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Abstract

The potential of genomic selection (GS) to increase the efficiency of breeding programs has been clearly demonstrated; however,

the implementation of GS in rice (Oryza sativa L.) breeding programs has been limited. In recent years, we have begun

to work towards implementing GS into the LSU AgCenter rice breeding program. One of the first steps for successful GS

implementation is to establish a suitable marker set for the target germplasm and a reliable, cost-effective genotyping platform

capable of providing informative marker data with an adequate turnaround time. In this study, we develop an optimized

a marker set, the LSU500, for application of routine GS in Southern U.S. rice germplasm. The utility of the LSU500 was

demonstrated using four years of breeding data across 8,473 experimental lines and four elite bi-parental populations. The

predictive ability of GS ranged from 0.13 to 0.78 for key traits across different market classes and yield trials. Comparisons

between phenotypic selection and GS within bi-parental populations using the LSU500 provided evidence of the potential

of GS to improve the efficiency of a rice breeding program. The design of this marker set followed a continuous integration

strategy, whereby GS is initially introduced into a breeding program while technical and strategic aspects of GS implementation

are evaluated, optimized, and integrated into the breeding pipeline on-the-go. The LSU500 marker set has been established

through the genotyping service provider Agriplex Genomics, and in the future, it will undergo improvements to reduce the cost

and increase the accuracy of GS.
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ABSTRACT 26 

The potential of genomic selection (GS) to increase the efficiency of breeding programs has been 27 

clearly demonstrated; however, the implementation of GS in rice (Oryza sativa L.) breeding 28 

programs has been limited. In recent years, we have begun to work towards implementing GS 29 

into the LSU AgCenter rice breeding program. One of the first steps for successful GS 30 



implementation is to establish a suitable marker set for the target germplasm and a reliable, cost-31 

effective genotyping platform capable of providing informative marker data with an adequate 32 

turnaround time. In this study, we develop an optimized a marker set, the LSU500, for 33 

application of routine GS in Southern U.S. rice germplasm. The utility of the LSU500 was 34 

demonstrated using four years of breeding data across 8,473 experimental lines and four elite bi-35 

parental populations. The predictive ability of GS ranged from 0.13 to 0.78 for key traits across 36 

different market classes and yield trials. Comparisons between phenotypic selection and GS 37 

within bi-parental populations using the LSU500 provided evidence of the potential of GS to 38 

improve the efficiency of a rice breeding program. The design of this marker set followed a 39 

continuous integration strategy, whereby GS is initially introduced into a breeding program 40 

while technical and strategic aspects of GS implementation are evaluated, optimized, and 41 

integrated into the breeding pipeline on-the-go. The LSU500 marker set has been established 42 

through the genotyping service provider Agriplex Genomics, and in the future, it will undergo 43 

improvements to reduce the cost and increase the accuracy of GS.  44 



INTRODUCTION 45 

DNA marker information is widely used for implementing marker-assisted selection 46 

(MAS) to improve the efficiency and precision of conventional plant breeding programs in 47 

different crops, including rice (Oryza sativa) (Collard & Mackill, 2008). The utility of MAS is 48 

greatest when the target of selection involves a single gene or locus of large phenotypic effect, 49 

and is often used to introgress useful traits into breeding populations (Cobb et al., 2019). 50 

However, many important traits in a plant breeding program, including yield and quality, are 51 

inherited in a highly quantitative manner and are determined by many genes of small effect. 52 

Thus, MAS is not an effective method for selection of these traits. Highly polygenic traits are 53 

often difficult to select because they are affected by the environment and have lower heritability 54 

making phenotypic selection in the early breeding stages inefficient.  55 

The introduction of genomic selection (GS), which uses genome-wide marker 56 

information to predict breeding values, has enabled prediction of quantitative traits within 57 

breeding populations (Bernardo, 1994; Meuwissen et al., 2001). Genomic selection leverages 58 

information from a training population that is both genotyped and phenotyped to train a 59 

statistical model that predicts the performance of related individuals referred to as the prediction 60 

set. The prediction set is genotyped but not phenotyped, and the genomic estimated breeding 61 

value (GEBV) is calculated using genotypic information. The implementation of GS can increase 62 

the genetic gain of a breeding program by improving the accuracy of selection, increasing 63 

selection intensity, reducing breeding cycle time, and also decreasing the cost of the breeding 64 

program operations (Crossa et al., 2017; Heffner et al., 2010; Hickey et al., 2017; Voss-Fels et 65 

al., 2019).  66 



Despite the demonstrated potential of GS to improve the efficiency of rice breeding 67 

programs (Grenier et al., 2015; Monteverde et al., 2018; Spindel et al., 2015; Xu et al., 2021), the 68 

implementation of GS in applied breeding programs has been limited. This can be attributed to 69 

changes in required skill sets and processes within the breeding program that are necessary for 70 

routine applications of GS. Among these are the requirement to adopt a data management system 71 

for storing and accessing phenotypic and genotypic data, routine use of data analysis and 72 

breeding decision-support tools, optimization of the breeding pipeline, and employment of 73 

people with new skill-sets within the traditional breeding program (Santantonio et al., 2020).  74 

One of the first steps for successful GS implementation is to establish a suitable marker 75 

set for the target germplasm and a reliable, cost-effective genotyping platform capable of 76 

providing informative marker data with fast turnaround time and low cost. The optimal marker 77 

density for GS will depend on the extent of linkage disequilibrium (LD) across the genome in the 78 

target germplasm (Heffner et al., 2009), the number of independent chromosomal segments that 79 

need to be tracked in the target population (Daetwyler et al., 2010), and the heritability of the 80 

trait (Goddard & Hayes, 2007). In an applied and/or commercial plant breeding program, the 81 

effective population size is often small, leading to strong genome-wide LD (Flint-Garcia et al., 82 

2003); therefore, a relatively small number of selected markers is capable of tagging each 83 

independent LD block and can be used to predict breeding values with good accuracy. This has 84 

been demonstrated in wheat (Juliana et al., 2019), barley (Abed et al., 2018), and rapeseed 85 

