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Abstract

Surface latent heat fluxes help maintain tropical intraseasonal precipitation. We develop a latent heat flux diagnostic that

depicts how latent heat fluxes vary with the near-surface specific humidity vertical gradient (dq) and surface wind speed (|V|).
Compared to fluxes estimated from |V| and dq measured at tropical moorings and the COARE3.0 algorithm, tropical latent

heat fluxes in the NCAR CEMS2 and DOE E3SMv1 models are significantly overestimated at |V| and dq extrema. Madden–

Julian oscillation (MJO) sensitivity to surface flux algorithm is tested with offline and inline flux corrections. The offline

correction adjusts model output fluxes toward mooring-estimated fluxes; the inline correction replaces the original bulk flux

algorithm with the COARE3.0 algorithm in atmosphere-only simulations of each model. Both corrections reduce the latent

heat flux feedback to intraseasonal precipitation, in better agreement with observations, suggesting that model-simulated fluxes

are overly supportive for maintaining MJO convection.
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Key Points:9

• Latent heat flux shows significant differences between bulk flux schemes as a func-10

tion of wind speed and humidity disequilibrium.11

• Changing bulk flux schemes in model shows a more realistic latent heat flux con-12

tribution on maintaining precipitation.13

• Latent heat flux difference due to bulk flux schemes are non-uniform during dif-14

ferent MJO phases.15
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Abstract16

Surface latent heat fluxes help maintain tropical intraseasonal precipitation. We develop17

a latent heat flux diagnostic that depicts how latent heat fluxes vary with the near-surface18

specific humidity vertical gradient (∆q) and surface wind speed (|V|). Compared to fluxes19

estimated from |V| and ∆q measured at tropical moorings and the COARE3.0 algorithm,20

tropical latent heat fluxes in the NCAR CEMS2 and DOE E3SMv1 models are signif-21

icantly overestimated at |V| and ∆q extrema. Madden–Julian oscillation (MJO) sensi-22

tivity to surface flux algorithm is tested with offline and inline flux corrections. The of-23

fline correction adjusts model output fluxes toward mooring-estimated fluxes; the inline24

correction replaces the original bulk flux algorithm with the COARE3.0 algorithm in atmosphere-25

only simulations of each model. Both corrections reduce the latent heat flux feedback26

to intraseasonal precipitation, in better agreement with observations, suggesting that model-27

simulated fluxes are overly supportive for maintaining MJO convection.28

Plain Language Summary29

Surface latent heat flux from ocean to the atmosphere is one of the important pro-30

cesses that provides water vapor and energy to the daily tropical rainfall. In this study,31

a visually intuitive latent heat flux diagnostic is proposed to better understand the model32

shortfall on its latent heat flux representation. This diagnostic allows a simple assess-33

ment of model latent heat flux biases arising either from biases in water vapor or sur-34

face wind speed as well as other empirical coefficients in the model. We demonstrate that,35

compared to ”observed” fluxes also estimated from water vapor and surface wind speed36

measured at tropical moorings, tropical latent heat fluxes in the NCAR CEMS2 and DOE37

E3SMv1 models are significantly overestimated when extreme water vapor or surface wind38

speed happens.39

Both offline and inline latent heat flux correction is applied to simulated fluxes. For40

both models, the correction reduces the percentage of latent heat flux on supporting the41

rainfall over the tropics which is in better agreement with observations. Particularly, the42

latent heat flux correction are non-uniform across different stages of the Madden–Julian43

oscillation (MJO). This finding suggests that a model improvement on the latent heat44

flux representation will change the simulated MJO.45

1 Introduction46

Marine surface fluxes are the mechanism through which heat, momentum, water47

mass, and gases are transferred between the ocean and atmosphere. Surface sensible and48

latent heat fluxes play an important role in the tropical climate system by cooling the49

ocean surface, regulating the thermal properties of the marine boundary layer, and in-50

vigorating tropical convection through the release of latent heat when water vapor is re-51

condensed in convective updrafts.52

While equatorial latent heat fluxes are generally uncorrelated with precipitation53

over a wide range of scales, for some tropical disturbances, such as the Madden-Julian54

oscillation (MJO; Madden and Julian (1971, 1972)) and certain types of convectively-55

coupled equatorial waves (Kiladis et al., 2009), latent heat fluxes vary coherently with56

precipitation, and thus help maintain convection by replenishing column water vapor lost57

through precipitation formation (Dellaripa & Maloney, 2015; Yasunaga et al., 2019). Re-58

cent studies report that anomalous surface latent heat fluxes offset approximately 7–10%59

of column moisture lost to MJO precipitation formation (Araligidad & Maloney, 2008;60

