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Abstract

Stochastic weight averaging (SWA) was applied to improve the radiation emulator based on a sequential neural network (SNN)

in a numerical weather prediction model over Korea. While the SWA has advantages in terms of generalization such as the

ensemble model, the computational cost is maintained at the same level as that of a single model. In this study, the performances

of both emulators were evaluated under ideal and real case frameworks. Various sensitivity experiments using different sampling

ratios, activation functions, hidden layers, and batch sizes were also conducted. The emulators showed a 60-fold speedup for

the radiation processes and 84–87% reduction of the total computation. In the ideal simulation, compared to the infrequent

radiation scheme by 60 times, SNN improved forecast errors by 5.8–14.1%, and SWA further increased these improvements by

18.2–26.9%. In the real case simulation, SNN showed 8.8% and 4.7% improvements for longwave and shortwave fluxes compared

to the infrequent method; however, these improvements deceased significantly after 5 days, resulting in 1.8% larger error for

skin temperature. By contrast, SWA showed stable one-week forecast features with 12.6%, 8.0%, and 4.4% improvements in

longwave and shortwave fluxes, and skin temperature, respectively. Although the use of two hidden layers showed the best

performance in this study, it was thought that the optimal number of hidden layers could differ depending on the given problem.

Compared to temperature and precipitation observations, all experiments showed a variability of error within 1%, implying

that the operational use of the developed emulators is possible.
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Key Points 21 

- The performance of the neural network radiation scheme was evaluated under ideal and real 22 

case frameworks. 23 

- Stochastic weight averaging is advantageous in generalization compared to the traditional 24 

neural network. 25 

- Long-term forecast errors can be largely improved using stochastic weight averaging. 26 
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Abstract 34 

Stochastic weight averaging (SWA) was applied to improve the radiation emulator based on a 35 

sequential neural network (SNN) in a numerical weather prediction model over Korea. While 36 

the SWA has advantages in terms of generalization such as the ensemble model, the 37 

computational cost is maintained at the same level as that of a single model. In this study, the 38 

performances of both emulators were evaluated under ideal and real case frameworks. 39 

Various sensitivity experiments using different sampling ratios, activation functions, hidden 40 

layers, and batch sizes were also conducted. The emulators showed a 60-fold speedup for the 41 

radiation processes and 84–87% reduction of the total computation. In the ideal simulation, 42 

compared to the infrequent radiation scheme by 60 times, SNN improved forecast errors by 43 

5.8–14.1%, and SWA further increased these improvements by 18.2–26.9%. In the real case 44 

simulation, SNN showed 8.8% and 4.7% improvements for longwave and shortwave fluxes 45 

compared to the infrequent method; however, these improvements deceased significantly 46 

after 5 days, resulting in 1.8% larger error for skin temperature. By contrast, SWA showed 47 

stable one-week forecast features with 12.6%, 8.0%, and 4.4% improvements in longwave 48 

and shortwave fluxes, and skin temperature, respectively. Although the use of two hidden 49 

layers showed the best performance in this study, it was thought that the optimal number of 50 

hidden layers could differ depending on the given problem. Compared to temperature and 51 

precipitation observations, all experiments showed a variability of error within 1%, implying 52 

that the operational use of the developed emulators is possible. 53 
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Plain Language Summary 57 

The NN emulators for radiation parameterization have been actively developing to accelerate 58 

the computational speed of the numerical climate and weather forecasting models. Although 59 

previous studies have demonstrated that the computational speed for radiation processes can 60 

be improved tens of times, guaranteeing stability in long-term forecasting has been 61 

recognized as imperative for the operational use of radiation emulator. In general, the multi-62 

model ensemble approach is used to reduce the uncertainty of a single model. However, this 63 

approach induces a significant computation burden in proportion to ensemble members. The 64 

alternative method developed in this study uses a stochastic averaging technique for weight 65 

coefficients during the NN training process, allowing processing to be conducted at the same 66 

computational cost as the single model because the dimensions of the final weights are 67 

maintained. Application of the trained NN emulator to the numerical weather forecasting 68 

model has demonstrated the advantages of generalization in various test cases, while 69 

exhibiting significant improvements in accuracy in the latter part of the forecast. This method 70 

can therefore contribute to improving emulator studies that face problems related to 71 

generalization. 72 

  73 



1. Introduction 74 

Longwave (LW) and shortwave (SW) radiation physics are important for describing the 75 

exchange of energy between the Earth and the Sun. Radiation is a fundamental energy source 76 

that determines large-scale atmospheric circulation and consequent physical processes. 77 

