days then 12 days since Fev 2017 then 6 days since Dec. 2018.
c72 days then 24 days since Dec. 2013.
d24 days since Jul. 2013.
e24 days then 12 days since Fev. 2017 then 6 days since Jun. 2018.
f24 days then 12 days since Fev. 2017.
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Figure 1. Location on a global view of the three studied areas : Reunion Island, Virunga

Volcanic Province (VVP) and Domuyo and Laguna del Maule. InSAR footprints used for each

acquisition mode are represented on Google Earth background. In addition, black polygons mark

the regions of interest defined in each area and used for mean coherence estimates. Zoom in on

the Nyamulagira (Nya) and Nyiragongo (Nyi) where numbers marks the lava flow emplacement

year mentioned in main text and Fig. 4

ing orbit 18 and the descending orbit 83 (Table 1). Data span 6 years (2014/10/23–2020/11/27).170

Delay between two acquisitions has reduced from 24 days at the beginning of the mis-171

sion to 12 days since February and May 2017 and to 6 days since December 2018 and172

August 2020 for descending and ascending orbits respectively.173

2.2 La Reunion Island (France)174

La Reunion is a French tropical island located in the Indian Ocean. This volcanic175

island is formed by the Piton des Neiges (PdN) Volcano to the northwest and by the Piton176

de la Fournaise (PdF) Volcano to the southeast. PdF volcano is a very active volcano177

with nearly one eruption every 10 months since 1985 (Roult et al., 2012). Its poorly veg-178

etated lava field ensures a high level of coherence (Fig. S1), which offers favorable con-179

ditions for mapping the frequent and large co-eruptive displacements using InSAR re-180

lated methods. PdN is a dormant and largely eroded volcano with three Circus : Cilaos,181

Mafate and Salazie. The tropical vegetation that covers large parts of the edifice quickly182

degrades the coherence (Fig. S1). Moreover, seasonal coherence fluctuation are related183

to the existence of rainy seasons common to the tropical climate. Several active land-184

slides are identified in the Salazie Cirque (Delacourt et al., 2009; Raucoules et al., 2020).185

The Reunion island has been imaged by several SAR satellites since the early 2000’s. Here186
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we focus on the analysis of 479 Sentinel–1 SAR acquisitions spanning four years (2016/10/04–187

2020/11/01) and freely available in the frame of the European Copernicus Program. Im-188

ages were acquired along the ascending orbit 144 and descending orbit 151 in both StripMap189

(SM) and Interferometric WideSwath (IW) modes (Table 1). Although each mode is re-190

visited every 12 days, the alternation of acquisition in SM and IW modes leads to a re-191

visit time of 6 days both in ascending and descending geometries. Acquisition of an as-192

cending image precedes by ∼12 hours the descending acquisition. A dense GNSS net-193

work monitored by the Observatoire Volcanologique du Piton de la Fournaise (OVPF-194

IPGP) allows us to validate our InSAR deformation time series by comparing them to195

GNSS data from the PdF area.196

2.3 The Virunga Volcanic Province (DRC)197

The Virunga Volcanic Province (VVP) is located on the eastern border of the Demo-198

cratic Republic of Congo, in the Kivu Basin region. Two active volcanoes Nyiragongo199

and Nyamulagira, both hosting an active lava lake at the time of writing, stand in the200

VVP at only a few kilometers from the cities of Goma (in DR Congo) and Gisenyi (in201

Rwanda). The population of that region is rapidly growing and reached ∼ 1.1M inhab-202

itants in 2017 (Mairie de Goma, 2017; PopulationData.net , 2017). Because large parts203

of the VVP remains practically inaccessible due to the dense equatorial jungle and re-204

current armed conflicts, InSAR is a very important tool to complement the permanent205

GNSS (Geirsson et al., 2017; Ji et al., 2017) and seismic (Oth et al., 2017) ground-based206

monitoring networks maintained by the Goma Volcano Observatory (GVO). However,207

the equatorial vegetation limits the coherence to mostly the recent bare lava flows and208

the urban areas. Here also, seasonal coherence fluctuations are related to the existence209

of rainy seasons. In this study we use 1565 SAR acquisitions from CosmoSkyMed (CSK),210

RADARSAT (RS) and Sentinel–1 (S1) satellites, spanning 11 years in total (2009/12/15–211

2020/11/22) (Table 1). Delay between acquisitions has progressively evolved from 72 days212

with the first RS acquisitions to 24, 12 and 6 days with S1 and even 4 days with CSK.213

3 Methods214

3.1 MasTer: a fully automatic processing chain215

The MasTer toolbox consists of a set of shell scripts that coordinate the full au-216

tomation of differential InSAR mass processing and feeding of an MSBAS processor that217

generates displacement time series in LOS and/or vertical and horizontal (east-west) di-218

rections. The whole processing chain, from SLC data downloading to results displaying219

in a dedicated web page incrementally updated for every new image (or updated orbit),220

is optimized and human-supervision free. In the following, we briefly describe the rel-221

evant steps and refer to Derauw et al. (2020); d’Oreye et al. (2021) for a detailed overview222

of the possibilities offered by MasTer. See also Supporting Information Text S2 for pos-223

sible strategies when implementing the proposed optimization in an automatic mass pro-224

cessing chain.225

3.1.1 InSAR Processing226

Starting from a list of SLC images, MasTer toolbox aims at selecting a list of pairs227

for interferogram computation. The original selection is done using classic spatial (BP )228

and temporal (BT ) baseline threshold criteria. Through a mass processing step, all in-229

terferograms from the list are computed using the MasTer Engine, a command line In-230

SAR processor and tools written in C derived from the CSL InSAR Suite software (CIS)231

(Derauw, 1999). Interferometric products (amplitude, coherence, differential interfero-232

metric phase, unwrapped phase and deformation maps) are computed in a global-primary233

SAR geometry. The interferograms are filtered (Goldstein & Werner, 1998), unwrapped234
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with SNAPHU (Chen & Zebker, 2002), interpolated to fill empty isolated pixel gaps sur-235

rounded by unwrapped values and deramped. At last, InSAR products are geocoded on236

a predefined grid similar for all satellites geometries (Derauw et al., 2020).237

3.1.2 MSBAS238

Deformation maps computed from all the selected interferometric pairs feed the Mul-239

tidimensional Small Baseline Subset (MSBAS) processor (Samsonov & d’Oreye, 2012,240

2017; Samsonov et al., 2020). MSBAS is an extension of the Small BAseline Subset method241

(Berardino et al., 2002) written in C++. Unlike SBAS, which aims to invert displace-242

ments acquired in a given imaging geometry along the LOS, MSBAS inverts simultane-243

ously several data sets (i.e. different satellites and/or different LOS), to obtain east-west244

(EW) and vertical cumulative deformation as well as linear velocity maps. From these245

results, one can extract EW and vertical displacement time series for each pixel that re-246

mained coherent along the whole time span and in each acquisition geometry. Nowadays,247

SAR-satellite data acquisition is done following side-view geometry along sub-polar or-248

bits, making InSAR measurements poorly sensitive to North-South displacements. The249

inversion of LOS displacements is thus generally restricted to the vertical and East-West250

components. The possibility to retrieve the full 3D decomposition is limited to some spe-251

cific cases, such as slow-moving landslides or glacier flows, when the degree of freedom252

can be reduced by assuming that the displacements occur parallel to the surface (Samsonov253

et al., 2020) or in a few occasion when a large number of acquisitions from different looking-254

angle are available (Peltier et al., 2017). However, because this is restricted to rare ap-255

plications, we deal here with the inversion in 2D corresponding to the vertical and East-256

West directions. This approximation is reasonable as long as the displacement in the North-257

South component is not significantly larger than the East-West nor the Vertical com-258

ponents (Samsonov & d’Oreye, 2012; Nobile et al., 2018).259

Another important aspect of the MSBAS method is that it inverts all the defor-260

mation maps provided by an external InSAR processing. Because the InSAR process-261

ing is the most time-consuming task, this MSBAS capability makes it especially suitable262

for an incremental usage: as soon as a new image is added to the database, only the in-263

terferograms from the pairs of interest formed with that new image must be computed.264

These new deformation maps are then added to the previously computed deformation265

maps feeding the MSBAS processor. MSBAS inversion takes only few minutes to hours266

depending on the number of deformation maps and their spatial extension.267

3.1.3 MSBAS with a coherence threshold268

After InSAR Mass Processing but before MSBAS inversion, an optional automated269

procedure is available in MasTer to reject the interferometric pairs that do not satisfy270

a coherence test. This MasTer functionality allows to automatically reject the interfer-271

ometric pairs affected by a mean coherence measured lower than a given threshold over272

a reference region. We use this option at DLM. Indeed, based on a comparison with pub-273

lished GNSS information, Derauw et al. (2020) show that the deformation at DLM is274

measured more accurately while considering a MSBAS processing where a coherence re-275

striction is applied (CT processing). For all the pairs satisfying the BP and BT crite-276

ria, the average coherence is computed on a square area (see LDM region kml footprint277

in Fig. 1) known to be prone to snow cover in winter season. The processing discard from278

the MSBAS inversion all the pairs affected by a mean coherence computed on that ref-279

erence region lower than a given threshold. In our case, selecting 0.24 as the threshold280

on the average coherence ensure discarding pairs with no or poor interferometric signal281

on the area of interest. This concerns typically pairs including images acquired during282

the austral winter.283
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Figure 2. Mean coherence of Sentinel 1 ascending (left column) and descending (right col-

umn) interferograms as a function of the acquisition dates of the Primary and Secondary images.

The mean coherence is computed either in the Domuyo area (first row) and at Laguna del Maule

(second row). The third row represents the difference between first and second rows.