(Werner et al., 2018), where a few hundred to a few thousand markers enable high GS prediction 86 

accuracies that are comparable to high marker densities. In addition, breeding programs often 87 

breed for different market classes or heterotic groups, creating distinct population structures 88 

within the breeding population. Taking advantage of this structure in defining the training 89 



populations helps to maintain high LD within the segments and consequently reduce the number 90 

of markers required for GS. 91 

Rice is a model crop species, and numerous marker sets are available with varying 92 

marker densities; examples include the 1k-RiCA (Arbelaez et al., 2019), the C7AIR (7K) 93 

(Morales et al., 2020), the 44K-SNP chip (Zhao et al., 2011), and the 700K-SNP High Density 94 

Rice Array (McCouch et al., 2016). While these arrays represent a rich resource of validated 95 

SNPs for genome-wide association analysis and genetic diversity analysis, they are not ideal for 96 

breeding applications where the genetic diversity of the material is relatively narrow. The cost 97 

per sample and inflexibility of these arrays hinders their use for routine genotyping for GS where 98 

the majority of SNPs tend to be monomorphic in the breeding germplasm. However, these 99 

established marker sets represent invaluable resources for identifying tailored subsets of reliable, 100 

high-quality SNPs known to segregate in the target breeding germplasm.  101 

Sequence-based genotyping approaches, including genotyping-by-sequencing (GBS), 102 

have also been used for breeding applications (Poland & Rife, 2012); however, their application 103 

requires bioinformatic skills to process the raw data and use the genotypic information, adding 104 

an additional layer of complexity for a breeding program.  105 

In recent years, the utilization of highly multiplexed amplicon sequencing (AmpSeq) 106 

technologies (Yang et al., 2016) has provided the opportunity to efficiently genotype hundreds to 107 

thousands of selected SNPs at a relatively low cost per sample and offer flexibility in marker set 108 

design. Thus, these technologies strike the ideal balance between cost per sample, marker 109 

density, and flexibility making it possible to continually update and optimize the design of the 110 

market set. The strategy of designing highly informative, lower density chips for breeding 111 



applications using the AmpSeq technology has been recently pursued for tropical rice (Arbelaez 112 

et al., 2019). 113 

Another strategy to reduce the cost while increasing the efficiency of genotyping is to 114 

outsource to a genotyping service provider, which eliminates the need to buy and maintain 115 

sophisticated equipment and to hire trained personnel for the breeding program. The large-scale 116 

operations of genotyping service providers allow them to reduce the genotyping costs and offer 117 

lower prices per sample to consumers. Agriplex Genomics, Diversity Array Technology (DArT), 118 

Intertek AgriTech, NRGene Technologies, Eurofins Genomics, and LGC Ltd are examples of 119 

such service providers.  120 

Existing rice genotyping marker sets have been previously developed to represent the 121 

range of genetic variation within the species and are reliable sources of validated SNPs. We 122 

targeted the C7AIR rice SNP array (7K) (Morales et al., 2020) as the primary source of 123 

informative and validated SNPs for inclusion in our AmpSeq genotyping platform. The 7K array 124 

was developed to detect genome-wide polymorphism within and between subpopulations of O. 125 

sativa, O. glaberrima, O. rufipogon, and O. nivara. Its ability to detect polymorphism in 126 

different species and subpopulations of rice was demonstrated based on genotyping of a set of 127 

544 diverse Oryza accessions. Given that our breeding program is focused almost entirely on 128 

tropical japonica varieties, we were interested to observe that 2,086 SNPs well distributed across 129 

the rice genome were polymorphic in the 74 tropical japonica varieties tested (Morales et al., 130 

2020). Thus, the 7K array was considered sufficient to capture the range of genetic diversity 131 

relevant to our breeding program and was used to develop an optimized set of markers for an 132 

AmpSeq marker set. An initial set of 1,200 informative and well-distributed SNPs from the 7K 133 

array were identified for the target germplasm, and the LSU1200 marker set was developed for 134 



Agriplex Genomics, Cleveland, OH, USA (https://agriplexgenomics.com/) AmpSeq genotyping. 135 

Subsequently, a subset of 550 SNPs (LSU500) was selected and validated for GS 136 

implementation within Southern U.S. rice breeding germplasm.   137 



MATERIALS AND METHODS 138 

Genetic material 139 

A set of 342 lines, the representative germplasm set (RGS), was genotyped with the C7AIR rice 140 

SNP array (7K) (Morales et al., 2020). The RGS was selected to represent the genetic diversity 141 

of a Southern U.S. rice breeding program and consists of 66 modern and historical varieties, 142 

advanced breeding lines, and 276 experimental lines from the largest segment of the target 143 

breeding program. Subsequently, the LSU1200 marker set was used to genotype a total of 4,230 144 

lines. These lines consisted of 2,067 experimental lines from preliminary yield trials (PYTs) 145 

grown at the H. Rouse Caffey Rice Research Station (HRCRRS) from 2017 to 2019, 1,779 lines 146 

from six different bi-parental mapping populations, and 384 lines from a diversity panel (DP) 147 

that represents the genetic diversity of the U.S. germplasm, including accessions from different 148 

regions of the world (Addison et al., 2020, 2021; Angira et al., 2019). Finally, the LSU500 set 149 

was used to genotype 6,406 experimental lines tested from 2018 to 2020 in PYTs and multi-150 

environmental trials. Four bi-parental populations – MPA, MPB, MPC, MPD – were developed 151 

through single seed descent in the greenhouse, then grown as F3:4 panicle rows in 2019 and tested 152 

as F3:5 plots in 2020 at HRCRRS. All MP2 lines were genotyped with the LSU1200 at the 153 

generation of derivation (F3). The MPA population originated from the cross CL111/RoyJ, MPB 154 

from CL153/LaKast, MPC from CL172/Cypress, and MPD from Presidio/Catahoula. MPA 155 

consisted in 297 unique row entries and 130 plot entries, MPB consisted in 296 row entries and 156 