Accurate calculation involving radiation physics using the line-by-line model (Clough et al., 78 

1992; 2005) requires high computational burden, rendering it important to develop methods 79 

that allow rapid calculation of the radiation process. The recent rapid advances in machine 80 

learning techniques has led to the development of neural network (NN) emulators for 81 

radiation processes in the two main fields: the radiative transfer model (RTM) and radiation 82 

parameterization for the numerical weather–climate prediction model. An NN emulator that 83 

can be used in the RTM was developed some time ago (Chevallier et al., 1998) and was 84 

applied to the data assimilation system of the numerical weather prediction (NWP) model 85 

(Chevallier et al., 2000). The emulation studies in the RTM are still actively performing (Bue 86 

et al., 2019; Liang and Liu, 2020; Stegmann et al., 2022), eventually targeting to the aircraft-87 

satellite data assimilation in relation to the improvement of forward operator. Recent RTM 88 

emulator studies based on clear-sky simulations have shown a of 1.87–10.88-fold speedup 89 

(Liu et al., 2020) when used with the Rapid Radiative Transfer Model for GCMs (RRTMG; 90 

Iacono et al., 2008), and 1.8–3.5-fold (Ukkonen et al., 2020) and up to 4-fold (Veerman et al., 91 

2021) for the RRTMG—Parallel scheme (RRTMGP; Pincus et al., 2019). Note that the 92 

results of Liu et al. (2020) should be interpreted differently because the measurements 93 

described were obtained under different parallelization conditions. Meanwhile, Meyer et al. 94 

(2022) showed that using an emulator to add 3D cloud radiative effects was less than 1% 95 

more expensive than the 1D scheme; this was a significant decrease in computational cost 96 

because the 3D scheme was usually five-times as expensive than the 1D scheme. These 97 



results demonstrate the effectiveness of emulating cloud processes in terms of computational 98 

cost. 99 

It is difficult to develop an emulator for radiation parameterization within the general 100 

circulation model (GCM) and NWP because of complex interactions with various processes 101 

within numerical models. However, the emulator for numerical models is more valuable 102 

because it can provide important forecasting information that includes factors such as climate 103 

change and rapid floods. Thus, the reduction in computational cost associated with the 104 

development of an emulator for use with the numerical model would be advantageous in 105 

many ways (such as producing national policy or saving lives). Krasnopolsky et al. (2010) 106 

used a GCM model of the National Oceanic and Atmospheric Administration (NOAA) with 107 

coarse horizontal (~ 100 km) and temporal resolutions, to show that the NN emulator can 108 

improve the computational speed of the RRTMG radiation processes by approximately 30 109 

times (an average of LW and SW) and reduce 20–25% computational cost for the total model. 110 

Notably, the total reduction calculated can vary with the computational percentage used for 111 

the radiation scheme to that used for the total model. The deep neural network (DNN) 112 

emulator that was developed by Pal et al. (2019) showed 8–10 times speedup for radiation 113 

parameterization; however, the total reduction achieved in terms of computational cost was 114 

not elucidated. In the Korea Meteorological Administration (KMA), Song and Roh (2021), 115 

and Song et al. (2021) performed NWP studies with 5-km spatial and 20-s temporal 116 

resolution to show a 60-fold speedup in the RRTMG-K scheme (Beak, 2017), which was 117 

modified by the Korea Institute of Atmospheric Prediction Systems (KIAPS), along with an 118 

87% reduction in the time taken for total model computation. The significant difference in the 119 

total computation reduction achieved in GCM and NWP studies is because GCMs typically 120 

use an hourly scale radiation time step, whereas the NWP studies used the same time step for 121 



both the total model and the radiation process (i.e., 20 s), leading to a more accurate result but 122 

a higher computational burden for the control run (i.e., more speedup for the emulator). 123 

