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Abstract

Long-term high-resolution temperature data of the Compact Rayleigh Autonomous Lidar (CORAL) is used to evaluate temper-

ature and gravity wave (GW) activity in ECMWF Integrated Forecasting System (IFS) over R\’io Grande (53.79$ˆ{\circ}$S,

67.75$ˆ{\circ}$W), which is a hot spot of stratospheric GWs in winter. Seasonal and altitudinal variations of the temperature

differences between the IFS and lidar are studied for 2018 with a uniform IFS version. Moreover, interannual variations are

considered taking into account updated IFS versions. We find monthly mean temperature differences $<2$˜K at 20-40˜km

altitude. At 45-55˜km, the differences are smaller than 4˜K during summer. The largest differences are found during winter

(4˜K in May 2018 and -10˜K in August 2018, July 2019 and 2020). The width of the difference distribution (15th/85th per-

centiles), the root mean square error, and maximum differences between instantaneous individual profiles are also larger during

winter ($>\pm10$˜K) and increase with altitude. We relate this seasonal variability to middle atmosphere GW activity. In

the upper stratosphere and lower mesosphere, the observed temperature differences result from both GW amplitude and phase

differences. The IFS captures the seasonal cycle of GW potential energy ($E p$) well, but underestimates $E p$ in the middle

atmosphere. Experimental IFS simulations without damping by the model sponge for May and August 2018 show an increase

in the monthly mean $E p$ above 45˜km from only $\approx10$˜\% of the $E p$ derived from the lidar measurements to

26˜\% and 42˜\%, respectively. GWs not resolved in the IFS are likely explaining the remaining underestimation of the $E p$.
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Key Points:11

• Monthly mean temperature differences between the IFS and ground-based lidar mea-12

surements in the middle atmosphere are largest in winter.13

• Wintertime temperature differences are related to middle atmosphere gravity wave14

activity and both amplitude and phase differences are important.15

• Damping by the model sponge and unresolved gravity waves reduce gravity wave16

potential energy in the middle atmosphere in the IFS.17
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Abstract18

Long-term high-resolution temperature data of the Compact Rayleigh Autonomous Lidar19

(CORAL) is used to evaluate temperature and gravity wave (GW) activity in ECMWF20

Integrated Forecasting System (IFS) over Ŕıo Grande (53.79◦S, 67.75◦W), which is a hot21

spot of stratospheric GWs in winter. Seasonal and altitudinal variations of the temperature22

differences between the IFS and lidar are studied for 2018 with a uniform IFS version.23

Moreover, interannual variations are considered taking into account updated IFS versions.24

We find monthly mean temperature differences < 2 K at 20-40 km altitude. At 45-55 km,25

the differences are smaller than 4 K during summer. The largest differences are found26

during winter (4 K in May 2018 and -10 K in August 2018, July 2019 and 2020). The27

width of the difference distribution (15th/85th percentiles), the root mean square error,28

and maximum differences between instantaneous individual profiles are also larger during29

winter (> ±10 K) and increase with altitude. We relate this seasonal variability to middle30

atmosphere GW activity. In the upper stratosphere and lower mesosphere, the observed31

temperature differences result from both GW amplitude and phase differences. The IFS32

captures the seasonal cycle of GW potential energy (Ep) well, but underestimates Ep in the33

middle atmosphere. Experimental IFS simulations without damping by the model sponge34

for May and August 2018 show an increase in the monthly mean Ep above 45 km from only35

≈ 10 % of the Ep derived from the lidar measurements to 26 % and 42 %, respectively.36

GWs not resolved in the IFS are likely explaining the remaining underestimation of the Ep.37

1 Introduction38

Even now with a growing understanding of stratospheric processes, highly developed39

numerical models, and increasing computational resources, middle atmosphere temperature40

(re)analyses have a larger uncertainty than their tropospheric counterparts. Improving the41

representation of the past (reanalysis), current (analysis), and future (forecast) state of the42

middle atmosphere in general circulation models (GCMs) is important for the validation43

and forecasting of tropospheric weather and future climate. It is known that the circulation44

in the middle and upper atmosphere is strongly influenced by internal gravity waves (GWs)45

triggered for example by flow over mountains (Fritts & Alexander, 2003). At the same time,46

processes in the stratosphere such as anomalies in the winter- and spring-time stratospheric47

polar vortex impact the tropospheric circulation (Baldwin & Dunkerton, 2001; Garfinkel &48

Hartmann, 2011; Byrne & Shepherd, 2018).49
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One issue when modelling the middle atmosphere is that there is a limited amount50

of observations to constrain the current model state (e.g., Eckermann et al., 2018). Above51

10 hPa, most of the observations assimilated into the Integrated Forecasting System (IFS)52

of the European Centre for Medium-Range Weather Forecasts (ECMWF) are from satellites53

and have limited spatial and temporal resolutions. They mainly provide temperature-related54

data (e.g., Global Navigation Satellite System Radio Occultation (GNSS-RO), Atmospheric55

Infrared Sounder (AIRS), Advanced Microwave Sounding Unit (AMSU-A)) and the topmost56

radiances assimilated peak at approximately 1-2 hPa. The range of sensitivity of the satellite57

observations to certain horizontal and vertical scales of GWs depends on the instrument and58

viewing geometry (observational filter, see Alexander, 1998) as can be seen in e.g., Figure 959

of Preusse et al. (2008). To produce the most accurate representation of the atmospheric60

state, all the observations irregularly distributed in time and space and each having their61

limitations and uncertainties are combined with the numerical weather prediction model on62

a global grid. For the (re)analyses at ECMWF, this is achieved by 4-dimensional variational63

data assimilation (4D-Var).64

The analysis is the best guess of the current atmospheric state that is used to initialize65

forecasts. Many satellite observations in the upper stratosphere are rejected by the 4D-66

Var in the IFS over the GW hot spot region of the Southern Andes, the Drake Passage,67

and the Antarctic Peninsula in the Southern Hemisphere extended winter period (April to68

September), most frequently in May (Tony McNally, personal communication, December69

2018). The observations deviate too strongly from the IFS background which is likely due70

to GW-induced temperature perturbations. Stratospheric GW activity is not homogeneous71

over the globe but numerous hot spots exist close to mountain ranges, coasts, lakes, deserts,72

or isolated islands (Hoffmann et al., 2013). For the Southern Hemisphere, backward ray73

tracing of GWs at 25 km altitude, which are resolved in the IFS in simulated satellite74

observations imitating an infrared limb imager, revealed the Antarctic Peninsula and the75

Southern Andes as prominent GW sources (Preusse et al., 2014). Together with GWs76

generated by storms, these GWs are responsible for large day-to-day variations (factor of77

two) in the stratospheric GW momentum flux in the Southern Hemisphere (Preusse et al.,78

2014).79

The sparseness and limitations of observations in the middle atmosphere means that80

the model plays a larger role in determining the atmospheric state in (re)analyses. To rep-81

resent stratospheric processes, the model top and corresponding sponge layers have to be82
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moved to higher altitudes (Shepherd et al., 1996). This and the enhancement of vertical res-83

olution led to an increase in demand of computational resources that only became available84

in the past decades. For example, in the IFS the vertical resolution has increased from 3185

levels in 2003 to 137 levels in 2013 (still in use today). At the same time the model top has86

increased from mid-stratosphere at 10 hPa to the mesosphere at 0.01 hPa (i.e. from altitude87

z ≈ 28 km to z ≈ 80 km). Currently the sponge layer, designed to reduce wave reflection88

at the model top, starts weak at 10 hPa and is strongest above 1 hPa (z ≈ 45 km) in the89