3.2 Coherence weighted graph for pairs selection optimization284

In order to reduce the time and resources needed for the processing, special atten-285

tion should be paid to the selection of interferometric pairs to be computed. A manual286

selection is no longer an option due to the amount of SAR data available. In the follow-287

ing, we first define the coherence proxy then explain how the selection algorithm makes288

use of this proxy to restrict the total number of pairs to process.289

3.2.1 Coherence proxy definition290

Distribution of coherence values being Gaussian, one could use a mean coherence291

value computed on a Region of Interest (ROI) to give a weight to each interferogram.292

However, computing the coherence for all the pairs is very expensive in terms of time293
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and computer resources. A more efficient way is to define an easy-to-compute proxy of294

the coherence w for each pair of images. Note that if the distribution is not Gaussian,295

better statistical parameters describing the overall quality (such as the median, geomet-296

ric mean or mode or mean value of the particular percentile) can be preferred to cali-297

brate the coherence proxy.298

The multitemporal coherence matrix can be used to characterize the dynamics of299

the coherence computed over a target area (Jacob et al., 2020). Temporal decorrelation300

and seasonal effects are the most important processes to be taken into account by the301

proxy, although it also includes the possibility to deal with spatial decorrelation by lim-302

iting the length of the spatial baselines. Thus, we defined the coherence proxy w as the303

weighted sum of three contributions (equation 1):304

w = aw1 + bw2 + cw3 (1)

where w1 accounts for the seasonal effect, w2 accounts for the temporal decorrelation,305

w3 accounts for the spatial decorrelation and a, b and c are the weighting coefficients306

whose determination is further explained below.307

We define the seasonal contribution w1 as:308

w1 =

∣∣∣∣sin(DOYP + (365−DOYlow)

365
× π

)
× sin

(
DOYS + (365−DOYlow)

365
× π

)∣∣∣∣α (2)

where DOYP and DOYS represent the Primary and Secondary image day of year, DOYlow309

and α ∈ [1; 5] are calibration factors to be fixed by users. DOYlow in days represents310

the epoch of the year when coherence is the lowest and α accounts for the width of this311

low coherence period. Fig. S2-5 illustrate the behavior of w1 when DOYP , DOYS , DOYlow312

and α vary.313

To take into account the temporal and spatial decorrelation (Libert, 2018), w2 and314

w3 are defined respectively as :315

w2 = (Mxc −Mnc)e
−β|BT | +Mnc (3)

316

w3 = (Mxc −Mnc)e
−γ|BP | +Mnc (4)

where BT and BP are the temporal and perpendicular baselines of each interfer-317

ogram. Mxc and Mnc are the maximum and minimum expected values for the mean co-318

herence in studied area and β ∈]0; 1] and γ ∈]0; 1] are calibration factors to be fixed by319

users. They account for the temporal and spatial decorrelation rates in the studied area.320

Fig. S6 illustrate the behavior of w2 and w3 when β and γ vary.321

Weighting coefficients a, b and c are determined for each studied area and each ac-322

quisition mode as follow. Considering a calibration set of p pairs and coh(i) the mean323

value of the coherence computed on a region of interest for each pair i ∈ [[1; p]], we de-324

fine the column vector Coh = (coh(i))i∈[[1;p]]. For each pair i of the calibration set, we325

compute the three contribution w1(i), w2(i) and w3(i). We define the three columns vec-326

tors Wk = (wk(i))(i,k)∈[[1;p]]×[[1;3]]. We normalize according to Eq. 5:327

W ∗k (i) = Mnc +
Wk(i)−min(Wk)

max(Wk)−min(Wk)
(Mxc −Mnc); i ∈ [[1; p]] (5)

and we define the p-by-3 matrix W =
(
W ∗1 W ∗2 W ∗3

)
. Considering A such that:328

WA = Coh (6)
329

A =

 a
b
c

 = (WTW )−1WTCoh (7)
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Table 2. Coherence proxy calibration. The table contains, for each acquisition mode used in

this study (col. 1) and the Region of Interest (ROI, col. 2), the values of the calibration factors

(DOYlow, α, β, γ,Mxc and Mnc, see section 3.2.1 for definition) and the weighting coefficients

(a,b and c). R is the correlation coefficient between coherence data (mean value computed on the

ROI) and the coherence proxy for all pairs used for calibration.

Area ROI DOYlow α β γ Mxc Mnc a b c R
Sat. Mode Orbit (day) (day−1) (m−1)

Domuyo
S1 IW A18 Dom 230 1 0.0125 0.02 0.70 0.23 0.31 0.39 0.01 0.808
S1 IW A18 Lag 230 1 0.0125 0.02 0.70 0.23 0.32 0.41 0.05 0.815
S1 IW D83 Dom 230 1 0.0125 0.02 0.73 0.24 0.32 0.42 0.01 0.816
S1 IW D83 Lag 230 1 0.0125 0.02 0.73 0.24 0.30 0.43 0.00 0.861

Reunion
S1 SM A144 GI 30 1 0.025 0.01 0.31 0.22 0.41 0.35 0.14 0.725
S1 SM D151 GI 30 1 0.025 0.01 0.37 0.23 0.28 0.40 0.14 0.627
S1 IW A144 GI 30 1 0.025 0.01 0.39 0.31 0.32 0.42 0.16 0.713
S1 IW D151 GI 30 1 0.025 0.01 0.39 0.30 0.34 0.33 0.27 0.721

VVP
CSK A Sav. 1 3 0.050 0.006 0.45 0.05 0.14 0.38 0.06 0.697
CSK D Sav. 1 3 0.050 0.006 0.51 0.07 0.13 0.44 0.15 0.684

RS F2F D Sav. 1 3 0.025 0.006 0.26 0.07 0.16 0.44 0.16 0.766
RS F21N D Sav. 1 3 0.025 0.006 0.39 0.14 0.24 0.35 0.23 0.647
RS UF A Sav. 1 3 0.025 0.006 0.30 0.06 0.20 0.35 0.16 0.706

S1 IW A174 Sav. 1 3 0.050 0.006 0.55 0.13 0.07 0.33 0.18 0.687
S1 IW D21 Sav. 1 1 0.025 0.006 0.45 0.13 0.17 0.25 0.18 0.557

where a, b and c are the weighting coefficients. Once this proxy is calibrated with a set330

of pairs, it is possible to associate a weight to each new pair without computing the co-331

herence.332

Fig. 3 shows how the calibration factors DOYlow, α, β and γ are chosen to adjust333

w1, w2 and w3 to coherence data for S1 IW Desc mode in the DLM area. Calibration334

of others areas and modes are shown in Fig. S7-18. For each mode, the weighting coef-335

ficients a, b and c are inverted and results are shown in Table 2. The correlation coef-336

ficient R between the coherence data used for calibration and the coherence proxy be-337

ing close to 1 shows that our proxy is generally able to discriminate between low and high338

coherence interferograms.339

3.2.2 A graph formalism340

We represent the time-baseline plot as a weighted directed graph where each SAR341

acquisition date is a node. Each Primary/Secondary images combination draws an arc.342

Each arc is given a weight w that is a proxy of the coherence. The optimization algo-343

rithm aims to remove the poorest-quality pairs from the graph in areas where many arcs344

are drawn while keeping all the pairs in areas poorly-connected. The optimization cri-345

terion k is defined as the maximum in-degree and out-degree of each node in the opti-346

mized graph. For a given node, these values correspond to the number of arcs entering347

and leaving the node respectively. This strategy aims to limit the total number of pairs348

computed in the mass processing to save time and memory, increasing the computation349

efficiency. It also allows to balance the use of each image as Primary and Secondary im-350

age which may reduce the influence on the final deformation time series of atmosphere351

artifacts.352

–11–



manuscript submitted to JGR: Solid Earth

Figure 3. Calibration of the coherence proxy in the DLM area for S1 descending dataset

(time span 2014-10-23:2020-11-26). A and B represent the mean coherence computed on the La-

guna del Maule ROI and the seasonal contribution w1 to the coherence proxy as a function of the

primary and secondary image day of year of each pair. C and D represent the mean coherence

computed on the Laguna del Maule ROI as a function of the Primary (Secondary) image Day

of year respectively. Blue and red dash lines mark DOYlow and DOYlow + 6 months modulo

12 months, respectively. E and F represent the mean coherence computed on the Laguna del

Maule ROI as a function of BT for pairs with BP < 15 m and as a function of BP for pairs with

BT < 25 days, respectively. The red line represents the exponential decrease modeled by w2 and

w3 in the coherence proxy. C to F, horizontal black line marks the minimum expected value of

the coherence Mnc. G represents the coherence proxy w versus the mean coherence computed

on the Laguna del Maule ROI for each pair of the calibration set. The red line marks the first

bisector. H and J represent the mean coherence computed on the Laguna del Maule ROI for each

pair of the calibration set and the coherence proxy w, respectively, as a function of the primary

and secondary image acquisition date. K to M, the color scale represent the partial weights w1,

w2 and w3 (see text section 3.2.1), respectively. The value of the corresponding coefficients a, b,

and c is indicated on top of each plot. –12–
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The algorithm starts with an initialization step followed by a straightforward pro-353

cess on all the nodes. During the initialization, the algorithm computes the in-degree and354

out-degree of each node. Then to each arc it associates a value v that is the number of355

arcs coming in to the same node, in other words the in-degree of the targeted node. Nodes356

are sorted in chronological order. In a for-loop, the algorithm verifies if the out-degree357

o of each node reaches the optimization criterion k. If not (o ≤ k), it keeps all the arcs358

and steps to the following node. If yes (o > k), the algorithm clusters the out-arcs in359

two classes depending if v reaches the optimization criterion. All the arcs that don’t sat-360

isfy the criterion (v ≤ k) are kept. All others (v > k) are sorted by their weight. Then361

arcs with the smallest weights are removed until minimizing |o−k|. The values o and362

v are updated and the algorithm steps to the following node until the last one.363

