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Abstract

Surface waves propagating from earthquakes, active sources or within the ambient noise wavefield are widely used to image

Earth structure at various scales, from centimeters to hundreds of kilometers. The accuracy of surface-wave, phase-velocity

measurements is essential for the accuracy of the Earth models they constrain. Here, we identify a finite-frequency phase

shift in the phase travel time that causes systematic errors in time-domain, phase-velocity measurements. The phase shift

arises from the approximation of monochromatic surface waves with narrow-band filtered surface waves. We derive an explicit

formula of the finite-frequency phase shift and present a numerical method for its evaluation and for the correction of the

measurements. Applications to high-frequency and long-period examples show that the phase shift is typically around π/60-

π/16 for the common settings of ambient-noise imaging studies, which translates to 0.2-0.8% phase-velocity measurement errors.

The finite-frequency phase shift depends on the (1) second derivative of the wavenumber with respect to frequency; (2) width

of the narrow-band filter; (3) epicentral or interstation distance; (4) center frequency of the filter. In conversion to phase

velocity, the last two factors cancel out. Frequency-domain methods for phase-velocity measurements have the advantage of

not producing the finite-frequency phase shift. Both time- and frequency-domain measurements, however, can be impacted by

a break-down of the far-field approximation (near-field phase shift), which our calculations also show. Our method offers an

effective means of improving the accuracy of the widely used time-domain, phase-velocity measurements via the evaluation of

and corrections for the finite-frequency phase shift.
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Key Points: 10 

• We identify a source of errors that can cause up to ~1% error in surface-wave phase-11 

velocity measurements. 12 

• The error applies to all the time-domain methods that use bandpass-filtered waveforms. 13 

• We derive an explicit formula to evaluate the error and provide a numerical method to 14 

compute and remove it.   15 
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Abstract 16 

Surface waves propagating from earthquakes, active sources or within the ambient noise 17 

wavefield are widely used to image Earth structure at various scales, from centimeters to 18 

hundreds of kilometers. The accuracy of surface-wave, phase-velocity measurements is essential 19 

for the accuracy of the Earth models they constrain. Here, we identify a finite-frequency phase 20 

shift in the phase travel time that causes systematic errors in time-domain, phase-velocity 21 

measurements. The phase shift arises from the approximation of monochromatic surface waves 22 

with narrow-band filtered surface waves. We derive an explicit formula of the finite-frequency 23 

phase shift and present a numerical method for its evaluation and for the correction of the 24 

measurements. Applications to high-frequency and long-period examples show that the phase 25 

shift is typically around π/60-π/16 for the common settings of ambient-noise imaging studies, 26 

which translates to 0.2-0.8% phase-velocity measurement errors. The finite-frequency phase shift 27 

depends on the (1) second derivative of the wavenumber with respect to frequency; (2) width of 28 

the narrow-band filter; (3) epicentral or interstation distance; (4) center frequency of the filter. In 29 

conversion to phase velocity, the last two factors cancel out. Frequency-domain methods for 30 

phase-velocity measurements have the advantage of not producing the finite-frequency phase 31 

shift. Both time- and frequency-domain measurements, however, can be impacted by a break-32 

down of the far-field approximation (near-field phase shift), which our calculations also show. 33 

Our method offers an effective means of improving the accuracy of the widely used time-34 

domain, phase-velocity measurements via the evaluation of and corrections for the finite-35 

frequency phase shift. 36 

Plain Language Summary 37 
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Surface waves sample the ‘surface layer’ of the Earth with the thickness of the layer depending 38 

on the wave’s wavelength. Combining surface waves of different wavelengths, or different 39 

frequencies, can provide a detailed image of the Earth’s structure over a large depth range. 40 

Measuring the velocity at which surface waves travel is a crucial step in this process. In this 41 

study, we identify a source of errors in the measurements that has not received much notice so 42 

far. We first derive a formula for the possible bias and then develop a numerical method to 43 

evaluate and correct it. Applications of the numerical method reveal the effects of the bias in two 44 

common scenarios, in the surface-wave studies of the shallow (kilometers deep) and deep 45 

(hundreds of kilometers deep) structure of the Earth. Our results provide a means to improve the 46 

accuracy of the surface wave measurements and, thus, the accuracy of the surface-wave imaging 47 

of the Earth. 48 

1 Introduction  49 

Surface waves sample the Earth’s interior at scales from centimeters to hundreds of 50 

kilometers, with varying resolution depending on their frequency. Intermediate- and long-period 51 

(>5 s) surface waves generated by earthquakes provide essential constraints on the shear-wave 52 

velocity structure and anisotropy of the crust (e.g., Agius & Lebedev, 2014, 2017; Bourjot & 53 

Romanowicz 1992; Levshin & Ratnikova, 1984; U. Meier et al. 2007; Polat et al. 2012; Press & 54 

Ewing, 1955), lithosphere and asthenosphere (e.g., Bonadio et al. 2021; Deschamps et al. 2008; 55 

Ekström & Dziewonski 1998; El-Sharkawy 2020; Masters et al. 1996; T. Meier et al. 2004; 56 

Pasyanos et al. 2014; Shapiro & Ritzwoller 2002; Zhang et al. 2009), and crustal and upper-mantle 57 

interfaces (e.g., Bartzsch et al. 2011; Beghein et al. 2019; Lebedev et al., 2013). High-frequency 58 

(>5 Hz) surface waves generated by active sources have been used to constrain upper-crustal and 59 

near-surface structure (e.g., Mi et al. 2020; Pan et al., 2019; Socco et al., 2010; Wathelet et al., 60 
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2004; Xia et al., 1999). Ultrasonic (>20 kHz) surface waves image the top few centimeters beneath 61 

the surface, providing information about hidden cracks in concrete and weathering in historical 62 

sites (e.g., Aggelis et al., 2010; Bodet et al. 2005; T. Meier et al., 2017). 63 

During the last two decades, ambient noise interferometry (cross-correlation of noise recorded 64 

at two receivers yielding estimates of the Green’s functions) has been widely adopted as an 65 

additional approach for surface-wave imaging. It provides abundant surface wave observations 66 

and fills the frequency gap between earthquakes and active sources. It also facilitates the imaging 67 

of regions where earthquakes and active sources cannot provide sufficient illumination (e.g., Li et 68 

al., 2016; Mordret et al., 2013; Nicolson et al., 2014; Zhan et al., 2014). Ambient noise surface 69 

wave tomography has been successfully applied to imaging subsurface structure and anisotropy 70 

from the crustal and upper mantle scale (e.g., Moschetti et al., 2007; Pawlak et al. 2012; Sabra et 71 

al., 2005; Shapiro et al., 2005; Yao et al., 2006), to the scale of a basin, a volcano, or a fault region 72 

(e.g., Brenguier et al., 2007; Delorey & Vidale, 2011; Inzunza et al., 2019; Martins et al., 2019; 73 

Mordret et al., 2019; Roux et al., 2011), and to a mineral-deposit scale (e.g., Bellefleur et al., 2015; 74 

Hollis et al., 2019; Mordret et al., 2013; Xu et al., 2021). The method is also applied in other fields, 75 

such as cryoseismology (e.g., Lindner et al., 2019; Preiswerk & Walter, 2018). 76 

