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Abstract

The Neural Decision Tree (NDT) is a hybrid supervised machine-learning algorithm that combines the self-limiting property of

a decision tree (CART) algorithm with the artificial neural network (ANN). We demonstrate the use of NDT for a regression

problem of building a prediction model for the plasmasphere electron density with solar and geomagnetic measurements as

inputs. Our work replicates the work by Zhelavskaya et al. reported in their 2017 article to show that NDT makes available

sophisticated network layout for building a predictive model, thus taking advantage of the deep-learning potential of the neural

network. We also demonstrate that with the ability to automatically select an appropriate network layout, as well as, effective

initialization, the NDT algorithm allows research scientists in space weather to focus more of their attention on physically

and statistically relevant aspects of using machine-learning techniques. In fact, our example highlights the fact that the basic

assumptions of standard supervise machine-learning problems are often unsatisfied in real-world space weather applications.

Greater attention to these fundamental issues may create significantly different solutions to space weather forecast problems.
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Abstract13

The Neural Decision Tree (NDT) is a hybrid supervised machine-learning algorithm that14

combines the self-limiting property of a decision tree (CART) algorithm with the arti-15

ficial neural network (ANN). We demonstrate the use of NDT for a regression problem16

of building a prediction model for the plasmasphere electron density with solar and ge-17

omagnetic measurements as inputs. Our work replicates the work by Zhelavskaya et al.18

reported in their 2017 article (I. S. Zhelavskaya, 2017) to show that NDT makes avail-19

able sophisticated network layout for building a predictive model, thus taking advantage20

of deep-learning potential of the neural network. We also demonstrate that with the abil-21

ity to automatically select an appropriate network layout, as well as, effective initializa-22

tion, the NDT algorithm allows research scientists in space weather to focus more of their23

attention on physically and statistically relevant aspects of using machine-learning tech-24

niques. In fact, our example highlights the facts that the basic assumptions of standard25

supervise machine-learning problems are often unsatisfied in real-world space weather26

applications. Greater attention to these fundamental issues may create significantly dif-27

ferent solutions to space weather forecast problems.28

1 Introduction29

The fascination for machine-learning technology has taken the space weather com-30

munity, as well as, the geophysical scientific community in general by storm (Camporeale,31

2019), (Chantry, 2021). A large number of astonishing and impressive performance of32

models supported by machine-learning technology have been reported in conferences and33

journal publications (I. S. Zhelavskaya, 2017), (Huntingford et al., 2019), (Reichstein et34

al., 2019), (Grönquist et al., 2021), and (Kashinath et al., 2021). One of the attractive35

aspects of machine learning techniques is the wide applicability of their framework. In36

particular, the basic concept of supervised learning in which a collection of paired input37

variables and desired outputs is used as training data to derive a predictor for the out-38

put variables from the new input values is widely applicable. However, behind the easy39

accessibility of these techniques are the complex construction of generic models and deep40

mathematical rationale to support the statistical validity of the model as a product of41

the training process. The widely used artificial neural network (ANN) is a perfect ex-42

ample for illustrating the challenges of adopting general machine learning techniques for43

geophysics and space weather applications.44

As most people who have attempted to use ANN as a basic forecast model know,45

the usually already challenging task of deciding which of the available observable quan-46

tities a forecast should depend on becomes even more complex when the answer may also47

be linked to which structure of ANN one chooses to use. In fact, the more variables we48

include as inputs to a model, the more complex an ANN tends to be. Since training of49

an ANN is essentially a high dimensional non-convex optimization process, we often run50

into the ”curse of dimensionality” in which the space of parameters defining a model is51

so vast that the search for an optimal solution becomes illusive. The increased complex-52

ity of a model also needs a proportionally increasing volume of training data for its cal-53

ibration, thus compounding the difficulty for model development. In areas that have adopted54

machine learning techniques as dominant approaches for model development, such as im-55

age, handwriting, and voice recognition, considerable experiential knowledge often pro-56

vides valuable guidelines for the structure and size of the ANN needed for a new appli-57

cation. This is not the case in most geophysics research areas in general and in the space58

weather community,specifically. Due to the vast diversity of applications, it is also un-59

likely that widely applicable guidelines can be developed in the near future.60

Emerging techniques in the machine learning community have begun to offer so-61

lutions to model structural selection. One example of these techniques is the Neural De-62

cision Tree (NDT) (Biau et al., 2018), (Lu & Wang, 2020). Unlike an ANN, a decision63
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tree is grown by partitioning training data into subsets according to the criterion that64

intends to minimize overall information uncertainty entropy or simply the non-homogeneity65

in the subsets. Although a commonly used decision tree algorithm selects splitting cri-66

teria according to a single component of the vector of input parameters, the technique67

has shown to usually offer good partitions of the space of parameters to substantially68

facilitate regression modeling. The decision tree’s growth strategy provides a self-limiting69

characteristic that can provide a high-level assessment of the complexity of a problem.70

Once a decision tree establishes a preliminary partition of training data, an algorithm71

is developed to map a decision tree to a multi-layer neural network. The newly struc-72

tured and initialized ANN is then iteratively optimized. This hybrid approach, referred73

to as Neural-Decision Tree, has been demonstrated in many benchmark AI classification74

applications to provide significantly superior performance than ad hoc selection of net-75

work structure with randomized initialization of weights (Lu & Wang, 2020).76

Our research reported in this paper represents our first attempt to use NDT for77

a regression problem for space weather applications. Unlike classification problems in78

which the model outputs are integers representing the categories that a data point should79

belong to, the outputs of a regression problem tend to be real-valued variables contin-80

uously dependent on input parameters. Indeed, as shown in (I. S. Zhelavskaya, 2017),81

the purpose of a plasmasphere dynamic model is to predict electron density distribution82

in the Earth’s plasmasphere at a given time based on available measurements of solar83

and geomagnetic activities. As explained in (I. S. Zhelavskaya, 2017), a 2-dimension den-84

