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Abstract

The main ionospheric trough (MIT) is a salient density feature in the mid-latitude ionosphere and characterizing its structure

is important for understanding GPS and HF signal propagation, and identifying geospace phenomena such as the plasmapause

boundary layer. While a number of previous studies have statistically investigated the properties of the MIT utilizing low-

altitude satellite observations, they have been limited to latitudinal cross sections, and have not considered the inherent

two-dimensional structure of the trough. In this work, we develop a regularized inversion method for identifying the two

dimensional structure of the trough in Total Electron Content (TEC) maps. Because no ground truth labels exist for the MIT,

we extensively characterize the behavior of the algorithm by comparing it to the method developed by \citeA{aa-2020}. We

show that statistics computed on the resulting labels are robust to our choice of algorithm parameters and that we are able to

match the results of \citeA{aa-2020} with a particular selection of the parameters. Without ground truth, these two properties

provide much stronger verification than a comparison using a single parameter setting. In addition to enabling fundamentally

different studies, our MIT labels are able to provide statistical MIT properties with higher resolution.

1



manuscript submitted to Space Weather

Automatic Identification of the Main Ionospheric1

Trough in Total Electron Content Images2

Gregory Starr1,3, Sebastijan Mrak1,2,4, Yukitoshi Nishimura1,2, Michael3

Hirsch1,2, Prakash Ishwar1, Joshua Semeter1,24

1Department of Electrical and Computer Engineering, Boston University5
2Center for Space Physics, Boston University6

3Now at JHU APL7
4Now at Space Weather Technology, Research and Education Center, University of Colorado Boulder8

Key Points:9

• A method for identifying the main ionospheric trough in global total electron con-10

tent (TEC) images is developed and validated.11

• Statistics extracted from a 10-year dataset are found to be in good agreement with12

a SWARM-derived satellite model.13

• Our technique enables statistical analyses of two-dimensional (lat, lon) trough prop-14
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Abstract16

The main ionospheric trough (MIT) is a salient density feature in the mid-latitude iono-17

sphere and characterizing its structure is important for understanding GPS and HF sig-18

nal propagation, and identifying geospace phenomena such as the plasmapause bound-19

ary layer. While a number of previous studies have statistically investigated the prop-20

erties of the MIT utilizing low-altitude satellite observations, they have been limited to21

latitudinal cross sections, and have not considered the inherent two-dimensional struc-22

ture of the trough. In this work, we develop a regularized inversion method for identi-23

fying the two dimensional structure of the trough in Total Electron Content (TEC) maps.24

Because no ground truth labels exist for the MIT, we extensively characterize the be-25

havior of the algorithm by comparing it to the method developed by Aa et al. (2020).26

We show that statistics computed on the resulting labels are robust to our choice of al-27

gorithm parameters and that we are able to match the results of Aa et al. (2020) with28

a particular selection of the parameters. Without ground truth, these two properties pro-29

vide much stronger verification than a comparison using a single parameter setting. In30

addition to enabling fundamentally different studies, our MIT labels are able to provide31

statistical MIT properties with higher resolution.32

1 Introduction33

As a partially conducting medium, the Earth’s ionosphere affects electromagnetic34

waves in the radio frequency range (< 2 GHz). Crucial portions of our infrastructure35

rely on communication with satellites including weather forecasting, navigation, and re-36

cently, even internet. One particularly disruptive phenomenon is the main ionospheric37

trough (MIT). The MIT is a longitudinally elongated band of low electron density that38

forms just equatorward of the high latitudes characterized by particle precipitation (i.e.,39

aurora). The trough affects radio signals due to the large electron density gradients and40

small-scale irregularities which form within it (Rodger et al., 1992; Kintner et al., 2007;41

Le et al., 2017; Mishin et al., 2003). Understanding the MIT’s occurrence, geolocation,42

and electron density features will help us predict where interruptions might occur and43

allow us to mitigate them. Additionally, the trough is a major part of our geospace (iono-44

sphere, magnetosphere), whereby the trough could be used as a tracer for geospace fea-45

tures such as the plasmasphere boundary layer (PBL) (Yizengaw & Moldwin, 2005). There-46

fore, a comprehensive global picture of the MIT traces geospace features imprinted to47

the ionosphere and has a potential to advance our understanding of this tightly coupled48

system.49

The MIT has traditionally been characterized by three elements: the poleward wall,50

equatorward wall and the minimum in between. The poleward wall is associated with51

the equatorward boundary of the auroral precipitation region (Rodger, 2008; Rodger et52

al., 1992), and the equatorward wall is associated with the ionospheric footprint of the53

plasmapause (Zou et al., 2011; Rodger et al., 1992; Pedatella & Larson, 2010). Figure54