Dellaripa & Maloney, 2015; DeMott et al., 2015, 2016; Bui et al., 2020). Small variations61

in the tropical surface latent heat flux-precipitation relationship may play an important62

role in regulating MJO periodicity and phase speed (Matsugishi et al., 2020), which may63
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then rectify onto the MJO teleconnection response that modulates the frequency of ex-64

treme weather events globally (Stan et al., 2017; Yadav & Straus, 2017).65

In models, surface latent heat fluxes are parameterized using a variety of bulk flux66

algorithms that estimate the flux based on wind speed (|V|), the vertical gradient of near-67

surface specific humidity (∆q), and an empirically-determined transfer coefficient. Brunke68

et al. (2003) demonstrated that many of the bulk flux algorithms used in modern climate69

models overestimate fluxes when compared to direct flux measurements from field cam-70

paigns, but the then-most recent version of the COARE algorithm (COARE3.0, here-71

after referred to as COARE; (Fairall et al., 2003)) was one of the least problematic. Dif-72

ferences between COARE-estimated fluxes and those estimated from other widely used73

algorithms tend to be largest at low and high wind extremes (Zeng et al., 1998; Brodeau74

et al., 2017). Because winds throughout the MJO lifecycle vary from nearly calm to highly75

disturbed conditions (de Szoeke et al., 2015), fluxes estimated using different bulk flux76

formulae could alter the apparent surface flux feedback to the simulated MJO.77

In this study, we introduce a surface flux diagnostic that illustrates how surface la-78

tent heat fluxes vary as a function of |V| and ∆q, i.e. a “flux matrix”. The diagnostic79

is applied to surface fluxes estimated with in situ data from tropical Pacific moorings80

and the COARE algorithm. It is then applied to output from two Earth system mod-81

els. We use the observational result to estimate an “offline” surface flux correction and82

estimate the effect of the revised flux on MJO column moistening. This offline correc-83

tion is then compared to MJO-flux feedbacks in model simulations where the native bulk84

flux algorithm is replaced with the COARE algorithm. Models and data are described85

in Section 2, and results of the flux matrix analysis are presented in Section 3. Offline86

and inline corrections to model surface fluxes are discussed in Sections 4 and 5, respec-87

tively, and conclusions are given in Section 6.88

2 Models and observation89

We analyze daily mean surface fluxes in two Earth system models, the NCAR Com-90

munity Earth System Model, version 2 (CESM2; (Danabasoglu et al., 2020)) and the DOE91

Energy Exascale Earth System Model, version 1 (E3SMv1; (Golaz et al., 2019)). For of-92

fline surface flux assessments, we use CESM2 output (1998-2014) from the historical (ocean-93

atmosphere coupled) simulation produced for phase 6 of the Coupled Model Intercom-94

parison Project (CMIP6; (Eyring et al., 2016)) (CESM2 hereafter) and E3SMv1 output95

from a historical (ocean-atmosphere coupled) simulation (1995-2014) with daily output96

(E3SMv1 hereafter). For the inline surface flux assessment, we use the E3SMv1 atmosphere-97

only simulation produced by Reeves Eyre et al. (2021) where the native bulk flux algo-98

rithm is replaced with the COARE bulk flux algorithm. In their experiment, the atmo-99

sphere only simulation is forced with repeating ocean and sea-ice data based on obser-100

vation year of 2000 (E3SMv1 climo hereafter). For CESM2, we used the same code base101

developed by Reeves Eyre et al. (2021) for our inline experiments with a 1979-2009 AMIP-102

type (atmosphere-only) simulation (CESM2 amip hereafter).103

Variables needed for our analysis include the daily mean latent heat flux (LH), rain-104

fall (R), 10 meter wind speed (|V|), 2 meter specific humidity (q2m), surface tempera-105

ture (Tsfc), and sea level pressure (Psfc). We use sea surface temperature reduced by106