100 plot entries, MPC consisted in 279 row entries and 100 plot entries, and MPD consisted in 157 

286 row entries and 100 plot entries.  158 

Genotyping  159 

The RGS was genotyped with the C7AIR rice SNP array (7K) (Morales et al., 2020) at the 160 

Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA. The 161 



LSU1200 and LSU500 were genotyped through PlexSeqTM, a mid-density multiplex Next 162 

Generation amplicon sequencing (AmpSeq) through the genotyping service provider Agriplex 163 

Genomics, Cleveland, OH, USA (https://agriplexgenomics.com/). Leaf samples were collected 164 

from fresh leaves and stored at freezing temperatures. Experimental breeding lines were sampled 165 

from plots when first tested, while the bi-parental populations were sampled when harvesting 166 

individual plants at the generation of derivation. 167 

Phenotypic data 168 

All PYTs were grown in randomized complete block designs at the HRCRRS, near Crowley, LA 169 

(30°14'30"N, 92°20'46"W) and were separated according to different grain classes (long grain 170 

and medium grain) and different herbicide resistances (Clearfield®, Provisia®, and conventional). 171 

Two rows for each bi-parental line were grown as F3:4 at the HRCRRS in 2019. The 2020 bi-172 

parental trial was tested with an augmented complete block design at the HRCRRS as F3:5 plots. 173 

All PYTs and bi-parental plots were drill seeded in plots 1.42m wide and 4.12m long with a 174 

Heavy-Duty Grain Drill (ALMACO) at a seeding rate of 100 kg ha-1 at a depth of 2 cm. The 175 

water management and fertilization followed the standard practices for Louisiana rice (Saichuk 176 

et al., 2014). Grain yield was determined by harvesting the entire plot with a Delta Plot combine 177 

(Wintersteiger AG), and a Harvest Master Grain Gauge (Juniper Systems) was used to collect 178 

grain weight and moisture. Moisture values of each plot were adjusted to 120 g kg-1 water 179 

content. Milling samples (100 g) milled on a PAZ laboratory mill (ZaccariaUSA) to measure 180 

milling yield expressed as g kg-1 of whole milled kernels over rough rice seed. Days to heading 181 

was measured as the number of days between the date of emergence and the day when 50% of 182 

the plot or row had panicles emerging from the sheath of the flag leaf. Plant height was measured 183 

as cm from the soil surface to the panicle tip at maturity; two measures per line were averaged on 184 



the rows, while only one measure was recorded for the plots. Chalk, reported as percentage of 185 

chalky area of the milled grain and grain length was measured with SeedCount (Next 186 

Instruments). These grain traits were measured only on 147 lines for MPA, 112 for MPB, 133 for 187 

MPC, and 155 for MPD. Grain yield and milling yield data were not collected on the bi-parental 188 

rows. 189 

Filtering and marker set design 190 

Data from the RGS were used to develop the LSU1200 marker set and then further filtered to 191 

obtain the LSU500 set. The RGS was split into two sets prior to filtering: key modern and 192 

historical lines and the most recent experimental lines from a PYT representing the program’s 193 

largest market class segment. As the PYT lines made up the majority of the RGS, the data were 194 

split and independently filtered to avoid over-prioritizing markers that happened to capture the 195 

diversity in one year’s PYT but may not be as informative for Southern U.S. germplasm as a 196 

whole. After splitting the data, TASSELv5 (Bradbury et al., 2007) was used to filter markers for 197 

a minor allele frequency (MAF) greater than 0.1 and less than 20% missing data. After filtering, 198 

the –blocks method from PLINK 1.9 (Purcell et al., 2007) was used to identify haplotype blocks. 199 

The haplotype blocks represent groups of SNPs with alleles that are co-inherited due to linkage. 200 

Haplotype alleles were identified for each block and a custom Python script was used to select 201 

the minimum number of SNP markers needed to uniquely identify each haplotype block using a 202 

greedy algorithm. The ~1,000 markers chosen from this analysis were combined with trait and 203 

purity markers to obtain the set of 1,218 markers referred to as the LSU1200. Pedigree strings 204 

from lines grown from 2017-2019 were used to identify a set of lines that were representative of 205 

the program’s diversity. In addition to these lines, lines from several bi-parental mapping 206 

populations and the DP were included to give a total of 4,230 experimental lines. These 207 



experimental lines were used to validate the LSU1200 set. The LSU500 set was developed by 208 

filtering the LSU1200 within the validation set. After removing markers with high rates of 209 

missing values, the MAF was calculated for all markers. Adjacent markers were considered in 210 

blocks of two, and the markers with the lowest MAF were dropped in each pair to obtain the 211 

LSU500. 212 

Analysis 213 

The analyses were conducted on the statistical computing software environment R (R Core 214 

Team, 2020).  Marker density plots were designed with the R package “CMplot” (Yin et al., 215 

2021). The linear mixed models were fit with “ASReml-R v4” (Butler et al., 2018). The genomic 216 

relationship matrix (K) was calculated from molecular markers with “ASRgenomics” (Gezan et 217 

al., 2021) using the (VanRaden, 2008) equation. Outliers in PYTs were removed with 218 

studentized residuals above 3 and below -3. The marker subsets were calculated by removing 219 

adjacent markers by physical distance. The pedigree-based additive relationship matrix A was 220 

obtained with the R package “AGHmatrix” (Amadeu et al., 2016). The narrow-sense heritability 221 

(h2) was calculated as the ratio of additive genetic variance component over the sum of the 222 

additive genetic and residual error components as follows: 223 

𝜎𝑎
2 is the additive genetic variation calculated fitting K in the model, and 𝜎𝑒

2 is the residual 224 

error. The broad-sense heritability (H2) was calculated as the ratio of total genetic variance 225 

component over the sum of the genetic and residual error components as follows: 226 

 ℎ2 =
𝜎𝑎

2

𝜎𝑎
2 + 𝜎𝑒

2
 (1) 