1 shows an example of the three components of the MIT. The meridional (north-south)55

electron density gradient is typically much steeper at the poleward wall than at the equa-56

torward wall (Spiro et al., 1978). While the MIT does not have a concrete definition, it57

is distinguished from other trough-like features in the ionosphere (e.g. high latitude trough,58

ring trough (Karpachev, 2019), light ion trough) based on its location (Rodger et al., 1992;59

Rodger, 2008). The MIT is observed most often in darkness and has an average width60

of about 5 to 10 degrees in latitude (Aa et al., 2020; Yang et al., 2015; Collis & Häggström,61

1988). Observations in TEC maps (Zou et al., 2011) and sequential radar scans (Nilsson62

et al., 2005) show that the MIT is longitudinally elongated. Since it mainly occurs in63

darkness, its spread in local time is strongly correlated with season (Rodger, 2008), though64

this has not yet been directly quantified.65
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1 - A.png

Figure 1. An example of the MIT in TEC measurements at 07:00 UT on 2014-02-19. It ap-

pears here as a dark band spanning the entire night-side mid-latitude ionosphere. Yellow and red

lines show approximate locations of the poleward and equatorward walls of the MIT, respectively.

Gray color indicates missing data.

The primary mechanisms that create and maintain the trough have been identi-66

fied in past studies. The most commonly mentioned is called the stagnation mechanism,67

whereby the corotation and convection flows in the evening side ionosphere cancel each68

other out, forming a region where the plasma recombines during its long residence in dark-69

ness. This theory was analyzed, compared with measurements and determined to be plau-70

sible by Spiro et al. (1978) and Nilsson et al. (2005). Collis and Häggström (1988) found71

that the trough minimum typically occurs in a region bounded equatorward by the tran-72

sition from corotating to convecting flow, and poleward by the electron precipitation bound-73

ary. A more general convection-based theory, of which the stagnation mechanism is a74

special case was explained by Quegan et al. (1989). They emphasized that the electron75

density at any location is due to the production and loss along the path on which that76

plasma travelled. Given that the convection-corotation pattern is very complex, two paths77

with very different histories can be brought close together, forming a trough. While sub-78

stantial progress has been made on understanding the MIT formation mechanisms, the79

relative importance of the various mechanisms has not been fully established, and some80

of the most popular ionospheric models do not adequately reproduce its behavior (Yang81

et al., 2015). Additionally, adequate statistics of how the MIT behaves during height-82

ened periods of geomagnetic activity have not been obtained and the full spectrum of83

MIT behavior, including what edge cases exist, is not yet known.84

–3–



manuscript submitted to Space Weather

Algorithmic approaches for MIT identification have so far only been developed for85

one-dimensional data. Existing methods follow the same basic steps: (1) estimate a back-86

ground value for their measurements and (2) threshold the ratio between the measure-87

ments and their background value. If the data is not already one-dimensional, it is first88

reduced to a latitudinal profiles. For latitude-altitude measurements from the European89

Incoherent Scatter radar (EISCAT), Ishida et al. (2014) averaged the electron density90

along magnetic field lines between 300 and 350km. For background estimation, they took91

the median of the upper half of the sorted electron density values, then they found troughs92

where the electron density fell to 20% below the background. A similar approach was93

taken by Voiculescu et al. (2006) for latitude-altitude measurements of electron density94

estimated by tomography. They averaged the electron density between 200 and 400km,95

then looked for regions where it dropped below 50% of the “outside value”. Yang et al.96

(2015) used the same TEC dataset as us, but they computed latitudinal profiles by av-97

eraging TEC over the course of a day in two hour Magnetic Local Time (MLT) bins. They98

computed the background as the mean TEC between magnetic latitude 45 and 70 then99

determined the trough minimum from the minimum of each profile, i.e. they assumed100

the trough was present in every profile. A similar approach was taken by Pryse et al. (2006)101

except using TEC computed from tomography data. Aa et al. (2020) computed the back-102

ground electron density measured by the Swarm satellites, then used a threshold of 50%103

to identify the trough. Finally, one exception is the work by Pedatella and Larson (2010),104

in which the authors defined the equatorward wall of the MIT as the location in a lat-105

itudinal TEC profile equatorward of the minimum where the latitudinal TEC gradient106

is -0.1 TECu / degree.107

Utilizing one-dimensional data (satellites / latitudinal cross sections) rather than108

data with two or three dimensions has several limitations. The first is that it inherently109

has less data. For example, Aa et al. (2020) analyzed data from the Swarm constella-110

tion which has 3 satellites, each of which have an orbital period of roughly 1.5 hours. Over111

10 years, they make roughly 350,000 measurements of the trough region in the north-112

ern hemisphere.113

16 orbits

1 day
· 2 measurements

1 orbit
· 3, 650 days

10 years
· 3 satellites = 350, 400 (1)