0.2 K (Zeng et al., 1998; Donlon & the GHRSST-PP Science Team, 2005) to estimate107

the sea surface skin temperature if the simulation output does not provide surface tem-108

perature. Tsfc and Psfc determine the saturated specific humidity (q∗sfc) at the air-sea109

interface which is further used to calculate the disequilibrium of moisture at the surface110

(∆q = 0.98q∗sfc − q2m) where q∗sfc is reduced by 0.02 to account for the reduction of111

q∗ by salinity (Zeng et al., 1998). CESM2 in both CMIP6 and AMIP simulations pro-112

vide all the listed variables. E3SMv1 CMIP6 simulation, on the other hand, provides |V|113
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and q at 1000 hPa. We follow de Szoeke et al. (2012) to estimate Tsfc and q2m (See sup-114

plemental information for additional details).115

For observations, we use daily means of the above fields collected with the TAO/TRITON116

(McPhaden et al., 1998) and RAMA (McPhaden et al., 2010) mooring arrays over the117

tropical Pacific and the Indian Ocean. These data are available from the National Oceanic118

and Atmospheric Administration Pacific Marine Environmental Laboratory at https://119

www.pmel.noaa.gov/gtmba/. The latent heat flux measurement provided by the obser-120

vation is based on the COARE3.5 bulk flux algorithm, which is the same as COARE 3.0121

for latent heat flux (Edson et al., 2013). COARE is not a direct co-variance measure-122

ment of the surface flux, but provides one of the more accurate estimates of directly mea-123

sured surface fluxes (Brunke et al., 2003; Brodeau et al., 2017).124

For intraseasonal variability and the MJO, our region of interest is the tropical In-125

dian Ocean and western tropical Pacific from November through April, when MJO events126

propagate farthest eastward (Zhang & Dong, 2004). For intraseasonal analysis, all time127

series are computed as anomalies from the mean annual cycle (i.e., the mean and first128

four harmonics) and then filtered using a 20-100 day band-pass Lanczos filter with 60129

weights.130

3 Latent heat flux matrix131

The bulk form of the latent heat flux (LH) can be written as132

LH = ρLvCe|V|∆q; ∆q = q∗sfc − q2m (1)

where ρ is the near-surface air density, Lv is the latent heat of vaporization, Ce is the133

transfer coefficient, and |V| and ∆q are the same as described above. Different algorithms134

use different parameterizations of Ce, which varies primarily as a function of |V|, with135

additional sensitivity to stability of the marine boundary layer (Fairall et al., 2003), wind136

gustiness (Redelsperger et al., 2000) and ocean wave state (Bourassa et al., 1999).137

Based on Eq. 1, we designed a latent heat flux matrix diagnostic. Using daily mean138

values over the tropical Indian Ocean and western tropical Pacific (20◦S–20◦N and 30◦E–139

180◦E), we average the latent heat flux values based on |V| with a 1 m s−1 bin width,140

and ∆q with a 1 g kg−1 bin width (Figure 1a). We also calculate the frequency of oc-141

currence for each |V|–∆q bin. This diagnostic visually illustrates the relationship between142

LH, |V|, and ∆q, and allows for a more nuanced assessment of model latent heat flux143

biases than possible with seasonal mean difference maps.144

The latent heat flux matrix from different datasets shows the discrepancies caused145

by the different transfer coefficients used in different bulk flux algorithms (Figure 1b-d).146

The latent heat flux biases from CESM2 and E3SMv1 are similar since they use the same147

bulk flux algorithm (Large & Yeager, 2004, 2009). The largest biases are found at ex-148

treme values of |V| and ∆q, indicating that the models overestimate the flux in these149

conditions. Small differences in biases between CESM2 and E3SMv1 likely arise from150

uncertainties introduced when estimating E3SMv1 near-surface T , q, and |V| values from151

those reported at 1000 hPa (see Supplement). For the most frequently observed condi-152

tions (within the 1% white contours in Figure 1), latent heat flux biases range from -20153