IFS. All waves, including GWs, are significantly damped by the sponge. The 4D-Var in the90

IFS is unstable when large-amplitude GWs are allowed to exist in the mesosphere, which91

occurs if the sponge layer is too thin. The sponge layer leads to a misrepresentation of GW92

drag, which can affect the large-scale circulation in the middle atmosphere (Shepherd et al.,93

1996). Therefore, reducing the depth and the strength of the sponge layer could help to94

improve the representation of GWs and temperature biases in the middle atmosphere.95

Challenges of middle atmosphere modelling that include the representation of physical96

and dynamical processes, data assimilation, and artificial damping by the sponge layer97

motivate our study. Local middle atmosphere lidar measurements can be used to evaluate98

IFS-based (re)analyses and forecasts at altitudes where there is little assimilated data, the99

influence of the model sponge is large, and the vertical resolution is coarse.100

Several studies have already compared lidar observations to ECMWF (re)analyses.101

Marlton et al. (2021) compared stratospheric temperatures in ERA-Interim and ERA5 re-102

analyses to ground-based lidar at four sites in the Northern Hemisphere winter for 1990-2017103

and found mean temperature differences in the range of ±5 K. ERA5 temperatures were104

found to be too low at 1 hPa at all four sites but a different behaviour was found at each site105

below 1 hPa. Le Pichon et al. (2015) found the largest differences and the highest variability106

of the differences in winter when comparing nightly-mean lidar wind and temperature data107

to IFS analyses in Europe for winter 2012/2013 and summer 2013. In 2012/2013 winter, the108

variability from large-scale planetary waves dominated and a sudden stratospheric warm-109

ing, accompanied by enhanced GW activity, took place in January 2013. Above altitude110

z = 45 km, the IFS temperatures were found to be over -5 K too cold and the 95 % percentile111

of the difference distribution was around -30 K (Le Pichon et al., 2015). For z > 40 km112

over northernmost Europe, also Ehard et al. (2018) estimated IFS to be too cold by -8 K113

to -20 K when compared to lidar measurements in December 2015. For the Southern Is-114

land of New Zealand located in the mid-latitude Southern Hemisphere, wintertime-averaged115
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temperature differences (July to September 2014) between lidar and IFS data were between116

-3 K and 2 K for 45 km < z < 60 km and exceeded -10 K at z = 70 km (Appendix B in117

Gisinger et al., 2017).118

The past studies exemplify that differences of model temperatures in the middle atmo-119

sphere depend on the season and the location, and can be different compared to global- or120

zonal-mean bias characteristics (e.g., Simmons et al., 2020, for ERA5). However, the total121

of all local differences determines the global- or zonal-mean bias. Therefore, understanding122

and quantifying local differences can help to reduce such biases. For the stratospheric GW123

hot spot region of the Southern Andes, a detailed quantification of local differences between124

middle atmosphere temperature measurements and IFS temperatures, their vertical struc-125

ture, and their seasonal and inter-annual variability is still missing. Further, the contribution126

of shortcomings in the representation of middle atmosphere GWs in the IFS to site-specific127

temperature differences can be studied for this region because GWs are dominating the at-128

mospheric state for several months of the year (Hoffmann et al., 2013). In November 2017,129

the DLR Institute of Atmospheric Physics deployed the ground-based Compact Rayleigh130

Autonomous Lidar (CORAL) at Ŕıo Grande at the southern tip of South America in Ar-131

gentina (B. Kaifler & Kaifler, 2021). The nightly lidar temperature measurements have high132

temporal (15 min) and vertical (900 m) resolutions between 15-95 km altitude. Comprehen-133

sive analyses of the whole three-year data set including GW characteristics are presented134

by Reichert et al. (2021).135

GW activity can be estimated from lidar temperature measurements via GW poten-136

tial energy, which is calculated from temperature perturbations relative to the background137

temperature. GW potential energy is related to the GW momentum flux based on linear138

theory (Ern et al., 2004), though the momentum flux is a conservative wave property but139

the wave energy is not. Ehard et al. (2018) found that the IFS is capable of reproducing the140

overall temporal evolution of the GW activity in the stratosphere at 30 km < z < 40 km141

over northernmost Europe for a four-months-period, but that GW amplitudes are effectively142

damped by the sponge layer at higher altitudes. GW potential energy was also found to be143

lower in reanalysis data (Modern-Era Retrospective analysis for Research and Applications144

(MERRA), ERA5) in the middle atmosphere compared to multi-year lidar measurements145

from two European stations at higher mid- and polar latitudes (Strelnikova et al., 2021).146

For the Southern Hemisphere, a simplified comparison of GW potential energy between the147

IFS and lidar measurements (i.e., not a one-to-one comparison but different years of IFS and148
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observational data) at two locations in Antarctica (Rothera and South Pole) was presented149

in Yamashita et al. (2010). The IFS generally captured site-specific seasonal variations of150

GW potential energy in the stratosphere: These are a winter maximum and a summer min-151

imum at Rothera and continuously low values at the South Pole (Yamashita et al., 2010).152

Comparisons of three-day averaged GW temperature amplitudes of SABER (Sounding of153

the Atmosphere Using Broadband Emission Radiometry) and IFS at z = 30 km showed154

that the annual cycle and shorter-term variations dominated by mountain waves are well155

represented in the IFS also for South America, but that temperature amplitudes are under-156

estimated in the IFS (Schroeder et al., 2009). Prior to 2010, the IFS had 91 vertical layers157

and a horizontal resolution of approximately 25 km.158

In this study, we present a systematic comparison of middle atmosphere tempera-159

tures and GW potential energy of the independent (i.e., not assimilated in the IFS), high-160

resolution CORAL lidar data set and operational and experimental IFS simulations for161

Ŕıo Grande (53.79◦S, 67.75◦W), which is a hot spot of stratospheric GWs in the Southern162

Hemisphere winter (Hoffmann et al., 2013), located in the lee of the Southern Andes. Tem-163

perature differences between the lidar and IFS and seasonal variability of the differences164

are investigated. The role of winter-time GW representation by means of wave amplitude165

and phase in the middle atmosphere in the IFS is discussed. This is only possible due to166

the high temporal resolution of the lidar data, allowing a one-to-one comparison of quasi-167

instantaneous values. The annual cycle of GW activity in the middle atmosphere over Ŕıo168

Grande in the IFS is compared to that derived from the lidar observations. The results for169

temperature differences and GW activity are then combined to investigate the hypothesis170

that the seasonal variability of the temperature differences over Ŕıo Grande is related to171

the GW activity in the middle atmosphere. For two selected months with enhanced GW172

activity (May and August 2018), the importance of individual strong GW events for the173

monthly mean GW potential energy in the middle atmosphere in the observations and the174

IFS is evaluated (i.e. GW intermittency). Finally, the effect of damping by the sponge on175

GW potential energy in the middle atmosphere is quantified in experimental IFS simulations176

without a sponge layer for these two months.177

Section 2 describes the lidar system CORAL, its temperature data taken at Ŕıo178

Grande, the IFS model data, and the data analysis methods. Results are presented in179

section 3 and discussed and summarized in section 4.180
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2 Data and methods181