Two-dimensional data, for example Total Electron Content (TEC) maps, contains mea-114

surements at most local times. With a reasonable estimate of 90 sampled local times and115

24 maps per day, this results in almost 8,000,000 measurements of the trough.116

24 maps

1 day
· 90 measurements

1 map
· 3, 650 days

10 years
= 7, 884, 000 (2)

Another benefit of two-dimensional data is that it allows for the determination of the117

covariances of the trough’s parameters across local times. One-dimensional data inher-118

ently can only measure marginal distributions of the trough’s parameters across local119

times. Finally, and perhaps most importantly, one-dimensional data is not suitable for120

observing the relationship between plasma convection and the trough. Since convection121

has already been established as a key mechanism involved in MIT formation, a two-dimensional122

dataset is crucial to further advancing our understanding of the trough.123

In this work, we developed a methodology that automatically identifies MIT in TEC124

maps using tools from regularized inverse problems and image analysis. In this paper125

we develop the model then validate it by showing its agreement with the Aa et al. (2020)126

results as well as its robustness to parameter perturbations.127

2 Methodology128

Many parameterizations of the MIT are possible, each has strengths and weaknesses.129

We choose to utilize the image segmentation framework, in which each pixel of an in-130

put image is assigned a class from a discrete set. In the context of this work, the input131
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is an image made up of TEC measurements discretized onto a latitude-longitude grid132

and the output is a binary image of the same size with the positive class corresponding133

to the identified MIT. Using this approach, the MIT has several advantages. It makes134

no assumptions about the shape of the trough, allowing for the MIT to be identified at135

multiple latitudes at the same local time. To ease identification, previous studies only136

looked for a single trough in any latitudinal profile. However, there is no guarantee that137

the MIT can only have one contiguous section at any given local time. Another advan-138

tage of this parameterization is that it results in a very flexible and widely useful final139

data product. With a small amount of additional processing, many different measure-140

ments of the MIT can be extracted, allowing the end user to adapt the dataset for their141

specific needs.142

2.1 Data Preparation143

The Madrigal GPS TEC dataset consists of over 20 years of TEC maps from 1998144

to 2021. The line-of-sight TEC measurements from a global network of GPS receivers145

are converted from slant-TEC to vertical-TEC and collected into grid cells (1 degree lat-146

itude x 1 degree longitude x 5 minutes). The vertical TEC value at each cell is given by147

the median of all the measurements within it. For more information about the Madri-148

gal GPS TEC dataset, see papers by Rideout and Coster (2006) and Vierinen et al. (2016).149

Since the trough’s location and behavior are influenced by the magnetic field, to150

prepare the TEC images, we convert the geographic coordinates used by Madrigal to the151

magnetic apex coordinate system (Richmond, 1995; Emmert et al., 2010). In the mag-152

netic apex coordinate system, all points along a magnetic field line are mapped to the153

same coordinates. During this process, we also average several TEC maps together to154

improve their coverage. To form a single TEC image, we first convert each latitude-longitude155

grid point in 12 consecutive Madrigal TEC maps to apex latitude-MLT. We collect the156

converted points into cells on a regular magnetic apex latitude-MLT grid, and the val-157

ues in each cell are averaged. We choose a grid cell size of (1 degree latitude x 2 · 24
360158

hours MLT x 1 hour UT). Larger amounts of time-averaging result in higher coverage159

in each map, but less time resolution. Finally, because the northern hemisphere has bet-160

ter coverage in the Madrigal dataset, we choose to limit our TEC images to magnetic161

apex latitudes above 30◦ north. The resulting shape of each image is (60 x 180) pixels162

corresponding to latitude rows and MLT columns. For the same reason we only use data163

from the years 2010-2020. Figure 1 shows an example of a single TEC map from our dataset.164

2.2 Algorithm Description165

Our method consists of 4 steps: (1) preprocessing, (2) scoring, (3) thresholding and166

(4) postprocessing. The preprocessing step involves spatially filtering the TEC data to167

remove structures that do not contribute to the MIT. In the scoring step, we assign a168

score to each pixel based on the preprocessed image and on the expected characteristics169

of the trough. In the third and fourth steps, we make initial decisions on each pixel via170

thresholding then clean up the thresholded image with heuristics. The output from each171

of these four steps is shown in Figure 2. We find that for two-dimensional data, the pre-172

processing by itself is insufficient to separate the trough from the rest of the ionosphere173

which is why we add additional processing steps. While two dimensional data may be174

more complicated to process, it allows a more accurate determination of the MIT be-175

cause of the MIT’s longitudinal coherence. For example, a small dip in a latitudinal pro-176

file of TEC might be a trough or might not, but if it is part of a longitudinally extended177

region of low TEC, then that indicates more strongly that it is part of the MIT.178
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2.png