Wm−2 to 20 Wm−2 for both models, or 4-8% of the original latent heat flux values. These154

biases are statistically significant with 99% confidence.155

4 Offline correction of latent heat flux and estimated effect on MJO156

The offline correction to model latent heat fluxes is achieved by dividing all model157

fluxes within a given |V|–∆q bin by the model-to-mooring flux ratio for that bin. Since158

it is an offline correction, the changes in the latent heat flux cannot affect the precip-159
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Figure 1. Latent heat flux (shading) binned by 10 m winds speed with 1 m/s width of each

bin and the moisture disequilibrium (∆q) with 1 g/kg width based on (a) TAO/TRITON and

RAMA array over the Indian Ocean and western tropical Pacific (Obs). The same binned latent

heat flux matrix subtracts the Obs’s latent heat flux matrix from (b) CESM2 and (c) E3SMv1.

The dotted area means the biases are statistically significant with 99% confidence. The white

thick contour line represents the probability of occurrence of 1%. The thin green and yellow

contours represent the mean precipitation of 5 mm/day and 10 mm/day, respectively.

itation and circulations in the original simulation. This gives us a chance to quickly ex-160

amine how large of a change in latent heat flux might be expected with the COARE al-161

gorightm given the |V| and ∆q inputs of the existing simulation.162

To understand how such changes to surface fluxes might affect the simulated MJO,163

we regress intraseasonal latent heat flux anomalies onto intraseasonal precipitation anoma-164

lies, where precipitation is expressed in units of W m−2 (Figure 2). As in Bui et al. (2020),165

we first focus on a small region in the western tropical Pacific (160◦E-180◦ and 10◦S-8◦S).166

Based on satellite-derived observational data, Bui et al. (2020) showed that intraseasonal167

latent heat fluxes maintain about 7% of intraseasonal precipitation, with a correlation168

of 0.79. Araligidad and Maloney (2008) and Dellaripa and Maloney (2015) found sim-169

ilar results with fluxes estimated with mooring data in other tropical regions.170

Latent heat flux–precipitation regression slopes for E3SMv1 and CESM2 are shown171

in Figures 2a,b. E3SMv1 and CESM2 both overestimate the regression slope for their172

original flux values (11.3%±0.8% and 9.3%±0.6%, respectively). With COARE-estimated173

fluxes, E3SMv1 and CESM2 regression slopes are reduced to 9.7%±0.7% and 8.2%±174

0.6%, respectively, in closer agreement to observations. The change is statistically sig-175

nificant with 99% confidence for E3SMv1, and 95% confidence for CESMs. The smaller176

regression coefficient with the offline-corrected fluxes suggests that surface fluxes sim-177

ulated with the original bulk flux schemes in E3SMv1 and CESM2 may artificially main-178

tain intraseasonal convection in those models.179

To explore how surface flux changes might affect intraseasonal precipitation else-180

where in the Warm Pool, we calculated regression coefficients for the original and cor-181

rected flux time series at each grid point for each model. The spatial patterns and mag-182

nitudes of regression slope are similar between the two models (Figure 2c, d), with pos-183

itive values located mainly south of the equator, consistent with the typical MJO prop-184

agation pathway for this time of year (Kim et al., 2017). Changes to the regression slope185

when using the offline-corrected fluxes are shown in Figure 2e, f). For E3SMv1, the of-186

fline correction yields both positive and negative changes to the regression slope, while187

the changes are mostly negative for CESM2.188
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Figure 2. The scatter plot of November–April precipitation and latent heat flux anomalies

(units of W m−2 for both) averaged over 160◦E-180◦ and 10◦S-8◦S for (a) E3SMv1 and (b)

CESM2. Blue and orange dots correspond to original and offline-corrected latent heat fluxes,

respectively. The linear regression for both are shown in the legend. (c, d) maps of the regression

coefficient (unitless) at each grid point for the original surface flux and (e, f) maps of regression

slope changes after applying the flux correction. Black dots show locations of TAO/TRITON and