2.1 Lidar system and data182

CORAL (B. Kaifler & Kaifler, 2021) uses a 12-W-laser beam at 532 nm wavelength183

and a 0.64-m-diameter telescope installed in an 8 ft container for night-time, autonomous184

atmospheric soundings. Backscattered photons are detected with three height-cascaded185

elastic detector channels and one Raman channel. Density and temperature profiles on a186

100-m vertical grid for altitudes 15 km < z < 95 km are determined by top-down integration187

of the hydrostatic equation every 5 minutes using an integration window of 15 minutes and188

900-m vertical smoothing for an adequate signal to noise ratio. The precision for temperature189

is better than 1 K for 35 km < z < 60 km and typically better than 4 K for z < 30 km and for190

z > 65 km. A comparison to radiosonde and satellite observations (SABER) can be found191

in B. Kaifler and Kaifler (2021). They show that the lidar and radiosonde temperatures192

closely agree (∆T < 0.6 K) for time-synchronized measurements at z = 30 km and that the193

lidar and SABER temperatures agree well (∆T < 3 K) at 45 km < z < 50 km (note that194

the SABER data was taken at approximately 500 km distance from Ŕıo Grande). At times,195

the lidar measurements at the lowest altitudes are affected by the presence of aerosols. If196

the aerosol load is too high, temperature is underestimated due to cross-talk between the197

elastic channel and the Raman channel. Such data are omitted by the retrieval algorithm198

(most frequently for z < 20 km). To allow for adequate sampling at all altitudes for all199

months, we limit the lowest altitude to 20 km for our analysis.200

Measurements with CORAL started at Ŕıo Grande in November 2017. Ŕıo Grande201

is located in the lee of the Southern Andes at the east coast of Argentina at 100-200 km202

distance from the mountains that are to the south and west and at greater distance north-203

west of Ŕıo Grande (Reichert et al., 2021). The analyses in this study take into account204

data of the year 2018 which is continuously covered by the lidar measurements and by205

a uniform version of the IFS (see Sec. 2.2). In addition, data for May and July 2019206

and 2020 are analyzed to investigate interannual variability using updated IFS versions.207

Note that CORAL measurements are taken fully autonomously with the help of IFS cloud208

forecasts and a cloud monitoring all-sky camera relying on star detection. Measurements209

are only possible during cloud-free/patchy conditions and during the night, which are the210

conditions our results are valid for. Night-time hours are between 2 and 7 UTC in mid-211

summer (December) and between 21 and 12 UTC in mid-winter (July). Figure 1a shows212
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the time series of the nightly mean middle atmosphere temperature measurements from213

CORAL from 2018 to 2020, averaged over all measurements available each night. The band214

of highest middle atmosphere temperatures at the stratopause is perturbed by atmospheric215

waves in the extended winter period (April to September) and at the same time minimum216

temperatures in the mid-stratosphere are below 200 K (Fig. 1a).217

Figure 1. Nightly mean temperatures from (a) CORAL and (b) IFS. Measurement gaps of less

than four nights are linearly interpolated in the upper contour plot (a). Bottom panel (b) shows

IFS only for periods used in the comparison.

2.2 IFS model and data218

IFS cycle 45r1 was already running in pre-operational phase during the first months219

of 2018 and eventually became operational in June 2018. Therefore, seasonal variations220

of the temperature differences between the lidar measurements and the IFS can be inves-221

tigated based on a uniform version of the IFS for 2018. The updated cycles 46r1 and222

47r1 became operational in June 2019 and June 2020, respectively. All three cycles have223
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a horizontal grid-spacing of ≈ 9 km on the cubic octahedral grid (TCo1279). The model224

top is located at 0.01 hPa (z ≈ 80 km) and 137 vertical levels are used. The layer thick-225

ness gradually increases from ∼ 300 m at z ≈ 10 km to ∼ 400 m at z ≈ 20 km, and226

∼ 2 km at z ≈ 60 km. We only use data up to z = 70 km, due to sparse coverage with227

only three more levels above that altitude. In the sponge layer, vertically propagating228

waves and the zonal-mean flow are damped above 10 hPa by hyper-diffusion applied on229

vorticity, divergence, and temperature and by additional strong first-order damping applied230

on divergence above 1 hPa. The smaller-scale waves are damped more strongly by such231

sponge formulation in the horizontal direction. Timescales of both damping mechanisms232

decrease with altitude and result in stronger damping at the higher altitudes (Polichtchouk233

et al., 2017; Ehard et al., 2018). A more detailed description of the changes in the IFS234

can be found on the ECMWF website (www.ecmwf.int/en/forecasts/documentation-and-235

support/changes-ecmwf-model, last access April 2022).236

IFS analyses for 0, 6, 12, and 18 UTC are used and gaps are filled with short-lead-237

time forecasts (+1, +2, ...,+5, +7, +8, ..., +11 h) to get hourly data coverage. In addition,238

experimental 48 h forecasts without the sponge layer using cycle 45r1 are performed for May239

and August 2018. These forecasts can be directly compared to the operational forecasts240

with the sponge (up to +11 h). Further, we briefly investigate the effect of longer lead times241

(+25, ..., +35 h) on the temperature differences. For best temporal synchronisation, we242

extract single lidar temperature profiles that are closest in time (max. ±10 min) to each243

IFS temperature profile at full hour interpolated on the location of Ŕıo Grande. The time244

step of the IFS (7.5 minutes) is close to the integration window of 15 minutes for the lidar245

profiles which makes this a reasonable one-to-one comparison. This selection results in 17246

(summer) to 183 (winter) profiles per month. The profiles contribute 4-25 nights per month247

(Tab. 1). Especially for February to September above z = 30 km, the profiles provide an248

adequate sample for our study of middle atmosphere temperatures over Ŕıo Grande.249

In summary, all IFS data for 2018 and May 2019 used here are based on operational250

high-resolution forecast (HRES) data for cycle 45r1 and hence variability due to fundamental251

changes in the model itself can be excluded. IFS data for July 2019 and May 2020 are based252

on cycle 46r1 and for July 2020 on cycle 47r1. Figure 1b shows the timeseries of nightly-mean253

IFS temperature data, taking into account hourly data between 21 and 12 UTC. Differences254

between the cycles are not expected to have an impact on the temperature over Ŕıo Grande,255

though it is beyond the scope of this study to quantify this. Such a quantification between256
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Table 1. Total number of nights with measurements and total number of profiles per months.