All these studies of radiation emulators have mainly been developed using the NN or 124 

DNN techniques because these methods can be simply implemented into Fortran in both the 125 

GCM and NWP. However, recent developments have been made in machine learning 126 

techniques based on the Python code. Ott et al. (2020) recently developed the Fortran-Keras 127 

Bridge to communicate between Fortran and Python, and it is actively used in emulator 128 

studies. However, such efforts remain within the scope of the DNN, and other deep learning 129 

techniques have not yet been attempted. Although Liu et al. (2020) applied a convolutional 130 

neural network (CNN) to a single column model, it was based on the use of a Python wrapper 131 

outside the numerical model. For real-case modeling such as the GCM or NWP, which are 132 

based on large-scale Fortran codes, this approach is difficult to apply. Most NN emulators for 133 

radiation parameterization in the GCM and NWP have been developed by the NOAA 134 

(Krasnopolsky et al., 2005, 2008, 2010; Belochitski et al., 2011; Belochitski and 135 

Krasnopolsky, 2021) and the KMA (Roh and Song, 2020; Song and Roh, 2021; Song et al., 136 

2021) using Fortran software (Krasnopolsky, 2014). However, this software does not support 137 

other activation functions other than tangent hyperbolic (Tanh), DNN with multiple hidden 138 

layers, and batch (or parallel) learning. Although functions other than Tanh (e.g., sigmoid, 139 

softsign, arctan, and rectified linear unit (ReLU)-type functions) have been used in many 140 

studies (Pal et al., 2019; Liu et al., 2020; Roh and Song, 2020; Ukkonen et al., 2020; 141 

Veerman et al., 2020; Belochitski and Krasnopolsky, 2021), the best activation function for 142 

the radiation emulator is still controversial. The development of DNN emulators has included 143 

several sensitivity experiments investigating the number of neurons and hidden layers (Pal et 144 

al., 2019; Liu et al., 2020; Veerman et al., 2020; Meyer et al. 2022); however, no attempt has 145 

yet been made to investigate the radiation process at the same computational cost (or speedup 146 



the process). Pal et al. (2019) compared the validation loss architecture of 32-32-32 (32 147 

neurons and 3 hidden layers) with 16-16-16 (16 neurons and 3 hidden layers), 32-32-32-32 148 

(32 neurons and 4 hidden layers), and 64-64-64 (64 neurons and 3 hidden layers), but the 149 

computation costs of the experiments differed because the numerical complexity is expressed 150 

as the total dimension of the weight and bias coefficients. Furthermore, the use of a single 151 

hidden layer, which can include the largest number of neurons at the same computational cost, 152 

was not considered in Pal et al (2019). Belochitski and Krasnopolsky (2021) emphasized the 153 

risks of using the DNN emulator in relation to increasing nonlinearity, and retained the use of 154 

a single hidden layer in developing the NN emulator for radiation parameterization. However, 155 

no practical evidence was provided (i.e., the DNN experiments were not performed), 156 

indicating that the accuracy of NN (with a single hidden layer) and DNN (with multiple 157 

hidden layers) emulators still requires comprehensive evaluation at the same computational 158 

cost and numerical complexity. Sensitivity tests with different batch sizes have rarely been 159 

performed in the field of radiation emulation, except for the speedup check that was reported 160 

in Liu et al. (2020). In general, the use of an appropriate mini-batch is known to produce a 161 

more accurate solution than the full batch (Li et al., 2014), while requiring more training (a 162 

small batch size is equivalent to less parallelization). Thus, further consideration of batch size 163 

may contribute to optimizing the performance of the radiation emulator. 164 

Stochastic weight averaging (SWA), which was recently developed in the field of 165 

machine learning, is aimed at increasing generalization in the NN training process (Izmailov 166 

et al., 2018). In general, a multi-model ensemble approach is used to reduce the uncertainty in 167 

a single model. However, this approach is not appropriate for use in emulators that are used 168 

