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Abstract

The control of latent heat flux (LE) by soil moisture (SM) variations is a key process affecting the moisture and energy balance

at the land-atmosphere interface. SM-LE coupling is conventionally examined by identifying SM-LE relationships with metrics

involving correlation. However, such a traditional approach, which fits a straight line across the full SM-LE space to evaluate

the dependency, leaves out certain critical information: nonlinear SM-LE relationships and the long-recognized thresholds that

lead to dramatically different behavior in different soil moisture regimes. This study examines three aspects of the SM-LE

relationship to diagnose coupling globally: linear dependencies, nonlinear dependencies, and SM-LE threshold behavior. Using

data from climate models, reanalyses, and observational-constrained datasets, global patterns of SM-LE regimes are determined

by segmented regression. Mutual information analysis is applied only for days when SM is in the transitional regime between

critical points defining high sensitivity in the SM-LE dependency. Sensitivity is further decomposed into linear and nonlinear

components. Our results show discrepancies in the global pattern of existing SM regimes, but general consistencies among the

linear and nonlinear components of SM-LE coupling. This implies that although models simulate different surface hydroclimates,

the inherent behavior of how LE interacts with SM is well-described. The pattern of strong SM-LE coupling in the transition

regime resembles the conventional distribution of “hot spots” of land-atmosphere interactions. This indicates that only the

transitional SM range is necessary to determine the strength of coupling. This framework can be applied to investigate extremes

and the shifting surface hydroclimatology in a warming climate.
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Abstract17

The control of latent heat flux (LE) by soil moisture (SM) variations is a key18

process affecting the moisture and energy balance at the land-atmosphere interface.19

SM-LE coupling is conventionally examined by identifying SM-LE relationships with20

metrics involving correlation. However, such a traditional approach, which fits a21

straight line across the full SM-LE space to evaluate the dependency, leaves out22

certain critical information: nonlinear SM-LE relationships and the long-recognized23

thresholds that lead to dramatically different behavior in different soil moisture24

regimes. This study examines three aspects of the SM-LE relationship to diagnose25

coupling globally: linear dependencies, nonlinear dependencies, and SM-LE threshold26

behavior. Using data from climate models, reanalyses, and observational-constrained27

datasets, global patterns of SM-LE regimes are determined by segmented regression.28

Mutual information analysis is applied only for days when SM is in the transitional29

regime between critical points defining high sensitivity in the SM-LE dependency.30

Sensitivity is further decomposed into linear and nonlinear components. Our results31

show discrepancies in the global pattern of existing SM regimes, but general32

consistencies among the linear and nonlinear components of SM-LE coupling. This33

implies that although models simulate different surface hydroclimates, the inherent34

behavior of how LE interacts with SM is well-described. The pattern of strong SM-LE35

coupling in the transition regime resembles the conventional distribution of “hot36

spots” of land-atmosphere interactions. This indicates that only the transitional SM37

range is necessary to determine the strength of coupling. This framework can be38

applied to investigate extremes and the shifting surface hydroclimatology in a39

warming climate.40

41
42
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Significance Statement43

Evaporation is sensitive to soil moisture only within a specific range that is44

neither too dry nor too wet. This transitional regime is examined to quantify how45

strongly soil moisture controls local humidification of the air. We identify dry,46

transitional, and wet regimes across the globe; spatial patterns in climate models and47

observationally-based datasets often show discrepancies. We determine dependencies48

between soil moisture and evaporation only for the transitional regime. We find49

general consistency of locations having simple linear dependencies and more complex50

nonlinear relationships. We conclude that although surface hydroclimates are different51

between climate models and observations, how soil moisture controls evaporation is52

well simulated by models. These results have potential application for improved53

forecasting and climate change assessment.54

55
56
57
58
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1. Introduction59

60

Coupling between soil moisture and evapotranspiration modulates the moisture61

and energy balances at the land surface (Bonan 2008b; Seneviratne et al. 2010;62

Santanello et al. 2018). As water escapes from land to atmosphere, it can induce a63

chain of consequences (Findell and Eltahir 1997; Eltahir 1998). A decline in soil64

moisture content can cause moisture stress that increases the resistance to evaporation,65

and secondarily can result in a higher surface albedo that reduces absorbed incoming66

solar radiation. Surface latent heat flux decreases while surface sensible heat flux67

increases under conditions with lower moisture and energy availability. This change68

in the partitioning of surface heat fluxes results in a warmer and drier atmosphere that69

is further conditioned against the formation of clouds and limits precipitation. Without70

a source of water going into land surface, it dries further. Such a soil71

moisture-evapotranspiration-precipitation feedback has a significant impact on the72

sub-seasonal time scale as it links to extremes such as heat waves and droughts, which73

can cause huge economic and societal damage (Fischer et al. 2007; Hirschi et al. 2011;74

Herold et al. 2016; Miralles et al. 2019). Therefore, the role of soil moisture in the75

current climate and future climate is topic of growing importance.76

The existence of such a feedback at any location mainly depends on whether the77

variations in latent heat flux are controlled by soil moisture content or energy78

availability (Dirmeyer et al. 2009). As has long been recognized, the relationship79

between soil moisture and latent heat flux (hereafter abbreviated SM-LE) is not linear.80

It exhibits threshold behavior; LE behaves dramatically differently when SM crosses81

critical values (Budyko 1963, 1974). Values typically defined are the permanent82

wilting point, field capacity, and a critical SM threshold above which the SM-LE83

relationship weakens or even reverses (Seneviratne et al. 2010). Permanent wilting84

point is the minimum required SM such that vegetation does not wilt; a criterion of85

hydraulic pressure such that osmosis, the process that allows roots absorb water, can86

happen and water can be transmitted up the vascular system of the plants. Field87

capacity is the amount of water retained in the soil that can be maintained as a balance88

between gravity and capillary forces.89

There is a critical SM threshold that lies below field capacity and depends on90

available energy. If SM exceeds the critical threshold, further increases in SM do not91

increase evapotranspiration; rather, available energy determines LE. Thus, the critical92



5

SM threshold depends on multiple climate variables. It has been found that LE93

increases with increasing SM content when water is between the states of permanent94

wilting point and the critical threshold. This is called the transitional regime for SM.95

In other words, only when SM lies within, or shifts into, the transitional regime is the96

land-atmosphere feedback maintained/triggered and SM-LE coupling becomes97

important. The variations in LE become uncoupled from SM when it is below the98

wilting point (dry regime) or exceeds the critical SM threshold (wet regime).99

Several studies have examined when and where the SM variability-induced100

feedback exists by using climate models, reanalyses, and observations. Metrics for101

such identification have been built upon testing the null hypothesis that there is no102

statistically-significant dependency between SM and other meteorological variables,103

such as surface heat fluxes (Dirmeyer 2011; Hsu and Dirmeyer 2021), air temperature104

(Seneviratne et al. 2006; Miralles et al. 2012; Gevaert et al. 2018), and precipitation105

(Koster et al. 2004; Santanello et al. 2013; Guillod et al. 2015; Hsu et al. 2017; Tao et106

al. 2019). The feedback is found to be strongest over semi-arid regions, the so-called107

land-atmosphere coupling “hot spots” (Koster et al. 2004), where SM frequently lies108

in the transitional regime and varies strongly. Although multiple studies have agreed109

with the locations of strong SM-LE coupling (e.g. Koster et al. 2006; Zhang et al.110