 𝐻2 =
𝜎𝑔

2

𝜎𝑔
2 + 𝜎𝑒

2
 (2) 



The Best Linear Unbiased Predictors (BLUPs) or Genomic Estimated Breeding Values 227 

(GEBVs) were calculated with a single trait GBLUP with the form: 228 

Where 𝑦 are the phenotypic observation, X the incidence matrix of fixed effects, b the intercept, 229 

Z the incidence matrix of the random effects, u the random effects, and e the error. It is assumed 230 

that 𝑢~𝑁(0, 𝜎𝑎
2𝐾) and 𝑒~𝑁(0, 𝑅), where K is the genomic relationship matrix and R = 231 

𝜎2
𝑒 AR1𝑟𝑜𝑤 ⊗ AR1𝑐𝑜𝑙, where AR1𝑟𝑜𝑤 ⊗ AR1𝑐𝑜𝑙 is the spatial adjustment. For every cross-232 

validation (CV) iteration, 80% of the lines within a trial were selected randomly as the training 233 

set, while the remaining 20% were used as the validation set. The same training and validation 234 

sets were used for every trait and marker subset iteration. For every trial and trait, the values of 235 

20 CV iterations are presented. The predictive ability is calculated as the Pearson correlation 236 

between GEBVs and Best Linear Unbiased Estimates (BLUEs); BLUEs were computed with 237 

lines as a fixed effect, calculated for each trial individually, and used as true estimated breeding 238 

values (EBVs). These values were calculated using the same model for the GEBVs (2), but 239 

allowing u to be fixed instead of random, with all observed records included. The GEBVs from 240 

the bi-parental rows were calculated using a leave-one-out CV scheme where each line was 241 

masked and predicted by the remaining lines. No spatial model was used with the rows. The 242 

predictive ability of the phenotype was calculated as the Pearson correlation of the 2019 243 

phenotype with the 2020 BLUEs. 244 

The linkage disequilibrium (LD) was calculated as the pairwise correlation (r2) of all 245 

markers within the same chromosome and averaged across a 100 kb window for the PYTs lines 246 

and bi-parental populations separately with a custom script. Heterozygous were set as missing 247 

data. 248 

 
𝑦 = 𝑋𝑏 + 𝑍𝑢 + 𝑒 (3) 



RESULTS 249 

1. Marker set design 250 

C7AIR rice SNP array (7K) genotyping  251 

To develop a marker set optimized for implementing genomic selection (GS) in the Southern 252 

U.S. rice germplasm, a set of 342 lines, hereby referred to as the representative germplasm set 253 

(RGS) representing the genetic diversity of a Southern U.S. rice breeding program, was 254 

genotyped with the rice C7AIR rice SNP array (7K) (Morales et al., 2020). The RGS consisted 255 

of 66 modern and historical varieties and advanced breeding lines, as well as 276 experimental 256 

lines from the 2017 Clearfield Long Grain Preliminary Yield Trial, the largest segment of the 257 

breeding program. The 7K array consisted of 7,098 markers, of which 27 failed and 379 had 258 

more than 20% missing data across the RGS. A total of 6,831 markers were polymorphic, with 259 

an average Minor Allele Frequency (MAF) of 0.09. Sixty percent of the polymorphic markers 260 

had a MAF lower than 0.05, 11% between 0.05 and 0.1, 14% between 0.1 and 0.25, 10% 261 

between 0.25 and 0.4, and 4% between 0.4 and 0.5 (Sup.1). The average distance between the 262 

polymorphic markers was 54.3 kb. 263 

  264 



 265 

The 7K genotypic data was used to calculate the additive relationship coefficients of the 266 

66 modern and historical varieties within the RGS lines to correlate them with the coefficients 267 

calculated with pedigree information alone. A correlation of 0.67 was observed, providing a 268 

baseline for how well higher density marker data can capture relationships compared to pedigree 269 

(Sup. 2). The marker data is more effective at capturing the variation present as it can capture 270 

Sup. 1. Histogram of Minor Allele Frequency of the C7AIR rice SNP array (7K) polymorphic 

markers across the 342 lines of the representative germplasm set. 



both within-family and across-family variation; whereas, the pedigree information is limited to 271 

across-family variation, and pedigree records are not available for some lines.  272 

 273 

Sup. 2. Correlation between additive relationship matrices calculated with pedigree information, 274 

7K SNP array, LSU1200 marker set, and LSU500 marker set of 342 lines of the representative 275 

germplasm set. 276 

 277 

A CV to measure the predictive ability of GS across different marker densities, obtained 278 

by removing adjacent markers by increasing physical distance, was performed with the 276 279 

experimental lines of the 2017 Clearfield Long Grain Preliminary Yield Trial to estimate a 280 

potential size for the marker set for routine genotyping for GS (Figure 1). No major differences 281 

in predictive ability were observed between 7,098, 4,000, and 2,000 markers across all traits. 282 

Milling yield predictive ability started to decrease slightly with 1,000 markers, grain yield with 283 

1,500 markers, days to heading with 1,500 markers, and plant height with 500 markers.  284 

  285 

 Pedigree 7K LSU1200 LSU500 

Pedigree 1    

7K 0.67 1   

LSU1200  0.63 0.96 1  

LSU500 0.63 0.93 0.99 1 



 286 

  287 

Figure 1. Cross-validation conducted on the 2017 Clearfield Long Grain Preliminary Yield 

Trial across different marker densities. Boxplots show the predictive ability for each trait and 

marker density. 