to speed up the GCM and NWP because the computational burden is directly proportional to 169 

the number of ensemble members included. As an alternative approach in which the 170 

computational cost can be minimized, SWA performs the averages for multiple points along 171 



the trajectory of the stochastic gradient descent (SGD) (Bottou, 2012; Mandt et al., 2017) 172 

under constant or cyclical learning rates. SWA tends to find a wide flat solution using this 173 

method, whereas the SGD often converges to a sharp (or local) minimum that can cause 174 

problems with generalization. Izmailov et al. (2018) noted that the use of SWA can improve 175 

the accuracy of test sets with better generalization than conventional SGD in terms of several 176 

benchmarks. To the best of our knowledge, SWA has never been used in climate and weather 177 

models. In fact, as noted by Krasnopolsky et al. (2008), Belochitski and Krasnopolsky (2021), 178 

and Song et al. (2021), emulators for the GCM and NWP can face severe problems with 179 

generalization because the errors that are accumulated during long-term integration by the 180 

emulator can induce a blow-up of the entire numerical model. Because infinite training 181 

datasets cannot be used, generalization is an important issue for developing universal 182 

emulator. 183 

This study therefore mainly examines the benefits of using SWA in developing a 184 

radiation emulator for the NWP model under the frameworks of idealized squall-line and real 185 

case simulations. The ideal simulation will then serve as a testbed for various sensitivity 186 

experiments. At the same computational cost, the results of SWA will be compared with NN 187 

based on sequential training (SNN), which has been used in many previous studies 188 

(Krasnopolsky et al., 2005, 2008, 2010; Belochitski et al., 2011; Roh and Song, 2020; 189 

Belochitski and Krasnopolsky, 2021; Song and Roh, 2021; Song et al., 2021), and the 190 

infrequent use of radiation scheme, which is a popular method in operational NWP fields 191 

(Pauluis and Emanuel, 2004; Pincus et al., 2013). Sensitivity experiments investigating the 192 

sampling ratio of training sets, activation functions, the number of hidden layers (at the same 193 

speedup), and batch sizes (as well as learning rates) are also conducted. These all efforts will 194 

contribute to reducing the forecast error of the NWP model using the NN radiation scheme 195 

that can attain significant speedup. 196 



2. Data and Methods 197 

WRF model 198 

This study considers two types of frameworks (i.e., ideal and real cases) to evaluate the 199 

performance of a radiation emulator based on the Advanced Research Weather Research and 200 

Forecasting (WRF-ARW) model (Skamarock et al., 2019). The ideal framework was based 201 

on a two-dimensional squall-line simulation with 5-km resolution on 201 horizontal grids, 39 202 

vertical layers up to 50 hPa, and a 24-h integration period with a model time step (dt) and 203 

radiation time step (radt) of 20 s serving as the control run for the ideal simulation. Different 204 

horizontal resolution (0.25 km → 5 km), integration time (6 h → 24 h), and time steps (3 s → 205 

20 s) than those used in Roh and Song (2020) allowed consistency with the real case 206 

simulation. Thus, this simulation can provide conceptual guidance for large-scale datasets 207 

generated under real conditions. The use of small-scale data rendered it possible to perform 208 

various sensitivity experiments. For the real case, this study used the horizontal domain with 209 

234×282 grids over the Korean peninsula, which is the same that utilized in the Korea Local 210 

Analysis and Prediction System (KLAPS), one of the operational NWP models used by the 211 

KMA. Note that the dynamics and physics processes of the KLAPS were based on the WRF 212 

model. The radiation emulator used in both ideal and real case frameworks targets the 213 

RRTMG-K radiation scheme (Baek, 2017), which calculates vertical heating rates, as well as 214 

LW fluxes with 256-g points in 16 bands and SW fluxes with 224-g points in 14 bands. The 215 

WRF double moment 7-Class (WDM7) microphysics scheme (Bae et al., 2019) was used in 216 

both simulations. The real case simulation further used the KIAPS Simplified Arakawa–217 