Accurate group or phase velocity measurements are the foundation of most surface-wave 77 

studies at any scale. The measurement methods fall into two categories, with the measurements 78 

performed either in the time domain or in the frequency domain. Time-domain methods measure 79 

the arrival time or the instantaneous phase of surface waves in the time domain and then convert 80 

them to the velocity. One representative method is the frequency-time analysis (FTAN; Bensen et 81 

al., 2007; Dziewonski et al., 1969; Dziewonski & Bloch, 1972; Ritzwoller & Levshin, 1998; Yao 82 

et al., 2006). Using a set of narrow-band filters, the original, broadband surface waves are turned 83 
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into a set of narrow-band surface-wave signals. One can then measure the phase travel time or 84 

instantaneous phase on the narrow-band seismograms to obtain phase velocities, or measure the 85 

group travel time on the envelopes to obtain group velocities. Using multiple stations can solve 86 

the ambiguity in the phase velocity measurement (e.g., Martins et al., 2019; Xia et al., 1999), even 87 

determine the direction of phase velocity (e.g., Kolínský et al., 2019). 88 

The time-domain methods for the determination of the phase velocity implicitly assume that 89 

the narrow-band signals represent the monochromatic surface waves at the center frequencies of 90 

the filters. The approximation can result in systematic errors in the measurements. By contrast, 91 

frequency-domain methods measure the phase of the spectra using the Fourier transform (Bonadio 92 

et al., 2018, 2021; Fry et al., 2010; Kästle et al., 2016; T. Meier et al., 2004; Molinari et al., 2015; 93 

Verbeke et al., 2012; Zhang et al. 2007). The frequency-domain methods do not rely on the 94 

assumption of monochromaticity of narrow-band surface waves. However, they require effective 95 

procedures for identifying the correct 2π branch of the phase of the surface wave (e.g. Bonadio et 96 

al., 2018, 2021; Soomro et al., 2016).  97 

Both the time- and frequency-domain methods, originally developed for earthquake 98 

seismograms, have been applied in ambient noise studies with minor modifications. The difference 99 

is that the initial phase of virtual sources is zero (Bensen et al., 2007; Bonadio, 2019; Kästle et al., 100 

2016; Yao et al., 2006), as the cross-correlation in noise interferometry cancels out the original 101 

initial phase from noise sources. Moreover, the zero initial phase leads to an alternative frequency-102 

domain method as well (Aki, 1957; Ekström, 2014; Ekström et al., 2009). The spectrum of the 103 

noise cross-correlation functions (NCFs) is found to resemble a Bessel function with the argument 104 

of ωΔ/c(ω), where ω is angular frequency, Δ is interstation distance and c—phase velocity. Phase 105 

velocity can be obtained by fitting the Bessel function to the real part of the spectrum of NCFs. 106 
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In this paper, we focus on the accuracy of phase velocity measurements using the time-domain 107 

methods, most popular due to their simplicity. Successful measurements of phase velocity are 108 

usually more accurate than those of group velocity and, also, can be related to Earth structure and 109 

anisotropy more unambiguously (Dahlen & Zhou, 2006). Phase-velocity measurements, however, 110 

are more complicated than group-velocity ones, even after the unknown initial phase is resolved. 111 

Unlike with the group velocity, converting measured phase or phase travel time to correct 112 

phase velocity does not follow a simple relationship of t = Δ/c, where t and c are phase travel time 113 

and phase velocity, respectively. Instead, misalignments have been long observed between the 114 

monochromatic surface wave and its corresponding Fourier component, cos(ω(t-Δ/c)) (Brune et 115 

al., 1961; Toksöz & Anderson, 1966; Tromp & Dahlen, 1992; Wang et al., 1993). The 116 

misalignments are generally referred to as phase shifts, which must be accounted for during the 117 

conversion; otherwise, the resulting phase velocity is biased. 118 

We refer to phase shifts as phase advances or delays (Aki & Richards, 2002; Brune et al., 119 

1961), where a phase advance refers to an event arriving earlier than expected and a phase delay 120 

refers to a late arrival. The representation is unambiguous regardless of the sign of frequency and 121 

the convention of the Fourier transforms. The value of a phase shift is defined as the amount of 122 

deviation of the measured phase from a predicted phase that usually from theoretical 123 

approximations. A phase advance, if not corrected, will result in a higher phase velocity, and vice 124 

versa. Phase advances and delays corresponds to decreases and increases of the absolute magnitude 125 

of the phase in frequency domain, respectively. 126 

A number of types of the phase shifts have been identified. Quantifying and taking them into 127 

account is essential for the accuracy of the measurements and for the accuracy of the Earth-128 

structure models computed using the measurements. A phase delay of π/4 is commonly used in 129 
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noise cross-correlation studies (e.g., Yao et al., 2006). The phase delay, which is physically 130 

generated during interference of surface waves from different noise sources, is referred as (virtual) 131 

source phase shift hereafter as it is analogous to the π/4 phase delay in surface waves generated by 132 

earthquakes. The π/4 is an approximation in the far field (several wavelengths away) of the (virtual) 133 

source. The amount of the phase shift changes with distance in the near field. Consequently, most 134 

noise cross-correlation studies discard short-distance measurements, e.g., less than 1-3 135 

wavelengths (Bensen et al., 2007; Luo et al., 2015; Shapiro et al., 2005). The phase delay turns to 136 

a phase advance of π/4 when using noise cross-correlation functions (NCFs; Kästle et al., 2016) 137 

instead of empirical Green’s functions (EGFs) that equals the opposite of the first derivative of the 138 

NCFs with respect to time.  139 

Another type of phase shift is the caustic phase shift. It is generated when surface waves pass 140 

a caustic where rays of surface waves cross (e.g., Tromp & Dahlen, 1992; Wang et al., 1993). 141 

Surface waves stack constructively at a caustic and change their phase. The caustic phase shift is 142 

a π/2 phase advance in the far field of the caustic. Each passage of a caustic causes a π/2 phase 143 

advance. One example of the caustic phase shift is the polar phase shift (Brune et al., 1961), which 144 

occurs when surface waves travel across the antipode of the source and the polar area (the source). 145 

The corresponding caustics are exactly at the source and its antipode in a spherically symmetric 146 

Earth model and can deviate from the antipode for 10°-20° in a heterogeneous Earth model Earth 147 

(Wang et al., 1993). The source phase shift can be regarded as a ‘semi-caustic’ as well. Its 148 

difference from a caustic is that rays converge and diverge at a caustic but only diverge at the 149 

source (Brune et al., 1961).  150 

In the vicinity (near field) of a caustic or semi-caustic, the phase advance deviates from its 151 

far-field value (Kästle et al., 2016; Pollitz, 2001; Schwab & Kausel, 1976; Tromp & Dahlen, 1993; 152 
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Wielandt, 1980). The exact amount of the phase shift can be either estimated analytically, by 153 

adding higher-order terms of Taylor expansions into the analysis (Herrmann, 1973; Wielandt, 154 

1980), or computed numerically (Schwab & Kausel, 1976). In this paper, we use near-field phase 155 

shifts to refer to the difference between a (semi-)caustic phase shift and its far-field approximation.  156 

In the time-domain methods for phase-velocity measurement, approximating monochromatic 157 

surface waves by narrowband ones causes additional types of phase shifts due to the interference 158 

between neighboring frequencies. The origins of such errors and corresponding solutions have 159 

been discussed in the context of group-velocity measurements (Dziewonski & Bloch, 1972; 160 

Herrmann, 1973; Levshin et al., 1992; Shapiro & Singh, 1999). The two origins identified are rapid 161 

changes in the group-velocity dispersion curve and variations in the amplitude spectra. The 162 

proposed solutions for group velocity changes normally involve an iterative procedure that reduces 163 

most of the changes in group velocity by subtracting the group velocity measured in the original 164 

seismogram (Bensen et al., 2007; Dziewonski & Bloch, 1972; Ritzwoller & Levshin, 1998). 165 