sity field in a sun-fixed plane can adequately represent a 3-dimensional density field. Com-85

putational experiments have led Zhelavskaya et al. to select an effective ANN model that86

can reproduce plasmasphere density for various historically known conditions. Indeed,87

the ultimately successful model was identified through a process of essentially trial-and-88

errors. Our collaboration stems from a desire to evaluate the capability of NDT in short-89

ening the process of discovery of promising model structures. In particular, we are in-90

terested in investigating the following issues:91

• Can NDT automatically discover an ANN with comparable or less complexity as92

those found in (I. S. Zhelavskaya, 2017) that delivers similar performance in pre-93

diction?94

• Can NDT provide any computational advantage in terms of convergence rate in95

the training process?96

• Since a NDT is inherently multi-layer, do multiple hidden layers offer a substan-97

tial improvement over a single hidden layer ANN?98

Our research has shown positive answers to all the above questions. Moreover, by focus-99

ing our attention on more physically relevant issues and basic mathematical frameworks100

for regression problems, we are able to produce more physically coherent and statisti-101

cally meaningful models. We believe that our results demonstrate that NDT is a ben-102

eficial machine-learning technique specifically for new space weather forecast applications.103

In this manuscript, we shall present the basic construct of a NDT and the statis-104

tical consistency theorem for the resulting ANN in Section 2. We shall compare the per-105

formance of NDT in terms of model complexity, prediction error RMSE reduction, and106

convergence rate in model training in Section 3. As we have indicated previously, the107

streamlining of the process of structuring an effective NDT allowed us to focus on more108

high-level issues related to the prediction model. In Section 4 we present our efforts to109

incorporate additional physical and statitsical considerations in the generation of pre-110

dictive plasmssphere models. In the concluding Section 5 we shall provide further dis-111

cussions on NDT and potential benefits that it can offer to the space weather forecast112

community.113
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2 Construction and Theoretical Framework of Neural Decision Tree114

Broadly speaking, machine learning (ML) is a set of methods that can systemat-115

ically detect patterns in data and then use the uncovered patterns to make inference for116

future data or to support other decision-making in the presence of uncertainties (Murphy,117

2012). The most widely formulated applications for ML are in the form of supervised learn-118

ing problems. The goal is to establish a mapping from input x to output y. Two of the119

most commonly used supervised learning techniques are Decision Tree by Classification120

and Regression Tree (CART) and Artificial Neural Network (ANN).121

2.1 CART and ANN122

A Decision Tree models the output y by first partitioning the d-dimensional fea-
ture space for x into disjoint subsets and then fitting a simple function between x and
y within each subset. For a regression problem, CART fits an average model within each
subset. The evaluation criterion of a tree split is based on the mean square error (MSE)
reduction in y as the following:

∆MSE =
Np

N
MSE(parent)− Nl

N
MSE(left child)− Nr

N
MSE(right child),

where Np, Nl, Nr, and N are the number of data in parent, left child, right child, and123

the entire training set respectively. The CART is then constructed by iteratively select-124

ing the most discriminating attribute xj and value b to partition a parent set into left-125

child subset (xj < b) and right-child subset (xj ≥ b). The selection of xj and b in each126

partition is based on a greedy algorithm yielding the largest MSE reduction. consequently,127

the decision tree provides a sub-optimal partition of the feature space. The growth of128

a decision tree is self-limited by a threshold for the minimal MSE reduction for each par-129

tition. Additionally, setting maximum tree depth can also effectively avoid over-complex130

trees. Indeed, an excessively complex tree does not perform well when tested with data131

that is not part of training data.132

On the other hand, an ANN models the output y by applying a non-linear acti-133

vation function to a linear combination of the outputs of the previous layer, starting with134

the input x as the outputs of the zero-th layer or input-layer. Initial weight parameters135

in the linear combination are typically randomly selected. Optimization of the weights136

is carried out by iterative gradient-based optimization methods.137

A single tree node can be treated as a single network neuron with an indicator ac-
tivation function. To compare a neuron and a tree node, let s represent an elementary
neuron with input x ∈ Rd:

s(x) = a(wTx− b), w ∈ Rn, b ∈ R, (1)

where a : R 7→ [0, 1] is referred to as an activation function. When a = I is the indi-
cator function for non-negative real numbers, the function s can be rewritten as

s(x) =

{
1 wTx− b ≥ 0,
0 wTx− b < 0.

As a result, the neuron s essentially creates a partition of Rd by the hyperplane wTx−
b = 0 into two subsets S1 = s−1(1) and S0 = s−1(0). The action of a decision node
in a binary tree is indeed a such partition as well, except that a common decision tree
partitions the feature space according to the value of a single component xj of feature
vector x. Thus, by taking w = ej , the partitions created by s have the form

S1 = {x ∈ Rd, xj ≥ b}, S0 = {x ∈ Rd, xj < b}.

Consequently, by representing every decision node in a binary tree with an elemen-138

tary neuron of the above form, it is possible to determine from the outputs of these neu-139

rons which leaf node an input vector x should be placed in. Since each leaf is assigned140
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with a node average in a regression tree, it is therefore possible to reproduce the out-141

come of a regression tree exactly using a neural network in which activation functions142

are all indicator function.143

2.2 Construction of the NDT144

Once a decision tree is obtained by applying the CART algorithm on training data,145

the transition to a NDT requires two steps:146

1. We construct a neural network (NN) using the step function I(x) = 1 for x >147

0 and I(x) = 0 for x ≤ 0, as activation function to replicate the input/output148

relationship of a decision tree and provide initial weights for the NDT.149

2. We relax activation functions at various layers with strategically selected “smoother”150

activation function to relax the decision boundary from trees.151

As a result, a typical NDT has two hidden layers that represent the set of decision and152

terminal nodes of the decision tree, respectively. We will denote the input x ∈ R1×d
153

as a row vector for notation simplicity in this section. Consider a standard binary tree154