Schubert (SAS) cumulus (Kwon and Hong, 2017), the Shin and Hong planetary boundary 218 

layer (Shin and Hong, 2015), the revised MM5 Monin–Obukhov surface layer (Jiménez et al., 219 

2012), and the Unified Noah land surface model (Tewari et al., 2004). The RRTMG-K 220 

scheme accounted for 85.0% (for the ideal case) and 88.6% (for the real case) of the total 221 



computational costs of using the WRF model under the same dt and radt (20 s). The ideal and 222 

real case frameworks were initialized by default initial sounding in the WRF model (with 223 

warm bubble forcing at low levels) and data from the European Center for Medium-Range 224 

Weather Forecasts Reanalysis v5 (ERA5) (Hersbach et al., 2020) with 0.25° grid and 3-h 225 

intervals, respectively. The 29 pressure levels (up to 50 hPa) of the ERA5 reanalysis data 226 

were vertically converted to 39 layers (or 40 levels) by terrain-following hydrostatic pressure 227 

coordinate in the WRF Preprocessing System. 228 

Training and validation sets 229 

The training sets for the ideal simulation were prepared through random sampling of the 230 

full set (i.e., control run for 24 h) using sampling ratios from 10% to 90%. The training sets 231 

were divided into LW clear, LW cloud, SW clear, and SW cloud to maintain consistency with 232 

the input–output structure of the radiation emulator developed by Song and Roh (2021). The 233 

training sets for the real case simulations were sub-sampled from 10-min interval outputs 234 

from the period 2009–2019, with 48 days from the period of 2009–2018 and the one-year 235 

period of 2019 used in Song and Roh (2021) evenly considered (i.e., 50% of the 48 days and 236 

50% in 2019). Note that the 48 days included events on which the maximum and the second 237 

maximum precipitation occurred in each month together with non-precipitating 24 days over 238 

the period of 2009–2018. To optimize the hyperparameters used in the NN training, we 239 

further prepared independent validation sets consisting of the days on which the third and 240 

fourth maximum precipitation occurred in each month over the period of 2009–2018 along 241 

with other non-precipitating 24 days which were not used in the training sets. Note that the 242 

validation sets were newly adopted in this study because Song and Roh (2021) did not 243 

optimize the hyperparameters. The training and validation sets were divided into 96 244 

categories with 3 million cases in each, as in Song and Roh (2021), who used a 96-categories 245 

approach (LW and SW, clear and cloud, land and ocean, and 12 months) to effectively utilize 246 



as much data as possible to reduce the representation error. LW process was always 247 

considered, but SW was only used during the daytime. Clear and cloud areas, as well as land 248 

and ocean, were horizontally separated. Each month was determined from initial date of the 249 

input data. The final evaluation of accuracy was performed for the year 2020 using a one-250 

week period and 3-h intervals (test sets), while the emulator was implemented in the WRF 251 

model (i.e., online prognostic testing). Note that the one-week forecast period used in this 252 

study was much extended compared to the one-day period used in Song and Roh (2021). 253 

Structure of inputs–outputs 254 

The inputs for the NN emulator for the ideal simulation consist of 187 variables, 255 

including: pressure (39 profiles), temperature (39 profiles), water vapor (39 profiles), ozone 256 

(39 profiles), and cloud fraction (30 profiles due to the removal of constant values above the 257 

tropopause), in addition to skin temperature (LW) and the solar constant multiplied by the 258 

cosine zenith angle (SW). The inputs were decreased by 157 variables in the clear case, 259 

because the cloud fraction was not used. The inputs for the real case simulation further 260 

included surface emissivity (LW), surface albedo (SW), and monthly variant cloud fraction 261 

(28 to 35 profiles). Unlike Song and Roh (2021), topography (longitude, latitude, and 262 

elevation) was excluded in this study. The outputs for both the ideal and real case simulations 263 

consist of 39 heating rate profiles and three fluxes (upward fluxes at the top and bottom, and 264 

downward flux at the bottom). Hereafter, the heating rate and flux in this study refer to the 265 

heating rates in the 39 layers and the three fluxes, respectively. The inputs and outputs are 266 

summarized in Table 1. 267 

NN training (SNN vs. SWA) 268 

For given input–output pairs, two NN methods were applied: SNN (Krasnopolsky, 2014) 269 

and SWA (Izmailov et al., 2018). Both are fully connected and feed-forward NN methods. 270 