Figure 2. Algorithm overview. Input seen in Figure 1. In all panels, MLT noon is at the top,

midnight is at the bottom, 6 is on the right and 18 is on the left. a) Output of preprocessing

stage (section 2.2.1), red is high local TEC, blue is low local TEC. b) Output of scoring stage

(section 2.2.2), red is high score, blue is low score. c) Thresholded score image, the equatorward

boundary of the auroral oval is indicated with a dashed line. d) Output of postprocessing stage

(section 2.2.3).
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3.png

Figure 3. a) TEC distribution. b) Log TEC distribution. c) Preprocessed image pixel value

distribution for two different selections of background filter size.

2.2.1 Preprocessing179

The preprocessing stage takes a (60× 180) pixel TEC image as input. First, we180

discard all TEC pixels with value below zero or above 150 TECu. Next, we convert TEC181

to log10TEC. Following Aa et al. (2020), we estimate the background using a sliding win-182

dow average. Finally, we subtract this background from the log10TEC image. The slid-183

ing window size used by Aa et al. (2020) corresponds to about 17◦ of latitude and we184

find that window sizes between 15◦ and 19◦ work well. Figures 3a and 3b show the TEC185

and log10TEC distributions in our dataset. Figure 3c shows the distribution of prepro-186

cessed image pixel values for two selections of background estimation filter size. This panel187

demonstrates the effect the background estimation filter size has on the preprocessed im-188

age pixel value distribution. We chose to show a very small filter and a very large filter189

to accentuate the effect of the filter size, but in practice we use medium-sized filters.190

The purpose of this stage is to filter out variations in the data that are not help-191

ful for identifying the MIT. The highest amplitude of those variations is typically large-192

scale TEC structures including seasonal TEC variations and day-night variations. This193

can be seen in Figure 1 where there is a large difference between the TEC on the day194

side versus on the night side. In Figure 2a, which shows the output of the preprocess-195

ing stage, large-scale TEC structures are successfully removed. If the window size is too196

large, then variations such as day-night are allowed to pass and if the window size is too197

small, then large troughs will be filtered out. If our data were higher resolution, then we198

might have considered also using a low pass filter, effectively creating a bandpass filter.199

The highpass portion of the filter essentially sets the maximum size for the trough and200

a lowpass filter would set a minimum size. In our case, we would like to be able to de-201

tect troughs that are only one pixel (one degree) wide in latitude and so lowpass filter-202

ing is not needed.203

One final note on the preprocessing stage is that converting to log10TEC places im-204

portance on the relative decrease in TEC in the trough rather than absolute decrease.205

Although this could exaggerate the occurrence rate of the trough during the winter when206

TEC values are lower in general, using the logarithmic scale more closely aligns our def-207

inition of the MIT with previous work. Additionally, the distribution of log10TEC is more208

symmetric than the distribution of TEC which is generally beneficial for analysis and209

machine learning.210

2.2.2 Scoring211

The reason that thresholding the preprocessed image performs poorly is that any212

relative low region will be labeled as trough such as isolated noisy pixels, low regions within213
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the auroral oval, or low regions at low latitudes. The purpose of the scoring stage is to214

produce an image which is more suitable for thresholding, i.e. it more closely approx-215

imates our level of confidence in each pixel being part of the MIT. To accomplish this,216

we model the score image’s contribution to the preprocessed image (forward model), then217

invert the model to find a score image given a preprocessed image. We incorporate ad-218

ditional prior information about the MIT into the inversion problem via regularization.219

An example of a preprocessed image and the corresponding scored image are shown in220

Figures 2a and 2b respectively. Note how the preprocessed image has some non-MIT low221

regions at both higher and lower latitude than we would expect the trough, e.g. near MLT222

22 and MLT 6. Thresholding the preprocessed image directly would result in these re-223

gions being mislabeled. In the score image these regions are not scored as highly as the224

pixels within the MIT.225

We model each preprocessed image as a linear combination of Gaussian radial ba-226

sis functions (RBFs) (Bishop, 2006) with the weights given by the score image values.227

The i-th preprocessed image xi is modeled as:228

xi = −Aiui + εi (3)

where ui is the i-th score image and ε is noise. Each column of the matrix Ai contains229

an RBF centered on a pixel of the grid. The minus sign indicates that higher score val-230

ues will result in lower log10TEC values in the preprocessed image. Nominally, all the231