T with K decision nodes. At a decision node j, the decision for splitting has the form155

xq(j) < dj where xq(j) denote the q(j)’s attribute of the input x. As a binary tree, T156

has K + 1 leaves, and each leaf is assigned one single regression output.157

The first hidden layer, h, is constructed to replicate the set of decision nodes in T .
Hence, h ∈ R1×K contains K number of neurons. Given an input x ∈ R1×d as a row
vector, let hj = I(xW (1)

j +b
(1)
j ) be the jth neuron of h. The initial weight vector W

(1)
j ∈

Rd and a offset b
(1)
j ∈ R for j = 1 . . .Kn will be selected such that the output of the

neuron equals to one when the criterion for the split of decision node j is verified, and
zero otherwise. Note that the real-valued indicator function is

I(t) =

{
1 if t > 0,

0 otherwise,

and the vector-valued function I : Rm 7→ Rm, I(t) is generalized by element-wise op-
eration, i.e., [I(t)]i = I(ti). For the splitting criterion xq(j) < dj of the decision node

j, the weight vector W
(1)
j and the offset b

(1)
j are initialized as the following:

W
(1)
i,j =

{
−1 if i = q(j),

0 otherwise

b
(1)
j = dj

for i = 1 . . . d. Hence, given any input x, the output

h = I(xW (1) + b(1))

is a binary 0, 1 vector that represents the splitting results of the tree T where

W(1) = [W
(1)
1 , · · · ,W (1)

K ] ∈ Rd×K , b(1) = [b
(1)
1 , · · · , b(1)K ] ∈ R1×K .

The output of the second hidden layer r ∈ RK+1 is designed as a binary vector
with K+1 entries representing the K+1 leaves in a binary tree with K decision nodes.
The j-th entry of r, rj(x) = 1 if the input x should be in the partition represented by
the j-th leaves. It is important to note that each value of the binary vector h uniquely
identifies a leaf on the tree. Thus for each neuron rj = I(hW (2)

j +b
(2)
j ), the initial weights

W
(2)
j ∈ RK and offsets b

(2)
j ∈ R for j = 1, . . . ,K + 1 are defined such that when the

value of input binary vector is associated with leaf j, the neuron produces an output of

–5–
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one, and zero otherwise. Let Pj ⊂ {0, 1}K denote the set of all possible binary vectors
from the first layer that is associated with leaf node j. If for all vectors p ∈ Pj the i-
th component pi = 1, then the criterion for the i-th decision must be verified for leaf
j. Similarly, if for all vectors p ∈ Pj , pi = 0 the criterion for the i-th decision must
be false. On the other hand if for some p ∈ Pj , pi = 0 and for some other p ∈ Pj ,
pi = 1 then the i-th decision does not determine the adherence of input x to leaf j. The
weights W

(2)
j and offsets b

(2)
j are given by: for i = 1 . . .K

W
(2)
i,j =


1 if pi = 1, ∀p ∈ Pj ,

−1 if pi = 0, ∀p ∈ Pj ,

0 if pi can be either 0 or 1 ∀p ∈ Pj .

b
(2)
j = −

[ ∑
{i:W (2)

i,j =1}

1

]
+

1

2
.

Hence, the output of the second layer

r = I(hW (2) + b(2))

is also a binary vector with only a single component equals to 1 which, for a given in-158

put x, indicates that it belongs to the designated partition of T .159

The intuition of such initialization is the following: if an input x belongs leaf node
j in T , then

hW
(2)
j =

∑
{i:W (2)

ij =1}

1

hW
(2)
j + b

(2)
j =

∑
{i:W (2)

ij =1}

1 + b
(2)
j

=
1

2
.

Otherwise, hW
(2)
j + b

(2)
j < − 1

2 . Consequently, an indicator activation yields

I(hW (2)
j + b

(2)
j ) =

{
I(1/2) = 1, if x belongs leaf j

I(−1/2) = 0, if x does not belong leaf j.

The output layer has a single neuron for the regression problem, and it represent160

the final output from the tree T . The neuron will select the regression output from the161

associate leaf node. Let {C1, . . . CK+1} be the regression output for leaf node {1, . . .K + 1}162

and W (3) ∈ R(K+1)×1, b(3) ∈ R be the weight and offsets from the layer r to the out-163

put layer. The initialization of W (3) and b(3) are given by164

W
(3)
j = Cj

b(3) = 0

for j = 1, . . .K + 1. At last, the neural network output is

y(3) = rW (3) + b(3).

Essentially, the NDT here is the regression version of the NDT in (Lu & Wang, 2020).165

The main purpose of initializing an ANN with a decision tree is that the partition of the166

feature space created by CART offers a rough approximation of the level sets of the true167
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classifier. However, the restrictive use by CART of only hyperplanes perpendicular to168

axes of the feature space is unlikely to be optimal for an efficient approximation.169

In order to enable optimization techniques such as stochastic gradient descent (SGD)170

to train the ANN that initialized with a decision tree, we replace the indicator I(x) by171

a smooth (differentiable almost everywhere) activation function σ(x) in the second step172

of constructing a NDT. The selection of activation functions can have a significant im-173

pact on the performance of the final NDT. Our experience indicates that the lacking of174

a strategic selection of activation functions, a NDT may gain significantly fewer advan-175

tages from the CART initialization compare to an arbitrarily constructed ANN.176

From the input x to the first hidden layer h, our experience suggests the use of bounded
Rectified Linear (ReL) activation function

σ1(x) = min(max(0, x), 1) (2)

where σ1(x) is the activation for hj = σ1(xW
(1)
j + b

(1)
j ). This selection ensures that177

σ1(x) has a strict 0 as a lower bound. The upper bound of 1 also yield clear indication178

of whether the input x belongs to the left or right child. Therefore, h partially preserves179

the splitting criterion of the decision tree. For second layer rj = σ2(hW
(2)
j + b