The optimization algorithm aims at selecting the most favorable pairs and limit364

the amount of interferograms to be processed by selecting a maximum number of 2k pairs365

for each image. Hence, if enough pairs are available, each image is taken k times as Pri-366

mary and k times as Secondary image. Obviously, the lower k, the more restrictive the367

selection and hence the higher the gain in terms of computation load. Similarly, the larger368

the baseline criteria, the larger the number of pairs to process without optimization. Hence369

the efficiency of the optimization in terms of computation load depends on the initial base-370

lines criteria and the choice of k. That means that with N images, the total number of371

pairs reaches a maximum of (k×N)−2k, where the subtrahend 2k takes into account372

the fact that the first and the last image of the data set can’t be used as a Secondary373

and Primary image respectively. Without any pair selection criterion, the total number374

of pairs to compute with N images is N(N−1)
2 and considering a temporal baseline cri-375

terion (BT ), an order of magnitude of the number of possible pairs is floor(BT

δt )×N ,376

where δt is the revisit time. Thus the optimization performance will increase with k much377

smaller than floor(BT

δt ).378

This algorithm aims at keeping the graph connectivity and for a given image, even379

if all the pairs have a low coherence proxy value, the algorithm keeps 2k pairs. In order380

to force the rejection of these images before the InSAR Mass Processing, an additional381

option of the algorithm offers the possibility to reject some images if the coherence proxy382

doesn’t reach a minimum value for at least one pair to form with that image. We call383

this the Minimum Value of Coherence Proxy for image rejection processing (MVCP pro-384

cessing). This option is tested on DLM for comparison with the coherence threshold re-385

striction applied after InSAR Mass Processing.386

4 Results387

In this section, we look at results for the 3 targets then analyze the impact of our388

optimization.389

4.1 Description of the displacements velocities measured with and with-390

out the optimization391

Velocity maps reveal previously identified deformation patterns as well as more dis-392

crete features. On the VVP, the map reveals two main subsiding areas in the Nyamu-393

lagira volcanic field corresponding respectively to the 1991-1993 lava flow (Colclough,394

2006, 2007; Toombs & Wadge, 2012) and the 2011-2012 lava flow (see profile BB’ in Fig. 4)(Albino395

et al., 2015). A large area centered on the Nyamulagira crater also subsides at 10 mm.yr−1396

and subsidence reaches locally 20 mm.yr−1 inside the Nyamulagira caldera. At last, lo-397

cal subsidence with a smaller amplitude (4-6 mm.yr−1) is also noticeable at several lo-398

cations in the lava flows formed by the 2004, 2006 and 2010 eruptions (Smets et al., 2010)399

(see profiles AA’ and CC’ in Fig. 4 and locations in Fig. 1). The DD’ profile does not400

cross the Nyamulagira volcanic field. It rather extends across the Rift, from the city of401

Sake to the West up to the city of Goma and beyond to the east. A roughly 7 mm/yr402
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subsidence is observed in a region undergoing significant magmatic CO2 degassing (Wauthier403

et al., 2018) located in the Southern tip of the uninhabited Virunga National Park (see404

DD’ profile from 8.000 to 20.000 m in Fig. 4). Note that the DD’ profile seems to be af-405

fected by offsets maybe related to residual plane or due to the fact that the zone is not406

connected to the volcanic part of the interferogram.407

On Reunion Island, the velocity map reveals large ground displacement velocities408

on the Piton de la Fournaise volcano summit and its upper eastern flank (uplift 20cm/yr,409

eastward 28cm/yr). It maps also strong subsidence (15cm/yr) on the flanks where re-410

cent lava flows emplaced (Fig. 5). Those mean velocities do not reflect a continuous in-411

flation but the cumulative effect of the 5 magma intrusions and 14 eruptions that occurred412

between October 2016 and November 2020 (Communiqués OVPF , 2016-2020). Each one413

of those events produced up to tens of cm of ground surface displacement in a few hours414

(Fig. 6). Outside of the volcano-related deformation detected on the poorly vegetated415

region of PdF, the MSBAS results reveals three other moving areas in the Salazie Cirque416

at the Piton des Neiges corresponding to three known landslides: Hell-Bourg (HB), Grand417

Ilet (GI) and Grand Ebouli (GE) (Delacourt et al., 2009; Belle et al., 2014; Raucoules418

et al., 2020).419

In the DLM area, deforming areas identified in Fig. 7A are consistent with the pre-420

vious results by Derauw et al. (2020). Circular patterns of uplift by several (tens of) cm421

are centered on Laguna del Maule and Domuyo volcano, respectively. Also, to the south-422

east of the Laguna del Maule Volcanic Complex, a frozen lava flow located between the423

Laguna Fea and the Laguna Negra subsides at about 2cm/yr (see profile AA’ between424

32 and 34 km on Fig. 7H) confirming the previous observation by Derauw et al. (2020).425

4.2 Choice of optimization criterion k and efficiency426

On the VVP area, we compare the velocity maps and some velocity profiles result-427

ing from an MSBAS inversion with and without our optimized pair selection. The op-428

timization of the pair selection is performed with k = 3 or k = 4 arcs entering and429

leaving each node (Fig. 4). Processing without optimization was performed using 3401430

pairs. Optimized and not optimized processing produce very similar results nearly ev-431

erywhere. Both optimizations also provided very similar results (see blue and green pro-432

files in Fig. 4), although processing with k = 3 was performed with 1031 interferograms433

against 1320 for k = 4. Therefore, being more restrictive with k = 3 provides the best434

efficiency. See for instance the profiles AA’ or CC’ in Fig. 4 where the discrepancy is less435

than a mm/yr which is about 5 % of the maximum observed deformation. The main no-436

ticeable difference is observed along the BB’ profile (Fig. 4) where the lava flow accu-437

mulated during the large volume eruption of 2011-2012 at Nyamulagira (Albino et al.,438

2015). The optimization reveals that the 2011-2012 lava flow compaction is about +4mm/yr439

faster than the value measured without the optimization (see section 5.2).440

Fig. 5 confirms the good agreement between the processing without and with such441

an optimization in the high coherence region of the Piton de la Fournaise (see profiles442

AA’ and BB’ in Fig. 5), either for the combination of SM and IW acquisition modes or443

for each mode separately. Note, that velocity profile CC’ crossing the Hell-Bourg land-444

slide (Fig. 5) confirms the agreement between optimized and not optimized processing445

at least when IW and SM data are inverted together. However, contrary to what is ob-446

served on the Piton de la Fournaise area, velocities profile resulting from the process-447

ing of SM data only (purple on Fig. 5) or the IW data only (yellow Fig. 5) are slightly448

different. IW velocities appear underestimated in comparison to SM velocities (see sec-449

tion 5.3).450

Fig. S19 and 8 compare respectively the baseline plots for La Reunion and for the451

VVP database. In the case of La Reunion, initial baseline criteria were 50 days and 50 m452

for images acquired in SM mode, and 70 days and 70 m for images acquired in IW mode.453
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Figure 4. Vertical velocity on the VVP area from MSBAS inversion of Sentinel–1 ascending

and descending data. A. Original processing without any optimization. B. and C. Optimized

processing with k = 3 and k = 4, respectively. D. Difference between original (A.) and optimized

(B.). E. Difference between optimized processing with k = 3 (B.) and k = 4 (C.). Velocity

profiles AA’, BB’, CC’ and DD’ (bottom panel). Red, blue and green lines represent original

and optimized with k = 3 and k = 4 processing results, grey lines show elevation profiles. - in

AA’ between 2.000 and 4.000 m = compaction of 2004 lava flow; between 11.000 and 13.000 m

= subsidence in summit crater - in BB’ between 3.000 and 5.000 m = compaction of 1967 and

1991-1993 lava flow; from 8.000 m to the B’ = compaction of 2011-2012 lava flow - in CC’ be-

tween 0 and 1.000 m = compaction of 1986 lava flow; from 11.000 m = compaction of 2006, 2010

and 2001 lava flows - in DD’ between 8.000 and 20.000 m = subsidence in an areas undergoing

significant magmatic CO2 degassing (Wauthier et al., 2018).
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Figure 5. Vertical linear velocity on the Reunion Island area from MSBAS inversion of

Sentinel–1 ascending and descending data in Stripmap (SM) and Wide Swath (IW) modes. Map

A: Original processing without any optimization. Map B: Optimized processing with k = 3. Map

C: Difference between original and optimized (Map A.- Map B.). Map D and E: Optimized pro-

cessing with k = 3 restricted to acquisition in SM and IW modes respectively. Map F: Difference

between optimized processing with k = 3 on SM acquisition mode and on IW acquisition mode

(Map D. - Map E.). Graphs G, H and J (bottom panel) are velocity profiles AA’, BB’ on the

Piton de la Fournaise and CC’ on the Hell-Bourg landslide. Red and green lines represent orig-

inal and optimized (with k = 3) processing results for combined acquisition modes. Purple and

yellow lines represent optimized with k = 3 processing results for SM and IW modes respectively.

The grey line represents the corresponding elevation profile

–16–
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Figure 6. Differential time series for 3 pairs of pixels at Piton de la Fournaise volcano where

GNSS stations are installed (BOMG and SNEG on the summit, FOAG and FERG at the base

of the cone and ENCG and GPNG on the western border of Enclos Fouqué caldera and on the

eastern flank respectively). MSBAS time series combine Wide Swath and StripMap S1 data.