Ai’s are identical, but because xi is always missing data, Ai refers to the full basis ma-232

trix with rows dropped corresponding to the elements that are missing in x. If Gi is the233

set of indices where xi has data, then the size of Ai is (|Gi|×10800). The inverse prob-234

lem is expressed as:235

u∗i = arg min
ui

xT
i Aiui + α‖Wiui‖22 + βR(ui) (4)

where u∗i is the fitted score image, Wi is a diagonal weighting matrix and R is the to-236

tal variation (TV) regularizer. α and β are nonnegative coefficients which weight the rel-237

ative importance of the three components.238

The first term maximizes the forward model in the direction of the data. Using RBFs239

causes the score image elements to affect all the elements in the corresponding neigh-240

borhood of the preprocessed image. This property is desirable because the MIT is a large241

scale structure, so a single low pixel in the preprocessed image does not constitute the242

trough. Only when a neighborhood of pixels is low should the region be considered part243

of the MIT.244

The second term is weighted L2 regularization which serves two purposes: the first245

is to prevent ui from going to infinity where xi is negative and the second is to prevent246

ui from taking high values far away from the expected location of the trough. The di-247

agonal weighting matrix Wi increases regularization on pixels which are far from the model248

developed by Deminov and Shubin (2018). The diagonal elements of Wi are given by:249

w(λ, φ) = c|λ−m(φ)|+ 1 (5)

where w(λ, φ) is the weight at MLat λ and MLT φ, m(φ) is the latitude of the prior MIT250

model at MLT φ and c is a scalar which sets the maximum weight.251

The third term is TV regularization which increases the sparsity of the solution’s252

gradients. R is given by:253

R(ui) =

M∑
j=1

∣∣∣ ∑
k∈Nj

uij − uik
∣∣∣ (6)

The inner sum computes the sum of the differences between the j-th element of ui and254

all of its neighbors and the outer sum computes the sum of all the absolute values of the255

–8–



manuscript submitted to Space Weather

inner sum. The set of indices of the 4 neighbors of the j-th pixel in the grid is denoted256

Nj . Minimizing the L1 norm of the inner sum tends to make it sparse, which means the257

gradients of the score image will be sparse. This encourages the score image to have larger258

contiguous regions of the same value. The goal of using this is to create score images which259

are less influenced by noise and missing values, instead tending to have larger contigu-260

ous trough regions.261

The inverse problem is designed to capture three assumptions about the MIT as262

it appears in TEC images. The first is that the trough is a large-scale structure which263

should contain regions of low TEC. The second is that the MIT should appear in the sub-264

auroral / midlatitude regions of the ionosphere, i.e. close to the Deminov and Shubin265

(2018) empirical model. Lastly, the trough should appear as one large contiguous region266

of low TEC, not as many smaller regions scattered around. The first assumption is in-267

corporated in the forward model via the RBF basis, and the others are implemented in268

the inversion using regularizers.269

2.2.3 Postprocessing270

The purpose of postprocessing is to clean up specific errors which remain after thresh-271

olding the score image. These errors include small patches classified as MIT due to noise272

in the preprocessed image and trough-classified pixels within the auroral oval. Exam-273

ples of the input and output to the postprocessing step are shown Figures 2c and 2d re-274

spectively. Positive pixels within the auroral oval are removed because density depletions275

within the auroral oval are “high latitude troughs” and not the MIT. For the auroral bound-276

ary (shown as the dashed line in Figure 2c), we use the fitted measurements from the277

Special Sensor Ultraviolet Spectrographic Imager (SSUSI) aboard the Defense Meteo-278

rological Satellite Program (DMSP) satellites (Paxton et al., 2003). Finally, the output279

of this step is the label image. Figure 2d demonstrates that the algorithm can label the280

two-dimensional structure of the trough at a given time. Even when the trough is not281

continuous in longitude, the algorithm identifies the trough where it appears in the data.282

2.3 Verification283

The MIT has no ground truth labels, therefore verifying an algorithm for identi-284

fying it is a major challenge. In other detection or classification settings we would com-285

pare our algorithm’s output with a ground truth dataset, but no ground truth exists for286

the MIT, making this impossible. For the sake of simplicity most researchers set up their287

task as a binary detection problem, but in the reality, the MIT does not appear discretely.288

For this reason, any discretization of the MIT involves an arbitrary choice of a thresh-289

old.290

Given this issue, it is insufficient to show that our labels match those from a pre-291

vious study. Instead, we show that our algorithm has two properties. The first property292

is that within a reasonable range, our choice of parameters does not negatively affect the293

resulting labeled dataset. In cases where the parameter choice does affect the output,294

it should happen in an expected and reasonable way, e.g. making a threshold more se-295

lective should decrease the measured MIT probability. This is important because slight296

perturbations our parameter values should not change the measured statistics of the trough.297