Solutions for non-constant amplitude spectra involve replacing the center frequency by an 166 

instantaneous frequency (Ritzwoller & Levshin, 1998) or a centroid frequency (Shapiro & Singh, 167 

1999).  168 

The narrow-band approximation also has an effect on phase-velocity measurements. To our 169 

knowledge, however, there are no systematic studies on the associated phase shifts and their effects 170 

on the measurements and the resulting Earth models, especially in the context of noise cross-171 

correlations. Herrmann (1973) showed an additional phase term in the mathematical representation 172 

of Gaussian filtered surface waves, but he did not discuss its further implication.  173 

The purpose of this paper is to present a systematic study of—and practical ways to correct 174 

for—the phase shift caused by approximating monochromatic surface waves by narrow-band 175 
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surface waves. We refer to the phase shift as the finite-frequency phase shift, as it originates from 176 

a replacement of an infinitesimally narrow frequency band by a finite-width band. We first derive 177 

an explicit expression of the phase shift, under certain assumptions, and then present a numerical 178 

method to accurately evaluate the phase shift. We also demonstrate the effect of the finite-179 

frequency phase shift on the phase velocity measurements and offer recipes for the correction of 180 

the phase shift in order to obtain accurate phase-velocity measurements. The results apply to 181 

measurements with time-domain methods on surface waves from earthquakes, active sources and 182 

ambient seismic noise.  183 

2 Finite-frequency phase shift 184 

Surface waves at different frequencies travel at different speeds. To measure phase velocities 185 

at different frequencies, a comb of narrow-bandpass filters is often used to isolate individual 186 

frequencies, such as in the multiple filter technique (Dziewonski et al., 1969). The filtered surface 187 

wave resembles a cosine function with a period of 1/fc, where fc is the center frequency of the filters 188 

(Figure 1a). Assuming the narrowband surface waves share the same peaks with the 189 

monochromatic surface waves, the arrival time of the peaks can be written explicitly,  190 

𝑡# =
Δ
𝑐 +

1
8𝑓+

+
𝑛
𝑓+
+
𝜙.
𝜔+
,						𝑛 = 0,±1,±2, … , (1) 191 

where Δ is the distance, c the phase velocity at the frequency fc, ωc = 2πfc the angular frequency, 192 

ϕs the initial phase of the source (Dahlen & Tromp, 1998; Yao et al., 2006). The 1/(8fc) is the 193 

manifestation of the π/4 phase delay caused by the source term. We refer to n as the order of peaks 194 

in the narrowband surface waves, or ‘ridges’ in the frequency-time representation (Figure 1b). The 195 

0th ridge is often referred as the ‘correct’ ridge (e.g., Wang et al., 2017; Yao et al., 2006), though 196 
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other ridges can also generate correct phase velocity measurements if the time shift n/fc is corrected 197 

(Bonadio et al., 2018; T. Meier et al., 2004; Soomro et al., 2016; Xu et al. 2021). 198 

The finite-frequency phase shift, δϕ, corresponds to the time offset δt (= δϕ/2πfc) between the 199 

peaks of the narrowband and monochromatic surface waves (Figure 1c), giving a more accurate 200 

prediction of the arrival time of the peaks, 201 

𝑡# =
Δ
𝑐 +

1
8𝑓+

+
𝑛
𝑓+
+
𝜙.
𝜔 + 𝛿𝑡,						𝑛 = 0,±1,±2, … . (2) 202 

 Unlike the ‘systematic error’ due to the variations in amplitude spectra, discussed by Shapiro and 203 

Singh (1999), the phase shift is non-zero even for constant amplitude spectra. It needs to be 204 

corrected along with the π/4 phase delay to get an accurate measurement of phase velocities, 205 

𝑐 =
Δ

𝑡 − 1 8𝑓+⁄ − 𝑛 𝑓+⁄ − 𝜙. 𝜔+⁄ − 𝛿𝑡 ,
(3) 206 

or 207 

𝑐 =
𝜔+Δ

𝜔+𝑡 − 𝜋 4⁄ − 2𝑛𝜋 − 𝜙. − 𝛿𝜙
. (4) 208 

Figure 2 illustrates the origin of the finite-frequency phase shift. Monochromatic surface 209 

waves are generated at three equal-spaced frequencies, 0.99, 1.00 and 1.01 Hz. Superposition of 210 

the three produces a narrow-band surface wave (Figure 2b, c). The three monochromatic surface 211 

waves have the same amplitude, so as to avoid the influence of the spectral amplitude variation. 212 

When the phase velocity dispersion curve is linear, the peak in the narrow-band surface wave 213 

arrives at the same time as the peak of the center-frequency (1 Hz) surface wave. By contrast, 214 

when the dispersion curve is not linear, the two peaks have a slight misalignment. The 215 
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misalignment is the finite-frequency phase shift. If not accounted for, the misalignment will result 216 

in a biased phase velocity measurement.  217 

 218 

 219 

Figure 1 Time-domain phase velocity measurement and the finite-frequency phase shift. (a) Broadband 220 

and narrow-bandpass-filtered surface waves. The broadband surface wave is a synthetic seismogram 221 

generated using the velocity model ak135 (Kennett et al., 1995). For the narrow-band surface wave, a 222 

Gaussian filter with the center frequency of 0.03 Hz and α = 48 is used. The arrival times of the peaks are 223 

marked by vertical lines, with the peak corresponding to the correct phase travel time marked by a solid 224 

line and other peaks by dashed lines. (b) Frequency-time representation of the broadband surface wave. 225 
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Each row of the image corresponds to a narrow-band filtered surface wave. Connected peaks form ridges, 226 

with the ‘correct’ ridge marked by a solid line and other ridge by dashed lines. The separation between 227 

these ridges are n/f, or 2nπ in phase. (c) The finite-frequency phase shift. The measured phase travel time 228 

is f/8+δt s later than the predicted phase travel time of Δ/c, equivalent to a π/4+δϕ phase delay, where δϕ is 229 

the finite-frequency phase shift. 230 

 231 

Figure 2 Finite-frequency phase shift caused by using a bundle of frequencies to estimate the centre 232 

frequency. (a) Phase velocity curves used in the example. The black line denotes the curve that is linear, 233 

whereas the red line denotes a curve with a curvature (the kink at 1 Hz). (b) Monochromatic components 234 

at 0.99, 1.00 and 1.01 Hz and their superposition. The linear curve is used. The diamond and the dashed 235 

line mark the arrival time of the peak of the 1-Hz component. The arrow points to the arrival time of the 236 

peak of the superposition. (c) Same as b but using the curve with the kink. 237 

3 Theoretical derivation 238 

We can derive an explicit expression for the finite-frequency phase shift assuming the far field 239 

approximation and narrow frequency bands. By far field, we mean large |ω|Δ/c = 2πΔ/λ, that is, a 240 

large number of wavelengths fitting between the source and station, or between two stations in the 241 

case of noise interferometry and two-station methods. Starting from the spectrum of surface waves, 242 

we integrate the spectrum over frequency in order to obtain the seismogram of surface waves, to 243 

which we refer as broadband surface waves. Then, we apply Gaussian filters to obtain the explicit 244 
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expression for the narrow-band surface waves, from which, finally, we obtain the explicit 245 

expression for the finite-frequency phase shift.  246 

3.1 Stationary phase approximation 247 

The stationary phase approximation method is used repeatedly in the following derivation in 248 

order to approximate integrals. We briefly summarize the points that are relevant to our derivation. 249 

For more details, we refer the reader to Aki and Richards (2002). The method is used to estimate 250 

the integral of the form 251 

? 𝐹
A

B
(𝜔)expC𝑓(𝜔)D𝑑𝜔, (5) 252 

where F(ω) and f(ω) are real functions and ω is a dummy variable that does not necessarily mean 253 

frequency. Both a and b can be infinity. This type of integral is dominated by several discrete 254 

points where f'(ω) = 0. They are termed stationary phase points or saddle points (after the shape of 255 

the integrand surface near these points in the complex domain of ω. If the |f"(ω)| values at the 256 

saddle points are sufficiently large, the integral can be estimated as a summation of the contribution 257 

of the saddle points, 258 

G 𝐹(𝜔H)expC𝑓(𝜔H)DI
2𝜋

|𝑓K(𝜔H)|LM∈.BOOPQ	RST#U.