Numbers for those reaching down to 20 km are also listed.

year 2018

month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

#nights 8 15 20 21 22 22 22 24 19 14 10 12

#nights (20 km) 8 12 18 21 17 21 19 11 7 4 8 9

#total 19 54 90 117 153 183 162 122 102 69 39 40

#total (20 km) 17 40 73 86 113 170 139 43 28 15 31 33

year 2019 2020

month May Jul May Jul

#nights 25 22 15 22

#nights (20 km) 25 21 14 22

#total 176 89 146 163

#total (20 km) 157 69 113 150

different IFS cycles was done in Ehard et al. (2018) for one month in Northern Europe, when257

IFS experienced a more major upgrade that included an increase in horizontal resolution in258

2016.259

2.3 Analysis of temperature differences, GW potential energy, and GW260

intermittency261

The first part of the analysis focuses on temperature differences between individual262

IFS and lidar profiles and their seasonal and altitudinal variability263

T diff(z, t) = TECMWF(z, t)− T lidar(z, t), (1)264

where TECMWF is the IFS temperature profile, bilinearly interpolated to the horizontal265

location of the lidar at Ŕıo Grande taking into account the four surrounding grid-points,266

and T lidar is the lidar temperature profile. All data are interpolated to a 100 m equidistant267

grid in altitude (z) and are available in time (t) at full hour. Afterwards monthly means268
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are calculated269

T diff(z) =

∑
T diff(z, t)

#total
, (2)270

where #total is the number of profiles for each month. In order to show the variability of the271

temperature differences between the individual profiles and account for the skewness of the272

difference distributions, the 15th/85th percentiles are also calculated. The number of profiles273

at the lowest altitudes can be small for individual months because not all measurements274

reach down to z = 20 km due to the presence of high amounts of aerosols (Sec. 2.1). The275

number of profiles per month and those reaching down to z = 20 km are summarized in276

Table 1 (also included in the relevant figures in Section 3). The numbers give an estimate277

of the number of profiles that determines the monthly means below and above z = 30 km.278

The number of profiles is largest in the extended winter period (April to September) when279

the nights are longest and cloud conditions are most favourable. T diff(z) is equivalent to280

the difference between the monthly mean temperature profiles (i.e. TECMWF(z)−T lidar(z)).281

T diff(z) is likely dominated by large scale atmospheric features rather than GWs because282

temperature differences found for individual profiles may cancel out when averaged over a283

month. However, a systematic misrepresentation of GWs in the models can have an influence284

on the mean circulation (including temperature) in the middle atmosphere.285

Averaged temperature differences for three altitude ranges (25 km < z < 35 km,286

35 km < z < 45 km, and 45 km < z < 55 km) are computed287

〈T diff〉z1 z2 (t) =

∑z2
z1
T diff(z, t)

nz
, (3)288

where nz is the number of data points in each altitude range (z1 to z2). The upper altitude289

range lies within the strong IFS sponge layer (Sec. 2.2). The three altitude ranges are290

evaluated for each month by plotting their histograms with a bin size of 1 K.291

We also analyse monthly root-mean-square-error (RMSE) profiles292

RMSE(z) =

√∑
[TECMWF(z, t)− T lidar(z, t)]2

#total
(4)293

where, in contrast to T diff(z), temperature differences in the individual profiles do not294

cancel out in the monthly means. It is investigated whether wintertime GW amplitude295

and/or phase deviations give rise to enhanced RMSE between IFS and lidar data. Only for296

the following part of the analysis, where phase differences are quantified, lidar temperature297

profiles were smoothed with a 2-km running mean in order to neglect the smallest scales298

hardly resolved in the IFS due to increasing vertical grid spacing with altitude.299
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GW perturbations in terms of temperature fluctuations (T ′) are determined by apply-300

ing a fifth-order Butterworth high-pass filter with a cut-off wavelength of 15 km to individual301

vertical profiles (Ehard et al., 2015, 2018). Therefore, the GW spectrum in our analysis is302

limited to GWs with vertical wavelengths smaller than approximately 15 km (note that our303

Butterworth filter does not have a sharp cut off). Afterwards, the perturbation amplitude304 √
〈T ′2〉 is computed with a running mean over 15 km (angle brackets). Only profiles with305

an average amplitude > 3 K are considered. We derive the dominant vertical wavelengths306

and the respective phases as a function of altitude with wavelet analysis. The procedure307

consists of the following steps: the temperature perturbations are normalized with
√
〈T ′2〉308

to ensure unbiased wavelet spectral power with altitude, and, between the lidar and the309

IFS. The wavelet analysis is performed with the code provided by Torrence and Compo310

(1998) and a Morlet wavelet with a normalized frequency ω0 = 2 is used in order to get311

high resolution in vertical space. The wavelet power spectrum is given by the square of the312

absolute value of the complex wavelet transform. The phase is defined via the arc tangent313

of the ratio between the imaginary and real part of the wavelet transform. A profile of the314

approximated dominant vertical wavelength is determined by finding the maximum in the315

wavelet power spectrum at each altitude. Taking the phase at these maxima results in a316

phase profile. The comparison of the phases determined for lidar and the IFS allows us to317

identify and quantify phase differences (∆φ). The comparison of the vertical wavelengths318

in the lidar and the IFS data allows us to assess, whether phase differences are due to the319

misrepresentation of the vertical wavelenghts of the dominant GW in the IFS.320

Last but not least, GW activity measured as GW potential energy per unit mass is321

compared between the lidar and the IFS data322

Ep(z, t) =
1

2

g2

N2(z, t)

〈
T ′2(z, t)

〉
15km

T 2
0 (z, t)

(5)323

324

with N2(z, t) =
g

T0(z, t)

(
dT0(z, t)

dz
+

g

cp

)
, (6)325

where T0 = T − T ′ is the background temperature, N is the Brunt-Väisäla frequency,326

g = 9.81 m s−2 is the acceleration due to gravity, and cp is the heat capacity of dry air at327

constant pressure (Ehard et al., 2015, 2018). For a monochromatic wave, Ep is based on T ′2328

that is either integrated along height for one wavelength or along time for one wave period329

(Tsuda et al., 2004). For our individual profiles irregularily distributed in time, we use330

vertical averaging with a sliding window (Baumgaertner & McDonald, 2007) with a width331

of 15 km, i.e. the maximum wavelength in the T ′-data, which is marked by the angle brackets332
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in Eq. (5) (i.e., similar to the previous calculation of perturbation amplitudes for wavelet333

analysis). To avoid edge effects, the uppermost and lowermost 5 km of the Ep-profiles are334

discarded (Ehard et al., 2015). We limit our comparison to Ep and do not consider the335

vertical flux of horizontal momentum because the horizontal wavenumber needed in the336

computation (Ern et al., 2004; N. Kaifler et al., 2020) is not available from ground-based337

lidar measurements and corresponding vertical IFS profiles.338

The annual cycle of Ep is analyzed in the middle atmosphere for 45 km < z < 55 km.339

The distributions of Ep are determined for the altitude ranges 35 km < z < 45 km and340

45 km < z < 55 km for May and August 2018. It was previously found that stratospheric Ep341

and GW momentum fluxes show a log-normal distribution rather than a normal distribution342

(Baumgaertner & McDonald, 2007; Hertzog et al., 2012). The probability density function343

for the log-normal distribution is given by344

y =
1

xσ
√

2π
e−(ln x−µ)2/2σ2

, (7)345

where µ is the expected value and σ is the geometric standard deviation (Baumgaertner346

& McDonald, 2007). Taking this into account, monthly mean Ep are given based on the347

logarithmic mean (or geometric mean of the log-normal distribution) of Ep348

Ep = eµ̂, (8)349

350

µ̂ =

∑
ln[Ep(z, t)]

n
(9)351

352

and σ̂2 =

∑
(ln[Ep(z, t)]− µ̂)2

n
(10)353

(Baumgaertner & McDonald, 2007) where Ep(z, t) represents either all (n) values used in354

the monthly mean calculation in an particular altitude range (Ep) or all values at each355

altitude (n = #total) to calculate monthly mean Ep-profiles.356

However, distributions of GW activity over mountainous regions may have even larger357

tails that are not adequately described by a log-normal distribution (Plougonven et al.,358

2013). This enhanced intermittency of GW activity is caused by more frequent extreme359

GW events over mountainous regions compared to flat landscapes and ocean surfaces. The360

intermittency of GWs is important because the vertical profiles of GW momentum flux361

convergence determine the wave forcing of the mean wind, which is different for sporadic362