LSU1200 marker set design 288 

To identify a subset of the 7K markers that could capture as much genetic variation within the 289 

target germplasm as the full array, the additive relationship coefficients of the RGS lines 290 

calculated using the 7K polymorphic markers were correlated with the coefficients calculated 291 

using smaller marker densities (Figure 2). No increase was observed beyond 1,200 markers. A 292 

marginal decrease occurred at 300 markers and a significant reduction below 300 markers. To 293 

select the most informative SNPs from the 7K array, markers with more than 20% missing data 294 

and MAF < 0.1 were removed, resulting in 1,935 markers (Figure 3). These markers were then 295 

used to characterize haplotype blocks and select the minimum number of SNPs needed to tag the 296 

different regions. The total number of optimal tag SNPs was 1,174. In addition, 28 trait-specific 297 

and 16 genome-wide KASP™ markers used routinely in the breeding program were added, 298 

resulting in a total of 1,218 markers, hereafter referred to as “LSU1200”. The average MAF of 299 

these markers across the RGS lines was 0.18, while the average distance between markers was 300 

291 kbp. It is interesting to note that 1cM in rice is estimated to represent approximately 250 301 

kbp, so the LSU1200 marker set provides approximately 1cM resolution. These markers were 302 

tested across all target germplasm using the AmpSeq genotyping platform of the genotyping 303 

service provider Agriplex Genomics, Cleveland, OH, USA (https://agriplexgenomics.com/). A 304 

set of 4,230 experimental lines was genotyped with the LSU1200, consisting of 2,067 lines from 305 

preliminary yield trials (PYTs), 1,779 lines from six unique bi-parental mapping populations, 306 

and 384 lines from a U.S. rice breeding germplasm panel. Two hundred and five markers had 307 

more than 20% missing data and were excluded while 209 samples failed. Thus, a total of 1,013 308 

SNPs remained for subsequent analysis. When comparing the relationship coefficients with the 309 

7K array and pedigree information, the LSU1200 had a correlation of 0.96 with the 7K and 0.63 310 



with the pedigree information, indicating that the LSU1200 was able to reliably capture the 311 

overall genetic variation (Sup. 2). 312 

 313 

  314 

Figure 2. Correlation between additive relationship coefficients calculated with subsets of the 

7K SNP array and the full 7K SNP array. 



 315 

LSU500 marker set design 316 

Upon identifying the 1,013 SNPs that converted well to the AmpSeq platform, analysis was 317 

conducted to determine whether a more stream-lined marker set might be useful for 318 

implementation of GS in U.S. rice. The primary goal was to reduce the size of the marker set to 319 

minimize costs for routine genotyping of breeding materials, without significantly decreasing the 320 

ability to capture the genetic variation of the target germplasm. Correlation between the 321 

relationship coefficients calculated with different marker densities (Figure 2) showed that 322 

marker densities above 400 markers were still highly correlated to the 7K marker set (r > 0.85).  323 

Figure 3. Marker density across different marker sets. A) C7AIR rice SNP array (7K) 

marker density; B) 7K filtered with MAF >0.1 and missing data <20% marker density; C) 

LSU1200 marker density; D) LSU500 marker density.  

*colors refer to number of SNPs within 1Mb window size. 

 



To explore the potential of minimizing the size of the LSU1200 marker set, a diversity panel 324 

(DP) of 384 lines that represent the diversity of Southern U.S. rice breeding germplasm and 325 

includes accessions from different regions of the world was used to compare the ability of 326 

smaller marker densities to estimate the genetic relationship between lines (Sup. 3). The 327 

correlation of different marker subsets of the LSU1200 to the full LSU1200 set was above 0.95 328 

with marker densities above 200, 0.98 with 500 markers, and the correlation did not increase 329 

with marker densities above 600. Marker densities of 50 to 200 were still highly correlated, 330 

ranging from 0.85 to 0.95. Based on this observation, a marker set of 500 SNPs the “LSU500” 331 

was designed by removing markers with lower call rates and prioritizing SNPs with higher MAF 332 

among closely located markers (Figure 3). In consultation about the cost per sample with the 333 

genotyping service provider, the cost per sample was the same for 500 or 550 SNPs, so the 334 

LSU500 SNP set included 550 SNPs. The average MAF across the RGS lines was 0.22, while 335 

the average distance between markers was 663.1 kb. The LD calculation within four bi-parental 336 

populations and all the PYTs breeding lines showed that LD in the breeding program is high 337 

(~10Mb) (Sup. 4); and therefore, a well-chosen set of ~300 markers can tag the chromosomal 338 

segments segregating within the breeding population. The LD within the bi-parental populations 339 

was higher compared to the PYTs and was estimated based on LD decay within every 340 

chromosome. The correlation between the additive relationship coefficients calculated with the 341 

LSU500 and the 7K SNP set was 0.93 and 0.99 with LSU1200. The correlation with the 342 

relationship coefficients generated with pedigree information was 0.63, consistent with what was 343 

observed with the LSU1200 (Sup. 2). To compare the efficiency of the LSU500 and LSU1200 344 

marker sets for GS, a CV was performed to measure the predictive ability of the two sets across 345 

7 traits within two Clearfield Long Grain PYTs conducted in 2018 and 2019, consisting of 750 346 



different entries in each trial, for a total of 1,500 each year. The results of the CV were, on 347 

average, nearly identical between the two marker sets for each trait and trial, with mean values 348 

ranging from 0.19 for chalk to 0.69 for plant (Sup. 5). A slight reduction was observed with the 349 

LSU500 set for grain length in the 2018 trial, but this was not observed in 2019. 350 

 351 

  352 

Sup. 3. Correlation between additive relationship coefficients calculated with subsets of the 

LSU1200 marker set and the full LSU1200 of 384 lines from a diversity panel (DP) that represents 

the genetic diversity of the U.S. germplasm. 



 353 

  354 

Sup. 4. Linkage disequilibrium (LD) calculated as the average pairwise correlation (r2) of markers in a 

100 kb window. A) LD across all lines grown in preliminary yield trials from 2017 to 2020; B) LD 

within four bi-parental populations.  



 355 

  356 

Sup. 5. Cross-validation conducted within two preliminary yield trials grown in 2018 and 2019 

with the LSU500 marker set and LSU1200 marker set. Boxplots show the predictive ability for 

each trait and trial.  