East-west, vertical and north-south components are blue, green and red lines, respectively. Or-

ange and purple vertical bars mark the eruptions and magma intrusions. Grey dotted lines

represent the GNSS data uncertainties.

Thanks to the short revisit time of Sentinel–1 on that region of the world, a new image454

is acquired in each mode every 12 days. With the 50 days temporal baseline criterion,455

only a small number of images were used more than 3 times as Primary or as Secondary456

images and the amount of pairs to be rejected by the optimization remains low. Only457

5 and 3 % of the images were discarded for the SM mode in Ascending and Descending458

orbits (See two firsts rows in Fig. S19). For images acquired in IW mode, because the459

initial criteria was slightly higher, the benefit reaches 19 % for both Ascending and De-460

scending orbits (See two lasts rows in Fig. S19).461

In the case of the VVP, the results vary depending on the satellite (CSK, RADARSAT462

and S1) because of their orbital characteristics. The highest gain performance is obtained463

with S1 data acquired along the Ascending orbit. Because the revisit time was 24 days464

at the beginning of the Sentinel–1 mission, a temporal baseline as large as 400 days was465

necessary to ensure enough pairs in the baseline plot. However, when the revisit time466

was shortened down to 12 then 6 days, the same large baselines resulted in a huge amount467

of pairs considered for processing (2,575 pairs). The optimization with k = 3 discarded468

75% of the pairs (see penultimate rows in Fig 8). A similar performance is achieved with469

RADARSAT data acquired in Ultra Fine (UF) mode. The optimization is less perfor-470

mative for CSK data with only 25% of discarded pairs while the revisit time is 4 days471

and the baseline criteria are 150 days, 150 m. The reason lies in the large orbital tube472

preferred by the Italian Space Agency, which is less efficient for SBAS-like methods as473

only a small number of interferograms respect the short spatial baseline criterion. Hence474

the optimization is particularly important for that type of orbital configuration as it will475

always ensure that the maximum number of pairs to compute will be kN−2k (where476

N is the number of images in a given mode) in the case of enough branches for each node477

and only two isolated nodes (i.e. the beginning and the end of the baseline plot). See478

Fig. S19 and 8 for more details about the baseline plots and the optimization for each479

data set considered.480
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Figure 8. Original (column 1) and optimized baseline plots for each CSK, RADARSAT and

S1 data set acquired on the VVP. The optimization is performed with k = 4 (column 2) and

k = 3 (column 3). The total number of pairs used is indicated in the lower left corner of each

baseline plot.The percentage of pairs kept after optimization with reference to the original pro-

cessing is also indicated in the optimized baselines plots. Initial baselines criteria (BP and BT )

are indicated on top of each baseline plot.
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Figure 9. Double difference of vertical (green) and EW (blue) ground deformation (in m)

between 4 pairs of pixels located on the flanks of Nyamulagira volcano computed with original

processing (dark lines) and optimized processing (light lines). The inset is an amplitude image

with the location of the seven pixels.

4.3 Signal to noise ratio improvement481

To evaluate the benefit of the optimization and the balanced use of Primary and482

Secondary images on the time series quality, we compare the differential time series for483

several pairs of pixels computed with the original processing and with the optimized pro-484

cessing. Differential measurements between two pixels show the displacement of one pixel485

with respect to the other one. It has the advantage of providing an accurate reference486

for the movement. In addition, if the reference point is distal, though close enough to487

the deforming region, common systematic errors like those induced by the atmosphere488

that may affect both closely located pixels at the same time, will cancel out. Four east-489

west and vertical differential times series from the VVP are shown on Fig. 9 along with490

their linear fit. Pixels P1-P4 are located on the 1991-1993 lava flow from Nyamulagira.491

Pixels P5, P6 and P7 are located respectively on the flank of Nyamulagira near the 2010492

eruptive site, at the base of the Western shoulder of the Rift on the 1994 lava flow and493

in the city of Sake, along the northern shore of Lake Kivu. Differential displacements494

between P1-P2 and P3-P4 confirm the well-known constant ongoing subsidence of the495

1991-1993 lava flow (Samsonov & d’Oreye, 2012). Differential displacement of P5 with496

respect to P6 and P7 shows the constant subsidence of the 2010 eruptive site. A seasonal497

variation of nearly 4 cm in the vertical direction is clearly visible on the P5-P6 time se-498

ries. Similar seasonal variation is also observed on the P7-P5 time series though with a499

much smaller amplitude (less than 1 cm). Whatever the area, time series that results500

from the optimized processing are very similar but less noisy than the original time se-501

ries. The variance of residuals with respect to the linear fit is reduced by 15-30%. Par-502

ticularly significant is the amplitude reduction of the outliers.503
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4.4 Validation with GNSS data504

We showed with the VVP example that an optimization with k = 3 provides ad-505

equate results. In the VVP, a GNSS network exists (Geirsson et al., 2017; Ji et al., 2017)506

but stations are located in non-coherent areas meaning that it is impossible to compare507

both measurements.508

The permanent GNSS monitoring network installed at PdF allows to cross check509

the MSBAS results with ground based measures. Fig. 6 compares 2D MSBAS and 3D510

GNSS differential ground deformation time series. The three pairs of MSBAS pixels are511

co-located with the six GNSS stations BOMG, SNEG, FOAG, FERG, ENCG and GPNG.512

During the 3 year time span of the compared periods (2017-06-01 : 2020-09-01), we note513

a very good agreement between both measurements. MSBAS results mainly remain within514

the GNSS uncertainty (grey lines). We notice however some offsets between GNSS and515

MSBAS at the occasion of large co-eruptive displacements. This is related to two lim-516

itations of the InSAR method. The major cause of discrepancy is the very strong spa-517

tial gradient that may occur during fast magma propagation toward the surface. Such518

a gradient cannot be unwrapped and the resulting deformation maps underestimate the519

displacements. The second cause of discrepancy come from the low sensitivity of InSAR520

to north-south displacement. Displacements are inverted in two dimensions assuming that521

north-south displacements are insignificant. This approximation was shown to be valid522

as long as the displacement in the north-south component is not significantly larger than523

in the other directions (Samsonov & d’Oreye, 2012). When this condition is not full-filled,524

MSBAS may overestimate the east-west and/or the vertical components. This is for in-525

stance illustrated with the FOAG-FERG baseline during the October 2019 eruption (Fig. 6).526

More details about comparison of MSBAS and GNSS data on PdF can be found in Samsonov527

et al. (2017) who compared a RADARSAT time series to GNSS displacements recorded528

at each station.529

In the DLM region, we have no access to GNSS data but qualitative comparison530

was performed with published results in Derauw et al. (2020) and our optimized process-531

ing provides results very similar in a more efficient way.532

4.5 A Coherence Threshold Restriction533

We here compare the CT processing (Fig. 7A) with an optimized CT processing534

(Fig. 7D and E) and an optimized No Threshold (NT) processing (Fig. 7B and C). Derauw535

et al. (2020) demonstrated that processing without any coherence threshold underesti-536

mate the ground velocity at Laguna del Maule by about 48% and in the Domuyo area537

by 5-10%. The optimized NT processing gives underestimates (Fig. 7C) similar to the538

results of Derauw et al. (2020) without any optimization. This is due to the fact that539

even if the algorithm identifies well the low coherence pairs, it is forced to keep at least540

2k pairs of images even if low weights are attributed to these pairs. Difference between541

the CT and the optimized CT shown in Fig. 7E are less than 5 mm/yr (i.e. less than542

2.5% of the maximum deformation). Moreover, those differences correlate with the to-543

pography, where maximum values are on the summits while minimum values are in the544

valleys. Such a correlation with the topography suggests a reduction of the impact of545

the atmospheric noise due to the symmetric use of each image. However, the CT pro-546

cessing requires first the computation of a large number of coherence maps while the op-547

timization aims at reducing the number of pairs to process. The results from the addi-548

tional MVCP processing including an image rejection criterion using several values of549

the minimum coherence proxy value [from 0.25 to 0.40] are compared to the CT process-550

ing results (see Fig. 7F, H and J). Using such an a priori rejection criterion on images551

reduces the underestimates at LDM. Underestimation of the ground velocity is about552

40% with th = 0.25 and reaches 12% with th = 35 and th = 0.40. An optimization553

with k = 3 in addition to the coherence restriction remains the better option. Veloc-554
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ity profiles at Laguna del Maule and Domuyo are very similar to the originals with only555

23% and 20% of the pairs used in ascending and descending LOS respectively (Fig. 10).556

However this option requires the computation of all the coherence maps. The image re-557

jection based on the coherence proxy does not fully retrieve the deformation measured558

with the original processing on LDM but provides an acceptable and efficient result for559

monitoring purposes.560

5 Discussion561

5.1 Calibration of the coherence proxy562

Because computing the coherence for each pair of images is a time consuming step,563

we designed a quick way to provide an a priori estimate. Perlock et al. (2008) follow-564

ing Zebker et al. (1992) model the coherence as a product of several terms. However, us-565

ing such a definition will systematically discard long temporal baselines (i.e. > 1 yr),566

while in our case-study areas decorrelation is seasonal and some long pairs may be co-567

herent enough to have a strong interest when computing long time series over years. Here568

we choose to define a coherence proxy as the weighted sum of a seasonal component, a569

temporal component and a spatial component. Doing so, a pair with a long temporal570

baseline may have a non-negligible weight if both other terms are favorable. This coher-571

ence proxy is an efficient way to select the best quality pairs among a list while know-572

ing only the orbits and acquisition dates. However, the weighting coefficients require a573

calibration as they can differ as a function of the studied area and satellites used. For574

example, with Sentinel–1 data at Domuyo and Laguna del Maule, the seasonal decor-575

relation is very strong (Fig. 2). The temporal decorrelation is also important. However,576

the spatial decorrelation is minimized by the small orbital tube of Sentinel–1 that allows577

to keep only pairs that satisfy a very short baseline criterion (here we used BP = 20 m).578