GWs with large amplitudes versus GWs with same mean momentum but smaller amplitudes363

(Minamihara et al., 2020). GW intermittency can be well quantified by the Gini coefficient364
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(popular in economics) as in Plougonven et al. (2013) for GW momentum flux365

Ig =

∑N−1
n=1 (nf̄ − Fn)∑N−1

n=1 nf̄
, (11)366

where in our case, Fn is the cumulative sum of Ep(z, t) sorted in ascending order having an367

average f̄ = FN/N . Ig is zero for a constant time series and one for a very intermittent data368

series. Near orography (e.g., the Antarctic Peninsula) enhanced values of 0.6-0.7 were found369

in the lower stratosphere in mesoscale simulations for austral spring 2005 (Plougonven et370

al., 2013).371

3 Results372

3.1 Temperature differences and seasonal variability373

First, we quantify the temperature differences between CORAL and IFS (Eq. (2)374

and 15th/85th percentiles), including their altitudinal structure and seasonal variability,375

i.e. how they compare between the extended summer (October to March) and the extended376

winter (April to September, i.e. the GW-active season) periods. Monthly mean temperature377

differences for 2018 are overall < 2 K in the mid-stratosphere below z = 40 km (Fig. 2).378

Although a reduced number of data profiles is available at these altitudes (Sec. 2.1), the379

figure shows a small cold bias in the IFS with respect to the lidar below z = 30 km for380

Ŕıo Grande for March-September 2018, with the largest difference in August. While most381

of the months show a cold bias in the IFS up to z = 45 km, there is a 2 K warm bias382

at z = 40 km in August 2018. Around the stratopause at 45 km < z < 55 km, the sign383

of the IFS temperature bias is changing throughout the year, with the largest warm bias384

(4 K) occuring in May 2018 and the largest cold bias (-10 K) in August 2018. There is385

a cold bias in the IFS (up to -4 K) for the extended summer period. Overall, lidar and386

IFS temperatures above z = 45 km show a good agreement in the extended summer period387

(quantified by a linear Pearson correlation cofficient > 0.7 for around 95 % of the profiles).388

In the extended winter period, the agreement is worse (linear Pearson correlation cofficient389

> 0.7 only for around 60 % of the profiles). The results are most reliable at altitudes above390

30 km, because the uncertainty of the lidar measurements is < 1 K at 30 km < z < 60 km391

(Sec. 2.1).392

The comparisons for May and August 2018 are also repeated for forecast lead times of393

25 to 35 hours and the warm IFS bias at z = 50 km for May and at z = 40 km for August394
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is found to be 1-3 K larger (not shown). This indicates that a warm mid-stratosphere bias395

in IFS grows for longer lead times.396

The 15th/85th percentile, that describe how much the temperature differences between397

the IFS and lidar for individual temperature profiles vary within the month, is significantly398

larger and increases with altitude in the extended winter period (April to September) com-399

pared to the other months (Fig. 2). In the upper stratosphere, the percentiles deviate from400

the mean by up to ∼ 10 K in August 2018.401

When other years are considered, the mean temperature differences in the upper strato-402

sphere for 40 km < z < 50 km are smaller in May 2019 and 2020 in comparison to May 2018403

(Fig. 2). For July 2019 and 2020, a cold bias of -10 K is present around the stratopause404

(45 km < z < 50 km) in the IFS. This is not the case for July 2018, but a similar bias is405

found for August 2018 (Fig. 2). These changing biases are likely due to variability in the406

overall atmospheric conditions. Monthly mean stratopause temperatures (not shown) are407

higher (approx. 268 K) in August 2018, July 2019 and 2020 in comparison to July 2018408

(approx. 258 K). The IFS does not capture these enhanced stratopause temperatures which409

explains the larger monthly mean temperature differences at 45 km < z < 55 km for these410

three months, independent of the IFS cycle. Further, the spread between the 15th/85th411

percentile in May and July is similar or slightly smaller for 2019 and 2020 compared to412

2018. The spread increases with altitude also for 2019 and 2020, i.e. in the updated IFS413

cycles.414

The temperature differences and their variability in the course of the year are in-415

vestigated in more detail for the three middle-atmospheric altitude ranges (Eq. (3)) by416

computing histograms. The distribution of the temperature differences is narrowest for the417

summer months (exemplarily shown for January and October 2018) for all three altitude418

ranges and differences between individual profiles are rarely found outside the range of ±5 K419

(Fig. 3). The largest differences, exceeding ±5 K, are found in the winter months mainly420

above z = 45 km. There, the IFS experiences a warm bias of up to 15 K (May, July 2018)421

and a cold bias of more than -15 K (August 2018). The distributions are very similar for422

May and July 2019 and 2020 (gray shaded panels in Fig. 3) and for 2018. However, the423

distributions are better centered at zero for May 2019 and 2020 around the stratopause424

(45 km < z < 55 km), which results in smaller differences in the mean profiles in Figure 2.425

In contrast, the distributions for July 2019 and 2020 are clearly shifted to negative values in426
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comparison to July 2018, i.e. temperatures are more frequently underestimated by < −5 K427

in the IFS, as is found for August 2018 (Fig. 3).428

The corresponding RMSE profiles are shown for all months in Figure 4. Again, the429

results are most reliable at altitudes above 30 km because the uncertainty of the lidar is430

smallest and the total number of profiles larger for 30 km < z < 60 km (Sec. 2.1). Overall,431

the RMSE is mostly smaller than 5 K up to z = 45 km but clearly increases with altitude and432

can exceed 10 K in the extended winter period (April to September). In the stratosphere433

(i.e. below 55 km altitude), the RMSE is found to be largest in August 2018 and June434

2019 and 2020. Our hypothesis is that the presence of GWs in the middle atmosphere can435

cause large differences for individual temperature profiles during this time of the year due436

to amplitude and phase errors (analyzed in the following section).437

The annual cycle for 2018 of the absolute monthly mean temperature differences438

(|T diff|) and the RMSE averaged for 45 km < z < 55 km is shown in Figure 5. There439

is no winter maximum or robust annual cycle detected for
〈
|T diff|

〉
. Minima are found for440

May 2019 and 2020 (symbols in Fig. 5) because the monthly mean profiles agree well up to441

z = 55 km (Fig. 2). However, the RMSE shows maximum values in the extended winter442

period continuously larger than 7 K. This illustrates the seasonal variability discussed above443

for the individual months. The annual cycle is later correlated to Ep in the middle atmo-444

sphere over Ŕıo Grande to relate the seasonal variability of middle atmosphere temperature445

differences to GW activity.446

3.2 Amplitude and phase deviations447

As the largest temperature differences between IFS and lidar occur in winter, at the448

time of enhanced GW activity over Ŕıo Grande (next section and Figure 8), we now inves-449

tigate whether GW amplitude and/or phase deviations in the IFS are causative. Figure 6450

shows an example of such amplitude and phase deviations for two individual profiles in May451

2018. The profiles for both days show qualitative agreement in phase and amplitude up to452

z = 45 km (Fig. 6a,c). Higher up, there is an amplitude error of more than 20 K on 31 May453