2008; Dirmeyer 2011; Diro et al. 2014; Hirschi et al. 2014; Liu et al. 2014; Lorenz et111

al. 2015; Hsu and Dirmeyer 2021), the cause-and-effect link of energy and water112

availability to evapotranspiration has not been fully explored.113

Although the existence of a limited sensitive range for SM-LE coupling has been114

recognized for a long time (e.g., Koster and Milly 1997), the coupling metrics in most115

studies customarily consider the full range of SM without attempting to quantify how116

the distribution of the three SM regimes relates to the coupling. This may dilute the117

aim of detecting locations where SM dominates the LE in two ways. First, during118

extremely wet and energy-deficient conditions, variations in available energy govern119

the release of LE. Consequently, LE can decrease while SM increases as a result of120

reduced net radiation in very wet, cloudy conditions. Such a situation may also be121

identified via correlations as SM-LE coupled (albeit a negative relationship) even122

though energy availability is the cause and SM changes are a consequence of123

evaporation rates.124

Second, LH is positively correlated with SM only when SM is in the transitional125

regime, but is one location found to be more strongly coupled than another simply126
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because it spends more days within the transition regime, or rather because the127

sensitivity of LE to variations in SM is actually stronger? Could some overlooked128

regions be strongly, but infrequently, coupled due to high SM-LE sensitivities in a129

transitional SM regime that is not routinely experienced? In other words, will130

locations of strong land-atmosphere coupling corresponding to the canonical “hot131

spots” remain if the analysis only considers those days when SM values lie within132

transitional regime?133

Taking into account the changeable dependency between SM and surface heat134

fluxes, Schwingshackl et al. (2017) statistically estimated the critical SM values that135

separate SM into dry, transitional, and wet regimes with a piecewise-linear regression136

analysis. The sensitivity of near-surface air temperature to SM variations has also137

been estimated for transitional regimes to obtain a clearer picture of how SM affects138

the lower troposphere and episodes of extreme heat. In regional studies, Dirmeyer et139

al. (2021) and Benson and Dirmeyer (2021) have found that the sensitivity of140

extremes in near surface air temperature to declining SM is amplified when SM141

declines below a quantifiable threshold corresponding to the local wilting point. Such142

a hypersensitive regime arises because a strengthened positive feedback is triggered143

by a chain of processes linking drier SM, depleted LE, increased sensible heat flux,144

and increased atmospheric temperature. Denissen et al. (2020) used satellite data to145

estimate the distribution of the critical SM threshold as a crossover point that signifies146

whether evapotranspiration is controlled by the availability of water or energy.147

This study aims to identify SM-LE coupling across the globe while explicitly148

considering the points of SM regime shifts. Coupling strength is quantified by mutual149

information that measures total dependency between variables, which can be further150

decomposed as linear and nonlinear components. Using observationally-based data151

sets, reanalyses, and climate models, we first determine the spatial distribution of the152

various SM regimes including the determination of areas that routinely cross153

thresholds and inhabit multiple regimes. We then quantify the total, linear, and154

nonlinear dependencies of LE to SM within the transitional regime using daily fields155

of SM and LE. This two-step method focuses on the dependency within the156

transitional regime where the bulk of sensitivity resides, instead of including all157

available days in the analysis. This helps to determine whether SM conditions158

lingering in the transitional regime are all that is necessary to ensure a strong coupling.159

In addition, this filters out nonlinearity in the SM-LE relationship contributed by160
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merely crossing the threshold. Details of the data sets, the method for critical value161

detection, and mutual information are described in section 2. Section 3 presents the162

results and conclusions are presented in section 4.163

164

2. Methods165

2.1. Data166

This study targets data sets that provide daily global fields of both surface SM167

and LE. Multi-year daily fields are used from climate models, reanalyses, and168

observationally-based data sets to maximize statistical robustness. Table 1 summaries169

the data sets used in this study. Multiple climate models participating in the Coupled170

Model Intercomparison Project Phase 6 (CMIP6) are included in this study. We select171

the models that have a historical run in which both daily SM and LE fields were172

available online (https://esgf-node.llnl.gov/search/cmip6/) at the time of our analysis.173

30 years of output spanning 1986-2015 from a total of 11 models has been used.174

Table 1. Sources of gridded global SM and LE data used in this study.175
176

Reanalysis data comes from two sources. First, the NASA Modern-Era177

Retrospective Analysis for Research and Applications-2 (MERRA2) provides hourly178

fields of variables at a resolution of 0.5° latitude x 0.625° longitude (GMAO 2015).179

CMIP6 Models (1986-2015)

Model Abbreviation exp_id DOI Resolution Surface
soil layer

CESM2 CESM2 r11i1p1f1 10.22033/ESGF/CMIP6.2185 0.9375° lat x1.25° lon

top 10 cm

CanESM5 CanESM5

r1i1p1f1

10.22033/ESGF/CMIP6.1303 2.8125° lat x 2.8125° lon

HadGEM3-GCM1-MM HadGEM3 10.22033/ESGF/CMIP6.420 0.56° lat x 0.83° lon

INM-CM5-H INM 10.22033/ESGF/CMIP6.1423 0.5° lat x 0.66° lon

EC-Earth-Veg EC-Earth 10.22033/ESGF/CMIP6.642 0.7° lat x 0.7° lon

GFDL-CM4 GFDL 10.22033/ESGF/CMIP6.1402 1° lat x 1.25° lon

IPSL-CM6A-LR IPSL 10.22033/ESGF/CMIP6.5195 1.25° lat x 2.5° lon

MIROC6 MIROC6 10.22033/ESGF/CMIP6.9121 1.4° lat x 1.4° lon

SAM0-UNICON SAM0 10.22033/ESGF/CMIP6.7791 0.9375° lat x 2.5° lon

MRI-ESM2-0 MRI 10.22033/ESGF/CMIP6.621 1.125° lat x 1.125° lon

AWI-ESM-1-1-LR-g3 AWI 10.22033/ESGF/CMIP6.359 1.875° lat x 1.875° lon

Reanalyses (1986-2015)

MERRA2 MERRA2 10.5067/RKPHT8KC1Y1T 0.5° lat x 0.625° lon top 5 cm

ERA5 ERA5 10.1002/qj.3803 31 km x 31 km top 7 cm

Satellite-based Observations (Apr 2015-Oct 2020)

SMAP Level 4 SMAP 10.5067/B59DT1D5UMB4 9 km x 9 km top 5 cm
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In MERRA-2, a major feature is that the land is forced by gridded observed180

precipitation, instead of model-generated precipitation. This strategy makes181

observed precipitation the main driver of SM, of which time series have been shown182

to have better agreement with independent observational datasets (Reichle et al.183

2017a). Second, the ECMWF Reanalysis v5 (ERA5) provides hourly grids of a184

variety of variables at a resolution of ~31km (Hersbach et al. 2020). Daily fields185

covering the period 1986-2015 are calculated from both reanalyses by averaging in186

time relative to UTC. ERA5 assimilates satellite SM data while MERRA2 does not,187

although this difference is not a focus of this study.188

To provide a perspective from observationally-based products, the NASA Soil189

Moisture Active Passive (SMAP) mission (Entekhabi et al. 2010) Level‐4 Soil190

Moisture (L.4_SM) is used. SMAP L4 (Reichle et al. 2017) assimilates the SMAP191

observations into the same land surface model used in MERRA2, but completely192

uncoupled from the atmospheric model; it is also forced by observed precipitation.193

Although only a relatively short time period is available, SMAP L4 provides complete194

global coverage of SM and LE in space and time, and thus is ideal for this analysis. In195

contrast, the Level-3 product of SMAP, available at the same spatial resolution and196

composed only of quality-controlled observations of SM from orbit, provides197

coverage over only about one third of the global land surface per day and lacks LE198

estimates. SMAP L4 is assumed here to be the closest to representing real conditions199

among these data sets. However, considering the short period of data as well as the200

involvement of a land model in the data assimilation process, SMAP L4 is rather like201

another reanalysis product and serves as an additional “ensemble member” when we202

present composite results.203

We note that the variable called “surface soil moisture” used in this study204

represents different thicknesses of soil layer wetness in different data sets. In CMIP6,205

surface soil moisture represents wetness in the top 10cm of the model soil column206

whereas it represents the top 5cm for MERRA2, 7cm for ERA5, and 5cm in SMAP.207

Theoretically, this induces a deviation in the SM as well as its variability in time, and208

thus may affect slightly the magnitude of the critical SM values between products.209