The weight given to the spatial component w3 is smaller than the two others (Tab. 2).579

At the tropical Reunion Island, the seasonal and temporal components are also the most580

important even if the spatial component is a bit more significant (Tab. 2). This could581

be due to the use of a larger initial perpendicular baseline criteria (BP = 50 or 70 m).582

In an equatorial area like the Virunga, the temporal decorrelation is the most important583

factor (Fig. 3). However, the smaller weight assigned to the seasonal component could584

be a consequence of the more complex periodicity of the climatic constants in the area585

with two rainy seasons whereas our seasonal model only takes into account a periodic-586

ity of 12 months with a symmetric period of low and high coherence.587

The calibration of the proxy can be performed in several ways. We present here588

four methods, starting from the quickest and less accurate to the longest and most de-589

manding in terms of computing resources. The first method is an empirical calibration590

by trial and error in assigning values to a, b and c parameters (see Eq. 1). The second591

method consists in the inversion of these parameters using the coherence measured from592

a manual selection of a small number of pairs with different baselines characteristics and593

spanning different seasons (see Eq. 7). The third method bases the inversion on the coarse594

coherence values obtained from the systematic computation of all the possible pairs sat-595

isfying the baseline criteria over at least two years. The coarse coherence is estimated596

by computing the interferometric processes using a very high multi-looking factor to speed597

up the computation. The LazInSAR tool available in MasTer toolbox is well designed598

for that purpose as it is a single command line C program requiring only the location599

of the Primary and Secondary SLC image as input parameters. The fourth method prob-600

ably provides the best calibration but is also the most expensive in terms of computa-601

tional load as it requires the systematic computation of the coherence at the full reso-602

lution of the final interferometic products, for all pairs satisfying the baseline criteria,603

over a significant time period. Two years seems a good compromise to detect seasonal604

oscillations.605
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Figure 10. Baseline plots in the Domuyo-Laguna del Maule area for S1 Asc (A to F) and S1

Desc (A’ to F’) data. No threshold (NT) processing (A) and optimized (k = 3) NT processing

(B) time baseline plots. Coherence threshold (CT) processing (C) and optimized (k = 3) CT

processing time baseline plots, computed with a coherence threshold restriction at 0.24 on the

LDM ROI. Optimized (k = 3) MVCP processing time baseline plot computed with a coherence

proxy minimum value of 0.35 and 0.40, respectively (E and F). The total number of pairs used

is indicated in the lower left corner of each baseline plot. The percentage of the number of pairs

kept after optimization with reference to the original NT processing is also indicated. BP =20 m

and BT =450 days.
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Note that care must be taken if specific events occur during the test period used606

for the calibration. Some events may strongly modify temporarily or permanently the607

back-scattering properties of the ground and hence the coherence (e.g. wildfires, flood-608

ing, lava flow emplacements, landslides...). This could affect the assessment of the proxy609

and hence its performance to detect further high coherence interferograms. For instance,610

on La Reunion Island, after the burning of the vegetation in the Grand Brûlé area of Piton611

de la Fournaise volcano in January 2019, the average coherence increased by about 10%612

on the area (Fig. S1B). To the contrary, important lava flows occurring during frequent613

eruptions decrease the mean coherence. We therefore decided to exclude PdF from the614

ROI used to compute the mean coherence while calibrating the proxy.615

5.2 On the optimization616

In the original processing, among all possible pairs, only those satisfying the spa-617

tial and temporal baseline criteria (BP ,BT ) are processed. The more restrictive the cri-618

teria, the smaller is the number of interferograms to compute, store and integrate in the619

MSBAS processing. Inversely, larger baseline criteria require more computation time,620

data storage space and available raw-memory (MSBAS loads all the deformation maps621

in memory before performing the inversion). Nowadays, modern SAR satellites often fly622

in constellations, which shortens the revisit time. Moreover, when the orbital tube is main-623

tained narrow enough (like for Sentinel–1), the number of interferograms that fit even624

small baselines criteria quickly increases. Using more restrictive criteria is not always625

an optimal solution, especially when seasonal decorrelation may affect the quality of the626

interferograms or when deformation is slow and dominated by the noise in short inter-627

ferograms. Moreover, short temporal baselines (typically less than 3 months) can also628

induce a type of error recently identified and called the ”fading signal” (Ansari et al.,629

2020). Studying that effect is out of the scope of the present paper and the optimiza-630

tion algorithm presented here does not prevent the ”fading signal” when using short BT631

criteria. However, the functionalities of the MasTer toolbox can offer a convenient tool632

to test and study that still-not-well-understood phenomenon.633

The Laguna del Maule case study illustrates the benefit of keeping some long tem-634

poral baselines while shorter temporal baselines are discarded. Interferograms spanning635

one year from summer to summer may have better coherence than shorter interferograms636

due to the snow cover during austral winter, or during seasonal transitions. Keeping such637

long temporal baseline interferograms helps to retrieve the deformation over years. Also,638

by choosing a very restrictive spatial baseline, it may be difficult to keep enough con-639

nectivity in the baseline plot. If the database is split in several subsets, the MSBAS in-640

version is badly constrained which could produce artificial jumps or oscillations in the641

time series. Our algorithm solves this problem as it allows to keep baseline criteria large642

enough when necessary while rejecting redundant pairs to avoid the computation of a643

large number of unnecessarily interferograms.644

By limiting the number of pairs to 6 with each image taken 3 times as Primary and645

3 times as Secondary, the algorithm also produces a symmetric use of each image. Such646

a symmetry contributes to compensate atmospheric phase screens. From a mathemat-647

ical point of view atmospheric artifacts can not be discriminated from a reversal defor-648

mations. An atmospheric artifact affecting an image will be seen as a spike in the ground649

deformation time series, which will not contribute much to the linear rate when there650

are many points in the time series. Nevertheless, to be able to resolve that atmospheric651

signal, one needs to have interferograms using the contaminated image as a Primary and652

others using it as a Secondary. In practice, the atmospheric noise gets mixed up with653

other sources of noise (e.g. orbital errors) and may not be fully compensated. The bal-654

anced use of image as Primary and Secondary ensures that we have symmetric network655

that resolves the atmospheric signal, which will be considered as much as a positive than656
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a negative contribution. Experience shows that it contributes to significantly lower the657

variance in the time series (Fig. 9).658

The influence of possible systematic DEM errors, which are inversely proportional659

to the height of ambiguity ha, is also reduced. On the one hand, the optimization re-660

duces the total number of used interferograms and favors the selection of pairs with the661

smallest baselines BP , i.e. the largest ha (Fig. S20). On the other hand, the selection662

process has statistically the same chance to keep pairs with positive or negative height663

of ambiguity, which means that DEM errors randomly add or subtract. We use the Nya-664

mulagira 2011-2012 lava flow to quantitatively evaluate this DEM error reduction (see665

profile BB’ in Fig. 4). Because the thick lava flow was not in place in 2000 when the SRTM666

DEM (Farr et al., 2007) used for the InSAR processing was computed, that flow produces667

on each interferometric pair a signal of d/ha fringes, where d is the thickness of the un-668

mapped flow. The average absolute height of ambiguity increases from 2200 m in the orig-669

inal processing to 2300 m after optimization, and the mean number of interferograms670

computed with a given image drops from typically 15-20 to 6. Supposing that the DEM671

errors add (hence neglecting the sign of ha), the average thickness of the 2011-2012 lava672

flow being of the order of 15 m (Albino et al., 2015), the mean DEM error in deforma-673

tion estimation hence drops from maximum 20/146th of a fringe (about 0.4cm) to 6/153th674

of a fringe (about 0.1cm). These values are however overestimated since they do not take675

into account the sign of ha. Finally, the pair selection also allows to reduce the time needed676

for computation, the space where data and products are stored and the raw-memory re-677

quired to run the MSBAS inversion.678

5.3 High resolution of SM mode better detect deformation in low co-679

herent vegetated area.680

On the Reunion Island, we processed separately and conjointly data from both ac-681

quisition modes available with Sentinel–1 (SM and IW). Coherence is much higher on682

the Piton de la Fournaise edifice (range [0.5-0.8]) than in the Cirque (range [0.2-0.35])683

due to the vegetation (Fig. S1). No differences in the velocities measured using SM and684

IW modes are noticeable on the highly coherent Piton de la Fournaise edifice. However685

in the Salazie Cirque, SM detected deformation signal has a larger amplitude than IW686

(Fig. 5) and lateral variations are smoother. Considering that IW and SM have similar687

looking angle and revisit time, the main difference between both modes is the resolution.688

The higher resolution of SM images probably allows to observe coherent pixels surrounded689

by decorrelated pixels, which are seen in coarser resolution IW images as only a decor-690

related region. Missing part of the signal, IW tends to underestimate the velocity com-691

pared to SM. The combined usage of IW and SM has the benefit of a higher temporal692

resolution (see section 2.2), but the velocity is somehow averaged between SM and IW693

velocities and thus underestimated.694

5.4 A coherence threshold is required on the Laguna del Maule due to695

very specific conditions696

At Laguna del Maule, a coherence threshold is required to reject poorly-coherent697

pairs. Otherwise the ground displacement may be underestimated by up to 47%. The698

strong loss of coherence in the area is due to snow-fall during the austral winter. How-699

ever, snow-fall also affects the neighboring Domuyo volcano. Domuyo summit (4709 m)700

is higher than Laguna del Maule (2400 m), and we could expect more snow cover dur-701

ing the winter and hence stronger underestimation of the deformation. Surprisingly, the702

displacement is underestimated by only 5-10% in the Domuyo area, less than at Laguna703