2018 (Fig. 6a) and a clear phase error on 21 May 2018 (Fig. 6c). It was already mentioned454

that the sponge damps GW amplitudes in the IFS in the middle atmosphere. Reducing the455

sponge strength may also reduce temperature differences caused by GWs. This is illustrated456

by the purple profile in Figure 6a where the sponge was removed in the experimental IFS457
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simulations leading to a reduction of the amplitude error at 60 km. However, the removal458

of the sponge can lead to even larger temperature differences at certain altitudes for cases459

that show a phase error even though the GW amplitude itself is closer to the observations460

(purple profile in Figure 6c).461

Phase deviations between lidar and IFS are quantified based on wavelet analysis (see462

Section 2.3). Up to z = 45 km, phase shifts are less than 90 degrees for both cases in May463

2018 (Fig. 6b,d) and the vertically averaged values for 35 km < z < 45 km are 45 degrees464

and 33 degrees for 21 May and 31 May 2018, respectively. Above z = 45 km, phase shifts465

increase beyond 90 degrees for 21 May 2018 (Fig. 6d) and the vertically averaged value for466

45 km < z < 60 km is 59 degrees. The phase shift at these altitudes is related to longer467

vertical wavelengths in the IFS compared to lidar (Fig. 6d). To determine the role of phase468

deviations, we separate the profiles into those with good phase agreement (∆φ < 50 deg)469

between lidar and IFS and those with poor phase agreement (∆φ ≥ 50 deg). The number470

of profiles that have poor phase agreement at 45 km < z < 60 km is larger for May 2018471

(66 % of the profiles) compared to August 2018 (39 % of the profiles).472

In Figure 7, mean vertical wavelength and phase differences for May and August 2018473

are shown. In general, the mean vertical wavelength of the dominant GWs in the lidar data474

in May 2018 increases from around 7 km to 12 km between z = 20 km and z = 45 km475

and then drops down to less than 10 km aloft. This drop is not found in the IFS up to476

z = 60 km. This was already seen for 21 May 2018 (Fig. 6c, d) and appears to also be477

a dominant feature in the monthly mean (Fig. 7a). In contrast, the vertical wavelength is478

fairly constant and larger than 10 km above z = 30 km in August 2018 (Fig. 7b). The479

vertical wavelengths in the IFS and lidar agree better at z = 50 km than in May 2018. The480

mean phase difference at this altitude is almost 90 degrees in May 2018 while it is close to481

45 degrees in August 2018 (Fig. 7).482

3.3 Gravity wave activity, intermittency, and effect of the model sponge483

The GW potential energy Ep (Eq. (5)) is independent of the wave phase, and thus can484

be used to quantify GW amplitude deviations between IFS and lidar. Figure 8 shows the485

annual cycle of Ep for lidar and IFS for the altitude range 45 km < z < 55 km. The annual486

cycle with maximum (minimum) GW activity in the winter (summer), that is characteristic487
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for the Southern Andes region (Schroeder et al., 2009), is well reproduced by the IFS also488

above z = 45 km i.e., within the sponge layer.489

Monthly mean Ep in the IFS is generally underestimated due to GW amplitude errors490

(and therefore underestimated T ′). However, the reduction of Ep for May and July 2020491

compared to 2018 is reproduced by the IFS (see markers in Fig. 8). Ep of all individual492

profiles, vertically averaged for the same altitude range, are also shown in Figure 8. This493

shows that even though Ep is calculated following Ehard et al. (2015) with T ′2 averaged in494

the vertical (Tsuda et al., 2004), our Ep values are qualitatively similar to the Ep values in495

Reichert et al. (2021) (see their Fig. 6). Moreover, Ep uncertainties due to lidar temperature496

uncertainties are insignificant at altitudes between 30 km and 60 km (Reichert et al., 2021).497

Ep for the individual profiles also reveals that IFS indeed captures high Ep values of some498

strong GW events like the one in June 2018 (crosses in Fig. 8), which was analyzed in detail499

by N. Kaifler et al. (2020).500

Coming back to the seasonal variability of the temperature differences between the501

IFS and lidar, one finds that GW activity (Fig. 8) and the RMSE (Fig. 5) show a similar502

annual cycle. The correlation coefficent between lidar Ep and the RMSE is 0.96 for 2018.503

The correlation is smaller (0.42) for lidar Ep and
〈
|T diff|

〉
. This suggests that the monthly504

mean temperature differences are not dominated by the misrepresentation of GWs.505

The distributions of Ep for altitudes weakly affected by the model sponge (35 km <506

z < 45 km) and strongly affected by the sponge (45 km < z < 55 km) are shown in Figure 9507

for May and August 2018. The distributions are in general log-normal with partly larger508

tails, as can be seen by comparing to the probability density function computed from Eq. (7)509

using µ̂ and σ̂. The expected or mean value µ̂ and the geometric standard deviation σ̂ are510

better suited to describe the distributions than the arithmetic mean and standard deviation.511

σ̂ of the lidar and IFS distributions for the two months is close to unity and clear differences512

are found for µ̂. Overall, GW activity is larger in August compared to May. µ̂ for the IFS513

is 59 to 67 % of µ̂ for the lidar measurements in the lower altitude range, leading to Ep in514

the IFS only reaching around 35 % of the Ep in the lidar (Fig. 9a,c; Fig. 11). Nevertheless,515

the IFS captures some events of enhanced Ep as can be seen for example for May (Ep of516

80 J/kg in Figure 9a).517

In the upper altitude range, the comparison of the Ep distribution and the correspond-518

ing probability density function reveals that the IFS is missing the highest Ep values in the519
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tail of the log-normal distribution, especially in August (Fig. 9b,d). Ep for the IFS is only520

10-17 % of the Ep for the lidar (Fig. 9b,d; Fig. 11). The ‘no-sponge’ IFS simulations show521

that the missing high Ep values and fairly low Ep are partly due to the sponge (Fig. 10b,d).522

The removal of the sponge leads to an increase of µ̂ and corresponding Ep to 26 % and 42 %523

of Ep for the lidar for May and August 2018, respectively (Fig. 10b,d; Fig. 11). Longer lead524

times of 25 to 35 hours further increase Ep in the ‘no-sponge’ simulations to 31 % for May525

2018, while Ep stays almost the same (45 %) for August 2018 (not shown). At altitudes526

35 km < z < 45 km, Ep remains similar in the ‘no-sponge’ simulations with values generally527

smaller than 120 J/kg (Fig. 10a,c).528

In addition to the effect of the sponge layer, small scale GWs that are not resolved in529

the vertical in the IFS contribute to the underestimation of Ep in the IFS when compared530

to lidar. Regridding lidar temperature data to the 137 IFS vertical levels prior to the Ep531

calculation on the 100-m-grid eliminates GW structures from the lidar data that cannot be532

represented by the IFS solely due to the limited vertical resolution. The high Ep values533

and averaged Ep of the lidar measurements are reduced by a similar amount as Ep values534

increase in the IFS when the sponge is removed (Fig. 10; Fig. 11). Clear differences between535

the Ep distributions of the original lidar data and the regridded lidar data can be seen for536

Ep values larger than 200 J kg−1 (240 J kg−1) for May (August) for 45 km < z < 55 km537