Nevertheless, the resulting translation of SM-LE patterns does not greatly affect the210

detection of SM regimes. All analysis is done at the native resolution of each data set211

except for SMAP. In an attempt to compensate for the smaller sample size attributed212

to the shorter period in SMAP, analysis is done on a scaled up grid (18km x18km)213
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consisting of 2x2 grid cells (9km x 9km), assuming that the heterogeneity of land214

cover type and topography at this larger domain is not sufficient to induce a stark215

change in how LE behaves with SM variations. Trading space for time, this simulates216

a quadrupling of the time series length to ~22 years.217

218

2.2. Critical value detection219

We employ the approach proposed by Schwingshackl et al. (2017) to define the220

wilting point and critical SM thresholds. Theoretically, as wilting point (WP) and221

critical soil moisture (CSM) separate the SM into dry, transitional, and wet regimes, a222

total of five candidate segmented regressions can result depending on which regimes223

are detected in the data. Four levels of complexity are tested to find the best fit at each224

location. We name these five candidates using three-digit binary numbers consisting225

of 0 or 1 to indicate the absence or presence of (in order) the dry, transitional and/or226

wet regime. These possible segmented regression candidates are illustrated in Fig 1a227

and are listed below:228

 No dependency on SM: indicating SM either never reaches values above the WP or229

never falls below the CSM (candidates 100 or 001). Practically, locations identified230

with no SM-LE dependency are found mostly over energy-limited regions such as231

rainforests, high latitudes, and alpine locations where soils are almost always wet or232

frozen. Rare cases of no SM-LE dependency can be found at coastal regions233

dominated by maritime air where SM nevertheless spans a wide range of values.234

Thus, we treat all cases without SM-LE dependency as candidate 001.235

 One-segment regression consisting solely of a segment with positive slope:236

indicating SM always lies in the transitional regime. (Candidate 010)237

 Two-segment regression consisting of a constant segment followed by a segment238

with positive slope: indicating SM spans the WP. (Candidate 110)239

 Two-segment regression consisting of a segment with positive slope followed by a240

constant segment: indicating SM spans the CSM. (Candidate 011)241

 Three segment regression consisting of a segment with positive slope between two242

constant segments: indicating SM spans all regimes. (Candidate 111)243

Since a more complex statistical model will normally have a better performance,244

we use Bayesian information criterion (BIC) for fitted candidate selection (Schwarz245
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1978) to introduce a penalty term by considering the number of the parameters in the246

model to avoid overfitting:247

��� = � ln (���/�) + � ln (�) Eq1

248
where � is the sample size, ��� is the residual sum of squares, and � is the249

number of model parameters. The model with the lowest BIC is selected. However,250

based on an empirical criterion (Kass and Raftery 1995), if the difference of BIC251

between a model and its one level simpler model is less than 10, the simpler model252

will be selected.253

Figure 1b displays an example in which the candidate 111 has been selected as254

the best fit at a MERRA2 grid cell in the tropics (10°N, 20°E). In this case, both WP255

and CSM are detected, indicating SM crosses all SM regimes, although kernel density256

indicates that many days lie near the wilting point. The color scheme in panel (a) is257

used hereafter to indicate the five candidates for SM-LE relationships.258

259
260

Figure 1. (a) Five segmented regression candidates used to fit the data. (b) An261
example displays that the MERRA2 SM-LE data at (10°N, 20°E) is best fitted by262
the candidate 111. Color in the scatter plot shows the density of data in each263
interval spanning 0.01 SM value (unitless) and 1 W/m2LE value.264

265

2.3. Normalized mutual information266

The dependency between SM and LE in the transitional regime is quantified by267

normalized mutual information (NMI):268

)(
);();(

LEH
LESMILESMNMI 

Eq2.1
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 )(log)()( 2 xpxpXH Eq2.2

 









)p(y)(
y),(log),();( 2 xp

xpyxpYXI
Eq2.3

H is the Shannon Entropy (Shannon 1948) which uses the probability distribution269

function �(�) of a single random variable X to measure X’s uncertainty (Eq2.2). In270

this study, a logarithm with base 2 is used and yields results in the unit of bits. The271

probability distribution of daily values of variables is examined and is cut by intervals272

with fixed bin width so that summation of �(�) across a finite number of bins is273

executable. Mutual information I(X;Y) (Cover and Thomas 1991) measures the274

reduction in uncertainty of a random variable X by the knowledge of another random275

variable Y (Eq2.3). As a result, NMI(SM;LE) is interpreted as the fraction of276

variability of the LE that is explained by variations in SM (Eq2.1).277

);( - );( );(  YXIYXIYXI Eq3.1

);();( YXIYXI  Eq3.2

YYY ˆ Eq3.3

i
i

iXabY ˆ Eq3.4

H(Y)
)I(X;Y

H(Y)
I(X;Y)

INMNMINMI



Eq3.5

Mutual information I(X;Y) can be decomposed as linear information I(X;Y) and278

nonlinear information I(X;Y)' (Smith 2015). In Eq3.1, I(X;Y) is quantified as the279

difference between I(X;Y) and I(X;Y)'; their linkage with NMI is shown in Eq3.5.280

Nonlinear information I(X;Y)' is obtained by calculating mutual information between281

X and Y' (Eq3.2). Y' is a nonlinear residual term calculated by the following procedure:282

a linear regression model (Eq3.4) is fitted to the time series to calculate the residual of283

the Y by Eq3.3. Then, quantile normalization is applied to Y' based on the quantile of284

the Y. This ensures the equivalence of total entropy of Y and Y' so that I(X;Y) and285

I(X;Y)' are comparable. More detail of the procedure can be found in Smith (2015).286

We note that the fitted line with positive slope used in the linear segmented287

regression to determine WT and CSM may be different from the fitted line used to288

decompose the mutual information into linear and nonlinear components for the289

transitional regime. The nonlinearity of SM-LE dependency resulting from such a290

two-step method ensures that the nonlinear SM-LE relationship can be contributed by291
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properties other than the threshold behavior. This helps to classify whether the292

nonlinear SM-LE relationship found in our previous work is mostly attributable to the293

transitions of sensitivity of LE to SM induced by WT and CSM.294

2.4. Workflow295

All analysis is done for each grid cell in each data set except for SMAP, which296

has an effective grid cell domain consisting of 2x2 actual grid cells. Total values of all297

daily timesteps of SM and LE are used to detect soil moisture regimes by breakpoint298

analysis. The wilting point (WP) or critical soil moisture (CSM) thresholds (or both),299

if detected, are recorded simultaneously for further dependency analysis.300

After critical point detection, we remove variability in the original timeseries301

having frequencies lower than 1/365 days using a high-pass filter. Then, concatenated302

time series grouped by calendar month spanning the whole period are constructed. For303

instance, daily data for each June is connected from each June 30th of one year to June304

1st of the next year to produce the multi-year June timeseries. Discontinuities do not305

negatively affect the NMI calculations. Such a month-by-month analyses enables us306

to avoid artificial dependencies which would be introduced if the data distribution307

were modified by other approaches for removing seasonality.308

Daily time steps of SM and LE when SM is below WP or above CSM are309

removed from the timeseries. Thus, only data in the SM transitional regime is used for310

dependency calculations. Since the retained data size is different between different311

locations and products within any calendar month, subsampling is used to provide a312

bootstrap estimation of uncertainty. When the sample size of a grid cell for the313

specific month is larger than 500 days (around half of the original time series), we314

randomly subsample 300 days from the constructed time series. Fixed binning with315

102 bins is used to compute the two-dimensional probability distribution functions316

constructed from SM and LE and to obtain NMI and its decomposition. This is317

repeated 100 times and averages of NMI, NMI, and NMI', named as mNMI, mNMI,318

and mNMI' respectively, are obtained. We note that though the choice for the number319

of bins affects the magnitude of mutual information and the ratio of information320

partitioned into nonlinearity, it does so systematically such that it does not affect the321

general spatial patterns of mNMI, mNMI, and mNMI' so long as the same number of322

bins are used everywhere. In thus study, we focus on the comparison among the323

products instead of comparison between the information components within a single324
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product. Thus, sensitivity of information content to the number of bins does not affect325

the interpretation of our results.326

327

2.5. Significance testing328

Statistical significance is tested in different ways for total, linear, and nonlinear329

mutual information on each grid cell and each calendar month. For total mutual330

information, a shuffled surrogates method with the null hypothesis that no total331

dependency exists is applied on mNMI. Once a value of mNMI is obtained by the332

workflow described in section 2.4, daily values of SM and LE selected only from days333

when SM in dry and wet regimes are removed are randomly permuted by breaking334

original SM-LE pairs and then randomly matching them. Each permutation of the335

timeseries yields a new estimate of mNMI. By repeating the process 30 times, a336

probability distribution of randomized values of mNMI as well as its mean μ and337

standard deviation σ are obtained. Observed mNMI is 99% statistically significant if it338

is larger than μ+3σ.339

For nonlinearity, the identical procedure and null hypothesis are used to obtain340

the significance of mNMI'. The actual mNMI' is compared to the distribution of mNMI341

computed from the shuffled surrogates method with Y' timeseries (which is LE here;342

the linear fit is subtracted after each permutation). An observed mNMI' larger than343