The second desired property is that there exists a selection of parameters which can have298

our labels match those from previous studies with good accuracy. This property is im-299

portant because it means that our method is identifying the same types of troughs as300

other methods, only for two-dimensional data.301

There are two ways we compare with another algorithm. The first is “instance com-302

parison”, in which we match up our detections with those from another algorithm, in-303

stance by instance. Because this involves comparing a one-dimensional data product with304
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a two-dimensional one, this requires some processing, which we describe below. The other305

way we can compare is at the dataset level, where we compute the same statistics on both306

datasets and see how well they agree.307

2.3.1 Instance Comparison Methodology308

To perform the “instance comparison”, we randomly select N = 200 days from309

the 7 year span of SWARM data to run it on. The Aa et al. (2020) algorithm splits the310

Swarm orbits into segments between 45◦ and 75◦ MLat, through which each satellite passes311

twice in the northern hemisphere per orbit. The segments in which the satellites’ lat-312

itude is increasing, we call “ascending” segments and the other segments we call “descend-313

ing” segments. Each of our label images corresponds to one hour, and we choose the as-314

cending segment and the descending segment which are closest in time. This time align-315

ment is illustrated in Figure 4a. The dashed black line indicates a Swarm satellite’s MLat316

over time and the vertical blue lines indicate the time limits of a series of TEC maps.317

The red and green lines show the ascending and descending orbital segments respectively.318

The arrows show which Swarm orbital segments are associated with each TEC map. Note319

that the TEC map marked “TECt+1” is being compared to Swarm measurements from320

two different orbits. A spatial view of the comparisons is shown in Figure 4b. The in-321

ner circle and middle circles represent orbital segment latitude boundaries as defined by322

Aa et al. (2020) (75◦ and 45◦ respectively) and the satellite’s orbital segments are col-323

ored the same as in Figure 4a. The blue shape is the trough estimated by our algorithm.324

We then extract a 3-pixel-wide path of our label images under the SWARM satel-325

lite orbital segments and mark the highest and lowest MLats where our labels are pos-326

itive for the poleward and equatorward walls of the MIT respectively. We compare these327

latitudes to ones from the Aa et al. (2020) algorithm. In the case of multiple trough can-328

didates within a single orbital segment, the Aa et al. (2020) algorithm chooses the one329

with the lowest MLat. For our comparison, we instead choose the one which best agrees330

with our labels. This results in better ground truth labels because rather than somewhat331

arbitrarily choosing the lower MLat troughs, we choose troughs that appear in two sep-332

arate datasets. To allow for better agreement between the two sources of data, we raise333

the threshold of the Aa et al. (2020) algorithm from −0.3 to −0.2. A threshold of −0.2334

defines troughs as a 36% decrease in electron density from the background value. This335

is still a reasonable choice as other authors have chosen their thresholds even higher (Ishida336

et al., 2014).337

Aligning the Aa et al. (2020) labels with ours nominally results in 6 comparisons338

per TEC map (3 satellites, 2 orbital segments, but often less due to missing Swarm data)339

and 6 variables per comparison. There are two binary variables, one for SWARM and340

one for TEC, indicating whether any trough is detected in the comparison. There are341

also four continuous variables indicating the latitudes of the poleward and equatorward342

walls for each of the two data sources. If no trough is detected in one of the data sources,343

then there are no values for these latitudes. In a true positive case, when a trough is de-344

tected by both our algorithm and the Aa et al. (2020) algorithm, we compute the errors345

of the wall latitudes as:346

EP = λTP − λSP (7)

347

EE = λTE − λSE (8)

Where EP is the poleward wall error, EE is the equatorward wall error, λSP is the pole-348

ward wall latitude from SWARM, λTP is the poleward wall latitude from TEC, etc. The349

two continuous errors, EP and EE , are shown in Figure 4b and 4c. With 6 comparisons350

per TEC map and 24 TEC maps per day, we get a total of 144N = 48, 800 compar-351

isons, from which we compute accuracy, rates for the binary error types, and statistics352

(mean / standard deviation) for the continuous errors.353
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4.png

Figure 4. a) Time alignment of satellite orbital segments with TEC maps. Blue vertical lines

show TEC map intervals. Black dashed lines show satellite MLat. Red and green lines mark

ascending and descending segments respectively. Arrows indicate which segments are compared

with each TEC map. b) Spatial view of SWARM - TEC comparison. Dashed, red and green lines

are the same as in (a). Blue region is the trough estimated by our algorithm. c) Poleward and

Equatorward wall continuous errors.