× W
exp X𝑖

𝜋 − 𝜙
2 Z , 𝜙 ∈ (0, 𝜋]

exp X𝑖
−𝜋 − 𝜙

2 Z , 𝜙 ∈ (−𝜋, 0)
, (6) 259 

where ω0 are saddle points within the interval [a, b] and ϕ = arg f"(ω0). When a saddle point is at 260 

the end of the interval, its contribution should be halved. 261 

3.2 Broadband time-domain waveforms  262 

Surface waves can be written as a superposition of monochromatic surface waves, 263 
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𝑥(𝑡) =
1
𝜋ℜ

? 𝐴(𝜔) exp c−𝑖
𝜔Δ
𝑐(𝜔) + 𝑖𝜑

(Δ)eexp(𝑖𝜔𝑡) 𝑑𝜔
fg

H
, (7) 264 

where ℜ is the real part operator that arises from the reduction of the interval (-∞, +∞) to [0, +∞) 265 

using the Hermitian symmetry of the spectrum, A(ω) is the amplitude spectrum, and φ(Δ) 266 

represents the overall phase shift regarding propagation of monochromatic surface waves, 267 

comprising the initial phase from the source mechanism, the source phase shift and the caustic 268 

phase shift when passing a polar or antipodal region. The Fourier transform we used is  269 

𝐹(𝜔) = ? 𝑓(𝑡) exp(−𝑖𝜔𝑡) 𝑑𝑡
fg

ig
,	270 

𝑓(𝑡) =
1
2𝜋

? 𝐹(𝜔) exp(𝑖𝜔𝑡) 𝑑𝜔
fg

ig
, (8) 271 

although the conclusion is independent of the convention of Fourier transform. For any given 272 

distance, equation 7 can be evaluated using the stationary phase approximation, 273 

𝑥(𝑡) ≈ I
2

𝜋Δ|𝑘K(𝜔H)|
× W

cos l𝜔H𝑡 − 𝑘(𝜔H)𝛥 + 𝜑 −
𝜋
4n , 𝑘K(𝜔H) > 0

cos l𝜔H𝑡 − 𝑘(𝜔H)𝛥 + 𝜑 +
𝜋
4n , 𝑘K(𝜔H) < 0

, (9) 274 

where k(ω) = ω/c(ω) is the wavenumber and k'(ω0) = t/Δ. It shows that the instantaneous phase of 275 

broadband surface waves deviates from its corresponding monochromatic component by ±π/4, 276 

depending on the sign of k"(ω0). k"(ω0) is positive when dcg/dT > 0, where cg=dω/dk is group 277 

velocity and T = 2π/ω is period. The corresponding frequency for each time t can be found by 278 

solving k'(ω0) = t/Δ. 279 
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3.3 Narrowband time-domain waveforms 280 

3.3.1 Far-field approximation 281 

Bandpass filtering can change the instantaneous phase of surface waves. Applying a Gaussian 282 

filter to the broadband surface wave (equation 7), we have  283 

𝑥(𝑡) =
1
𝜋ℜ

? 𝐴(𝜔) exp c−𝑖
𝜔Δ
𝑐(𝜔) + 𝑖𝜑

(Δ)e exp c−𝛼
(𝜔 − 𝜔+)s

𝜔+s
e exp(𝑖𝜔𝑡) 𝑑𝜔

fg

H
, (10) 284 

where ωc is the center frequency of the filter and α (> 0) is a parameter that controls the width of 285 

the filter. Using the stationary phase approximation, we can obtain the explicit expression for the 286 

time-domain waveform of the filtered surface wave, 287 

𝑥(𝑡) ≈ t
2

𝜋 u𝑖𝑘K𝛥 + 2𝛼𝜔+s
u
𝐴(𝜔H)exp c−𝛼

(𝜔H − 𝜔+)s

𝜔+s
e

× W
cos X𝜔H𝑡 − 𝑘𝛥 + 𝜑(𝛥) +

−𝜋 − 𝛽
2 Z , 𝑘K(𝜔H) > 0

cos X𝜔H𝑡 − 𝑘𝛥 + 𝜑(𝛥) +
𝜋 − 𝛽
2 Z , 𝑘K(𝜔H) < 0

, (11)

 288 

where the stationary phase point ω0 is determined by 289 

−𝑖𝑘z(𝜔H)𝛥 + 𝑖𝑡 − 2𝛼
𝜔H − 𝜔+
𝜔+s

= 0, (12) 290 

and  291 

𝛽 = arg𝑓K(𝜔) = arg X−
2𝛼
𝜔+s

− 𝑖𝑘K(𝜔H)𝛥Z . (13) 292 

When using a wide-band Gaussian filter (α→0), β in equation 11 approaches –π/2 for k"(ω0) 293 

> 0 and π/2 for k"(ω0) < 0. Thus, equation 11 degenerates to its broadband counterpart, equation 294 

9. When using a narrow-band filter (α→∞), β→–π (k"(ω0) > 0) and π (k"(ω0) < 0), the cosine term 295 
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in equation 11 in both cases become cos(ω0t-kΔ+φ(Δ)), which has the same phase as the 296 

monochromatic surface waves in equation 7. This is why narrow-bandpass filtered surface waves 297 

can be used to measure phase velocity at the center frequencies of the filters. However, α cannot 298 

be ∞ when making real measurements. It is crucial to know how much is the error for using a finite 299 

α. As the saddle points move away from the real axis into the complex domain for 0 < α < ∞, it is 300 

not trivial to evaluate the phase shift using the stationary phase approximation, so we turn to 301 

another approximation under the narrow-band assumption. 302 

3.3.2 Far-field and narrow-band approximation 303 

To obtain an explicit expression for the finite-frequency phase shift, we re-evaluate the 304 

integral in equation 10 using Taylor expansions at the center frequency ωc. In additional to the far-305 

field approximation, we limit ourselves to narrow-band filters. In this case, let 306 

𝐹(𝜔) =
𝐴(𝜔)
𝜋 ,	307 

𝑓(𝜔) = 𝜔𝑡 − 𝑘𝛥 + 𝜑(Δ), (14) 308 

 we can expand F(ω) and exp(if(ω)) at ωc, 309 

𝐹(𝜔) ≈ 𝐹(𝜔+) + 𝐹′(𝜔+)(𝜔 − 𝜔+) +
1
2𝐹″(𝜔+)(𝜔 − 𝜔+)

s

expC𝑖𝑓(𝜔)D ≈ expC𝑖𝑓(𝜔+)D }1 + 𝑖𝑓′(𝜔+)(𝜔 − 𝜔+) +
1
2 (𝑖𝑓″(𝜔+) − 𝑓′

s(𝜔+))(𝜔 − 𝜔+)s~
. (15) 310 

Substituting equation 15 into equation 10, the integral can be organized as a series of integrals ∫ 311 