μ+3σ indicates a statistically significant dependence at the 99% confidence level and344

such a dependence only by the nonlinear relationships.345

Statistical significance of the linear component is tested for the bootstrap mean of346

I(X;Y). A criterion value of the correlation coefficient ρc representing 99%347

significance is found for given pairs of random variables. With such a Gaussian348

distributed assumption, the criterion for the bootstrap mean of I(X;Y), MIC, is349

calculated by Eq4.350

)ρlog(1
2
1MIC 2

c
Eq4

351

The workflow and significant testing are almost identical to that described in Hsu352

and Dirmeyer (2021) where more discussion on the seasonality issue, bin size353

sensitivity, and validation of the significant testing can be found.354

355
3. Results356
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3.1. Global soil moisture regimes357

358
Figure 2. The most likely SM:LE candidate at each grid cell. Dashed black line359
represents the boundary where the climatological annual mean 2-meter air360
temperature in that dataset is 0˚C. Color coding is as in Figure 1(a).361

Figure 2 shows the elected candidate that best fits the SM-LE daily data for362

each grid cell in each dataset. Candidates 001 and 011 occupy the tropics across all363

products, as also indicated by the mode of candidate in the equatorial regions (Figure364

3a). The prevalence of candidate 011 outside the deep tropics reveals that SM is not365

always above the CSM but can fall into the SM transitional regime. Such a366

characteristic varies among the products as only around 50% of the products agree367

that the elected candidate is the same as the mode (Figure 3b) and the discrepancy is368

particularly large over the maritime continent. To quantify the discrepancy of detected369
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SM regimes, we have devised an index δ to quantify the degree of disagreement. δ is370

calculated by Eq5:371

||          
||          

||          
||||||     

zc
yb

xa
zcybxa

wet

tran

dry












 Eq5

a, b, and c are the left bit, center bit and right bit respectively of the candidate value372

for any product; x, y, and z represent same digits as a, b, and c but for the mode of373

candidates among all products.374

Besides measuring the uniformity of the selected candidate as that in Figure 3b,375

δ considers the inherent differences between the regimes included in each candidate.376

For example, the δ between candidates 111 and 001 is 2, which is larger than that377

between candidates 111 and 011; a selected candidate 111 which represents SM378

spanning full regimes is closer to candidate 011 than candidate 001, since candidate379

001 means only wet regime is detected. The summation of δ across all products380

measures the degree of consensus, and is shown in Figure 3c. Figures 3d, 3e, and 3f381

are the degree of consensus among the products in detection of dry, transitional, and382

wet regime, respectively. Compared to the rest of the world, the summation of δ is383

moderate over the tropical regions As shown in Figure 3d,e,f, consensus is greatest for384

dry and wet regimes, but whether SM lies in the transitional regime is often in dispute385

among the analyzed products.386

Semiarid regions are dominated by candidates 011 and 111 (Figure 2 and 3a).387

Among the CMIP6 models, there is a prominently different width of territory388

occupied by candidate 111 in the Sahel, whereas in the reanalyses, candidate 111389

dominates over North Africa. This implies a different degree of distinction between390

dry and wet seasons, which might be attributed to the character of the simulated West391

African monsoon within the climate models. In the SMAP product, candidate 111 has392

a relatively narrow band in the Sahel. In other monsoon regions, although candidate393

111 is detected in the reanalyses (e.g. Mexico, India, and Australia), most CMIP6394

models show a lack of a dry regime leading frequently to candidate 011 (Figure 3a).395

Semiarid regions located in temperate zones have larger discrepancies of the elected396

candidate. In addition to the North American Great Plains and regions with a humid397

continental climate, agreement barely reaches 50% over South Africa, Europe,398

sections of South America and southern Australia. In these regions, even though the399
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transitional regime is typically detected without disagreement (Figure 3a&e), whether400

SM also routinely lies in either the dry or wet regime is disputed even between the401

reanalyses.402

Arid regions, counterintuitively, are dominated by candidates 110 and 111403

(Figures 2 and 3a). This may indicate that the land surface in deserts can occasionally404

be moistened beyond the WP or even, it appears, the CSM. Whether SM normally lies405

in the wet regime is disputed (Figure 3f) not only among the climate models but406

between the reanalyses; the full SM regime (111) is generally found in ERA5 over the407

Sahara, Arabian Peninsula, Australian outback, and Chile but only fragmentarily in408

MERRA2 (Figure 2). For SMAP, candidate 111 is found sporadically over those409

regions. CanESM5 and MIROC6 stand out among CMIP6 models as many arid410

regions are occupied by candidate 011, indicating an unrealistically wet climate in the411

desert.412

In high latitudes and alpine regions, candidate 001 encompasses much of the413

area, whereas strong disagreement can be seen among the products (Figures 2, 3a and414

3b). In those regions, as indicated by the 0˚C dashed contour in Figure 2, surface soils415

may be frozen much of year and thus the coupling between SM and LE is interrupted.416

Consequently, one should keep in mind that a lack of sensitivity between SM and LE417

does not necessarily mean that SM is always in the wet regime. Furthermore, the low418

available energy from solar radiation at high latitudes can lead to a low value of CSM419

and thus whether a wet regime is detected can also be sensitive to radiative conditions420

that themselves can be affected by albedo, land cover type, and a variety of421

soil/biological parameters. Over Siberia, most climate models show diametrically422

opposed results to the reanalyses and SMAP: SM in the CMIP6 models can frequently423

lie in the wet regime, but not in reanalyses or SMAP.424

Overall, the hydroclimate reflected by SM-LE behavior is shown to have fairly425

low consensus among the products. Large differences among detected SM regimes426

between products is seen over arid regions. Over desert, whether SM can frequently427

cross the CSM seems disputable. A deeper investigation of the precipitation frequency,428

the physics of surface soil water retention and drydown in the dry climate regions is429

needed to resolve the discrepancy. Strong divergences are also found over alpine430

regions and areas with a subarctic climate, where solid-liquid phase change of SM431

might play a crucial role. Meanwhile, good agreement is reached within semiarid432

regions implying that, as observed in the real world, climate models simulate strong433
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seasonal variation of wetness. The spatial patterns are much more heterogeneous in434

SMAP and the reanalyses than in the climate models. In addition to resolution435

differences, this may be attributed by a more complex surface conditions in the real436

world affecting the assimilated observational data stream that are not fully represented437

in the parameterizations within climate models, or by the effects of the data438

assimilation process, which introduces extra variability when adding observational439

increments of SM and/or near surface atmospheric conditions that can impact the440

SM-LE relationship.441

442

443

Figure 3. (a) Mode of the candidate among 14 analyzed products. (b) Agreement444
of the elected candidate calculated as the fraction of the products that vote for445
the same candidate as the mode. (c) Consensus of soil regime quantified by446
summation of degree of disagreement δ calculated by eq2. (d),(e),(f) are same as447
(c) but for δdry, δtran, δwet, respectively448

449

Figure 4 shows the probability density functions (PDF) of SM over regions450

dominated by each candidate (colored curves) and the combined climatological SM451

(white curve) over the world for each data product (the grid cells with climatological452

2-m temperature <0°C are masked out). Different patterns of climatological SM PDF453
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are seen among products and even the two reanalyses do not agree on whether SM is454

bimodally distributed. Such discrepancies reveal an essential difference of455

model-simulated moisture fields among different land surface models, as reported by456

Koster et al. (2009), still exists in current climate models. A relatively457

moisture-limited world is portrayed by SMAP as well as AWI-ESM and IPSL.458

459
Figure 4. Probability distribution function of SM (volumetric water content,460
m3/m3) over the locations governed by each candidate (colored lines) and global461
SM distribution (white line). Regions in where climatological 2-m temperature <462
0°C are excluded in the analysis. All pdfs are estimated by kernel density463
estimation with fixed bin (0.01 m3/m3 intervals).464