(2)
j ), we180

suggest using the standard logistic function σ2(x) = 1
1+e−x . Because the second layer181

corresponds the leaf node that represent the rigid decision boundary of CART, having182

a “smoother”(differentiable everywhere) logistic function can effectively optimize the de-183

cision boundary. At last, the output layer is given by y
(3)
j = rW

(3)
j + b

(3)
j .184

2.3 Statistical Consistency of the NDT185

An essential characteristic of a desirable algorithm is the convergence of the op-186

timally constructed regression map toward the ’true’ regression map as the volume of187

training data, and the degree of freedom of the regression map tend toward infinity. Al-188

gorithms with these characteristics are referred to as statistically consistent. (Lu & Wang,189

2020) provides proof for the consistency theorem for binary classification, which can be190

easily generalized to multi-classification. One significant difference between a regression191

problem and a classification problem is that there is not necessarily a lower and an up-192

per bound for the output y of a regression problem. Preliminary data processing and trans-193

formation is often required to map the application-specific output y to an output vec-194

tor ŷ that only takes value in a bounded interval. In general, we assume the processed195

output will be bounded by the constant 1. We shall state our main consistency theorem196

below.197

Theorem 2.1 (Main Result: Strongly Universal Consistency of mn) Let (X,Y ) ∈
Rd × [−1, 1] be a random vector with joint probability density function µX,Y . We de-
note the minimum variance regression map by m(x) = E(Y |X = x) which is consid-
ered the ’true’ regression map. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. samples of (X,Y ) and
Dn = {(Xi, Yi)}ni=1. Let Fn be the class of neural networks defined above, and let mn

be the empirical L2 loss minimizer in Fn that depends on Dn. If

K2
n log(K4

n)

n
→ 0

and inff∈Fn EX(f(X)−m(X))2 → 0 as n→∞, then for any distribution for (X,Y ),

EX(mn(X)−m(X)) =

∫
|mn(x)−m(x)|2µX(dx)→ 0 a.s.

–7–



manuscript submitted to Space Weather

3 Developing a Regression Based Neural Decision Tree Model for Fore-198

casting Plasmasphere Dynamics199

The initial goal of our work is to evaluate the NDT’s ability to produce an ANN200

model with comparable performance to the PINE model reported in (I. S. Zhelavskaya,201

2017) with minimal manual adjustment. Unlike PINE which is a single hidden layer neu-202

ral network, ANN models generated by the NDT algorithm always have at least two hid-203

den layers which is structurally more complex.204

As reported in (I. S. Zhelavskaya, 2017), the plasmasphere electron density used205

to train PINE is derived from the upper hybrid frequency, which is retrieved from mea-206

surements by the Electric and Magnetic Field Instrument Suite and Integrated Science207

Instrumentation Suite (EMFISIS) on the Van Allen Probes satellites using the Neural-208

network-based Upper hybrid Resonance Determination (NURD) algorithm (I. Zhelavskaya,209

2016). The input variables for the models are selected through repeated experimenta-210

tion by Zhelavskaya et al. to include recent time-history of solar and geomagnetic pa-211

rameters originally obtained from NASA’s OmniWeb data service. Table 1 below shows212

a complete list of attributes for the model inputs X.213

Table 1: Attributes in the input for PINE and NDT models for plasmasphere dynamics

Row Index Name Time Stamp

1 AE Current
2 kp Current
3 SymH Current
4 F107 Current
5 L Altitude in a.u.
6 MLT Magnetic local time
7-12 AE avg Averages for AE over previous 3,6,12,24,36,48 hours
13-18 kp avg Averages for kp over previous 3,6,12,24,36,48 hours
19-24 SymH avg Averages for SymH over previous 3,6,12,24,36,48 hours
25-30 F10.7 avg Averages for F10.7 over previous 3,6,12,24,36,48 hours

It is helpful to note that plasma density data are retrieved along the spacecrafts’214

orbit over time; therefore, the sampling in spatial variables L and MLT are entirely de-215

pendent on the trajectory of the Van Allen Probes. The sampling frequency for the rest216

of the input variables varies from 3 hours to one second. The moving averaged values217

over intervals of different lengths help to provide stability of the model. While the train-218

ing data consists of an extensive collection of matched pairs Xi, yi where yi is the plas-219

masphere electron density at a specific location given by (Li,MLTi), the actual utility220

of the resulting model for predicting the plasmasphere dynamics is to produce the en-221

tire electron density field over the Earth equatorial plane for a given set of solar and ge-222

omagnetic data X. This constitutes an extension of the traditional supervised learning223

paradigm in the sense that for each input vector X, the actual intended output is a 2-224

dimensional scalar field. However, the training data available to us consists of point-wise225

values of the desired field at different times. An analogy in the context of image recog-226

nition would be trying to determine if an image is that of a dog when instead of given227

the entire image, we have only one single pixel of the image at a given time. This ex-228

tension substantially increases the challenge for model training. Consequently, there are229

essential features for the desired output field that are not explicitly represented by the230

data. We shall discuss these additional properties in the next section. In this section,231

we focus our attention on constructing a regression model using NDT that can accurately232
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reproduce the plasmasphere electron density at discrete points. In particular, we would233

like to attempt to answer the following questions:234

1. Can a NDT-initiated neural network with similar model complexity automatically235

produce the performance in terms of prediction least square error similar to PINE?236