(ω-ωc)nexp(-α(ω- ωc)2)dω, which can be evaluated analytically. Summing the results yields the 312 

expression for the time-domain waveform of narrowband surface waves, 313 

𝑥(𝑡) ≈
𝐴(𝜔)𝐵
𝜋 𝜔+�

𝜋
𝛼 cos

C𝑖(𝜔𝑡 − 𝑘𝛥 + 𝜑(Δ) − 𝛿𝜙)D , (16) 314 
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where B and δϕ are the amplitude and phase, respectively, of a complex number given by 315 

𝐵exp(𝑖𝛿𝜙) = 𝐹(𝜔+) +
𝜔+s

2𝛼 }−
1
2𝐹

(𝜔+)𝑓′s(𝜔+) +
1
2𝐹

K(𝜔+)~ − 𝑖
𝜔+s

2𝛼 }
1
2𝐹

(𝜔+)𝑓K(𝜔+) + 𝐹z(𝜔+)𝑓z(𝜔+)~ . (17) 316 

The δϕ is the finite-frequency phase shift we are looking for. We intentionally use –δϕ instead of 317 

δϕ in equation 16, so that δϕ > 0 corresponds to phase delay and δϕ < 0 corresponds to phase 318 

advance. 319 

Assuming a constant amplitude spectrum, F'(ωc) and F"(ωc) are zero. Therefore, we can 320 

evaluate the finite-frequency phase shift as 321 

𝛿𝜙 = arg �
4𝛼
𝜔+s

− (𝑡 − 𝑘z(𝜔+)𝛥)s + 𝑖𝑘K(𝜔+)𝛥� . (18) 322 

For narrow-band filters when α is sufficiently large, the first term dominates the real part. We can 323 

therefore simplify the mathematical representation of δϕ to 324 

𝛿𝜙 = arctan
𝑘K(𝜔+)𝛥
4𝛼 𝜔+s⁄ ≈

𝜔+s𝑘K(𝜔+)𝛥
4𝛼

(19) 325 

The formula in equation 19 reveals four factors that affect the finite-frequency phase shift, namely, 326 

(1) the center frequency of the Gaussian filter ωc, (2) the second derivative of the wavenumber 327 

with respect to frequency k"(ωc), (3) the epicentral distance Δ and (4) the width of the Gaussian 328 

filter α. Since ωc, Δ and α are all positive, the sign of the phase shift is solely determined by k"(ωc). 329 

Physically, k"(ωc) > 0 means a positive curvature (with respect to frequency) in the phase 330 

dispersion curve or a positive slope (with respect to period) in the group dispersion curve. 331 

3.4 Finite-frequency phase shift in noise cross-correlation functions 332 

Here we show that the finite-frequency phase shift in the surface waves in the noise cross-333 

correlation functions (NCFs) shares exactly the same formula with ballistic surface waves. First, 334 



manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

we compute the spectrum of NCFs by summing the cross-correlation of incoming plane waves 335 

over all the azimuths. Assuming that we have two stations, station A and station B, separated by 336 

the distance Δ, and an incoming plane wave that arrives at the angle θ (measured counter-clockwise 337 

from the east) (Figure 3), the cross-correlation spectrum of the plane wave at the station A with 338 

one at station B is exp(iωΔcosθ/c), where ω is the angular frequency and c is the phase velocity at 339 

this frequency. Assuming a perfect illumination, when the amplitude of the incoming plane waves 340 

is constant over azimuth, the spectrum of the noise cross-correlation can be written as   341 

𝐶(𝜔) =
1
2𝜋

? exp
�

i�
X𝑖𝜔

𝛥cos𝜃
𝑐(𝜔) Z d𝜃 = 𝐽H X

𝜔𝛥
𝑐(𝜔)Z ,

(20) 342 

where J0(x) is the zeroth-order of Bessel functions of the first kind. Evaluating the integral using 343 

the stationary phase approximation yields the far-field approximation of the spectrum of the noise 344 

cross-correlation, 345 

𝐶(𝜔) ≈ t
2

𝜋 |𝜔|𝛥𝑐(𝜔)

cosc
|𝜔|𝛥
𝑐(𝜔) −

𝜋
4e .

(21) 346 

where far field implies a large ωΔ/c = 2πΔ/λ and λ is the wavelength. Alternatively, the 347 

approximation can be obtained using asymptotic forms of Bessel functions (Gradshteyn & Ryzhik, 348 

2014). The contributions of the causal branch and the acausal branch can also be separated in the 349 

far-field approximation (Table 1). 350 

 351 
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Figure 3 Incoming plane wave at a pair of stations. The plane wave arrives at the stations at an angle θ. 352 

The distance between stations A and B is Δ. The plane wave needs to travel farther by Δcosθ to reach station 353 

A compared to station B. The corresponding time delay is Δcosθ/c and phase delay is ωΔcosθ/c. 354 

 355 

Table 1 Spectra of the causal and acausal branches of the noise cross-correlation under the far-field 356 

approximation. The common factor �2𝑐(𝜔) 𝜋|𝜔|Δ⁄  is omitted. The expressions correspond to the 357 

convention of Fourier transforms indicated by equation 8. Using other conventions will result in changes 358 

of signs or an additional constant factor. 359 

Branch ω > 0 ω < 0 

Causal exp c−𝑖 X
ω𝛥
𝑐(𝜔) −

𝜋
4Ze exp c−𝑖 X

ω𝛥
𝑐(𝜔) +

𝜋
4Ze 

Acausal exp c𝑖 X
ω𝛥
𝑐(𝜔) −

𝜋
4Ze expc𝑖 X

ω𝛥
𝑐(𝜔) +

𝜋
4Ze 

 360 

Applying inverse Fourier transform to the far-field approximation of the spectrum of the 361 

causal branch (Table 1) yields the expression of broadband surface waves in the causal branch of 362 

NCFs, 363 

𝐶f(𝑡) ≈
1
2𝜋s ℜ

? I2𝜋
𝑘𝛥

g

H
exp(𝑖𝜔𝑡 − 𝑖𝑘𝛥)expl𝑖

𝜋
4n𝑑𝜔

≈
1
𝜋𝛥

1
�|𝑘(𝜔H)||𝑘K(𝜔H)|

× �
cos(𝜔H𝑡 − 𝑘(𝜔H)𝛥), 𝑘K(𝜔H) > 0

cos l𝜔H𝑡 − 𝑘(𝜔H)𝛥 +
𝜋
2n , 𝑘K(𝜔H) < 0

(22)

 364 

where k'(ω0) = t/Δ. We can also obtain the expression for the surface waves in the acausal branch,  365 
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𝐶i(𝑡) ≈
1
𝜋𝛥

1
�|𝑘(𝜔H)||𝑘K(𝜔H)|

× �
cos(𝜔H𝑡 + 𝑘(𝜔H)𝛥), 𝑘K(𝜔H) > 0

cos l𝜔H𝑡 + 𝑘(𝜔H)𝛥 −
𝜋
2n , 𝑘K(𝜔H) < 0

(23) 366 

where k'(ω0) = –t/Δ (t < 0). The two branches form an even function of t.   367 

Unlike the ballistic surface waves, surface waves in NCFs have a known π/4 advance instead 368 

of an unknown phase shift of ϕ(Δ). However, the π/4 phase advance can be cancelled out by the 369 

π/4 phase delay that arises in the frequency integration when k"(ω0) > 0, making the instantaneous 370 

phase of the surface wave at a certain time t is in-phase (no phase shift) with the corresponding 371 

monochromatic surface wave cos(ω0t-ω0Δ/c(ω0)). To illustrate the phenomenon, we generate a 372 

broadband surface-wave synthetic using the exact spectrum in equation 20 and ak135 (Kennett et 373 

al., 1995) and then compare it with the monochromatic surface wave (Figure 4). The alignment is 374 

easier to examine at the peaks, so we chose the frequency 0.0355 Hz that is the saddle point 375 

corresponding to the peak at t = 901.27 s. A good consistency is observed between the 376 

monochromatic and broadband surface waves at 901.27 s, confirming their alignment in terms of 377 

phase. Furthermore, the instantaneous frequency at 901.27 s is also 0.0355 Hz, which can be 378 

verified by computing the first derivative of the instantaneous phase ϕ(t) = ω0t – k(ω0)Δ, which is 379 