RAMA moorings used to construct the flux matrix shown in Figure 1a.
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There are at least two possible reasons for the more widespread increase of the re-189

gression slope in E3SMv1 as compared to CESM2. Foremost, since the latent heat cor-190

rection performed in our analysis is determined by the binned |V| and ∆q, the spatially191

varying slope differences between the two models must relate to differences in the spa-192

tial and temporal distributions of these variables between the two models. Some of the193

difference, however, may arise from small differences in the true values of |V| and ∆q194

in E3SMv1 and our estimations of those quantities from their 1000 hPa surrogates (see195

Supplement). However, we emphasize that the differences in regression slope changes with196

flux correction are generally smaller than 3%, while the baseline regression slopes are mostly197

in the range of 9–12%.198

For both models, positive changes in regression slope are mainly located in areas199

with negative regression slopes in Figure 2c and d), and vice versa. This shows that the200

models tend to overestimate the magnitude of the regression slopes no matter if they are201

positive or negative. Furthermore, for both models, flux correction leads to larger de-202

creases in regression slopes in the subtropics (i.e., poleward of about 10◦ latitude) than203

in the deep tropics (10◦S–10◦N) across the Indian Ocean and extending as far east as204

120◦E. This suggests that corrected surface fluxes for these longitudes would be less sup-205

portive of intraseasonal rainfall in the subtropics than in the deep tropics.206

Finally, we examine how flux correction might change surface fluxes within the MJO207

lifecycle by regressing lagged flux and precipitation anomaly time series averaged from208

15◦S–15◦N onto 20–100 day filtered precipitation at a base point in the eastern Indian209

Ocean (85◦E-95◦E and 5◦S-5◦N). For the coupled simulations shown in Figure 3, MJO210

precipitation in both models exhibits eastward propagation typical of many climate mod-211

els (Ahn et al., 2020). Latent heat flux anomalies (shading in Figure 3) in E3SMv1 are212

positive over much of the Indian Ocean from lag 0 to lag 10. In contrast, fluxes in CESM2213

are mostly negative, except for smaller positive patches near the MJO convection cen-214

ter at lag 0, and gradually expanding westward by lag 10. Replacing each model’s orig-215

inal flux with the COARE-estimated flux yields non-uniform changes to the fluxes across216

the MJO lifecycle (Figure 3c, d), reducing the flux during enhanced rainfall, and increas-217

ing the flux during suppressed rainfall. In both simulations, the COARE-estimated flux218

contributes less column moistening during the MJO active phase (positive rainfall anoma-219

lies) and more column moistening during its suppressed phase (negative rainfall anoma-220

lies). This suggests that, compared to the models’ original fluxes, COARE-estimated fluxes221

would be slightly more supportive of MJO eastward propagation and less supportive of222

MJO maintenance.223

5 Inline correction of latent heat flux and effect on simulated MJO224

Here, we examine the effects of the COARE algorithm on intraseasonal precipita-225

tion using an inline correction. Two atmosphere-only simulations of both models were226

performed, one with the original flux algorithm, and one with the COARE3.0 algorithm.227

Reeves Eyre et al. (2021) provided output from the E3SM atmosphere-only simulations.228

In these six-year simulations, the model was forced with a repeating cycle of observed229

monthly SSTs from the year 2000. We then performed a pair of 20-year simulations with230

the atmospheric component of CEMS2 with the original and the COARE3.0 algorithm231

using the same code modifications as in Reeves Eyre et al. (2021) and forced with ob-232

served SSTs from 1979-2009. We refer to these simulations as E3SM climo and CESM2 amip233

to distinguish them from the coupled simulations analyzed with our offline corrections234

(Section 4).235

We find statistically significant changes with 90% confidence in the flux-precipitation236

regression slope in E3SM climo (12.8%±0.7% and 11.6%±0.8%, respectively) but not237

in CESM2 amip (12.3% ± 0.3% and 11.9% ± 0.4%, respectively) in the regional aver-238

aged analysis (160◦E-180◦ and 10◦S-8◦S; Supplementary Figure 1a, b). Overestimation239
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Figure 3. The lead-lag Hovmoller diagram of precipitation (contour with 0.1 interval) and

latent heat flux (shaded) regression with base point mean precipitation (5◦S-5◦N and 85◦E-95◦E)

during November to April in (a) E3SMv1 with original bulk flux algorithm, (b) CESM2 with

original bulk flux algorithm, and offline corrected latent heat fluxes minuses original latent heat

fluxes in (c) E3SMv1 and (d) CESM2 with stippled regions showing the differences are significant

with 90 % confidence interval.