2. Does NDT provide substantially favorable initialization that the convergence rate237

for the training process is accelerated compared with a randomly initiated net-238

work as seen in (Lu & Wang, 2020)?239

3. Does NDT initiate neural network deliver robustness in optimization similar to240

what we have seen for other problems (Lu & Wang, 2020)?241

4. Can NDT-initiated neural networks with reduced model complexity produce com-242

parable performance in terms of prediction error?243

Before presenting the NDT’s construction of plasmasphere dynamics models, it is help-244

ful to provide a brief description of our use of the data set prepared by Zhelavskaya and245

her colleagues. As mentioned previously, the total data set available consists of matched246

pairs of solar and geomagnetic measurements to plasmasphere electron density at a spe-247

cific altitude L and geomagnetic local time MLT covering the time period from Octo-248

ber 1st, 2012 to May 12th, 2016. In the training and model selection work by Zhelavskaya249

and her colleagues, this data set is partitioned into training T and testing or validation250

subsets V with a ratio of 9 to 1 in data volume by randomized sampling without rep-251

etition. To simplify the direct comparison of model performance, we use the equivalent252

partitions as Zhelavskaya et al. in all comparisons of RMSE among the models.253

In selecting a suitable network structure for PINE, Zhelavskaya et al. consider single-254

hidden layer neural networks with {23,30,38,45,53} neurons as candidates structures. To255

decide on an appropriate size for the network, they have used the approach of 5 fold cross-256

validation to select a structure with the lowest RMSE. That is, by partitioning the train-257

ing subset T into 5 equal-sized subsets and using any 4 of them for model training and258

the remaining one for measuring RMSE performance. The average of the 5 RMSE val-259

ues represents the performance for the specific size of the neural network. It is worth re-260

minding us that since all training of neural network for PINE follow the typical approach261

of random initialization of the weights defining a network, a single model evaluation in-262

volves two sources of randomization: selection of data making the 4-subsets of the 5 folder263

cross-validation and the randomization of the initial weights. As a result, a meaningful264

assessment of the performance of a network structure also involves a repeated training265

process for each training-validation step in the 5 fold cross-validation to average out the266

effect of randomized initialization. The enormous computational efforts required to se-267

lect suitable models among candidate designs render consideration of more elaborate net-268

work structures prohibitively expensive. Indeed, with just 5 candidate model structures269

and m randomized initialization for each step in the 5 fold cross-validation, a total of270

25m model training and validation process is required. If the approach is to be extended271

to two hidden layers structures, the combinatorial explosion of candidates will make the272

selection nearly impossible computationally.273

As presented in Section 2, NDT selects the network architecture and the initial weights274

for neurons based on the decision tree, which is created through preliminary processing275

of training data. This removes the need for repeated training to average out the effect276

of random initialization as was the case in a common neural network evaluation. More-277

over, a single criterion on either the minimum threshold for RMSE reduction when cre-278

ating a new decision node in the tree or the maximum number of nodes required auto-279

matically allows the construction process of the NDT to select a promising network lay-280

out involving two hidden layers with appropriate initial weights for the neurons. In fact,281

since the construction of CART is relatively insensitive to the volume of data used as282

shown in (Lu & Wang, 2020), it allows us to bypass the cross-validation step in estab-283

lishing a reliable and representative performance measure for a given network structure.284
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As a result, in this section, all performance comparisons between the final selection for285

the PINE model with 45 neurons and models created by the NDT algorithm are derived286

using the entire subset T for training and evaluated on the subset V. Table 2 compares287

model selection approaches for NDT and PINE.

Table 2: Approaches for model selection for PINE and for NDT based approach

NDT PINE

Candidate architectures 2 hidden-layers 1 layer

Network initialization Replicating CART Random weights

Scoring RMSE Training T and validation V 5-fold cross-validation using T
Training T and validation V

288

The most popular optimization algorithm for training a neural network is the Stochas-289

tic Gradient Descent (SGD) method, for which the gradient with respect to the weight290

vector of the performance of a single data point or a small patch of data points is eval-291

uated using the highly efficient backward propagation algorithm. The weights are then292

updated by a small fixed fraction, often referred to as a step, in the negative direction293

of the gradient vector. SGD is particularly attractive for applications involving contin-294

uous learning when incremental data availability allows continuous improvement of a model.295

As a first-order optimization technique, SGD does have a tendency, in some cases, to be296

slow in final convergence to a local minimum. In these situations, quadratic quasi-Newton297

methods such as Levenberg-Marquardt (LM) often provide improved convergence. How-298

ever, the price for ’faster’ convergence in terms of the number of iterations is often much299

more computationally intensive iterations. As a result, LM algorithm-based training typ-300

ically uses gradient evaluation on the model performance over the entire training data301

set. Our experiments indicate that NDT-created neural networks can achieve significantly302

faster convergence than the network structure used by PINE with randomized weights303

when the SGD algorithm is used. As shown in Figures 1a and 1b, the decrease in RMSE304

is much faster during the training for NDT than for PINE. In these experiments, the en-305

tirety of the nearly 3 million training data points is group into 293 patches for 10,000306

data points each for a SGD update of weights defining a network. When all 293 have been307

used once, the optimization process is said to reaches one epoch. The patches are then308

being reused in a new epoch of the training process. At the end of each epoch, the RMSE309

is evaluated on the entire training data set T and validation data set V. From Figures 1a310

and 1b we observe that not only a much faster reduction of RMSE for NDT as the train-311

ing progress than that for PINE, the rate of decrease also shows a smoother approach312

in Figure 1a to a local minimum without the intermediate slowing down as seen for PINE.313

In the previous efforts by Zhelavskaya et al., it was found that the LM optimiza-314

tion technique was necessary to deliver slightly lower RMSE for both training and val-315

idation. Our experiments also confirm their observation. However, a common variant of316

the SGD method, Adaptive Moment Estimation (Kingma & Ba, 2014), often referred317

to as Adam algorithm with similar efficiency as SGD method, can produce near-identical318

performance in terms of final RMSE level as LM algorithm as shown in Table 3 below.319

As we can see in Table 3, using the Adam algorithm, the RMSE level for NDT is nearly320

identical to that of PINE when trained with the LM algorithm, although LM seems able321

to reduce RMSE of NDT to an even lower level for both the training and validation data.322

A relevant question is whether or not these minuscule differences have any significance323
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(a) Changes in the sum of RMSE as func-

tions of iteration number during the train-

ing of PINE and NDT in SGD.