𝜔(𝑡) =
𝜕𝜙(𝑡)
𝜕𝑡 = 𝜔H +

𝜕𝜔H
𝜕𝑡

(𝑡 − 𝑘z(𝜔H)Δ) = 𝜔H(𝑡) (24) 380 

in the causal branch. The second term is zero because the saddle point ω0 follows the relationship 381 

k'(ω0) = t/Δ. 382 
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 383 

Figure 4. Broadband and monochromatic surface waves. The broadband surface wave synthetic is 384 

computed using a trapezoid integration from 2 to 50 mHz, with an interval of 0.01 mHz. There is no 385 

misalignment between the peak at t = 901.27 s and its corresponding single frequency component, as the 386 

phase delay of π/4 that arises from the frequency integration is cancelled by the phase advance of π/4 that 387 

arises from the integration over azimuth. 388 

 389 

The narrowband time-domain waveforms of NCFs can be computed using the same approach 390 

as in Section 3.3, 391 

𝐶(𝑡) ≈ 1
2𝜋s ℜ

? I2𝜋
𝑘𝛥

g

H
exp(𝑖𝜔𝑡 − 𝑖𝑘𝛥)expl𝑖

𝜋
4n exp c−𝛼

(𝜔H − 𝜔+)s

𝜔+s
e 𝑑𝜔

≈
𝐵
2𝜋s 𝜔+�

𝜋
𝛼ℜ�expc𝑖 l𝜔𝑡 − 𝑘𝛥 +

𝜋
4 − 𝛿𝜙ne� ,

(25)

 392 

where B and δϕ share exactly the same definition as ballistic surface waves, with a slightly different 393 

definition of F(ω) and f(ω), 394 

𝐹(𝜔) =
1
2𝜋s

I2𝜋
𝑘𝛥 ,	395 
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𝑓(𝜔) = 𝜔𝑡 − 𝑘Δ +
𝜋
4 .

(26) 396 

Despite that difference in F(ω) and f(ω), surface waves from noise interferometry share the 397 

identical formula for the finite-frequency phase shift with surface waves from earthquakes and 398 

active sources, 399 

𝛿𝜙 ≈
𝜔+s𝑘K(𝜔+)𝛥

4𝛼 . (27) 400 

3.5 Finite-frequency phase shift in two-station methods 401 

The two-station method is commonly used to measure phase velocities when the initial phase 402 

of the source is unknown (e.g., Brilliant & Ewing, 1954; T. Meier et al., 2004; Kolínský et al., 403 

2019). It avoids the initial phase by measuring the travel time difference between two stations that 404 

are in line with the source. The difference can be captured by cross-correlating the surface waves 405 

on the two stations, whose spectrum has the following form, 406 

𝐶(𝜔) = exp X−𝑖
𝜔Δ
𝑐(𝜔)Z .

(28) 407 

The narrowband surface waves can be obtained following the same procedure as in the ballistic 408 

and noise cross-correlation cases, 409 

𝐶(𝑡) ≈
1
𝜋ℜ

? exp(𝑖𝜔𝑡 − 𝑖𝑘𝛥)
g

H
expc−𝛼

(𝜔H − 𝜔+)s

𝜔+s
e 𝑑𝜔 ≈

𝐵
𝜋 𝜔+�

𝜋
𝛼ℜ

�expC𝑖(𝜔𝑡 − 𝑘𝛥 − 𝛿𝜙)D�. (29) 410 

Again, the finite-frequency phase shift is, 411 

𝛿𝜙 ≈
𝜔+s𝑘K(𝜔+)𝛥

4𝛼 . (30) 412 
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4 Numerical computation of the finite-frequency phase shift 413 

To evaluate the finite-frequency phase shift accurately without the far-field and narrow-band 414 

assumptions, we now compute it numerically. The results can be used to correct the errors in phase-415 

velocity measurements caused by this specific phase shift.  416 

We compute the phase shift by comparing the measured phase travel times, obtained from 417 

surface-wave synthetics, to their far-field prediction, given by t0 = Δ/c(fc) – 1/(8fc). The 418 

computation only needs a phase dispersion curve, c = c(f). As for the “measured” phase travel 419 

time, we first generate a synthetic surface wave by superposing monochromatic surface waves. 420 

Here, we use the exact expression of the causal branch of monochromatic noise cross-correlation 421 

functions, 422 

G𝑤Tℜ��𝐻H
(s) X

𝜔TΔ
𝑐(𝑓T)

Z� exp(𝑖𝜔T𝑡)� d𝑓
�i�

T�H

, 													𝑓T = 𝑓H + 𝑖d𝑓, (31) 423 

where 𝐻H
(s)(𝑥) is the zeroth-order Hankel functions of the second kind, ωi = 2πfi, and wi is the 424 

weighting coefficient determined by the integration method used. The results apply to ballistic 425 

surface waves as well. For two-station methods, one should replace the Hankel functions by cosine 426 

functions, but they share the same far-field patterns. We use the trapezoidal integration, with wi = 427 

0.5 when i = 0, N-1 and wi = 1 when i = 1, …, N-2. Next, we measure the phase travel time using 428 

the method of Xu et al. (2021), who used a frequency-dependent α = 2πfγ2, with γ being an 429 

empirical parameter (Soomro et al., 2016). Finally, we compute the difference δt between the 430 

measured and predicted phase travel times and multiply it by 2πfi to get the finite-frequency phase 431 

shift δϕ. The process should be repeated for each distance. For dense arrays, we can accelerate the 432 

computation by interpolating a phase shift table pre-computed at a set of distance. The phase 433 
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velocity measurement method should be the same as the one used to obtain the real measurements 434 

so as to avoid introducing errors due to the difference in the measurement methods.  435 

In order to correct the finite-frequency phase shift in a real phase-velocity dataset, we need a 436 

phase dispersion curve. A good start is the average dispersion curve or a reference model inverted 437 

from the dataset. We recommend the reference-model approach as the dispersion curve it generates 438 

is free of unphysical bumps. Once the phase shift δϕ is computed, one can correct the phase 439 

velocity by 440 

1
𝑐 =

1
𝑐̃ −

𝛿𝜙
𝜔Δ

(32) 441 

where  𝑐̃ and c is the phase velocity before and after the correction.  442 

Figure 5 illustrates the computation of the finite-frequency phase shift for a station pair 443 

separated by 250 km. We used a phase dispersion curve calculated using ak135 to generate the 444 

broadband surface-wave synthetic (Herrmann, 2013; Figure 5a). We integrated from 2 to 50 mHz 445 

with an interval of 0.01 mHz. The phase travel time is measured on the narrow-band-passed 446 

waveforms. The resulting phase shift is mostly positive (phase delay; Figures 5b,e), except for low 447 

frequencies (Figures 5c,e). We found that this low-frequency anomaly is related to the near-field 448 

phase shift, which we discuss further in Section 5.1. The phase shift causes noticeable 449 

perturbations in the corresponding “measured” phase velocity curve (up to 0.02 km/s; Figures 450 