2. LSU500 for genomic selection 357 

Predictive ability across preliminary yield trials 358 

Once the LSU500 set was determined to be suitable for routine GS applications, the remaining 359 

6,406 experimental lines of the breeding program pipeline from the three most recent years 360 

(2018-2020) were genotyped to conduct more extensive investigations into the potential of GS in 361 

U.S. rice and to serve as a training population for future predictions. A CV was conducted on 362 

4,078 unique breeding lines (8,172 observations) tested in four different PYTs grown at the 363 

HRCRRS in 2018, 2019, and 2020 to evaluate the ability of the marker set to predict line 364 

performances within the different segments of the breeding program, Clearfield® Long Grain 365 

(CL_LONG), Conventional Long Grain (CONV_LONG), Conventional Medium Grain 366 

(CONV_MED), and Provisia® Long Grain (PV_LONG) (Figure 4). The predictive ability was 367 

influenced by the narrow-sense heritability (Table 1) of each trait-trial combination and by the 368 

dimension of the training set used in the CV. Lower narrow-sense heritability traits, such as 369 

chalk, produced lower predictive ability, and smaller trials like Conventional Medium, where the 370 

training population was small, produced lower predictive abilities despite average estimates of 371 

heritability. On average, the highest predictive ability was observed for days to heading (0.55); 372 

grain yield and plant height were similar (0.49), while grain length (0.43) and milling yield 373 

(0.41) had slightly lower values. The lowest values were observed for chalk (0.29). Overall, this 374 

marker set produced good predictive abilities across different trials; however, large differences 375 

can still be observed within different trials. For example, the average predictive ability of days to 376 

heading ranged from 0.78 in PV_LONG in 2019 to 0.40 in CONV_LONG in 2019 and 377 

PV_LONG in 2018, plant height ranged from 0.67 in CONV_LONG in 2019 to 0.27 in 378 

CONV_MED in 2019, and grain yield from 0.71 in CONV_MED in 2019 to 0.25 in PV_LONG 379 

in 2018 and CL_LONG in 2020. 380 



 381 

  382 

Figure 4. Cross-validation conducted within each breeding market class segment preliminary 

yield trial. Boxplots show the predictive ability for each trait and trial. 



Table 1. Average broad-sense heritability (H2) and narrow-sense heritability (h2) calculated 383 

across four market classes preliminary yield trials grown from 2018 to 2020. 384 

 385 

 H2 h2 

Grain yield 0.59 0.53 

Days to heading 0.79 0.75 

Plant height 0.66 0.59 

Milling yielda - 0.36 

Grain lengtha - 0.44 

Chalka - 0.18 

aH2 is not reported for traits based on single measurements. 386 

 387 

Genomic selection and phenotypic selection 388 

The predictive ability from CV across PYTs (Figure 4, and Sup. 5) was calculated by 389 

correlating the GEBVs with the phenotype of a single year-one location PYT, thereby assuming 390 

the single-year phenotype as the true breeding value of a line. However, a more relevant estimate 391 

of the GS potential for applied breeding applications should be calculated comparing both the 392 

ability of GEBVs and phenotype to predict future performances of a line. To make this 393 

comparison, phenotype data collected in 2019 from four bi-parental populations was used to 394 

calculate GEBVs and compare them and the 2019 phenotype data to the observed 2020 395 

phenotype (Figure 5). The LSU500 market set contained 265 polymorphic markers with MAF < 396 

0.05, on average, and ranged from 243 to 297 polymorphic markers within each of the four 397 

populations. Across all populations, a comparison of the average GS predictive ability to 398 

phenotype for plant height was 0.57 and 0.60, respectively. For days to heading, the comparison 399 



was 0.57 and 0.65, for grain length 0.56 and 0.72, and for chalk 0.26 and 0.44. However, both 400 

GS predictive ability and phenotype differed significantly across traits and across populations. 401 

The correlation of the phenotype data across years ranged from 0.28 to 0.55 for chalk, from 0.26 402 

to 0.84 in plant height; while in days to heading and grain length, the values were more 403 

homogeneous, from 0.55 to 0.74 and from 0.61 to 0.80, respectively. On the other hand, the 404 

correlation between GEBVs and phenotype ranged from 0.83 to 0.43 in plant height, -0.02 to 0.4 405 

in chalk, 0.54 to 0.65 in days to heading, and 0.48 to 0.60 in grain length. Across the 16 different 406 

trait-population comparisons, the reduction of accuracy of the GEBVs compared to the 407 

phenotype was 20% or less in 9 cases. In three cases, the GEBVs were more accurate than the 408 

phenotype. 409 

Figure 5. Correlation of 2019 phenotype and 2019 GEBVs with the observed 2020 

phenotype within four bi-parental populations (MPA, MPB, MPC, MPD). 



Within the MPC population, very low prediction accuracies were observed for chalk, while 410 

the other traits within the MPC had similar accuracies as observed in the other populations. This 411 

observation may be explained by sparse marker coverage within the MPC population in the 412 

genomic region(s) underlying the variation of the trait in the population. 413 

  414 



3. Moving forward: reducing marker density 415 

Marker density across experimental trials 416 

The ability of the LSU500 marker set to capture the genetic variation of the target breeding 417 

germplasm is nearly identical to the LSU1200 marker set (Sup. 2). However, it was observed 418 

that marker subsets below 500 were effective at capturing the relationships among the 419 

germplasm as well (Figure 2). If it is possible to further reduce the marker set in the future 420 

without impacting the predictive ability, this would be desired from a cost standpoint. To 421 

investigate the potential to further reduce the size of the marker set, the average predictive ability 422 

of CV of the PYTs tested at HRCRRS from 2018 to 2020 was compared across different marker 423 

densities by removing adjacent markers at increasing physical distances (Figure 6). Overall, no 424 

significant differences were recorded with marker densities as low as 200, except for plant 425 

height. Results show that the trend across marker densities was different for different traits: plant 426 

height predictive ability slightly decreased with densities below 500 and significantly decreased 427 

below 200 markers; milling yield and chalk started to decrease with 300 markers, while grain 428 

yield, days to heading, and grain length did not significantly lose predictive ability until 200 429 

markers. Overall, higher predictive ability traits with the full set had higher predictive ability 430 

with smaller densities except for plant height and grain length that were more affected by lower 431 

marker densities than other traits.  432 

  433 



 434 

Marker density within bi-parental populations 435 

To quantify the impact of marker density reduction when predicting lines within bi-parental 436 

families, the correlation of GEBVs with the phenotype of the following year was compared 437 

across different bi-parental populations and different marker densities (Sup 6). On average, the 438 

predictive ability for days to heading did not show major variation across marker densities of 439 