(b) Changes in the sum of RMSE as func-

tions of iteration number during the train-

ing of PINE and NDT in Adam

Figure 1: Comparison of Rate of reduction of RMSE for NDT and PINE using first order
gradient descent type of optimization methods.

statistically or in terms of model prediction accuracy. We shall attempt to address this324

issue later.325

Table 3: Robust Optimizer

NDT PINE

Optimization Algorithm SGD Adam LM SGD LM

Training RMSE 0.3226 0.3158 0.3043 0.3649 0.3145
Testing RMSE 0.3316 0.3282 0.3204 0.3811 0.3282

The NDT model used in the comparison shown in Table 3 above is a model for which326

we limited the total number of decision nodes in CART to 25 so that the overall dimen-327

sion of the weight vector for the resulting NDT is nearly identical to the PINE model328

with 45 neurons. We have also experimented in NDT models with a much lower degree329

of freedom involving a much smaller number of neurons in the network. Indeed, as shown330

in Table 4, compared with the default NDT initiated by a CART with 25 decision nodes,331

CARTs with 15 or 10 decision nodes initialize the NDT to produce comparable or even332

lower RMSE levels when optimized with the LM algorithm.333

Since the ultimate goal of our work is to produce a predictive model for plasma-334

sphere dynamics, or more concretely, generate electron density field on the equatorial335

plane for a given solar and magnetic condition specified by the input vector X, we plot-336

ted in Figure 2 the predicted electron density field for all four models listed in Table 4337

for a time period of known plasmasphere storm from June 26 to June 27, 2001. As we338

can see in Figure 2 the difference in the model predictions are pretty minuscule consis-339

tent with their RMSE performance despite their substantial difference in model complex-340

ity. However, the computation intensity in training these models can be vastly different341

as illustrate in Table 5 below. As we can see, the time required for training a model with342
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Table 4: Comparison of final RMSE for different NDT constructed models and PINE.

NDT PINE

# of Decision nodes for NDT 25 15 10

Dimension of weight params 1478 738 443 1441

Fraction to dimension of PINE 100% 50% 30 % 100%

Training RMSE 0.3043 0.3081 0.3198 0.3145

Testing RMSE 0.3204 0.3162 0.3256 0.3282

Figure 2: Model predictions of electron density field for June 26-27, 2001 storm.
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a higher number of weights can be an order of magnitude longer than one that requires343

a fraction number of weights. In addition to being more robust and stable, models with344

fewer parameters tend to have much higher information content measured by AIC or BIC345

indices. The fast training process also allows us to explore other critical issues relevant346

for developing a regression-based model as we shall discuss in the next section. Our ex-347

perimental results demonstrate that the NDT algorithm can deliver high-performance348

regression neural network models through inherently sophisticated multiple hidden layer349

structures.350

Table 5: The models and training algorithms are select for similar final RMSE perfor-
mance. The times are measured on a personal computer wit a Intel® Core™ i7-4790
Processor CPU, a NVIDIA GeForce GTX 970 GPU and a total of 32 GB ROM.

NDT PINE

# of nodes for NDT 25 25 15 10

Optimization Algorithm Adam LM LM LM LM

Train/Test RMSE 0.32/0.33 0.30/0.32 0.31/0.32 0.32/0.33 0.31/0.33

Time (minutes) 13.13 162.16 28.76 11.91 158.06

4 A Broader View of the Task of Modeling Plasmasphere Dynamics351

As we have indicated, at the beginning of Section 3, that the construction of a plas-352

masphere dynamics model based on the type of data available to us is particularly chal-353

lenging. Unlike most supervised learning applications, for each solar and magnetic con-354

dition, our training data is not the ultimate model response which should be the elec-355

tron density field in the Earth’s equatorial plane. Instead, each data point merely pro-356

vides the density at a specific point in the plasmasphere. Since data are collected along357

the orbit of Van Allen Probes, the amount of data available over a 24 hour time period358

covers only a small fraction of the space in the plasmasphere as shown in Figure 3a. It359

would take several months worth of data to cover a significant portion of the plasma-360

sphere. The underlying values for the solar and magnetic conditions can undergo sub-361

stantial changes over this period of time. Consequently, the problem of obtaining a pre-362

dictive model of electron density distribution for plasmasphere using solar and magnetic363

field observation is extremely challenging and even seemly unrealistic. We will give more364

discussions on this aspect of the model in the next section. We also note that the spa-365

tial distribution of data is highly non-uniform as shown in Figure 3b. This is, of course,366

a result of the orbit for the Van Allen Probes where the orbit reaches its highest point367

and tangential to the circle at L = 6 on the equatorial plane. Consequently, a much368

larger number of training data is available at altitude L = 6. A closer examination of369

the preliminary descriptive statistical analysis of the available data shows both the av-370

erage and empirical standard deviation of electron density are systematically spatially371

dependent (Figure 4a and 4b). (Figure 4a and 4b).372

We recall the fundamental assumptions that leads to statistical consistency of the373

regression analyses include the following:374

1. Residual errors in data points are independent and identically distributed. Thus,375

the least square regression leads to the optical estimation of the mean electron den-376

sity.377
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(a) Data available for a period of 24 hours

from Van Allen Probes (b) Spatial Distribution of Data

Figure 3: Since Van Allen Probes collect data along their orbits, instantaneous global
imaging of the plasmasphere density field is obviously unavailable, and spatially non-
uniform distribution of the data is inherent to the measurement approach.

(a) Average electron density in the plasma-

sphere

(b) Empirical standard deviation of elec-

tron density in the plasmasphere

Figure 4: Local statistics of training data shows distinct spatial variability in both aver-
age and standard deviation of electron density.
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2. The distribution of training data should reflect the distribution of conditions that378

require prediction. Since the true goal of our prediction is the electron density on379

the entire equatorial plane at a given time, ideally, the data points should be uni-380

formly distributed. Moreover, the electron density of all points on the equatorial381

plane is clearly not identically distributed. Indeed, the density at lower altitude382

is substantially higher than high altitude region as shown in Figure 4a.383

Another property inherent in our understanding of physics is that electron density384

should be spatially continuous. However, when spatial coordinates L and MLT are used,385

the spatial input data are defined over a rectangular area of [0, 6]×[0, 24]. As far as the386

training algorithm is concerned, no information is indicating at the boundary at MLT =387