5f,g). 451 
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 452 

Figure 5 Numerical computation of the finite-frequency phase shift. (a) Broadband synthetic and narrow-453 

band filtered synthetics. We use γ = 16 to determine the width of the Gaussian filters, the same as Soomro 454 

et al. (2016) used for station pairs with similar distance ranges. Red and black diamonds denote the 455 

measured and predicted phase travel time, respectively. (b) Zoom-in around the measured phase travel time 456 

of the filtered synthetic around 0.04 Hz. (c) Same as b, but for 0.01 Hz. (d) Phase travel time residual, the 457 

difference between the measured (red) and predicted (black) phase travel time. (e) Corresponding phase 458 

residual. (f) Corresponding phase velocity residual. (g) Measured and predicted phase velocity dispersion 459 

curve. 460 
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4.1 High-frequency example (1-25 Hz) 461 

We now compute the phase shift in a high-frequency scenario, relevant for the surface wave 462 

imaging of the shallow crust. We use this to demonstrate how to use the numerical method and to 463 

illustrate the factors that control the finite-frequency phase shift. 464 

We use a model of the Dublin Basin, simplified from one obtained previously using receiver 465 

functions (Licciardi & Piana Agostinetti, 2017). The model has 4 layers and a half space below 466 

them (Figure 6a; Table 2). The P-wave velocity and density are converted from the S velocity 467 

using the formulas in Brocher (2005). After computing the Rayleigh-wave phase-velocity 468 

dispersion curve, we evaluate the phase shift for interstation distances from 0.5 to 4 km, at a 0.1 469 

km step (Figure 6b). For each distance, we compute the synthetics using equation 31 and a 470 

frequency range of 0.1-30 Hz, with an interval of 0.01 Hz (Figure 6c). We select 51 frequency 471 

points logarithmically distributed between 0.1 and 30 Hz as the center frequencies of the Gaussian 472 

filters. Figure 6d shows an example of the finite-frequency phase shift measured for the Gaussian 473 

filter with a center frequency of 5 Hz, which is 0.142 radians.  474 

We use γ = 1 to compute the finite-frequency phase shift over the distance range of 0.5-4 km 475 

and the frequency range of 1-25 Hz (Figure 7; A slightly smaller γ = 0.5 is used, for clarity, in 476 

Figure 6c). The amplitude of the phase shift ranges from −0.015 to 0.026 π, much smaller than the 477 

π/4 phase shift caused by the source. The prominent features are the two high-amplitude anomalies 478 

around 5 and 1.4 Hz. These are the frequencies of the two peaks in the second derivative of the 479 

wavenumber, k"(ω), which confirms the effect predicted by the equation 27. The effect of the 480 

distance is clear as well. The amplitudes of the two anomalies decrease with decreasing distance, 481 

from 0.026 π at 4 km to 0.0019 π at 0.6 km. Additionally, the phase shift increases linearly with 482 
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frequency due to a combined effect of ω2 and the frequency-dependent α. It makes the 5-Hz 483 

anomaly stronger than the 1.4-Hz anomaly despite a smaller k"(ω) at 5 Hz.  484 

The corresponding phase-velocity perturbation (−0.79% to 2.3%) shows a pattern from that 485 

for the phase shift (Figure 8). Firstly, the sign of the phase-velocity perturbation is opposite to the 486 

phase shift. That is because a positive phase shift causes a delay in travel time, translating to a 487 

lower phase velocity. Secondly, the change of amplitude with distance disappears and the change 488 

with frequency is proportional to k"(ω). The reason is that the effects of distance and frequency 489 

cancel out when the phase shift is converted to phase velocity (equation 3). Therefore, the 490 

amplitude variation in the phase shift table only depends on k"(ω). The frequency dependence is 491 

cancelled when α changes linearly with frequency. Using a constant α, instead, results the velocity 492 

perturbation depends linearly on frequency. The positive anomaly observed in the lower-right 493 

corner of Figure 8 corresponds to low frequency and short distance or, equivalently, the near field 494 

(small Δ/λ). The distinctive feature is a result of the near-field effects rather than the finite-495 

frequency phase shift, as we discuss further in Section 5.1. 496 

The finite-frequency phase shift is larger if a smaller γ is used, when the width of filter widens 497 

to include more frequencies (Figure 9). The phase shifts range from −π/128 to 7π/128 for γ = 0.5, 498 

with a group of filters centered at 0.05, 0.1, 0.2 and 0.5 s. The phase shifts decrease when γ 499 

increases and converge to a small (non-zero) value determined by the near-field effects. However, 500 

using a large γ in real-data applications may reduce the signal-to-noise ratio in the filtered surface 501 

waves, hence increasing errors in phase velocity measurements. Therefore, the problem of the 502 

finite-frequency phase shift cannot be solved by simply adopting a large γ. 503 

 504 

Table 2. Velocity model of the Dublin Basin simplified after Licciardi & Piana Agostinetti (2017). 505 
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Layer No. 
Layer 

thickness (km) 
Vp (km/s) Vs (km/s) Density (g/cm3) 

1 0.15 4.17 2.44 2.42 

2 0.5 4.85 2.88 2.51 

3 1.35 5.49 3.25 2.62 

4 8.0 5.96 3.5 2.71 

5 ∞ 6.34 3.7 2.79 

 506 
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 507 

Figure 6. Example of the evaluation of the finite-frequency phase shift using a simplified model of the 508 

Dublin Basin. (a) The velocity model (only the top 5 km portion of the shear-wave velocity model is 509 

shown); (b) Rayleigh wave phase velocity dispersion curve. The red dot denotes the frequency (5 Hz) used 510 

in panel d; (c) Broadband synthetic of the noise cross-correlation function at the interstation distance of 2.5 511 

km; (d) Filtered waveform. The Gaussian filter is centered at 5 Hz, with γ = 0.5, or α = 7.85. The finite-512 

frequency phase shift is 0.142 radians. We used a smaller γ for a clearer illustration of the phase shift.  513 
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 514 

Figure 7. Phase shift (bottom) and the second derivative of k(ω) (top). (Top) The red shaded region marks 515 

the positive k"(ω); (Bottom) The positive phase shift indicates phase delay; the negative phase shift—phase 516 

advance.  517 

 518 

Figure 8. Phase velocity perturbation corresponding to the phase shift in Figure 7. The perturbation is with 519 

respect to the phase velocity dispersion curve that is used to generate the synthetics. 520 
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 521 

Figure 9. Phase shift as a function of γ. We compute the example using an interstation distance of 2.5 km 522 

and Gaussian filtered centered at 2 Hz, 5 Hz, 10 Hz and 20 Hz.  523 

4.2 Long-period example 524 

The phase shift can be observed in long-period measurements as well. In this example, we use 525 

the phase velocity dispersion curve computed for the global reference model ak135. The phase 526 

shifts computed here illustrate the errors that can be incurred in long-period measurements 527 

performed with time-domain methods, which are widely used for crustal and lithospheric imaging. 528 

We also discuss a technique—ridge jumping—that can improve the quality of measurements, 529 

especially at shorter periods. 530 

We evaluated the finite-frequency phase shift within the distance range of 100-3000 km (every 531 

100 km) and the period range of 25-100 s. The broadband synthetic was computed by integrating 532 

over 2-50 mHz with an interval of 0.01 mHz, and the width of the Gaussian filters was set to γ = 533 

16 (Soomro et al., 2016). We adopted the ridge jumping technique (Bonadio et al., 2018; T. Meier 534 

et al., 2004; Soomro et al., 2016; Xu et al., 2021), selecting high-amplitude ridges when scanning 535 

from low to high frequency, rather than staying on one ridge for the entire frequency band (Figure 536 
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10a). For the stability of the results, we only jump to the adjacent ridges and do so only when their 537 

amplitude is 1.5 times higher than that of the current ridge (Xu et al., 2021). The ridge jumping 538 

may produce discontinuities in the observed phase shift (Figure 10b), but it can reduce the phase 539 

shift at higher frequencies (> 0.03 Hz).  540 

The phase shift for the model ak135 ranges from −π/44 to π/16, if we use multiple ridges 541 