465

As to the SM regime, in general, candidate 001 is found mostly in wet soil466

conditions and candidate 110 is more common over drier regions. Candidate 111 is467

found across a wide range of climatological wetness conditions. Strong discrepancies468

are seen between the climate models and the reanalyses in the area under the curve of469
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each candidate. In most climate models, candidate 011 accounts for the highest470

proportion of land area. Even though locations with SM spanning the full set of471

regimes are detected more in the reanalysis, the relative proportions of each candidate472

are similar. The dominance of candidate 011 seen in the climate models could be473

related to an unrealistic homogeneity of land surface properties. The relative rareness474

of dry regimes in climate models might be attributable to biases in radiation,475

precipitation, precipitation frequency, or the soil water retention in their land surface476

models.477

478

3.2. Global SM-LE coupling479

We examine the coupling strength between SM and LE only when daily SM480

values are in the SM transitional regime. This ensures a positive SM-LE dependency481

that implies that a change in LE is principally due to a change in SM. Focusing just on482

June-July-August (JJA), Figures 5, 6, and 7 display the total, linear, and nonlinear483

contributions to the mean normalized mutual information (mNMI) between SM-LE484

respectively.485

Locations having at least 500 days when SM is within the transitional regime486

are found over most of the world during JJA. Though a positive SM-LE relationship487

exists everywhere, the total dependency of SM-LE measured by normalized mutual488

information exhibits strong spatial variability, as can be seen among all analyzed489

products (Figure 5). Several studies that have investigated coupling strength using the490

full range of SM showed regions with strong coupling are mostly over semi-arid491

regions. Logically, this has been attributed to the fact that SM usually lies within492

transitional regime in those locations. Other regions spend fewer days in the493

transitional regime, but they also appear to have a weaker SM-LE relationship even494

while in the transitional regime. Thus, our results still find these transition zones are495

strongly coupled compared to the rest of the world.496

497
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498

Figure 5. Average of JJA mean normalized mutual information (mNMI, units:499
bits) between SM and LE within the transitional regime. Locations where values500
of all three analyzed months are statistically significant (p-value<0.01) are dotted.501
Shaded grey areas are statistically insignificant for any month and white land502
areas are not included in the analysis due to insufficient days (<500) with SM in503
the transitional regime within the analyzed period. For SMAP, each sample is504
treated as a day; each analyzed set of 2x2 grid cells spanning 6 years yields ~720505
days for applying the analysis during boreal summer months.506

507
Regions with strong coupling are in better agreement, in terms of latitudinal508

distribution, among ERA5, MERRA2, and SMAP than that among the CMIP6 models.509

This can be seen prominently by comparing the position and width of the510

strongly-coupled band in the Sahel region of West Africa. In the tropics, though SM511

can still affect LE when SM falls into transitional regime, the dependency is relatively512

weak or statistically insignificant, as is particularly clear in MERRA2 and several of513

the CMIP6 models. On the other hand, dry areas such as the Sahara, Arabian514
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Peninsula, Western Australia, and Chile, when significant, have strong SM-LE515

coupling.516

517

518

Figure 6. Same as Figure 5 but for linear mNMI.519

520

Similar patterns are found for linear mNMI among the analyzed products521

(Figure 6). Strong linear SM-LE dependency is mostly found over semiarid regions,522

e.g., the Sahel, Southern Africa, and the Great Plains. A few climate models523

(CanESM5, CESM2, MIROC6) show a strong linear SM-LE coupling over arid524

regions (Figure 6). The pattern of strong linear coupling corresponds to the “hot525

spots” identified by previous studies using metrics involving a linear statistical526

framework (e.g., Koster et al. 2004; Dirmeyer 2011; Hsu and Dirmeyer 2021) applied527

on the full range of SM. Much of the world contains a sufficient number of days with528
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SM values in the transitional regime, and the linear dependency in most regions is529

statistically insignificant. Again, this reveals that the frequency of transitional SM530

values is a necessary condition but not the deciding factor to determine if the531

land-atmosphere coupling strength is strong.532

533

Figure 7. Same as Figure 5 but for nonlinear mNMI.534

535

The nonlinear component shows a broadly similar but lower magnitude pattern536

compared to total mNMI in most data products (Figure 7). The nonlinear SM-LE537

dependency in most locations tends to be statistically significant in the CMIP6 models538

while only “hot spots” regions bear strong nonlinearity in the539

observationally-constrained data sets. The cause for this discrepancy is unclear and540

needs further examination. Arid regions such as North Africa emerge in the analysis541

for a few climate models (INM, CanESM5, CESM2, MIROC6) and all of them542
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suggest that nonlinearity in dry regions is strong. This could be attributed to the543

abundant energy and weak water retention capacity over these regions — once a544

precipitation event occurs, it induces a spike in SM and thus strong LE. Combined545

with a short drydown period, this typically leads to sporadic high values of LE and546

thus total mutual information is less dominated by linear dependencies.547

548

4. Discussion and conclusions549

Daily fields of surface SM and LE from climate models, reanalyses, and550

satellite-based products, are used to assess the coupling strength constrained within551

the SM transitional regime where most sensitivity exists. The transitional regime is552

constrained by the SM wilting point (WP) and a critical value (CSM) above which LE553

ceases to increase with increasing SM. Five candidate segmented regressions based on554

a conventional SM-heat flux conceptual framework (Schwingschackl et al. 2017) are555

statistically derived to determine the prominent SM regimes at each location in each556

data set. The method detects where changes in feedback regimes exist, indicated by557

the detection of WP and/or CSM, and where the positive slope of the SM-LE segment558

indicates the transitional regime that is critical to physical processes linking land and559

atmosphere via the SM-LE relationship.560

We find that the robustness of the representative values of CSM is not as great as561

that of WP. CSM can vary with different environmental conditions as implied in the562

analysis of Haghighi et al. (2018). Unlike WP, CSM is not a single value of SM but a563

range of SM whose exact value can depend on other meteorological factors.564

Nevertheless, the impact of this uncertainty is neglectable as the key element is565

detection of any CSM point separating clear transitional and wet SM segments.566

An index δ is proposed to quantify the degree of discrepancy among products in567

detecting SM regimes. The spatial distribution of detected SM regimes is found to568

vary strongly among the data sets, although for certain regions of the globe there is569

good agreement, such as in the subtropics and semi-arid regions. Though the causes570

of most of these disagreements can be inferred, further studies examining the571

relationship between LE and SM in different datasets will help to determine the572

reasons for the low consensus.573

The degree of consensus in SM regimes among climate models can act as a574

confidence score when using multiple climate models to explore extremes in current575
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and/or projected climate. Shifts in SM regimes reflect a “change of gears” in576

land-atmosphere coupling, and thus the impacts of extremes. For example, when577

conditions switch from the transitional regime into the dry regime, disconnection of578

SM from LE and a stronger sensitivity of sensible heat flux to SM are implied579

(Dirmeyer et al. 2021; Benson and Dirmeyer 2021). Accordingly, if the existence of580

such a shift in SM regime lacks consensus among climate models, it could degrade581

the robustness of assessments related to processes or extremes that involve582

land-atmosphere interactions.583

Days with SM in the transitional regime are used to evaluate the dependency of584

LE on SM across climate models and observationally-constrained products. A585

limitation is set that any given calendar month must contain at least 500 days in the586

data sets with SM in the transitional regime during the analysis period; much of the587

world passes this test during boreal summer. Generally, spatial patterns of mNMI and588

its decomposition are similar among the data products, although a smaller percentage589

of grid cells are found to be statistically significant in observationally-based datasets590

(ERA5, MERRA2, and SMAP). The SM-LE dependency, especially the linear591

component, within the transitional regime is found to be relatively strong over592

semiarid regions. Due to the universally positive dependency of LE to SM within the593

transitional regime, one might expect that much of the analyzed area would show594

strong SM-LE coupling. However, the strongly coupled areas found here remain595

limited in extent, like the land-atmosphere interaction “hot spots” in the previous596

studies that used data spanning the full range of SM values. This implies that the597

reason SM and LE are strongly coupled in semi-arid regions is not merely due to the598

preponderance of time SM values spend in the transitional regime.599

We hypothesize the reasons that induce the coupling pattern seen in Figure 5.600

Besides the variability of SM and available energy, wind speed and atmospheric601

moisture deficit can also affect the rate of LE. Additionally, subsurface SM and air602

temperature can affect transpiration through biophysical effects on plants (Sellers et al.603