0 and MLT = 24 are actually the same spatial point. On the other hand, a transfor-388

mation to Cartesian coordinate xm = L cos 2π · (MLT/24), and ym = sin 2π · (MLT/24)389

would explicitly guarantee the continuity across the boundary at MLT = 0. Naturally,390

when training data volume is large and densely covers all areas of the space for input391

variables, the optimal regression predictor would generally produce a spatial continuous392

electron density field. However, data from the Van Allen Probes are not sufficiently dense393

near the region where MLT = 0. As a result, we can clearly see spatial discontinuity394

at MLT = 0 in the PINE prediction for a storm period of June 26-27, 2001, when the395

model is trained with geolocation of data is registered in polar coordinates, see Figure 5.396

Figure 5 also shows that spatial discontinuity is removed for NDT prediction when train-397

ing data is geolocated in Cartesian coordinates.398

Figure 5: When Cartesian coordinates are used for the geolocation of training data in
the NDT training process, the spatial continuity in the prediction of electron density field
is achieved. Since polar geolocation is used in PINE’s training, the electron density field
produced by PINE can have visible spatial discontinuities.

The deviation from the basic statistical assumptions for regression underlying model
training may mean in practice that the same relative residual errors in electron density
region weigh significantly more in the model training process than low-density regions
or regions where a higher abundance of data have oversized importance. The ability of
NDT to easily select a suitable network configuration enables us to quickly explore the
approaches that can address these high-level data analysis issues that stem from our un-
derstanding of the physical properties of the plasmasphere. A usual remedy for the dis-
parity in spatial and statistical data distribution is by re-scaling of raw data. In partic-
ular, we can partition the plasmaspheric region into areas where data density and statis-
tics are similar. In our case, the partitions are according to altitudes. Let Ak, k = 1, · · · ,K
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be defined by
Ak = {(l,mlt), lk−1 ≤ l < lk}.

Consider localized sample mean and standard deviation defined by

ȳk =
1

Nk

∑
(li,mlti)∈Ak

yi, σk =
1

Nk − 1

∑
(li,mlti)∈Ak

(yi − ȳk)2,

where Nk = |{(li,mlti) ∈ Ak}|. Then a normalized version of electron density is de-
fined by

ŷi =
yi − ȳk
σk

, ∀(li,mlti) ∈ Ak. (3)

When a new regression neural network is trained to predict ŷ instead of y, the training
data are more consistent with the statistical assumptions for regression analysis. In the
subsequent discussion, we refer to a model trained with data scaled by local statistics
as statistically scaled models. Naturally, the output ŷ(x) of a statistically scaled model
must be restored to the original scale by

y(x) = ŷ(x)σk + ȳk, ∀(l,mlt) ∈ Ak.

Similarly, we could remedy the non-uniform spatial distribution of data by scal-399

ing. Let ρk be the number density of data points in the region Ak. We can replace the400

standard deviation in (3) by σ̂k = σk/
√
ρk. We refer to a model trained with variable401

weights for data points as a weighted model. The scaling and weighing of data are equiv-402

alent to the change of the regression performance metric. It is therefore expected that403

the new models would produce larger RMSE in their predictions when tested against val-404

idation data set than previous training when lowering RMSE is the optimization crite-405

rion. However, these new variants of models may provide a better representation of plas-406

masphere dynamical features when compared to actual imagery of the plasmasphere elec-407

tron density field. To illustrate the effects of our data transformation, we simulated plas-408

masphere electron density field during the storm of June 26-27, 2001 as in (I. S. Zhelavskaya,409

2017), see Figure 6.410

Figure 6: Effect of weighted stat scaled and stat scaled only

As a reference, we show the prediction of plasmasphere density under normal con-411

ditions defined by the mean values of the solar and magnetic input parameters in Fig-412

ure 7. Not surprisingly, all four variant models show essentially the same density field.413
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However, comparing with Figure 7, we observe in Figure 6 that all four models show the414

enhancement of electron density in the mid-afternoon (low-left) region of the equatorial415

plane as a clockwise rotation during the on-set of the storm at around 12 UTC on June416

26, 2001. As the storm progressed, we observe a significant depletion of electron density417

at high altitudes. At the same time, a remnant of the enhancement at around 15 MLT418

persisted for at least 6 hours until 0 UT on June 27, 2001, before the density field re-419

turned to a near-normal state. The four variant models give somewhat different predic-420

tions of this temporary period. In fact, all DNT models with Cartesian spatial registra-421

tion of data show a much slower process with enhancement persists strongly in the af-422

ternoon (lower-left) region. Also, the progression of the decline of the enhanced region423

seems more detailed in NDT predictions with a much more localized enhanced region424

toward the end of the storm at around 0 UT on June 27. Although a determination of425

which of these variant models are consistently capable of producing more realistic pre-426

dictions of plasmasphere dynamics during storm conditions cannot be resolved by anec-427

dote comparison shown here, the NDT variants presented show that careful data rep-428

resentation can alter the final construction of the trained model. The different scaling429

and weighing of training data provide effective ways to construct a plurality of models430

that may deliver more reliable predictions for plasmasphere conditions in an ensemble.431

Figure 7: Effect of weighted stat scaled and stat scaled only on the average of the entire
data set.

432

Figure 8: The top row is EUV images for the times indicated in the titles, and the bot-
tom row is the final model output for those times. Events are ordered from left to right
according to Kp (from low to high). The Kp index is shown in the titles as well.

As shown in (I. S. Zhelavskaya, 2017), comparison with EUV images can provide433

useful validation of model predictions. Reproduction of Figure 8 in (I. S. Zhelavskaya,434

2017) shows examples of global density reconstruction by the resulting neural network435

model for four different events during the main phase plume formation. Compare to Fig-436

ure 8, predictions provided by different versions NDT in comparison to the PINE model437

in Figures 9a and 9b shows similar characteristics in these model predictions. With lim-438
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(a) Predictions given by NDT models with different degree of freedom.

(b) Predictions given by NDT models trained with different scaled data.