Here, the same min-max normalization and standardization were used for the inputs and 271 



outputs, respectively. In addition, because the SNN provides the utility of early stopping, the 272 

maximum number of epochs used in SWA was determined from the SNN. The SWA mode 273 

was applied to the last 25% of the epochs, as in Izmailov et al. (2018), while the former 75% 274 

of the epochs was trained by the common SGD. Under the ideal simulation, the mean and 275 

standard deviation of epochs were 13,499 4697 for clear and 4,089 832 for cloud cases 276 

with different sampling ratios of 10–90%. When the number of samples is large, the required 277 

epoch tends to decrease. For the real case, the mean epochs were 3,011 for clear and 2,251 278 

for cloud conditions; thus, approximately 3,000 and 2,200 epochs were used, respectively. 279 

The learning curves for ideal case (10% sampling ratio) and one example of real cases 280 

(January and land), based on the settings determined as the best in subsequent analyses, were 281 

displayed in Fig. 1. Learning curves between clear and cloud cases were evidently different. 282 

The number of epochs to converge the optimal solution is thought to increase when small 283 

inputs and datasets are used in the NN training, such as the clear case compared with cloud 284 

case (157–158 vs. 188–190 for input variables) and the ideal case compared with real case 285 

(12,789–51,665 vs. vs. 3,000,000 for training sets). We can also identity the accuracy of 286 

SWA is lower than that of SNN. It is associated with the characteristics of SWA which tends 287 

to increase the performance of generalization while reducing the accuracy of training. For the 288 

SWA in real case, the computation time taken for all training datasets (i.e., 96 sets) was 24 h 289 

using the NVIDIA DGX A100 graphics processing unit (GPU) 16 units, in contrast to the 63 290 

h taken by the SNN using 96-node parallelization that was carried out with the Intel Xeon E5-291 

2690v3 CPU. The memory size of 320 GB and 128 GB were used for the GPU and CPU 292 

machines. 293 

Implementation to WRF model 294 

After the NN training, the weight and bias coefficients were obtained and inserted into the 295 

radiation emulator, replacing the RRTMG-K code (module_ra_rrtmg_swk.F) in the WRF 296 



model. For given temporal and spatial loops, the emulator replaces the vertical process of the 297 

RRTMG-K with a significant speedup; thus it was repeatedly used in temporal and spatial 298 

loops. Because the NN training was separated by 96 categories, 96-type emulators were used 299 

to predict heating rates and fluxes for 96-type inputs inside the Fortran code. In the emulator 300 

code, the NN outputs were forced into the range between the minimum and maximum values 301 

of the training sets to prevent potential error by extrapolation. Because the numerical 302 

complexity in the NN is defined as the total sum of the dimensions of the weight and bias 303 

coefficients, the use of 90 neurons in a single hidden layer for the radiation process 304 

corresponds to a 60-fold speedup and an 87% reduction in the total computation time (Song 305 

and Roh, 2021). We follow this methodology for the real case simulation, but expand to 306 

multiple hidden layers. For the ideal case, the mean computation time for the radiation 307 

process and the total model were measured using the Intel Xeon E5-2690v3 central 308 

processing unit (CPU) with serial compilation condition. As a result of averaging 10 309 

experiments, a mean speedup of 60 times (3086 s ÷ 51.5 s) was achieved for the radiation 310 

processes and the time taken to run the total model was 84% (3630 s vs. 593.5 s) lower. The 311 

small difference observed between the results obtained using the SNN and SWA was thought 312 

to be due to different cloud conditions during integration. For the situation in which there are 313 

the same number of neurons in the hidden layers, the numerical complexity of the NN or 314 

DNN can be expressed as: I×N + N + (H–1)×(N×N+N) + N×O + O. Here, I is the number of 315 

input variables, O is the number of output variables, N is the number of neurons, and H is the 316 

number of hidden layers. For example, in the ideal simulation, 68-68 (two hidden layers), 58-317 