of the regression slope in both models is magnified compared to the coupled simulations240

(Figure 2a, b), likely due to the missing feedback of SST cooling in the coupled simu-241

lations. However, both simulations show decreased regression slopes after changing to242

the COARE algorithm. This effect is consistent over much of the tropics (Supplemen-243

tary Figure 1c–f), but less so for E3SM climo, where COARE fluxes are more support-244

ive of MJO convection across the equatorial Indian Ocean. With COARE, regression slopes245

become slightly more positive over the Maritime Continent for both models.246

We next examine the effect of the COARE algorithm on the evolution of intrasea-247

sonal precipitation and surface fluxes. In contrast to the eastward propagating signal seen248

in the coupled simulations (Figure 3), precipitation in the atmosphere-only simulations249

exhibits distinct westward propagation for both E3SM climo simulations (Figure 4a, c)250

and for the CESM2 amip simulation with the original flux algorithm Figure 4b). This251

is consistent with the well-known tendency for uncoupled simulations to struggle with252

simulating eastward propagating intraseasonal signals compared to coupled simulations253

of the same model ((DeMott et al., 2015) and references therein). For E3SM climo, the254

effect is likely further exaggerated by a lack of interannual SST variability that has been255

shown to bolster MJO eastward propagation in climate models (Klingaman & DeMott,256

2020). Compared to the simulation with the original flux algorithm, the CESM2 amip257

simulation with COARE fluxes (Figure 4d) produces noticeably less westward propaga-258

tion, yielding a mostly standing oscillation.259

Changes to surface fluxes across the intraseasonl precipitation oscillation are most260

apparent when comparing flux changes east and west of 90◦E at lag 0. At this lag, pre-261

cipitation is more suppressed to the east, and more enhanced to the west (Figures 4a–262

d). Changing to the COARE flux algorithm leads to enhanced surface fluxes near and263

east of precipitation and reduced fluxes west of precipitation. These changes are qual-264

–8–



manuscript submitted to Geophysical Research Letters

Figure 4. The lead-lag Hovmoller diagram of precipitation (contour with 0.1 interval) and

latent heat flux (shaded) regression with base point mean precipitation (5◦S-5◦N and 85◦E-

95◦E) during November to April in (a) E3SM climo with original bulk flux algorithm, (b)

CESM2 amip with original bulk flux algorithm, (c) E3SM climo with COARE bulk flux al-

gorithm, (d) CESM2 amip with COARE bulk flux algorithm, (e) (c) minuses (a), and (f) (d)

minuses (b) with stippled regions showing the differences are significant with 95 % confidence

interval.

itatively similar to those for the offline flux correction (Figure 3c, d) and offer further265

support for the idea that COARE fluxes may encourage MJO eastward propagation by266

enhancing column moistening to the east of precipitation and reducing it to the west.267

6 Summary and Conclusions268

In this study, we develop a simple diagnostic method to illustrate surface fluxes based269

on bulk algorithm inputs (|V| and ∆q) and then use this diagnostic to compute surface270

flux biases. Compared to western tropical Pacific surface fluxes computed with in situ271

observations and the COARE3.0 bulk flux algorithm, which well-estimates directly mea-272

sured surface fluxes (Brunke et al., 2003), surface fluxes in the E3SMv1 and CESM2 cli-273

mate models are too large at very low and very high wind speeds.274

To investigate how this difference in latent heat flux might affect the MJO, we used275

our flux matrix diagnostic to adjust model-simulated fluxes to COARE-estimated fluxes276

within each |V|–∆q bin (i.e., the offline correction). We found that this adjustement re-277

duced the latent heat flux support of intraseaonal precipitation in both models, bring-278

ing it closer to observations. Longitude-lagged precipitation and latent heat flux com-279