3 Results354

To demonstrate that our algorithm performs well over a broad range of parame-355

ter values, we focus on the effects of the L2 regularization weight parameter (α in equa-356

tion 4). In our experiments we find that α has the greatest impact on the score images357

and resulting labeled dataset. A higher setting of α forces the score image values to be358

lower, especially for pixels far from the Deminov and Shubin (2018) empirical model. On359

an instance level, the TV regularization weight parameter (α in equation 4) might have360

a somewhat different effect, but at the statistical level we find that changing β has an361

effect similar to changing α but less pronounced. Ultimately, several of the parameters362

have the effect of broadly increasing or decreasing the score image pixel values includ-363

ing α, β and the background estimation filter size. Generally, increasing the score pixel364

values might not change the overall binary agreement with the Aa et al. (2020) detec-365

tions, but would rather increase both true positive and false positive rates. Among the366

parameters that have this effect, we find that α is the most significant and so this is the367

parameter we focus on in this study.368

3.1 Instance Comparison369

Figure 5 shows the results of the instance-level comparison. In each panel the dif-370

ferent colored lines represent different settings of α. Figure 5a shows how the binary agree-371

ment between our detections and those of Aa et al. (2020) varies over a range of thresh-372

olds. Binary agreement is the percentage of comparisons which agree on MIT presence.373

At lower settings of α, a higher threshold is required to achieve the same agreement level.374

This is expected because a lower α setting should increase all score image pixel values.375

For these curves, α appears to scale the x-axis. For this reason, lower settings of α make376

the output less sensitive to the choice of threshold. One detail to notice is that all of the377

curves achieve similar agreement with Aa et al. (2020) at their maximum. This is im-378

portant because it means our level of agreement with Aa et al. (2020) is not sensitive379
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11.png

Figure 5. Results of the instance-level comparison between this work and Aa et al. (2020) for

different settings of α and threshold. Colored lines indicate setting of α. a) Binary agreement:

percentage of instances where the labels agree on presence of MIT. b) Standard deviation be-

tween estimates of the latitude of the poleward wall. c) Standard deviation between estimates of

the latitude of the equatorward wall.

to our setting of α. This figure demonstrates both of the previously mentioned desirable380

properties of our algorithm because the maximum agreement does not depend on α and381

because we can achieve a high level of agreement by tuning the threshold.382

Figures 5b and 5c describe how the continuous error distributions (equations 7 and383

8) are affected by the choice of α and threshold. In both plots, the y-axis shows the er-384

ror standard deviation measured in degrees latitude. Figure 5b shows the error standard385

deviation for the poleward wall latitude and 5c shows the error standard deviation for386

the equatorward wall latitude. In both plots, for all settings of α, increasing the thresh-387

old generally decreases the error standard deviation. This effect is due to the fact that388

the error standard deviation can only be computed for comparisons where both algorithms389

detect the MIT. Increasing the threshold causes our algorithm to reject shallow troughs390

which are less likely to appear in both datasets. Only deep troughs will remain which391

are more likely to be detectable in both datasets. This reduces the chance of the Aa et392

al. (2020) algorithm and ours selecting different troughs, which reduces the error stan-393

dard deviation. Another detail to note is that equatorward wall error standard devia-394

tions at low threshold values are much higher than the poleward wall values. Our post-395

processing operations most likely prevent the poleward wall estimate from being too far396

off, but our equatorward wall estimate is less constrained. In general, the equatorward397

wall of the MIT is less well-defined than the poleward wall due to shallower gradients,398

and other researchers have found it difficult to identify with confidence (Prölss, 2007).399

Figures 5b and 5c also help verify our results because for each setting of α, near their400

peak agreement, they achieve a similar error standard deviation value.401

3.2 Statistical Comparison402

In this section, we compare statistical relationships exhibited by the MIT computed403

over our dataset and the Aa et al. (2020) dataset. In Figure 6 we show variations of the404

MIT with level of magnetic activity (as quantified by Kp index). The left column pan-405

els (a, c, e, g, i) show the MIT occurrence rate vs Kp and the right column panels (b,406

d, f, h, j) show the latitude of the MIT minimum (within 5 hours MLT of midnight) vs407

–12–



manuscript submitted to Space Weather

13.png

Figure 6. Results of statistical level comparison between this work and Aa et al. (2020)

showing MIT variation with level of geomagnetic activity. Left column: occurrence rate. Right

column: latitude of MIT minimum. Each row is computed for a different combination of α and

threshold.
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Kp. In all panels of Figure 6, our results are shown in blue and the results of Aa et al.408

(2020) are shown in red. Each row shows the results for a different combination of α and409

threshold. The threshold for each row is printed next to the panel label. The top two410

rows (a, b, c, d) are computed with α set to 0.03 and the bottom three rows (e, f, g, h,411

i, j) are computed with α set to 0.09. To compute the occurrence rates in Figure 6, we412

filter out latitudinal profiles which have less than 50% of their data or that are outside413

the MLT range [−5, 5]. Then we divide the number of profiles which have any positive414

labels by the total number of profiles. For the SWARM computation, we eliminate seg-415

ments outside of the [−5, 5] MLT range and those in the southern hemisphere. To com-416

pute the latitude of the MIT minimum, we use our labels to mask out non-trough pix-417

els of the TEC images images, then we search for the latitude which achieves the min-418

imum value at each MLT. Both of these computations are binned by Kp.419

The left column panels of Figure 6 show the occurrence rate of the MIT at differ-420

ent levels of magnetic activity. The black error bars are the same as used by Aa et al.421