Del Maule. Fig. 2 shows that the coherence loss is less important and that the coher-704

ence increase is faster during spring in the Domuyo area than at Laguna del Maule. Look-705

ing to average elevation profiles (Fig. S21), Domuyo Volcano is a mountain with steep706

slopes while the Laguna del Maule complex lie in a large flat depression hosting a lake.707
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The steep slopes and strong winds affecting the Domuyo are probably less favorable for708

snow accumulation, allowing some pixels to remain coherent. Our algorithm first selects709

the pairs that could be potentially removed while trying to keep connectivity between710

the graph nodes, then it removes the less favorable pairs using the coherence proxy cri-711

terion. If an image contains snow, all pairs formed with that image will have poor co-712

herence. However, the algorithm is designed to keep at least 2k of them. Adding the pos-713

sibility to remove an image if a minimum value on the coherence proxy is not reached714

for at least one pair improves the quality of the results and hence our ability to prop-715

erly retrieve the deformation signal at Laguna del Maule. In this specific case, the co-716

herence proxy is an acceptable solution if time or computer resources are limited in or-717

der to provide a quick solution for operational purposes. However, a proper a posteri-718

ori selection based on coherence (and not coherence proxy) values may be needed.719

6 Conclusions720

The amount of SAR data available thanks to shorter time delays between acqui-721

sitions results in new challenges in processing automatically and in near-real time long722

time series of EW and vertical deformation for volcano monitoring purposes. Adopting723

a graph point of view, we implemented a new pair selection tool to the automatic and724

unsupervised MasTer toolbox. This pair selection aims at limiting the number of pairs725

using each image and favors a symmetric use of each image. The selection criterion is726

a coherence proxy computed a priori from the orbital parameters and acquisition dates.727

When possible, using such a proxy avoids the long computation of many pairs. The op-728

timization tool has been tested on three volcanic regions with very different character-729

istics: an equatorial forest in the Virunga, the tropical Reunion Island and the Domuyo730

and Laguna del Maule areas affected by snow seasonality. These tests show that the op-731

timization improves the processing efficiency. The pair selection reduces by up to 75%732

the number of interferograms to compute. This means shorter computation time, as well733

as smaller data storage and raw-memory requirements. The algorithm proves to efficiently734

cope with periodic (annual) variations of coherence. Its performance can be further in-735

creased by implementing an additional coherence restriction to remove pairs affected by736

very strong decorrelation. This allows avoiding underestimating the deformation signal737

in some specific cases such as the regions of the Andes heavily affected by snow falls. The738

restriction to the best pairs and the symmetric use of each image as Primary and Sec-739

ondary image also improve the time series quality, reducing by 15 to 30% the variance.740

In particular atmospheric noise is better compensated and the influence of DEM errors741

is minimized when using this optimization tool.742
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Singer, B. S., Andersen, N. L., Le Mével, H., Feigl, K. L., DeMets, C., Tikoff, B., . . .925

others (2014). Dynamics of a large, restless, rhyolitic magma system at Laguna926

del Maule, southern Andes, Chile. GSA today , 24 (12), 4–10.927

Smets, B., Wauthier, C., & d’Oreye, N. (2010). A new map of the lava flow field928

of nyamulagira (dr congo) from satellite imagery. Journal of African Earth Sci-929

ences, 58 (5), 778–786.930

Tao, Q., Gao, T., Hu, L., & Wang, Z. (2018). Optimal selection and application931

analysis of multi-temporal differential interferogram series in StaMPS-based932

SBAS InSAR. European Journal of Remote Sensing , 51 (1), 1070–1086.933

Toombs, A., & Wadge, G. (2012). Co-eruptive and inter-eruptive surface defor-934

mation measured by satellite radar interferometry at nyamuragira volcano, dr935

congo, 1996 to 2010. Journal of Volcanology and Geothermal Research, 245 ,936

98–122.937

Wauthier, C., Smets, B., Hooper, A., Kervyn, F., & d’Oreye, N. (2018). Identi-938

fication of subsiding areas undergoing significant magmatic carbon dioxide939

degassing, along the northern shore of Lake Kivu, East African Rift. Journal940

of Volcanology and Geothermal Research, 363 , 40–49.941

Wu, H., Zhang, Y., Kang, Y., Lu, Z., & Cheng, X. (2019). Semi-automatic selection942

of optimum image pairs based on the interferometric coherence for time series943

SAR interferometry. Remote Sensing Letters, 10 (11), 1105–1112.944

Yang, Y., Pepe, A., Manzo, M., & Lanari, R. (2012). An Effective Approach To945

Select The Interferometric SAR Data Pairs Based On Simulated Annealing. In946

Fringe 2011 (Vol. 697, p. 106).947

Yunjun, Z., Fattahi, H., & Amelung, F. (2019). Small baseline InSAR time series948

analysis: Unwrapping error correction and noise reduction. Computers & Geo-949

sciences, 133 , 104331.950

Zebker, H. A., Villasenor, J., et al. (1992). Decorrelation in interferometric radar951

echoes. IEEE Transactions on geoscience and remote sensing , 30 (5), 950–959.952

Zhang, Y., Kang, Y., et al. (2018). A New Automatic Selection of Optimum Inter-953

ferometric Image Pairs in time Series Sar Interferometry. In Igarss 2018-2018954

ieee international geoscience and remote sensing symposium (pp. 502–505).955

–30–



JOURNAL OF GEOPHYSICAL RESEARCH

Supporting Information for ”Pair Selection

Optimization for InSAR Time Series Processing”

D. Smittarello1, N. d’Oreye1,2, M. Jaspard1, D. Derauw1,3,4, S. Samsonov5

1European Center for Geodynamics and Seismology, 19 rue Josy Welter, L-7256 Walferdange, Gd Duchy of Luxembourg

2National Museum of Natural History, Department of Geophysics/Astrophysics, Rue Josy Welter 19, L-7256 Walferdange,

Grand-Duchy of Luxembourg

3Laboratorio de Estudio y Seguimiento de Volcanes Activos (LESVA),IIPG-Universidad Nacional de Rio Negro - CONICET, 1242

Av. General Roca, 8332, General Roca, Argentina
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Introduction The supporting information presented in the following consist in a short

text on the baseline criteria selection, on the possible optimization strategies, and a set

of figures that illustrate how the coherence behave and how the coherence proxy defined

in the main text is calibrated and adjusted to the different data sets used in the study (3

regions, 3 satellites and several acquisition modes).
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Text S1. Baseline Criteria Selection The choice of BT and BP is critical and depends

on the goal of the study. Their choice depends on several criteria that the user must

carefully assess and adapt in function of e.g:

• The studied target (e.g. the possible DEM inaccuracies, the type of ground cover,

the seasonal decorrelation, the type of expected deformation etc. . . , which are among

the main drivers in the selection of BT and BP ),

• The satellite (some satellites, such as CSK, have large orbital tubes, which do not

favor short baselines between images close in time and hence force the usage or either long

BT or large BP , or both)

• The computing resources available (the larger the maximum BT and BP , the larger

the total number of compatible pairs to process, and hence the more space it takes on

hard drive and the more it mobilizes the CPU’s)

• The time of the processing (the larger the maximum BT and BP , the larger the total

number of compatible pairs to process, and hence the longer time it takes)

• The type of application (systematic unsupervised processing for automatic monitor-

ing or detailed study of a specific case)

• The speed of expected deformation (fast deformation requires short temporal base-

lines for avoiding aliasing or decorrelation due to ground cover reshaping, slow deformation

requires long temporal baselines to maximize the signal to noise ratio)

• Other types of potential errors such as the fading signal (Ansari et al., 2020).

It is hence the responsibility of the user to find the appropriate values of BT and BP

given its needs and taking into account these criteria while maintaining a gap-less Baselines

Plot (interferometric graph connectivity).
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Text S2. Optimization strategies

When the optimization is used in an incremental procedure (i.e. to be run each time

a new image is made available), two strategies are possible. The strategies are described

here for usage with MasTer, but it could be adapted for usage with other mass processing

tools.

When a new image is made available, an original graph is computed (that is the graph

of all pairs satisfying the BT and BP criteria). MasTer then lists among that graph all

the pairs that do not exist in the database yet, that the pairs involving the new image.

Here two possibilities exist:

1) MasTer computes the deformation maps for all these new compatible pairs so that

they all exist in the data base whatever the optimization will select. Optimization then

selects among that original graph a subset of pairs, and only these new deformation maps

are added to the data base used to perform the MSBAS inversion. This speeds up the

inversion process and reduces the noise as we demonstrated. However, it does not reduce

the number of deformation maps to compute (because they are all computed), which is

the most time-consuming tasks. However, experience shows that each new image requires

about the same number of new pairs satisfying BT and BP criteria to be processed (as long

as the orbital characteristics of the satellite does change). Hence, one knows in average

the computer load and processing time a new image will require to update the time series.

If that amount of processing load is manageable by the computer infrastructure, it is a

convenient strategy as the user is ensured to have all the pairs processed that may be

needed.
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2) The other possibility consists in only computing the deformation maps for the pairs

identified in the optimized graph, not in the original graph. This obviously reduces a lot

the number of interferometric pairs to process, which is the most time consuming task.