posites reveal that offline flux correction increases the flux during the MJO convectively280
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suppressed phase and reduces the flux during the MJO convectively active phase, sug-281

gesting that fluxes computed with the COARE algorithm are less supportive of MJO con-282

vection and may help promote MJO eastward propagation.283

To test this idea, we analyzed the latent heat flux–precipitation relation in atmosphere-284

only simulations with E3SM climo and CESM2 amip with the original and the COARE285

bulk flux algorithms (i.e., the inline correction). Similar to the results with the offline286

corrections, surface fluxes with the COARE algorithm were also less supportive of in-287

traseasonal convection, in better agreement with observations. The effect of COARE sur-288

face fluxes on the MJO propagation was difficult to assess, since both models simulate289

strong westward propagating disturbances in these uncoupled simulations. However, COARE290

fluxes in CESM2 amip did reduce westward propagation in that model.291

Our findings suggest that MJO simulation in climate models may be sensitive to292

the choice of algorithm for computing surface fluxes. This has several implications. First,293

as the MJO regulates extreme weather over much of the globe via teleconnections (Stan294

et al., 2017), changes to MJO amplitude and propagation will affect these teleconnec-295

tions. Second, if COARE surface fluxes contribute to enhanced MJO eastward propa-296

gation in fully coupled simulations, as our results here suggest they should, this could297

increase the number of simulated MJO events that reach the western Pacific Ocean, where298

its low-level westerly wind anomalies can initiate oceanic Kelvin waves that help expand299

the eastern edge of the Warm Pool (Puy et al., 2016) and contribute to the onset of El Niño300

events (Hendon et al., 2007). Finally, updating the bulk surface flux algorithm in cou-301

pled models will affect ocean-atmosphere coupled processes globally. Indeed, Reeves Eyre302

et al. (2021) found statistically significant changes to mean cloud fields and cloud radia-303

tive effects with the COARE algorithm in the E3SM climo experiments analyzed in our304

study. To explore how changes in the bulk flux algorithm are manifested in fully cou-305

pled simulations, we are running coupled simulations of the E3SM with the COARE bulk306

flux algorithm.307
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Introduction The supplementary information includes the text explaining the derivation

of the surface variables based on the 1000 hPa field in E3SMv1 coupled simulation and the

figure showing the relationship between latent heat flux and intra-seasonal precipitation

in the E3SM climo and CESM2 amip simulations.

Text S1 Surface variables for E3SMv1 CMIP6 simulation: The simulation provides |V|

and q at 1000 hPa. Following de Szoeke et al., (2012), we use the Monin-Obukhov

Similarity Theory to estimate Tsfc and q2m for the simulation. Following their approach,
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we use the wind velocity and specific humidity at 1000hPa to derive the surface values

based on

u10m =
u∗

k
(ln(

10

z0
)−Ψ(

10

L
)) (1)

q2m = q(1000hPa) +
q∗

k
(ln(

z(1000hPa)

2
) + Ψ(

2

L
)−Ψ(

z(1000hPa)

L
)) (2)

, where k is the von Kármán constant, L the Monin–Obukhov length, stability parameters

q∗ and u∗ which parameterized the vertical turbulence flux are iteratively derived, and Ψ

is determined by the stability condition based on L. We also adjust the background mean

field of the derived daily q2m and u10m to their mean values obtained from the monthly

output from the E3SMv1 historical simulation in the CMIP6 repository.
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Figure S1. The scatter plot of mean precipitation and mean latent heat flux over the 160◦E-

180◦ and 10◦S-8◦S region in the unit of W/m2 during Nov-Apr of each year in (a) E3SM climo

and (b) CESM2 amip simulations. The blue dot represents the latent heat flux determined using

the original bulk flux algorithm while the orange dot represents the COARE bulk flux algorithm.

The linear regression for both original and COARE result are shown in the legend. The map of

regression slope value at each grid point during Nov-Apr of each year in (c) E3SM climo and (d)

CESM2 amip simulations based on the original bulk flux algorithm in the models. The map of

regression slope changes after the latent heat flux is determined based on the COARE bulk flux

algorithm in (e) E3SM climo and (f) CESM2 amip simulations.

November 16, 2021, 9:22pm