1986). Among these factors, the magnitude of atmospheric moisture deficit might be604

the most important. Our results show that even though high latitudes and rainforest605

regions have sufficient days with SM in the transitional regime, SM and LE there are606

not strongly coupled. Following the Clausius-Clapeyron relationship, in high latitudes607

the normally low atmospheric moisture deficit results from low near surface air608

temperature, while in rainforest regions it is due to the year-round high humidity.609
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Small atmospheric moisture deficits limit SM-LE coupling during the course of the610

day even when SM is in the sensitive transitional regime.611

Though strong differences exist in the distribution of SM regimes among the data612

products, the regions with strong SM-LE coupling are fairly consistent and similar to613

the previously identified “hot spots”. Combining the findings of this study, the low614

consensus of SM regimes yet similar patterns of SM-LE dependency among the data615

sets, yields the inference that despite a strong dispersion of local hydroclimates616

among the data sets, attributable to diverse potential factors such as monsoon extent617

or the physics of soil water retention, the inherent physics of how LE reacts to SM618

variability is well represented by land models. Recent studies have examined the619

relative role of net radiation to SM in determining surface heat fluxes (Haghighi et al620

2018; Hsu and Dirmeyer 2021). A further investigation of how daily variability of621

variables such as wind speed, atmospheric moisture deficit, and air temperature622

compare to the relative importance of SM variations in determining LE can help to623

clarify the source or absence of locally strong coupling.624

The framework here to determine any location’s span of SM regimes and625

critical SM values as well as associated coupling strength has potential applications.626

For forecasting, diagnosing the position and transition of SM among wet, transitional,627

and dry regimes enables inference of when and where land-atmosphere feedbacks,628

which play a crucial role in extremes such as heat waves and drought, may become629

important. Getting these transitions right, as well as slope and degree of nonlinearity630

within the sensitive regime, would be an indication of correct process representation631

and should improve model skill. Meanwhile, the disagreement index δ can be used on632

climate projections to examine the credibility of shifts in terrestrial hydrology in633

different scenarios.634

Finally, this study is confined to the SM-LE relationship because of the lack of635

availability of daily fields of sensible heat flux from most of the CMIP6 models.636

Given that it has been increasingly common for studies to apply their own637

frameworks on long-term daily data sets of land surface variables and several new638

features of SM-surface heat flux relationships have been discovered, we encourage639

CMIP modeling groups to provide complete daily fields of surface heat fluxes640

relevant to surface water and energy balances for both historical and projected641

simulations.642

643



26

Acknowledgements:644

This work was supported by the National Aeronautics and Space Administration645

(80NSSC20K1803). We are grateful to the developers of the data products used in646

this study.647

Data Availability Statement648

ERA5 (Hersbach et al. 2020, doi:10.1002/qj.3803) was downloaded from the649

Copernicus Climate Change Service (C3S) Climate Data Store. MERRA-2 was650

downloaded from Global Modeling and Assimilation Office (GMAO 2015,651

doi:10.5067/RKPHT8KC1Y1T). SMAP L4 (Reichle et al. 2017,652

doi:10.5067/B59DT1D5UMB4) data was downloaded from NASA National Snow653

and Ice Data Center. CMIP6 data was downloaded from654

https://esgf-node.llnl.gov/search/cmip6/.655

656

https://esgf-node.llnl.gov/search/cmip6/


27

References657

(1)658
(1)659

Benson, D. O.; Dirmeyer, P. A. Characterizing the Relationship660
between Temperature and Soil Moisture Extremes and Their Role in661
the Exacerbation of Heat Waves over the Contiguous United States.662
Journal of Climate 2021, 34 (6), 2175–2187.663
https://doi.org/10.1175/JCLI-D-20-0440.1.664

(2)665
Bonan, G. B. Forests and Climate Change: Forcings, Feedbacks, and666
the Climate Benefits of Forests. Science 2008, 320 (5882),667
1444–1449. https://doi.org/10.1126/science.1155121.668

(3)669
Boucher, O.; Denvil, S.; Levavasseur, G.; Cozic, A.; Caubel, A.;670
Foujols, M.-A.; Meurdesoif, Y.; Cadule, P.; Devilliers, M.;671
Ghattas, J.; Lebas, N.; Lurton, T.; Mellul, L.; Musat, I.; Mignot,672
J.; Cheruy, F. IPSL IPSL-CM6A-LR Model Output Prepared for CMIP6673
CMIP, 2018. https://doi.org/10.22033/ESGF/CMIP6.1534.674

(4)675
Cover, T. M.; Thomas, J. A. ELEMENTS OF INFORMATION THEORY. 774.676

(5)677
Danabasoglu, G. NCAR CESM2 Model Output Prepared for CMIP6 CMIP,678
2019. https://doi.org/10.22033/ESGF/CMIP6.2185.679

(6)680
Denissen, J. M. C.; Teuling, A. J.; Reichstein, M.; Orth, R.681
Critical Soil Moisture Derived From Satellite Observations Over682
Europe. J. Geophys. Res. Atmos. 2020, 125 (6).683
https://doi.org/10.1029/2019JD031672.684

(7)685
Dirmeyer, P. A. The Terrestrial Segment of Soil Moisture-Climate686
Coupling: SOIL MOISTURE-CLIMATE COUPLING. Geophys. Res. Lett.687
2011, 38 (16), n/a-n/a. https://doi.org/10.1029/2011GL048268.688

(8)689
Dirmeyer, P. A.; Balsamo, G.; Blyth, E. M.; Morrison, R.; Cooper,690
H. M. Land‐Atmosphere Interactions Exacerbated the Drought and691
Heatwave Over Northern Europe During Summer 2018. AGU Advances692
2021, 2 (2). https://doi.org/10.1029/2020AV000283.693

(9)694
Diro, G. T.; Sushama, L.; Martynov, A.; Jeong, D. I.; Verseghy,695
D.; Winger, K. Land‐atmosphere Coupling over North America in696
CRCM5. J. Geophys. Res. Atmos. 2014, 119 (21).697
https://doi.org/10.1002/2014JD021677.698

(10)699

https://doi.org/10.1175/JCLI-D-20-0440.1
https://doi.org/10.1126/science.1155121
https://doi.org/10.22033/ESGF/CMIP6.1534
https://doi.org/10.22033/ESGF/CMIP6.2185
https://doi.org/10.1029/2019JD031672
https://doi.org/10.1029/2011GL048268
https://doi.org/10.1029/2020AV000283
https://doi.org/10.1002/2014JD021677


28

EC-Earth Consortium (EC-Earth). EC-Earth-Consortium700
EC-Earth3-Veg Model Output Prepared for CMIP6 CMIP, 2019.701
https://doi.org/10.22033/ESGF/CMIP6.642.702

(11)703
Eltahir, E. A. B. A Soil Moisture-Rainfall Feedback Mechanism: 1.704
Theory and Observations. Water Resour. Res. 1998, 34 (4), 765–776.705
https://doi.org/10.1029/97WR03499.706

(12)707
Entekhabi, D.; Njoku, E. G.; O’Neill, P. E.; Kellogg, K. H.; Crow,708
W. T.; Edelstein, W. N.; Entin, J. K.; Goodman, S. D.; Jackson,709
T. J.; Johnson, J.; Kimball, J.; Piepmeier, J. R.; Koster, R. D.;710
Martin, N.; McDonald, K. C.; Moghaddam, M.; Moran, S.; Reichle,711
R.; Shi, J. C.; Spencer, M. W.; Thurman, S. W.; Tsang, L.; Van Zyl,712
J. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010,713
98 (5), 704–716. https://doi.org/10.1109/JPROC.2010.2043918.714

(13)715
Findell, K. L.; Eltahir, E. A. B. An Analysis of the Soil716
Moisture-Rainfall Feedback, Based on Direct Observations from717
Illinois. Water Resour. Res. 1997, 33 (4), 725–735.718
https://doi.org/10.1029/96WR03756.719

(14)720
Fischer, E. M.; Seneviratne, S. I.; Vidale, P. L.; Lüthi, D.; Schär,721
C. Soil Moisture–Atmosphere Interactions during the 2003722
European Summer Heat Wave. Journal of Climate 2007, 20 (20),723
5081–5099. https://doi.org/10.1175/JCLI4288.1.724