(Figure 10d). This is ~18 times smaller than the values obtained when using the single, 0th ridge 542 

(−3π/2 to π/40; Figure 10c). The corresponding velocity perturbation is up to 0.2% at interstation 543 

or source-station distances above 300 km (Figure 11). Below 300 km, the near-field effect becomes 544 

dominant and increases the perturbation to 0.9%. 545 

 546 
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Figure 10. Phase shift in the measurements made on synthetic traces computed for ak135. (a) Frequency-547 

time representation of the synthetic surface wave at 1750 km. Red and green solid lines denote the phase 548 

travel time measured using single ridge and multiple ridges, respectively. The green dashed line marks the 549 

ridge picked by the ridge jumping method. (b) Phase shift computed using the single-ridge and multiple-550 

ridge phase travel time at the distance of 1750 km. (c) Phase shift computed using single ridges at the 551 

distance range of 100-3000 km. (d) Same as c, but using the ridge jumping method. 552 

 553 

Figure 11. Phase velocity perturbations corresponding to the phase shifts shown in Figure 10.  554 

5 Discussion 555 

Using the calculations above, we found that the finite-frequency phase shift is relatively small 556 

in the range of distance, frequency and γ that are commonly used in the surface wave studies. It 557 

can be large, however, at (1) long distance, (2) high frequencies, (3) with relatively wide-band 558 

filters or (4) rapid changes with frequency in the group velocity curve. In terms of phase velocity 559 

perturbations, their dependences on the distance and frequency cancel out, so that only the 560 

bandwidth of the filters and the rate of group-velocity change—or, equivalently, k"(ω)—have a 561 
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significant effect. We can tune the bandwidth of the filters, but k"(ω) is determined by the Earth’s 562 

structure. 563 

We also observed another type of phase shift, in addition to the finite-frequency phase shift. 564 

This phase shift dominates in the near field and is discussed below. We also discuss whether the 565 

finite-frequency phase shift exists in the frequency-domain method. 566 

5.1 The near-field phase shift 567 

 The phase shift computed using the Dublin Basin model is negative at 1 Hz around the 568 

distance of 0.5 km, in contrast to the positive phase shift at the same frequency but longer distances 569 

(Δ > 1 km). Furthermore, it is seemingly inconsistent with the positive k"(ω) at 1 Hz. The 570 

inconsistency is caused by a different type of phase shift, which we refer to as the near-field phase 571 

shift. The near-field phase shift arises from the far-field approximation, assumed when Bessel 572 

functions are replaced by cosine functions to represent monochromatic surface waves.  573 

The phase shift computed by the numerical method described in Section 4 is the phase 574 

difference between the monochromatic cosine functions and narrowband Bessel functions. It 575 

comprises both the finite-frequency phase shift caused by the difference between monochromatic 576 

Bessel functions and narrowband Bessel functions and the near-field phase shift caused by the 577 

difference between monochromatic cosine functions and monochromatic Bessel functions.  578 

We separated the two types of phase shift in Figure 12. In the isolated finite-frequency phase 579 

shift, the negative anomaly no longer exists in the near-field corner, which is more consistent with 580 

the prediction by equation 27 (Figure 12b). By contrast, the near-field phase shift is consistently 581 

negative and only visible in the near field (Figure 12c), which can be predicted by  582 
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(s) lL 

+
n should be unwrapped to obtain a continuous phase, which approaches -584 

ωΔ/c + π/4 at high frequencies, decreasing δϕnear to zero. 585 

 586 

Figure 12. The origins of the finite-frequency and near-field phase shifts. The frames show the phase 587 

differences (a) between narrow-band Bessel functions and monochromatic cosine functions; (b) between 588 

narrow-band and monochromatic Bessel functions; (c) between monochromatic Bessel functions and 589 

monochromatic cosine functions. The phase of monochromatic cosine functions is ω/Δ − π/4. The phase of 590 

narrow-band ones is measured using synthetics. 591 

5.2 Time-domain method vs frequency-domain method 592 

The finite-frequency phase shift only applies to measurement methods that use narrow-band 593 

waveforms to measure the phase travel time in the time domain. Frequency-domain methods (e.g., 594 

phase unwrapping method; T. Meier et al., 2004) do not have such phase shift. The difference 595 

between the two methods is that the phase unwrapping method measures the phase of the spectrum 596 

at the center frequency, so that its results are monochromatic measurements, instead of narrow-597 
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band measurements. The measured phase is then unwrapped, converted to the phase travel time, 598 

and compared to the predicted phase travel time as in the time domain method. 599 

Figure 13 shows a comparison of the phase shift associated with the time domain method and 600 

the phase unwrapping method. We can see that the phase shift associated with the frequency 601 

domain method is at constant values for different γ. These constant values are not zero, which 602 

reflects the near-field phase shift. 603 

The frequency-domain method is an attractive alternative to time-domain ones as it is free of 604 

the finite-frequency phase shift. The time-domain methods, however, remain very popular due to 605 

their simplicity. We note that the near-field phase shift is present regardless of the approach 606 

chosen.   607 

 608 

Figure 13. Phase shift as a function of γ for (a) the time-domain method and (b) the frequency-domain 609 

method. 610 
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6 Conclusions 611 

The finite-frequency phase shift arises in the phase velocity measurements obtained using the 612 

time-domain methods due to the approximation of the monochromatic surface waves by narrow-613 

band surface waves. It applies to both ambient noise studies and those using ballistic surface waves 614 

from earthquakes or active sources. The phase shift biases the measured phase travel time and, 615 

hence, the measured phase velocity. The finite-frequency phase shift can be up to π/4 when using 616 

a very broadband filter and down to nearly zero when using a very narrowband filter. The exact 617 

amount depends on four factors: (1) the second derivative of the wavenumber k with respect to ω; 618 

(2) the width of the filter; (3) the distance; (4) the center frequency of the Gaussian filter. For 619 

common settings in surface wave studies, the phase shift is about π/60-π/16, much smaller than 620 

the polar phase shift (phase advance of π/2) and source phase shift, identified previously (phase 621 

delay of π/4). 622 

The finite-frequency phase shift can cause non-negligible phase-velocity perturbations of 623 

around 0.2% in long-period (25-100 s) studies and around 0.8% in high-frequency (1-25 Hz) 624 

studies. The exact amount can vary depending on the filter parameters and local Earth structure. If 625 

the acceptable level of errors in the phase velocity measurements is comparable to or lower than 626 

the finite-frequency phase shift, the shift should be corrected. 627 

The finite-frequency phase shift, and its corresponding perturbation in phase velocities, can 628 

be corrected once having an estimation of the phase shift. A dispersion curve, computed from the 629 

1-D velocity model inverted from an average dispersion curve or from the entire dataset of 630 

dispersion curves, can be used to compute a good estimation of the phase shift. It can be done by 631 

comparing the measured phase travel time in surface wave synthetics generated by the dispersion 632 
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curve to the far-field prediction of the phase travel time. The approach can also correct the near-633 

field phase shift when using Bessel functions instead of cosine functions in generating synthetics.  634 

Because the finite-frequency phase shift results from the monochromatic approximation, it 635 

does not exist in the frequency-domain methods that do not rely on the approximation. In this 636 

sense, switching to frequency-domain methods is an alternative approach for increasing the 637 

accuracy of phase-velocity measurements. 638 
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