(2020):422

σ =

√
f × (1− f)

N − 1
(9)

where σ is the uncertainty, f is the occurrence rate, and N is the total number of ex-423

amples for the given bin. As the threshold increases, the occurrence rate decreases at424

all levels of Kp uniformly. This behavior is expected and is an example of the first de-425

sirable property. With an appropriate choice of threshold, for both settings of α, we can426

make our occurrence rates match those of Aa et al. (2020), which demonstrates the sec-427

ond desirable property.428

The right column panels of Figure 6 show the latitude of the MIT minimum at dif-429

ferent levels of magnetic activity. It is clear that settings of α and the threshold have es-430

sentially no effect whatsoever on this statistical relationship. This fact helps verify our431

method because we should not expect this statistic to be affected by our selectivity of432

troughs. Both properties are demonstrated in this figure because the result is insensi-433

tive to α and threshold and because it matches Aa et al. (2020) closely.434

One of the most interesting contributions from Aa et al. (2020) was their detailed435

maps of seasonal MIT occurrence rate. Since they utilized data from Swarm satellites436

which, over the course of the dataset, cover all latitudes and local times, they were able437

to improve the field of view and detail over the earlier maps of Ishida et al. (2014). These438

occurrence rates are restricted to Kp ≤ 3. Copied in Figure 7a is their winter map. We439

compute the same map by counting the number of times the MIT is observed and di-440

viding by the number of times we have TEC data in each grid cell. We use the same win-441

ter group as Aa et al. (2020) which is November–February. The results for various set-442

tings of α and threshold are shown in Figures 7b - 7f. The two numbers labeling each443

panel of Figure 7 are the settings of α and threshold respectively.444

The first thing to notice about Figure 7 is that each of panels b-f match the gen-445

eral distribution computed by Aa et al. (2020), i.e. two modes, one around 3-4 MLT and446

one around 16-17 MLT. The most obvious difference between the panels is that the oc-447

currence rate decreases as the threshold increases. This observation is additional evidence448

that statistical results computed with our dataset are not very sensitive to our choice449

of parameters, and that the effects our parameter choice does have is expected. The de-450

crease in occurrence rate is not perfectly uniform though, and at the highest threshold,451

there is a much higher occurrence rate in the two modes (4 and 17 MLT) than at other452

locations. This indicates that more deep troughs occur in our dataset at the two modes453

than at other locations. Figure 7f appears to be the closest match to the plot from Aa454

et al. (2020) shown in Figure 7a. Finally, Figure 7 demonstrates that with our labels,455

we can compute distributions with increased spatial resolution.456
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12.png

Figure 7. Results of statistical level comparison between this work and Aa et al. (2020) show-

ing MIT spatial distribution during winter (November–February). Each panel is computed for a

different combination of α and threshold. Panel labels are α/threshold.
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4 Conclusion457

In order to perform a large-scale statistical study of the main ionospheric trough,458

we develop a method for algorithmically identifying the MIT in TEC images. After prepar-459

ing the TEC data, our method involves 4 steps: preprocessing, scoring, thresholding and460

postprocessing. Each of these steps has has several parameters to control their output.461

Because the MIT has no true definition and we have no ground truth to compare to, ver-462

ifying our method is very difficult. Comparing our method to a previous one would only463

be comparing one arbitrary set of decisions with another. To better verify our algorithm,464

we demonstrate that it has two properties. The first is that the output has no variation465

or an expected variation to our parameter choices. The second is that we have the abil-466

ity to calibrate our algorithm to match the results of previous studies. To show these467

properties in our algorithm, we compare our labels with the labels from Aa et al. (2020)468

at both the instance level and at the statistical level.469

In subsequent work, we are utilizing this dataset to investigate the formation mech-470

anisms and the higher dimensional statistics of the MIT. The most exciting investiga-471

tion this two-dimensional dataset enables is a statistical study utilizing MIT labels and472

measurements of ionospheric convection. Additionally, it is well known that plasma ir-473

regularities the MIT can have negative effects on satellite communications, but no pre-474

vious study has directly quantified the frequency and severity of such interruptions. One475

exciting application of our dataset would be to combine it with the scintillation event476

dataset developed by Mrak et al. (2020) and characterize the relationship between these477

two phenomena.478
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