(Fig. 10b,d; Fig. 10b,d). The contribution of unresolved scales in the IFS is likely even larger538

because this estimate does not consider the effective vertical resolution or scales not resolved539

horizontally. The lidar data does not provide any information on horizontal scales. Given540

that the effective horizontal resolution of the model is approximately 6-10 times the grid541

spacing due to explicit and implicit model diffusion, the IFS is unlikely to resolve horizontal542

wavelengths smaller than ∼ 50 − 90 km outside the sponge layer. In the sponge layer, the543

effective resolution is much coarser than that due to a hyperviscosity type sponge that acts544

on the horizontal wavenumber.545

To quantify the importance of extreme GW events (i.e., large Ep values and intermit-546

tent GW activity), the Gini coefficient (Eq. (11)) is calculated for the two altitude regions547

for May and August 2018 (Tab. 2). Weaker extreme GW events in combination with smaller548

mean GW activity for May results in a similar Gini coefficient as for August, when extreme549

GW events are stronger and the mean GW activity is larger. The lidar and the IFS agree550

in terms of GW intermittency for 35 km < z < 45 km. Above, the intermittency slightly551

decreases for the lidar while it is almost constant for the IFS for August 2018. The inter-552
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Table 2. Gini coefficient (Eq. (11)) for May and August 2018

data month 35-45 km 45-55 km

CORAL May 2018 0.50 0.46

IFS May 2018 0.53 0.50

IFS no sponge May 2018 0.55 0.56

CORAL Aug 2018 0.51 0.43

IFS Aug 2018 0.53 0.52

IFS no sponge Aug 2018 0.50 0.45

mittency in the IFS slightly decreases (increases) for August (May) at 45 km < z < 55 km553

when the sponge is removed. The latter finding can be reproduced by repeating the analysis554

with better statistics for the full hourly IFS data set for May and August 2018, i.e. not555

limited to times where lidar observations are available.556

4 Discussion and Summary557

Similar to previous studies for Europe (Le Pichon et al., 2015; Ehard et al., 2018;558

Marlton et al., 2021), we found a generally good agreement between the IFS and lidar559

temperature data up to 45 km altitude at higher mid-latitudes in the Southern Hemisphere,560

in the lee of the Southern Andes. Monthly mean temperature differences between the IFS561

and lidar are < 2 K for altitudes 20 km < z < 40 km for all months, and, apart from562

August 2018, usually IFS exhibits a cold bias with respect to lidar. Near the stratopause563

at 45 km < z < 55 km, which is above the peak altitude of assimilated radiances (1-2 hPa)564

in the IFS and influenced by the strong sponge, there is more time variability and the sign565

of the monthly mean temperature differences changes throughout the year. The largest566

monthly mean warm bias in the IFS with respect to lidar (4 K) occurs in May 2018 and the567

largest cold bias (-10 K) occurs in August 2018, July 2019, and July 2020 and is related to568

the warm stratopause (approx. 268 K). This suggests that the IFS cold bias in the upper569

stratosphere at Ŕıo Grande in winter lies within the range found for the older IFS cycle570

41r1 (-8 K) and cycle 41r2 (-20 K) in the Northern Hemisphere for December 2015 (Ehard571

et al., 2018). For the extended summer period (October to March 2018), the monthly572

mean cold bias in the IFS is at most -4 K for 45 km < z < 55 km and the differences for573
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individual profiles are rarely found outside the range of ±5 K. The spread of the difference574

distribution (15th/85th percentiles), the RMSE, and maximum differences for individual575

profiles are significantly larger and increase with altitude in winter (> ±10 K). The lidar576

and the IFS temperatures show better correlation in the extended summer period than in577

the extended winter period. The better agreement between the IFS and lidar in the summer578

months previously found for the Northern Hemisphere (Le Pichon et al., 2015) also manifests579

for the Southern Hemisphere and a more recent IFS cycle. The high correlation between580

the annual cycle of the RMSE and of the GW activity supports the hypothesis that the581

seasonal variability of the temperature differences over Ŕıo Grande is related to the middle582

atmosphere GW activity.583

The wavelet analysis of individual profiles for May and August 2018, revealed that the584

GWs in the lidar measurements and IFS have similar vertical wavelenghts and are largely585

in phase (∆φ < 50 deg) below z = 45 km. This means that the temperature differences586

at these altitudes are mainly due to deviations in amplitudes. Enhanced phase deviations587

(∆φ ≥ 50 deg) are found to be a feature of the upper stratosphere and lower mesosphere588

and are therefore likely a result of the propagation and representation of GWs in the middle589

atmosphere in the IFS. The vertical wavelength is clearly overestimated in the IFS com-590

pared to the lidar in the monthly mean for May 2018, though better agreement was found591

for August 2018. Resulting temperature differences at these altitudes are as such a com-592

bination of amplitude and phase deviations that are related to differences in the vertical593

wavelengths. Differences in the vertical wavelengths could be caused by errors in the hor-594

izontal wind (strength and/or direction) and/or inadequate vertical resolution in the IFS595

at these altitudes. The larger number of profiles that show poor phase agreement for May596

2018 (66 %) compared to August (39 %) could be the reason why satellite observations in597

the upper stratosphere are rejected by the 4D-Var in the IFS more frequently in May. To598

the best of our knowledge, a quantitative evaluation of phase deviations in the wintertime599

temperature perturbation profiles that are shaped by GWs has not been published for the600

IFS before. For an eight-day period with strong GW activity in June 2018, N. Kaifler et al.601

(2020) found good agreement between lidar and IFS in amplitude and phase of the moun-602

tain waves over Ŕıo Grande. Such information can only be extracted when instantaneous603

temperature profiles are available instead of nightly means (e.g., Le Pichon et al., 2015) and604

when the analysis is not only restricted to monthly mean statistics (e.g., Ehard et al., 2018).605
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The analysis of the annual cycle of GW activity in the middle and upper stratosphere606

complements the findings by Schroeder et al. (2009) for the Andes and reveals that the IFS607

captures the winter maximum and summer minimum well also at altitudes above 30 km.608

In general, the IFS underestimates Ep in the middle atmosphere over Ŕıo Grande and the609

discrepancy is increasing with altitude. Ep of the IFS above z = 45 km is only around 10 %610

of Ep derived from the lidar observations. Similar results are found for ERA5 in Strelnikova611

et al. (2021) who show that GW potential energy densities of ERA5 at z = 55 km are on612

average one order of magnitude smaller (i.e., reaching only 10 %) when compared to two613

European lidar stations. However, there can be a good agreement below z = 45 km for614

individual events like the one at Ŕıo Grande in June 2018 analyzed in detail by N. Kaifler et615

al. (2020). While the removal of the sponge in the IFS can lead to increasing temperature616

differences at certain altitudes for profiles with phase deviations, it has a positive effect on617

Ep (i.e., an increase) above z = 45 km because Ep is independent of the GW phase. Ep618

increases from only ≈10 % of the Ep of the lidar measurements to 26 % and 42 % for May619

and August 2018, respectively, when the sponge is removed. This shows that the sponge is620

an important but not the only cause for a reduced Ep in the IFS. Given this, the plan at621

ECMWF is to reduce the depth of the sponge layer in the upcoming IFS upgrade as well as622

to remove the weak damping on the zonal-mean by the sponge. In addition to the sponge, a623

too low model resolution is likely important as some of the GWs are unresolved in the IFS.624