500, 400, 300, and 200 with values ranging from 0.57 to 0.58. It decreased to 0.37 with 100 440 

Figure 6. Average cross-validation predictive ability across different marker densities. Cross-

validation was conducted within each breeding market class segment using the 2018, 2019, and 

2020 preliminary yield trials. The average across all trials is reported for each marker density. 



markers and to 0.25 with 50 markers. Grain length predictive ability (0.56) decreased gradually 441 

with densities below 400 markers reaching 0.42 predictive ability with 50 markers. Plant height 442 

predictive ability (0.57) decreased gradually with smaller marker densities reaching 0.27 with 50 443 

markers. Chalk predictive ability increased with lower marker densities from 0.25 up to 0.32 444 

with 100 markers and then decreased to 0.22 with 50 markers.  445 

 446 

  447 

Sup. 6. Comparison of GEBVs calculated with 2019 phenotypes and correlated with the 

observed 2020 phenotype within four different bi-parental populations. Marks show average 

correlation (r) across populations for each trait and marker density. 



DISCUSSION 448 

1) LSU500 for GS implementation 449 

The objective of this work was to develop and validate a mid-density marker set for routine 450 

genotyping of Southern U.S. rice breeding lines and to determine its usefulness for GS. The 451 

LSU500 marker set is designed for multiplex AmpSeq and is available for outsourcing at the 452 

genotyping service provider Agriplex Genomics, Cleveland, OH, USA 453 

(https://agriplexgenomics.com/). This marker set addresses the need for a low-cost, efficient, and 454 

germplasm-tailored platform ideal for GS in Southern U.S. rice. A practical example of the 455 

initial steps of defining a genotyping method, developing a preliminary marker set, and testing 456 

the marker sets suitability for GS was presented. This process can be difficult since it requires 457 

multiple different skill sets that are not always present in a traditional breeding program 458 

(Santantonio et al., 2020). We provide a usable marker set for programs that may not have the 459 

resources to develop it on their own and demonstrate an overall strategy that can be adopted by 460 

other programs interested in independently developing a custom marker set. 461 

The design of the set was done by including validated SNPs from the C7AIR rice SNP array 462 

(7K) (Morales et al., 2020) that capture the genetic variation of global rice germplasm and some 463 

key trait markers. The high LD in the breeding population compared to the LD in global rice 464 

facilitated the reduction of the marker density found in the 7K array without losing predictive 465 

ability. The SNPs were selected based on their ability to tag individual haplotypes of the 466 

breeding population; with this approach, the predictive ability of this set was similar to the full 467 

7K array in a CV experiment. In addition, the ability of the LSU500 to capture the relationships 468 

between breeding lines was comparable to the 7K array. 469 



Lowering the number of markers significantly reduces the cost per sample, making the 470 

LSU500 cost-effective for an applied breeding program. The cost of outsourcing the genotyping 471 

with the 7K array is between $35-$40, genotyping-by-sequencing (GBS) is about $25, the 472 

LSU1200 is $10, and our current cost per sample with the LSU500 is $4.80 through Agriplex 473 

Genomics. Agriplex Genomics offers a four- to six-week genotyping turnaround time, which is 474 

sufficient for our breeding activities and calendar. A significant consideration to implementing 475 

GS for our program centers around the logistics of routine activities and ensuring that key 476 

breeding processes are not delayed, so it is critical to have service providers who can be relied 477 

upon to deliver data in a defined timeframe. Geographic location of the genotyping service 478 

provider within the United States was also an important consideration to reduce shipping time, 479 

phytosanitary constraints, and paperwork.  480 

2) LSU500 and genomic selection 481 

The LSU500 marker set enables GS across different traits and groups of germplasm at a level of 482 

accuracy that is sufficient for implementation in a breeding program. When testing GS with CV 483 

across different trials and environments, the predictive ability varied significantly according to 484 

the heritability of the trait-trial combination and the size of the training population used in the 485 

CV. It is important to note that the heritability of a trait in a specific trial or environment is 486 

affected by many aspects, such as the accuracy of the phenotyping method, the trait genetic 487 

architecture, the phenotypic variation of the environment, and the presence of large differences 488 

between the genotypes tested (Covarrubias-Pazaran, 2019).  489 

Population structure is another important factor to account for in GS experiments. Predictive 490 

ability estimates can be biased relative to accuracy obtained in practice if family-size and 491 

structure differ between the CV dataset and real life prediction scenarios (Werner et al., 2020).  492 



For example, in the early stages of a breeding program, many full-sib and half-sib individuals are 493 

tested together. This is in contrast to later stages where there are many different families 494 

represented, each of small size. Thus, in earlier stages, prediction is largely within families, and 495 

at later stages, prediction is across families. Both scenarios were considered by testing prediction 496 

within bi-parentals (early stage) and PYTs (later stage). 497 

Four bi-parental populations, developed from 8 elite varieties, were phenotyped for key traits 498 

across two years, providing the opportunity to compare the correlation of the GEBVs versus 499 

correlations between phenotypes measured in different years. This is a useful measure of the 500 

predictive ability of GS and provides additional context when compared to using CV alone. In 501 

the CV experiments, the prediction accuracy was calculated by comparing the GEBVs to the 502 

phenotypes observed in the CV experiment, which assumes that the observed phenotypes are the 503 

true breeding value of the line. However, for the traits explored in these populations across two 504 

years, the correlation of the phenotypes ranged from 0.25 to 0.84 across year 1 and year 2. When 505 

compared to the predictive ability of GS using year 1 as the training set, the correlation of the 506 