(15)725
Gevaert, A. I.; Miralles, D. G.; Jeu, R. A. M.; Schellekens, J.;726
Dolman, A. J. Soil Moisture‐Temperature Coupling in a Set of Land727
Surface Models. J. Geophys. Res. Atmos. 2018, 123 (3), 1481–1498.728
https://doi.org/10.1002/2017JD027346.729

(16)730
Guillod, B. P.; Orlowsky, B.; Miralles, D. G.; Teuling, A. J.;731
Seneviratne, S. I. Reconciling Spatial and Temporal Soil Moisture732
Effects on Afternoon Rainfall. Nat Commun 2015, 6 (1), 6443.733
https://doi.org/10.1038/ncomms7443.734

(17)735
Guo, H.; John, J. G.; Blanton, C.; McHugh, C.; Nikonov, S.;736
Radhakrishnan, A.; Rand, K.; Zadeh, N. T.; Balaji, V.; Durachta,737
J.; Dupuis, C.; Menzel, R.; Robinson, T.; Underwood, S.;738
Vahlenkamp, H.; Bushuk, M.; Dunne, K. A.; Dussin, R.; Gauthier,739
P. P.; Ginoux, P.; Griffies, S. M.; Hallberg, R.; Harrison, M.;740
Hurlin, W.; Lin, P.; Malyshev, S.; Naik, V.; Paulot, F.; Paynter,741
D. J.; Ploshay, J.; Reichl, B. G.; Schwarzkopf, D. M.; Seman, C.742
J.; Shao, A.; Silvers, L.; Wyman, B.; Yan, X.; Zeng, Y.; Adcroft,743

https://doi.org/10.22033/ESGF/CMIP6.642
https://doi.org/10.1029/97WR03499
https://doi.org/10.1109/JPROC.2010.2043918
https://doi.org/10.1029/96WR03756
https://doi.org/10.1175/JCLI4288.1
https://doi.org/10.1002/2017JD027346
https://doi.org/10.1038/ncomms7443


29

A.; Dunne, J. P.; Held, I. M.; Krasting, J. P.; Horowitz, L. W.;744
Milly, P. C. D.; Shevliakova, E.; Winton, M.; Zhao, M.; Zhang, R.745
NOAA-GFDL GFDL-CM4 Model Output, 2018.746
https://doi.org/10.22033/ESGF/CMIP6.1402.747

(18)748
Herold, N.; Kala, J.; Alexander, L. V. The Influence of Soil749
Moisture Deficits on Australian Heatwaves. Environ. Res. Lett.750
2016, 11 (6), 064003.751
https://doi.org/10.1088/1748-9326/11/6/064003.752

(19)753
Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.;754
Muñoz‐Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers,755
D.; Simmons, A.; Soci, C.; Abdalla, S.; Abellan, X.; Balsamo, G.;756
Bechtold, P.; Biavati, G.; Bidlot, J.; Bonavita, M.; Chiara, G.;757
Dahlgren, P.; Dee, D.; Diamantakis, M.; Dragani, R.; Flemming, J.;758
Forbes, R.; Fuentes, M.; Geer, A.; Haimberger, L.; Healy, S.; Hogan,759
R. J.; Hólm, E.; Janisková, M.; Keeley, S.; Laloyaux, P.; Lopez,760
P.; Lupu, C.; Radnoti, G.; Rosnay, P.; Rozum, I.; Vamborg, F.;761
Villaume, S.; Thépaut, J. The ERA5 Global Reanalysis. Q.J.R.762
Meteorol. Soc. 2020, 146 (730), 1999–2049.763
https://doi.org/10.1002/qj.3803.764

(20)765
Hirschi, M.; Mueller, B.; Dorigo, W.; Seneviratne, S. I. Using766
Remotely Sensed Soil Moisture for Land–Atmosphere Coupling767
Diagnostics: The Role of Surface vs. Root-Zone Soil Moisture768
Variability. Remote Sensing of Environment 2014, 154, 246–252.769
https://doi.org/10.1016/j.rse.2014.08.030.770

(21)771
Hirschi, M.; Seneviratne, S. I.; Alexandrov, V.; Boberg, F.;772
Boroneant, C.; Christensen, O. B.; Formayer, H.; Orlowsky, B.;773
Stepanek, P. Observational Evidence for Soil-Moisture Impact on774
Hot Extremes in Southeastern Europe. Nature Geosci 2011, 4 (1),775
17–21. https://doi.org/10.1038/ngeo1032.776

(22)777
Hsu, H.; Dirmeyer, P. A. Nonlinearity and Multivariate778
Dependencies in the Terrestrial Leg of Land‐Atmosphere Coupling.779
Water Res. 2021, 57 (2). https://doi.org/10.1029/2020WR028179.780

(23)781
Hsu, H.; Lo, M.-H.; Guillod, B. P.; Miralles, D. G.; Kumar, S.782
Relation between Precipitation Location and783
Antecedent/Subsequent Soil Moisture Spatial Patterns:784
Precipitation-Soil Moisture Coupling. J. Geophys. Res. Atmos.785
2017, 122 (12), 6319–6328.786
https://doi.org/10.1002/2016JD026042.787

https://doi.org/10.22033/ESGF/CMIP6.1402
https://doi.org/10.1088/1748-9326/11/6/064003
https://doi.org/10.1002/qj.3803
https://doi.org/10.1016/j.rse.2014.08.030
https://doi.org/10.1038/ngeo1032
https://doi.org/10.1029/2020WR028179
https://doi.org/10.1002/2016JD026042


30

(24)788
Koster, R. D. Regions of Strong Coupling Between Soil Moisture and789
Precipitation. Science 2004, 305 (5687), 1138–1140.790
https://doi.org/10.1126/science.1100217.791

(25)792
Koster, R. D.; Milly, P. C. D. The Interplay between Transpiration793
and Runoff Formulations in Land Surface Schemes Used with794
Atmospheric Models. J. Climate 1997, 10 (7), 1578–1591.795
https://doi.org/10.1175/1520-0442(1997)010<1578:TIBTAR>2.0.CO;796
2.797

(26)798
Koster, R. D.; Sud, Y. C.; Guo, Z.; Dirmeyer, P. A.; Bonan, G.;799
Oleson, K. W.; Chan, E.; Verseghy, D.; Cox, P.; Davies, H.;800
Kowalczyk, E.; Gordon, C. T.; Kanae, S.; Lawrence, D.; Liu, P.;801
Mocko, D.; Lu, C.-H.; Mitchell, K.; Malyshev, S.; McAvaney, B.;802
Oki, T.; Yamada, T.; Pitman, A.; Taylor, C. M.; Vasic, R.; Xue,803
Y. GLACE: The Global Land–Atmosphere Coupling Experiment. Part804
I: Overview. Journal of Hydrometeorology 2006, 7 (4), 590–610.805
https://doi.org/10.1175/JHM510.1.806

(27)807
Liu, D.; Wang, G.; Mei, R.; Yu, Z.; Gu, H. Diagnosing the Strength808
of Land–Atmosphere Coupling at Subseasonal to Seasonal Time809
Scales in Asia. Journal of Hydrometeorology 2014, 15 (1), 320–339.810
https://doi.org/10.1175/JHM-D-13-0104.1.811

(28)812
Lorenz, R.; Pitman, A. J.; Hirsch, A. L.; Srbinovsky, J.813
Intraseasonal versus Interannual Measures of Land–Atmosphere814
Coupling Strength in a Global Climate Model: GLACE-1 versus815
GLACE-CMIP5 Experiments in ACCESS1.3b. Journal of816
Hydrometeorology 2015, 16 (5), 2276–2295.817
https://doi.org/10.1175/JHM-D-14-0206.1.818

(29)819
Miralles, D. G.; van den Berg, M. J.; Teuling, A. J.; de Jeu, R.820
A. M. Soil Moisture-Temperature Coupling: A Multiscale821
Observational Analysis: SOIL MOISTURE-TEMPERATURE COUPLING.822
Geophys. Res. Lett. 2012, 39 (21), n/a-n/a.823
https://doi.org/10.1029/2012GL053703.824

(30)825
Miralles, D. G.; Gentine, P.; Seneviratne, S. I.; Teuling, A. J.826
Land-Atmospheric Feedbacks during Droughts and Heatwaves: State827
of the Science and Current Challenges: Land Feedbacks during828
Droughts and Heatwaves. Ann. N.Y. Acad. Sci. 2019, 1436 (1), 19–35.829
https://doi.org/10.1111/nyas.13912.830