In particular, the coarse vertical resolution in the upper stratosphere and lower mesosphere625

likely plays a role.626

GW intermittency has been previously quantified by the Gini coefficient for GW mo-627

mentum fluxes determined from e.g., balloon (Plougonven et al., 2013), satellite (Wright et628

al., 2013; Hindley et al., 2019) or radar (Minamihara et al., 2020) measurements. These629

different observations are sensitive to different parts of the GW spectrum and focus on differ-630

ent time periods and locations than discussed in this study. Therefore, it is not reasonable631

to directly compare GW intermittency for GW momentum fluxes in the aforementioned632

studies to the Ep-intermittency here. Hence, the discussion here is limited to the relative633

changes in the Gini coefficient with altitude over Ŕıo Grande. GW intermittency slightly634

decreases for the lidar measurements from 35-45 km to 45-55 km altitude. It is almost635

constant for the operational IFS data for August 2018 but slightly decreases with altitude636

when the sponge is removed. In regions where orographic GWs dominate, the intermittency637

decreases with height when GWs with large momentum flux are removed at altitudes where638

–22–



manuscript submitted to JGR: Atmospheres

the background wind matches the ground-based phase velocity of the GWs (Minamihara et639

al., 2020). However, this mechanism cannot explain the steep decline of GW intermittency640

found around the tropopause in the PANSY MST radar data at Syowa station, Antarctica.641

Instead, partial reflection due to discontinuities in static stability at the tropopause, is men-642

tioned as one possible mechanism (Minamihara et al., 2020). Changing static stability in643

the vicinity of the stratopause at around 50 km (Fig. 1) can have a similar effect on the644

GW intermittency in the middle atmosphere over Ŕıo Grande. In addition, large-amplitude645

orographic GWs can break or dissipate well below their critical level at the mesopause in646

winter or propagate horizontally out of the observational volume of the ground-based lidar647

(Ehard et al., 2017). All these processes are potentially important and could lead to de-648

creasing intermittency with altitude at the location of Ŕıo Grande. However, the differences649

and changes we found in the Gini coefficient lie below the differences between orography650

(0.8) and ocean (0.5) found in the lower stratosphere (Plougonven et al., 2013). A stronger651

decrease in intermittency is found over Ŕıo Grande above 60 km altitude in winter (0.22)652

and can be related to the saturation of the GW spectrum (Reichert et al., 2021). Overall,653

the GW intermittency in the IFS is close to the intermittency in lidar measurements, even654

though the Ep distributions of the IFS are shifted to smaller Ep values compared to the655

lidar measurements.656

In summary, this study presents the first detailed analysis of local differences between657

middle atmosphere lidar temperature measurements and IFS temperatures for the GW hot658

spot region of the Southern Andes. It was found that the ability of the IFS to accurately659

represent temperatures over Ŕıo Grande depends on the altitude range and season. In660

particular, conditions in summer are better captured by the IFS than the more complex661

wintertime conditions with large-amplitude GWs. The shortcomings in the representation662

of middle atmosphere GWs in the IFS are characterized by amplitude and phase differences663

that contribute to the site-specific temperature differences. While amplitude deviations664

in the IFS are due to the sponge and unresolved GWs, the origin of the GW phase shift665

often observed in the upper stratosphere and lower mesosphere between the IFS and the666

lidar data, is related to differences in the vertical wavelength. In the mid-stratosphere, the667

IFS has a good representation of the GW vertical wavelengths and phases. Investigating668

this topic in more detail could help to understand why phase deviations are happening669

frequently in fall, i.e. May, and improving the vertical wavelength and phase representation670

could help preventing the rejection of satellite observations in the IFS data assimilation671

–23–



manuscript submitted to JGR: Atmospheres

system. Misrepresentation of the middle atmosphere winds over Ŕıo Grande in early winter,672

when the polar vortex is not yet fully formed, or wind variations by tides or planetary waves673

could be parts of the issue. Moreover, improving GW amplitudes in the upper stratosphere674

and lower mesosphere by e.g., a weaker sponge, will help only if GW phases are represented675

correctly.676
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Figure 2. Monthly mean temperature differences (profiles) and 15th/85th percentiles (horizontal

bars) between lidar and IFS for 2018 (black), for May and July 2019 (purple), and for May and

July 2020 (turquois). The number of profiles at 20 km (50 km) altitude is given at the bottom (top)

part of the panels and gives of the amount of profiles that determines the monthly means below

and above 30 km altitude (Tab. 1). Negative (positive) values mean that temperatures in the IFS

are underestimated (overestimated).
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Figure 3. Distribution of temperature differences between lidar and IFS for January, May, July,

August, and October 2018 (gray shaded panels: May, July 2019, 2020) averaged for 25-35 km

altitude (left), 35-45 km altitude (middle), and 45-55 km altitude (right). Negative (positive)

temperature differences are blue (red). Vertical dashed lines mark the ±5 K range.
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Figure 4. Temperature RMSE for IFS, verified against lidar for 2018 (black), for May and July

2019 (purple), and for May and July 2020 (turquois). The number of profiles at 20 km (50 km)

altitude is given at the bottom (top) part of the panels and gives of the amount of profiles that

contribute to the RMSE below and above 30 km altitude (Tab. 1)).
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Figure 5. Vertically averaged (45 km < z < 55 km) absolute monthly mean temperature

differences (black) between lidar and IFS and the RMSE (blue) for 2018. Diamonds and triangles

are for May and July 2019 and 2020, respectively.

–32–



manuscript submitted to JGR: Atmospheres

Figure 6. Example profiles for (a) 31 May 2018 04 UTC and (c) 21 May 2018 04 UTC of

IFS temperature for the operational forecasts (black) and the experimental forecasts without the

sponge (purple) and lidar temperature (red) with horizontal bars marking the uncertainty of the

measurements. (b, d) corresponding perturbation profiles (T ′) as normalized amplitudes and results

from wavelet analysis, i.e. phase difference between lidar and IFS (dotted) and vertical wavelengths.

Hatched areas mark the cone of influence of the wavelet analysis.
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Figure 7. Mean vertical wavelengths (lidar: red, IFS: black) and phase difference for (a) May

2018 and (b) August 2018 determined from wavelet analysis of continuous profiles with mean

T ′ ≥ 3 K in the middle atmosphere. Hatched areas mark the cone of influence of the wavelet

analysis.
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Figure 8. Annual cycle of Ep for the IFS (black) and for the lidar measurements (red) in the

altitude range of 45 to 55 km for 2018. Diamonds and triangles show Ep for May and July 2019

and 2020, respectively. Crosses in the background show Ep of all the individual profiles in 2018

vertically averaged for the same altitude range.

–35–



manuscript submitted to JGR: Atmospheres

Figure 9. Distribution of Ep for the IFS operational forecasts (gray) and for the lidar measure-

ments (light red) at an altitude range of 35-45 km (left) and 45-55 km (right) for May 2018 (top)

and August 2018 (bottom). σ̂ and µ̂ are the geometric standard deviation and expected value of

the data distribution, respectively. Solid black and red lines show the probability density function

of the log-normal distribution (Eq. (7)) computed with µ̂ and σ̂.

Figure 10. Same as Figure 9 but for the experimental IFS forecasts without the sponge (gray)

and lidar data regridded to 137 vertical IFS levels prior to the analysis (light blue). Red line is

from the original lidar data for direct comaprison (taken from Fig. 9).

–36–



manuscript submitted to JGR: Atmospheres

Figure 11. Monthly mean profiles of Ep for the operational forecasts (black), the experimential

forecasts without the sponge (purple), the original lidar data (red), and the lidar data regridded

to 137 vertical IFS levels prior to the analysis (blue) for May 2018 (left) and August 2018 (right).

The number of profiles used for the statistics below (above) 30 km altitude is given at the bottom

(top) part of the panels.
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