GEBVs to the year 2 phenotypes was on average 0.49, ranging from -0.02 to 0.83. These results 507 

confirmed that GS based on the LSU500 genotypes produced good predictive ability across full-508 

sibs and different bi-parental populations.  509 

3) Beyond the LSU500 510 

The objective of the LSU500 is to provide a robust marker set for implementation of GS in 511 

Southern U.S. rice breeding programs, with reliable outsourcing to third-party genotyping 512 

providers. The LSU500 is not intended to be the final or fixed marker set moving forward. This 513 

initial marker set will enable U.S. rice breeding programs to rapidly and economically explore 514 

the potential of GS in their materials.  The design and implementation of the LSU500 followed a 515 



continuous integration strategy (Sup. 7), whereby GS is initially introduced into a breeding 516 

program while technical and strategic aspects of GS implementation are evaluated, optimized, 517 

and integrated into the breeding pipeline on-the-go. This strategy allows resources to be invested 518 

progressively and reveals possible implementation problems as early as possible. We will 519 

continue to improve upon the marker set as more data and information are obtained. The ability 520 

to easily update the marker set is another benefit of the Agriplex AmpSeq platform over existing 521 

fixed assays. Future iterations of the GS marker set will aim to address some physical gaps 522 

throughout the genome and regions of the genome in which the existing markers may not tag 523 

independent chromosomal segments. The inability of the LSU500 marker set to predict chalk in 524 

the bi-parental population MPC is an example where increasing marker coverage may improve 525 

the predictability of the trait. One reason for the presence of regions of low marker coverage can 526 

be traced to the original source of SNPs, the 7K array: when selecting markers from a specific 527 

array, gaps within the array are inevitably present in the selected subset. To address this issue, 528 

we generated whole-genome sequence for the 384 lines of the DP selected to represent the 529 

genetic diversity of Southern U.S. rice germplasm, including important founders. These data will 530 

be used to select new informative markers to augment the LSU500 set. Markers from other 531 

sources, such as the 1k-Rica, which was designed for indica rice germplasm, will also be used as 532 

sources of new markers (Arbelaez et al., 2019).  533 

  534 



 535 

The LSU500 represents a short-term solution for starting GS in the breeding program. The 536 

next stage of our marker strategy will focus on imputation. Imputing progeny from low marker 537 

density to high density data obtained for parents can greatly increase prediction accuracy and 538 

reduce genotyping costs (Jacobson et al., 2015). Results from varying marker densities across 539 

PYTs and bi-parental populations suggest that the number of markers could be further reduced if 540 

an imputation strategy is adopted. Due to high LD in bi-parental populations, imputation of 541 

Sup. 7. Diagram of the development of LSU1200 and LSU500 sets and future improvements to 

the LSU500. 



marker information from a lower density (100-500 markers) to higher density (~10,000 markers) 542 

datasets obtained on parents can be achieved with high accuracy (Gonen et al., 2018). In a plant 543 

breeding program, a new breeding cohort is initiated every year by crossing elite parents. The 544 

group of parents is generally small, around 100, and some will be repeated across years. As a 545 

result, it is feasible to sequence new parents every year so that each breeding line can be imputed 546 

using its direct parents (Gorjanc et al., 2017). In addition, the varieties considered as the founders 547 

of the breeding program germplasm have whole-genome sequence data that can be used to 548 

impute to even higher densities using tools like the practical haplotype graph (Jensen et al., 549 

2020).  550 

Following this strategy, we used the DArTSeq genotyping technology through the 551 

genotyping service provider Diversity Array Technology (DArT), Bruce, ACT, Australia 552 

(https://www.diversityarrays.com/) to genotype 188 lines that have been utilized in our crossing 553 

blocks since 2017 and represent all the parents of our current breeding populations. This 554 

genotyping method provides higher DNA marker information (~10,000 SNPs) for a reduced cost 555 

per sample, compared to whole genome sequencing, and will be used for imputation purposes 556 

and to monitor program diversity. Information from the whole-genome sequence data of the 384 557 

DP founders will be used as the basis for imputation to increase the density of genotypic 558 

information on the lines from the crossing blocks.  559 

Moving forward, when integrating GS into the routine breeding pipeline, it is important that 560 

the markers remain informative as the breeding program evolves. When recycling advanced lines 561 

and bringing in new material for crossing, allele frequencies are altered, LD patterns are broken, 562 

and new alleles are introduced. For these reasons, the marker set for routine genotyping will need 563 

to be updated on a regular basis.   564 



CONCLUSION 565 

In this paper, we present our strategy for developing a routine genotyping assay, discuss the 566 

results of our efforts to date, and present our vision for how this assay will evolve in the future. 567 

Genomic selection promises to bring great advantages to a breeding program, including 568 

improving the accuracy of selection and increasing the number of tested experimental lines, both 569 

while reducing the cost and duration of operations. At the same time, implementation of this 570 

breeding approach requires significant changes to the existing breeding program’s structure and 571 

practice. Multiple logistical barriers need to be addressed for the adoption of GS to be successful. 572 

A custom-tailored marker set for Amplicon Sequencing that is informative for the breeding 573 

program’s germplasm and can be outsourced to a third-party genotyping provider is an essential 574 

ingredient for a rapid and cost-effective initial implementation of GS in the breeding program. 575 

The LSU500 is a reliable and efficient marker set with demonstrated utility for routine 576 

genotyping of rice in a Southern U.S. rice breeding program. It is currently available at a cost-577 

effective price from the genotyping service provider, and in the future, it will undergo 578 

improvements to reduce the cost and increase the accuracy of GS. Moreover, due to the complex 579 

nature of GS implementation and the peculiarity of every breeding program, the genotyping 580 

method and GS implementation strategy will require further evaluation and customization to 581 

meet each program’s specific needs.  582 
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