(31)831

https://doi.org/10.1126/science.1100217
https://doi.org/10.1175/1520-0442(1997)010<1578:TIBTAR>2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010<1578:TIBTAR>2.0.CO;2
https://doi.org/10.1175/JHM510.1
https://doi.org/10.1175/JHM-D-13-0104.1
https://doi.org/10.1175/JHM-D-14-0206.1
https://doi.org/10.1029/2012GL053703
https://doi.org/10.1111/nyas.13912


31

Reichle, R. H.; Liu, Q.; Koster, R. D.; Draper, C. S.; Mahanama,832
S. P. P.; Partyka, G. S. Land Surface Precipitation in MERRA-2.833
Journal of Climate 2017, 30 (5), 1643–1664.834
https://doi.org/10.1175/JCLI-D-16-0570.1.835

(32)836
Reichle, Rolf; Lannoy, Gabrielle De; Koster, Randal;837
Crow, Wade; Kimball, John. SMAP L4 Global 3-Hourly 9 Km838
Surface and Rootzone Soil Moisture Geophysical Data, Version 3,839
2017. https://doi.org/10.5067/B59DT1D5UMB4.840

(33)841
Ridley, J.; Menary, M.; Kuhlbrodt, T.; Andrews, M.; Andrews, T.842
MOHC HadGEM3-GC31-MM Model Output Prepared for CMIP6 CMIP, 2019.843
https://doi.org/10.22033/ESGF/CMIP6.420.844

(34)845
Santanello, J. A.; Dirmeyer, P. A.; Ferguson, C. R.; Findell, K.846
L.; Tawfik, A. B.; Berg, A.; Ek, M.; Gentine, P.; Guillod, B. P.;847
van Heerwaarden, C.; Roundy, J.; Wulfmeyer, V. Land–Atmosphere848
Interactions: The LoCo Perspective. Bulletin of the American849
Meteorological Society 2018, 99 (6), 1253–1272.850
https://doi.org/10.1175/BAMS-D-17-0001.1.851

(35)852
Santanello, J. A.; Peters-Lidard, C. D.; Kumar, S. V. Diagnosing853
the Sensitivity of Local Land–Atmosphere Coupling via the Soil854
Moisture–Boundary Layer Interaction. Journal of855
Hydrometeorology 2011, 12 (5), 766–786.856
https://doi.org/10.1175/JHM-D-10-05014.1.857

(36)858
Schwarz, G. Estimating the Dimension of a Model. Ann. Statist. 1978,859
6 (2). https://doi.org/10.1214/aos/1176344136.860

(37)861
Schwingshackl, C.; Hirschi, M.; Seneviratne, S. I. Quantifying862
Spatiotemporal Variations of Soil Moisture Control on Surface863
Energy Balance and Near-Surface Air Temperature. Journal of864
Climate 2017, 30 (18), 7105–7124.865
https://doi.org/10.1175/JCLI-D-16-0727.1.866

(38)867
Sellers, P. J.; Mintz, Y.; Sud, Y. C.; Dalcher, A. A Simple868
Biosphere Model (SIB) for Use within General Circulation Models.869
J. Atmos. Sci. 1986, 43 (6), 505–531.870
https://doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;871
2.872

(39)873
Semmler, T.; Danilov, S.; Rackow, T.; Sidorenko, D.; Barbi, D.;874
Hegewald, J.; Sein, D.; Wang, Q.; Jung, T. AWI AWI-CM1.1MR Model875

https://doi.org/10.1175/JCLI-D-16-0570.1
https://doi.org/10.5067/B59DT1D5UMB4
https://doi.org/10.22033/ESGF/CMIP6.420
https://doi.org/10.1175/BAMS-D-17-0001.1
https://doi.org/10.1175/JHM-D-10-05014.1
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1175/JCLI-D-16-0727.1
https://doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2
https://doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2


32

Output Prepared for CMIP6 CMIP, 2018.876
https://doi.org/10.22033/ESGF/CMIP6.359.877

(40)878
Seneviratne, S. I.; Corti, T.; Davin, E. L.; Hirschi, M.; Jaeger,879
E. B.; Lehner, I.; Orlowsky, B.; Teuling, A. J. Investigating Soil880
Moisture–Climate Interactions in a Changing Climate: A Review.881
Earth-Science Reviews 2010, 99 (3–4), 125–161.882
https://doi.org/10.1016/j.earscirev.2010.02.004.883

(41)884
Seneviratne, S. I.; Lüthi, D.; Litschi, M.; Schär, C.885
Land–Atmosphere Coupling and Climate Change in Europe. Nature886
2006, 443 (7108), 205–209. https://doi.org/10.1038/nature05095.887

(42)888
Shannon, C. E. A Mathematical Theory of Communication. Bell System889
Technical Journal 1948, 27 (3), 379–423.890
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.891

(43)892
Smith, R. A Mutual Information Approach to Calculating893
Nonlinearity: Measuring Nonlinearity with Mutual Information.894
STAT 2015, 4 (1), 291–303. https://doi.org/10.1002/sta4.96.895

(44)896
Swart, N. C.; Cole, J. N. S.; Kharin, V. V.; Lazare, M.; Scinocca,897
J. F.; Gillett, N. P.; Anstey, J.; Arora, V.; Christian, J. R.;898
Jiao, Y.; Lee, W. G.; Majaess, F.; Saenko, O. A.; Seiler, C.; Seinen,899
C.; Shao, A.; Solheim, L.; von Salzen, K.; Yang, D.; Winter, B.;900
Sigmond, M. CCCma CanESM5 Model Output Prepared for CMIP6 CMIP,901
2019. https://doi.org/10.22033/ESGF/CMIP6.1303.902

(45)903
Takemura, T. MIROC MIROC6 Model Output Prepared for CMIP6904
AerChemMIP, 2019. https://doi.org/10.22033/ESGF/CMIP6.9121.905

(46)906
Volodin, E.; Mortikov, E.; Gritsun, A.; Lykossov, V.; Galin, V.;907
Diansky, N.; Gusev, A.; Kostrykin, S.; Iakovlev, N.; Shestakova,908
A.; Emelina, S. INM INM-CM5-0 Model Output Prepared for CMIP6 CMIP,909
2019. https://doi.org/10.22033/ESGF/CMIP6.1423.910

(47)911
Yukimoto, S.; Koshiro, T.; Kawai, H.; Oshima, N.; Yoshida, K.;912
Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.;913
Yoshimura, H.; Shindo, E.; Mizuta, R.; Ishii, M.; Obata, A.; Adachi,914
Y. MRI MRI-ESM2.0 Model Output Prepared for CMIP6 CMIP, 2019.915
https://doi.org/10.22033/ESGF/CMIP6.621.916

(48)917
Zhang, J.; Wang, W.-C.; Wei, J. Assessing Land-Atmosphere Coupling918
Using Soil Moisture from the Global Land Data Assimilation System919

https://doi.org/10.22033/ESGF/CMIP6.359
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1038/nature05095
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/sta4.96
https://doi.org/10.22033/ESGF/CMIP6.1303
https://doi.org/10.22033/ESGF/CMIP6.9121
https://doi.org/10.22033/ESGF/CMIP6.1423
https://doi.org/10.22033/ESGF/CMIP6.621


33

and Observational Precipitation. J. Geophys. Res. 2008, 113 (D17),920
D17119. https://doi.org/10.1029/2008JD009807.921

(49)922
Bayes Factors: Journal of the American Statistical Association:923
Vol 90, No 430924
https://www.tandfonline.com/doi/abs/10.1080/01621459.1995.1047925
6572 (accessed 2021 -10 -01).926

(50)927
GES DISC Dataset: MERRA-2 tavg1_2d_lnd_Nx:928
2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Land929
Surface Diagnostics V5.12.4 (M2T1NXLND 5.12.4)930
https://disc.gsfc.nasa.gov/datasets/M2T1NXLND_5.12.4/summary931
(accessed 2021 -10 -01).932

933

https://doi.org/10.1029/2008JD009807
https://www.tandfonline.com/doi/abs/10.1080/01621459.1995.10476572
https://www.tandfonline.com/doi/abs/10.1080/01621459.1995.10476572
https://disc.gsfc.nasa.gov/datasets/M2T1NXLND_5.12.4/summary