Figure 9: Conditions characterized with different time and Kp index as those in Figure 8.
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ited independent observation, quantitative comparison of performance among these mod-439

els remains extremely challenging for the foreseeable future.440

5 Discussion and Conclusion441

Our numerical experimental results presented in Sections 3 and 4 show that NDT442

provides appropriate selection for the structure of neural network based on the available443

training data, and the method also leads to good initialization for the neural network.444

These features not only yield excellent performance in reducing residual regression er-445

rors as shown in Sections 3, but the fast convergence of NDT also enables us to focus446

on the physics and theoretical statistical aspect of the modeling problem.447

Even though the comparison between models with different degrees of adherence448

to standard statistical theoretical assumptions and physical constraints seem to produce449

qualitatively similar predictions for the storm event of June 26-27, 2001, a deeper ex-450

amination of these models can reveal substantial differences among them. For this pur-451

pose, we first perform a principal component analysis of the input parameters, i.e., AE,452

Kp, F107, SymH, and their near-time histories. More precisely, we first normalize each453

component of vector X as follows:454

Vi,j =
Xi,j − X̄i

σi
, where X̄i =

1

N

N∑
j=1

Xi,j , σ2
i =

1

N − 1

N∑
j=1

(Xi,j − X̄i)
2, (4)

for each of the components i = 1, · · · , 28 of input vector Xj with j = 1, · · · , N by re-455

moving the components for L and MLT . Consider the eigenvalues λ2i and eigenvectors456

ui of the matrix V V T . The values λi and vectors ui are therefore principal values and457

principal components of the normalized data set Vj , j = 1, · · · , N . Figure 10 shows that458

there are 5 to 6 dominant principal components for our training data set. Examining the

Figure 10: Distribution of Singular Values and projection of data onto principal direc-
tions

459

projections of data onto the principal components also reveals that outliers for the first460

and second principal components are clearly either all negative or all positive. Given the461

small number of these outliers and the fact that electron density data over the period462

of time when these outliers occur are very limited, we therefore do not expect the train-463
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ing neural network model for plasmasphere dynamics to be capable of modeling the ex-464

treme conditions represented by these outliers. Indeed, the prediction of plasmasphere465

density under conditions X = X̄ ±λiuidiag(σ1, · · · , σ28) for the first 5 principal com-466

ponents in Figure 11 show signs of model saturation indicated by near-zero density at467

high altitude.

Figure 11: Electron density fields predicted by NDT and PINE for input parameters
perturbed by one standard deviation in direction of the first 5 principle components re-
spectively.

468

Note from the right panel in Figure 10 that the outliers in the first five principal469

components often are far beyond one standard deviation away from the mean value. How-470

ever, perturbation of input parameters by more than one standard deviation can some-471

times lead to non-physical input. Therefore, results in Figure 11 actually understate the472

issues of model saturation. These results are entirely expected because of the limited avail-473

ability of data during extreme conditions. The model saturation also reveals the limi-474

tation of data-driven models trained with our data regarding their ability to predict plas-475

masphere density under extreme conditions.476

We are also interested in the systematic difference among the model variants in mod-477

erate conditions. In particular, we would like to understand whether or not the princi-478

pal components identified in the solar and magnetic inputs of the models lead to phys-479

ically meaningful characteristics in the predicted electron density field. To do this, we480

evaluate the difference in the predicted electron density field with input parameters per-481

turbed by ± 1 standard deviation from the mean values, or the difference of difference482

for the predicted fields. In Figure 12, these differences are shown for the first five prin-483

cipal components for the weighted NDT and PINE. In addition to the spatial disconti-484

nuity at mlt = 0 that is visible in the PINE predicted electron density field in pertur-485

bation of principal components, there are also noticeable differences in perturbation of486
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input parameters along with other principal components. In particular, for both the 2nd487

and 4th principal components, the enhancement of electron density near midnight at high488

altitudes has much more finely resolved structures for the NDT model. Further compar-

Figure 12: Difference in Electron density fields predicted by NDT and PINE for input
parameters perturbed by ±1 standard deviation in direction of the first 5 principle com-
ponents respectively.

489

ison among the variant NDT model shown in Figure 13 shows a progression of changes490

in the perturbation patterns. Indeed, when only the geolocation registration is changed491

from polar to Cartesian coordinates, the pattern produced by NDT are similar to those492

predicted by PINE without the spatial discontinuities at mlt = 0. However, other spa-493

tial features in the perturbed electron density fields emerge as additional scaling of data494

is introduced.

Figure 13: Difference in Electron density fields predicted by different models gentrained
by NDT for input parameters perturbed by ±1 standard deviation in direction of the first
5 principle components respectively.
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Without extensive independent validation data, it is difficult or impossible to con-495

clude which model variants are more appropriate at representing the changes in the plas-496

masphere electron density field under characteristic changes in the input parameters. How-497

ever, the models generated by NDT based on different physical and statistical consid-498

erations provide a wide range of alternative models for the prediction of the plasmas-499

phere dynamics. When taken as an ensemble, we are more likely to capture the diver-500

sity of dynamical behavior of the plasmasphere.501

In this paper, we have presented a new approach for constructing a regression neu-502

ral network for plasmasphere dynamic model construction. The NDT approach natu-503

rally leads to a more sophisticated neural network structure than the traditional single504

hidden layer network. It is known in the machine-learning community that deep learn-505

ing, which typically involves more hidden layers in neural networks, has the potential to506

capture a more complex relationship between input and output of a system. Our expe-507

rience also reveals that even with a substantially smaller degree of freedom, a 2-hidden508

layer NDT trained model can outperform a single-layer model. However, the most at-509

tractive aspect of the NDT approach is its ability to identify appropriate network struc-510

tures based on the decision tree initialization without prior experience. This feature is511

particularly relevant for the space weather community when only limited experience in512

machine-learning methods exists for many areas of applications.513

6 Data Availability Statement514

Data is available through (I. S. Zhelavskaya, 2017).515
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