This is hence very convenient in the case of a one-shot study, e.g. a new study on a

target area where a large number of images exists but no pairs were processed yet, and

no update must be processed as soon as a new image will be made available. However,

for the operation of an incremental monitoring ingesting every new image automatically,

we can’t exclude that a new image wouldn’t suddenly destabilize the optimized graph.

In such a case, the optimization would select a significantly different path through the

original graph, which would in turn require the computation of a very large number of

new interferometric pairs (including between old archives). In such a case, the time to

process all the missing pairs may exceed by far the time usually required to compute

only the small number of pairs involving only the new image, as in the case 1. In the

worst case scenario, that processing time might exceed the time up to the delivery of

the next image, which might hamper the use of that tool for monitoring purposes. This

risk might be more important for instance when monitoring a highly coherent zone using

large temporal baseline. For that reason, this second strategy is not recommended for

automatic monitoring.

References

Ansari, H., De Zan, F., & Parizzi, A. (2020). Study of systematic bias in measuring

surface deformation with sar interferometry. IEEE Transactions on Geoscience and

Remote Sensing , 59 (2), 1285–1301.
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Figure S1. Characteristics of the coherence of the Reunion Island. Each dot represents the

mean coherence for each pair of images computed on a ROI defined by a kml files framing the

Enclos Fouqué (A), the lower eastern flank (Grandes Pentes (B)) and Grand Ilet (C). On panel

D, each dot represents the ratio of the coherence for each pair to the mean value computed from

all pairs on the Grand Ilet area.
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Figure S2. Evolution of the seasonal contribution w1 as a function of the Primary image day

of year DOYP and Secondary image day of year DOYS for 12 values of the lowest coherence day

of year DOYlow corresponding to the beginning of each month and the calibration factor α = 1.

November 23, 2021, 11:48am



: X - 7

Figure S3. Evolution of the seasonal contribution w1 as a function of the Primary image day

of year DOYP and Secondary image day of year DOYS for 12 values of the lowest coherence day

of year DOYlow corresponding to the beginning of each month and the calibration factor α = 2.
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Figure S4. Evolution of the seasonal contribution w1 as a function of the Primary image day

of year DOYP and Secondary image day of year DOYS for 12 values of the lowest coherence day

of year DOYlow corresponding to the beginning of each month and the calibration factor α = 4.
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Figure S5. Evolution of the seasonal contribution w1 as a function of the Primary image

day of year DOYP for (A) α = 1, (B) α = 2 and (C) α = 4. The Secondary image acquisition

are fixed to April 2nd (DOYS = 92) in red or July 1st (DOYS = 182.5) in blue. The day of

year with the lowest coherence is chosen an January 1st (DOYlow = 1) in plain lines or June 2nd

(DOYlow = 153) in dashed lines.
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Figure S6. Evolution of temporal and spatial contributions to the coherence proxy. (A)

Evolution of the temporal contribution w2 as a function of the temporal baseline BT for several

values of the calibration parameter β. (B) Evolution of the spatial contribution w3 as a function

of the perpendicular baseline BP for several values of the calibration parameter γ. Mxc and Mnx

are the maximum and minimum values expected for mean the coherence in the region of interest.
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Figure S7. Calibration of the coherence proxy on the DLM area for S1 ascending dataset. A and B represent the mean coherence
computed on the Laguna del Maule ROI and the seasonal contribution w1 to the coherence proxy as a function of the primary and secondary
image day of year of each pair. C and D represent the mean coherence computed on the Laguna del Maule ROI as a function of the Primary
(Secondary) image Day of year respectively. Blue and red dash lines mark DOYlow and DOYlow + 6 months, respectively. E and F represent
the mean coherence computed on the Laguna del Maule ROI as a function of BT for pairs with BP < 15 m and as a function of BP for
pairs with BT < 25 days, respectively. Red line represent the exponential decrease modeled by w2 and w3 in the coherence proxy. C to F,
horizontal black line marks the minimum expected value of the coherence Mnc. G represents the coherence proxy w versus the mean coherence
computed on the Laguna del Maule ROI for each pair of the calibration set. The red line marks the first bisector. H and J represent the the
mean coherence computed on the Laguna del Maule ROI for each pair of the calibration set and the coherence proxy w, respectively, as a
function of the primary and secondary image acquisition date. K to M, the color scale represent the partial weights w1, w2 and w3 (see text
section 2.3.1.2), respectively. The value of the corresponding coefficients a, b, and c is indicated on top of each plot.
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Figure S8. Calibration of the coherence proxy on the Reunion Island area for S1 SM ascending dataset. A and B represent the
mean coherence computed on the Grand Ilet ROI and the seasonal contribution w1 to the coherence proxy as a function of the primary and
secondary image day of year of each pair. C and D represent the mean coherence computed on the Grand Ilet ROI as a function of the
Primary (Secondary) image Day of year respectively. Blue and red dash lines mark DOYlow and DOYlow + 6 months, respectively. E and
F represent the mean coherence computed on the Grand Ilet ROI as a function of BT for pairs with BP < 15 m and as a function of BP
for pairs with BT < 25 days, respectively. Red line represent the exponential decrease modeled by w2 and w3 in the coherence proxy. C
to F, horizontal black line marks the minimum expected value of the coherence Mnc. G represents the coherence proxy w versus the mean
coherence computed on the Grand Ilet ROI for each pair of the calibration set. The red line marks the first bisector. H and J represent
the the mean coherence computed on the Grand Ilet ROI for each pair of the calibration set and the coherence proxy w, respectively, as a
function of the primary and secondary image acquisition date. K to M, the color scale represent the partial weights w1, w2 and w3 (see text
section 2.3.1.2), respectively. The value of the corresponding coefficients a, b, and c is indicated on top of each plot.
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Figure S9. Calibration of the coherence proxy on the Reunion Island area for S1 SM descending dataset. A and B represent the
mean coherence computed on the Grand Ilet ROI and the seasonal contribution w1 to the coherence proxy as a function of the primary and
secondary image day of year of each pair. C and D represent the mean coherence computed on the Grand Ilet ROI as a function of the
Primary (Secondary) image Day of year respectively. Blue and red dash lines mark DOYlow and DOYlow + 6 months, respectively. E and
F represent the mean coherence computed on the Grand Ilet ROI as a function of BT for pairs with BP < 15 m and as a function of BP
for pairs with BT < 25 days, respectively. Red line represent the exponential decrease modeled by w2 and w3 in the coherence proxy. C
to F, horizontal black line marks the minimum expected value of the coherence Mnc. G represents the coherence proxy w versus the mean
coherence computed on the Grand Ilet ROI for each pair of the calibration set. The red line marks the first bisector. H and J represent
the the mean coherence computed on the Grand Ilet ROI for each pair of the calibration set and the coherence proxy w, respectively, as a
function of the primary and secondary image acquisition date. K to M, the color scale represent the partial weights w1, w2 and w3 (see text
section 2.3.1.2), respectively. The value of the corresponding coefficients a, b, and c is indicated on top of each plot.
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Figure S10. Calibration of the coherence proxy on the Reunion Island area for S1 IW ascending dataset. A and B represent
the mean coherence computed on the Grand Ilet ROI and the seasonal contribution w1 to the coherence proxy as a function of the primary
and secondary image day of year of each pair. C and D represent the mean coherence computed on the Grand Ilet ROI as a function of the
Primary (Secondary) image Day of year respectively. Blue and red dash lines mark DOYlow and DOYlow + 6 months, respectively. E and
F represent the mean coherence computed on the Grand Ilet ROI as a function of BT for pairs with BP < 15 m and as a function of BP
for pairs with BT < 25 days, respectively. Red line represent the exponential decrease modeled by w2 and w3 in the coherence proxy. C
to F, horizontal black line marks the minimum expected value of the coherence Mnc. G represents the coherence proxy w versus the mean
coherence computed on the Grand Ilet ROI for each pair of the calibration set. The red line marks the first bisector. H and J represent
the the mean coherence computed on the Grand Ilet ROI for each pair of the calibration set and the coherence proxy w, respectively, as a
function of the primary and secondary image acquisition date. K to M, the color scale represent the partial weights w1, w2 and w3 (see text
section 2.3.1.2), respectively. The value of the corresponding coefficients a, b, and c is indicated on top of each plot.
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Figure S11. Calibration of the coherence proxy on the Reunion Island area for S1 IW descending dataset. A and B represent
the mean coherence computed on the Grand Ilet ROI and the seasonal contribution w1 to the coherence proxy as a function of the primary
and secondary image day of year of each pair. C and D represent the mean coherence computed on the Grand Ilet ROI as a function of the
Primary (Secondary) image Day of year respectively. Blue and red dash lines mark DOYlow and DOYlow + 6 months, respectively. E and
F represent the mean coherence computed on the Grand Ilet ROI as a function of BT for pairs with BP < 15 m and as a function of BP
for pairs with BT < 25 days, respectively. Red line represent the exponential decrease modeled by w2 and w3 in the coherence proxy. C
to F, horizontal black line marks the minimum expected value of the coherence Mnc. G represents the coherence proxy w versus the mean
coherence computed on the Grand Ilet ROI for each pair of the calibration set. The red line marks the first bisector. H and J represent
the the mean coherence computed on the Grand Ilet ROI for each pair of the calibration set and the coherence proxy w, respectively, as a
function of the primary and secondary image acquisition date. K to M, the color scale represent the partial weights w1, w2 and w3 (see text
section 2.3.1.2), respectively. The value of the corresponding coefficients a, b, and c is indicated on top of each plot.

November 23, 2021, 11:48am



X - 16 :

Figure S12. Calibration of the coherence proxy on the VVP area for CSK ascending dataset. A and B represent the mean coherence
computed on the Savannah ROI and the seasonal contribution w1 to the coherence proxy as a function of the primary and secondary image
day of year of each pair. C and D represent the mean coherence computed on the Savannah ROI as a function of the Primary (Secondary)
image Day of year respectively. Blue and red dash lines mark DOYlow and DOYlow + 6 months, respectively. E and F represent the mean
coherence computed on the Savannah ROI as a function of BT for pairs with BP < 15 m and as a function of BP for pairs with BT < 25 days,
respectively. Red line represent the exponential decrease modeled by w2 and w3 in the coherence proxy. C to F, horizontal black line marks
the minimum expected value of the coherence Mnc. G represents the coherence proxy w versus the mean coherence computed on the Savannah
ROI for each pair of the calibration set. The red line marks the first bisector. H and J represent the the mean coherence computed on the
Savannah ROI for each pair of the calibration set and the coherence proxy w, respectively, as a function of the primary and secondary image
acquisition date. K to M, the color scale represent the partial weights w1, w2 and w3 (see text section 2.3.1.2), respectively. The value of the
corresponding coefficients a, b, and c is indicated on top of each plot.
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Figure S13. Calibration of the coherence proxy on the VVP area for CSK descending dataset. A and B represent the mean coherence
computed on the Savannah ROI and the seasonal contribution w1 to the coherence proxy as a function of the primary and secondary image
day of year of each pair. C and D represent the mean coherence computed on the Savannah ROI as a function of the Primary (Secondary)
image Day of year respectively. Blue and red dash lines mark DOYlow and DOYlow + 6 months, respectively. E and F represent the mean
coherence computed on the Savannah ROI as a function of BT for pairs with BP < 15 m and as a function of BP for pairs with BT < 25 days,
respectively. Red line represent the exponential decrease modeled by w2 and w3 in the coherence proxy. C to F, horizontal black line marks
the minimum expected value of the coherence Mnc. G represents the coherence proxy w versus the mean coherence computed on the Savannah
ROI for each pair of the calibration set. The red line marks the first bisector. H and J represent the the mean coherence computed on the
Savannah ROI for each pair of the calibration set and the coherence proxy w, respectively, as a function of the primary and secondary image
acquisition date. K to M, the color scale represent the partial weights w1, w2 and w3 (see text section 2.3.1.2), respectively. The value of the
corresponding coefficients a, b, and c is indicated on top of each plot.
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Figure S14. Calibration of the coherence proxy on the VVP area for RS F2F descending dataset. A and B represent the
mean coherence computed on the Savannah ROI and the seasonal contribution w1 to the coherence proxy as a function of the primary and
secondary image day of year of each pair. C and D represent the mean coherence computed on the Savannah ROI as a function of the Primary
(Secondary) image Day of year respectively. Blue and red dash lines mark DOYlow and DOYlow + 6 months, respectively. E and F represent
the mean coherence computed on the Savannah ROI as a function of BT for pairs with BP < 15 m and as a function of BP for pairs with
BT < 25 days, respectively. Red line represent the exponential decrease modeled by w2 and w3 in the coherence proxy. C to F, horizontal
black line marks the minimum expected value of the coherence Mnc. G represents the coherence proxy w versus the mean coherence computed
on the Savannah ROI for each pair of the calibration set. The red line marks the first bisector. H and J represent the the mean coherence
computed on the Savannah ROI for each pair of the calibration set and the coherence proxy w, respectively, as a function of the primary and
secondary image acquisition date. K to M, the color scale represent the partial weights w1, w2 and w3 (see text section 2.3.1.2), respectively.
The value of the corresponding coefficients a, b, and c is indicated on top of each plot.
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Figure S15. Calibration of the coherence proxy on the VVP area for RS F21N descending dataset. A and B represent the
mean coherence computed on the Savannah ROI and the seasonal contribution w1 to the coherence proxy as a function of the primary and
secondary image day of year of each pair. C and D represent the mean coherence computed on the Savannah ROI as a function of the Primary
(Secondary) image Day of year respectively. Blue and red dash lines mark DOYlow and DOYlow + 6 months, respectively. E and F represent
the mean coherence computed on the Savannah ROI as a function of BT for pairs with BP < 15 m and as a function of BP for pairs with
BT < 25 days, respectively. Red line represent the exponential decrease modeled by w2 and w3 in the coherence proxy. C to F, horizontal
black line marks the minimum expected value of the coherence Mnc. G represents the coherence proxy w versus the mean coherence computed
on the Savannah ROI for each pair of the calibration set. The red line marks the first bisector. H and J represent the the mean coherence
computed on the Savannah ROI for each pair of the calibration set and the coherence proxy w, respectively, as a function of the primary and
secondary image acquisition date. K to M, the color scale represent the partial weights w1, w2 and w3 (see text section 2.3.1.2), respectively.
The value of the corresponding coefficients a, b, and c is indicated on top of each plot.
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Figure S16. Calibration of the coherence proxy on the VVP area for RS UF ascending dataset. A and B represent the mean coherence
computed on the Savannah ROI and the seasonal contribution w1 to the coherence proxy as a function of the primary and secondary image
day of year of each pair. C and D represent the mean coherence computed on the Savannah ROI as a function of the Primary (Secondary)
image Day of year respectively. Blue and red dash lines mark DOYlow and DOYlow + 6 months, respectively. E and F represent the mean
coherence computed on the Savannah ROI as a function of BT for pairs with BP < 15 m and as a function of BP for pairs with BT < 25 days,
respectively. Red line represent the exponential decrease modeled by w2 and w3 in the coherence proxy. C to F, horizontal black line marks
the minimum expected value of the coherence Mnc. G represents the coherence proxy w versus the mean coherence computed on the Savannah
ROI for each pair of the calibration set. The red line marks the first bisector. H and J represent the the mean coherence computed on the
Savannah ROI for each pair of the calibration set and the coherence proxy w, respectively, as a function of the primary and secondary image
acquisition date. K to M, the color scale represent the partial weights w1, w2 and w3 (see text section 2.3.1.2), respectively. The value of the
corresponding coefficients a, b, and c is indicated on top of each plot.
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Figure S17. Calibration of the coherence proxy on the VVP area for S1 ascending dataset. A and B represent the mean coherence
computed on the Savannah ROI and the seasonal contribution w1 to the coherence proxy as a function of the primary and secondary image
day of year of each pair. C and D represent the mean coherence computed on the Savannah ROI as a function of the Primary (Secondary)
image Day of year respectively. Blue and red dash lines mark DOYlow and DOYlow + 6 months, respectively. E and F represent the mean
coherence computed on the Savannah ROI as a function of BT for pairs with BP < 15 m and as a function of BP for pairs with BT < 25 days,
respectively. Red line represent the exponential decrease modeled by w2 and w3 in the coherence proxy. C to F, horizontal black line marks
the minimum expected value of the coherence Mnc. G represents the coherence proxy w versus the mean coherence computed on the Savannah
ROI for each pair of the calibration set. The red line marks the first bisector. H and J represent the the mean coherence computed on the
Savannah ROI for each pair of the calibration set and the coherence proxy w, respectively, as a function of the primary and secondary image
acquisition date. K to M, the color scale represent the partial weights w1, w2 and w3 (see text section 2.3.1.2), respectively. The value of the
corresponding coefficients a, b, and c is indicated on top of each plot.
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Figure S18. Calibration of the coherence proxy on the VVP area for S1 descending dataset. A and B represent the mean coherence
computed on the Savannah ROI and the seasonal contribution w1 to the coherence proxy as a function of the primary and secondary image
day of year of each pair. C and D represent the mean coherence computed on the Savannah ROI as a function of the Primary (Secondary)
image Day of year respectively. Blue and red dash lines mark DOYlow and DOYlow + 6 months, respectively. E and F represent the mean
coherence computed on the Savannah ROI as a function of BT for pairs with BP < 15 m and as a function of BP for pairs with BT < 25 days,
respectively. Red line represent the exponential decrease modeled by w2 and w3 in the coherence proxy. C to F, horizontal black line marks
the minimum expected value of the coherence Mnc. G represents the coherence proxy w versus the mean coherence computed on the Savannah
ROI for each pair of the calibration set. The red line marks the first bisector. H and J represent the the mean coherence computed on the
Savannah ROI for each pair of the calibration set and the coherence proxy w, respectively, as a function of the primary and secondary image
acquisition date. K to M, the color scale represent the partial weights w1, w2 and w3 (see text section 2.3.1.2), respectively. The value of the
corresponding coefficients a, b, and c is indicated on top of each plot.
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Figure S19. Original and optimized baseline plots for each S1 data set acquired on la Reunion Island. The optimization is performed
with k = 3. The total number of pairs used is indicated in the lower left corner of each baseline plot. The percentage of pairs kept after
optimization with reference to the original processing is also indicated in the optimized baselines plots. Initial baselines criteria (BP and
BT ) are indicated on top of each baseline plot.
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Figure S20. Proportion of interferograms in the original data set (plain red curve) and in

the optimized dataset (dashed blue curve) which altitude of ambiguity is larger than a threshold

as a function of the threshold. A. Sentinel 1 Ascending dataset on the VVP. B. S1 Descending

dataset on the VVP.
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Figure S21. (A) Digital Elevation Model (SRTM 30 m) of the Domuyo and Laguna del Maule

region. (B) and (C) Average East-West elevation profiles computed on the areas marked by black

rectangles in (A) : the Laguna del Maule (rectangle L.) and Domuyo (rectangle D.) respectively.

Figure S22. Digital Elevation Model (SRTM 30 m) of the Reunion Island.
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Figure S23. Digital Elevation Model (SRTM 30 m) of VVP.
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