58-58 (three hidden layers), 52-52-52-52 (four hidden layers), and 47-47-47-47-47 (five 318 

hidden layers) neuron structures are comparable to 90 neurons with a single hidden layer in 319 

terms of producing a 60-fold speedup. This is a fair approach in terms of computational cost, 320 

unlike the sensitivity experiments in Pal et al. (2019), Liu et al. (2020), Ukkonen et al. (2020), 321 



and Veerman et al. (2021). These comparisons can be used to obtain an answer to the 322 

controversial argument raised by Belochitski and Krasnopolsky (2021), who discussed the 323 

use of a single hidden layer (with a long history) and multiple hidden layers in developing 324 

NN emulators for radiation parameterization. 325 

Sensitivity experiments 326 

All sensitivity experiments were performed in the SWA. The SWA tends to converge 327 

with more smooth (or stable) solution due to the stochastic averaging to weights, whereas the 328 

SNN often produces quite noisy results with unstable convergence. Therefore, weight and 329 

bias coefficients produced in SWA can greatly affect the performance of emulator. First, we 330 

performed sensitivity experiments using sampling ratios from 10–90% in generating a 331 

training set for the idealized squall-line simulation. This experiment was primarily designed 332 

to identify the representation error from insufficient training data. While the representation 333 

error is generally expected to be reduced under an increase in the sampling ratio, we are not 334 

sure of a consistent trend with the sampling ratio because the experiment is a highly nonlinear 335 

system that is sensitive to small perturbations in the initial stage. Both SNN and SWA 336 

methods were applied, and their accuracy was measured in terms of the root mean square 337 

error (RMSE) by comparing with the control run over 24 h with 20-s interval over 201 grids 338 

(i.e., 868,320 points). As in a previous study (Song and Roh, 2021), the 60-fold speedup (i.e., 339 

90 neurons) emulator results were also compared with the infrequent radiation scheme with a 340 

radt of 20 m (denoted as ―WRF60‖ in this study). Here, we did not adjust the time between 341 

the infrequent calls, as in Manners et al. (2009) and Hogan and Bozzo (2015), because the 342 

treatment was not available in the WRF model. To minimize the redundancy problem, a 343 

sampling ratio of 10% was selected and then applied to subsequent experiments. For the 344 

second experiment, sensitivity tests were conducted with 16 nonlinear activation functions 345 

(Tanh, Arctan, Tanhshrink, Sigmoid, Logsigmoid, SiLU, Softsign, Softplus, Mish, Hardtanh, 346 



Hardsigmoid, Hardswish, ReLU, LeakyReLU, ELU, and SELU) based on SWA, in contrast 347 

to the SNN based on Tanh. Detailed definitions of the activation functions are presented in 348 

Table 2. The activation function is important to affect the accuracy of NN training, as well as 349 

a direct use inside the emulator code written in Fortran. The third experiment involved 350 

sensitivity tests on the number of hidden layers (1–5). The structure of hidden layers is main 351 

component in the emulator along with the number of neurons. The numerical complexity, and 352 

thereby speedup, for the radiation process was maintained by reducing the number of neurons 353 

in a given hidden layer. Different speedup conditions of 15, 30, 45, 60, 90, and 120 times 354 

were considered in the ideal simulation. The best performance for each speedup condition 355 

was selected from the mean RMSEs using five prediction variables (LW/SW heating rates, 356 

LW/SW fluxes, and surface temperature) over 24 h. For the real case simulation, we further 357 

performed experiments on multiple hidden layers and reduced number of neurons. Here, 68-358 

68, 58-58-58, 52-52-52-52, and 48-48-48-48-48 neurons were used with 2–5 hidden layers (2 359 

h to 5 h), respectively, in order to keep the same 60-fold speedup with 90 neurons and single 360 

hidden layer. The last experiment for batch sizes and learning rates were performed for 361 

validation sets (96×3 million data independent to training sets) in the real case simulation. 362 

Because these hyperparameters were only used in the training process (not in the emulator 363 

code), their influence was expected to be limited than the activation functions and hidden 364 

layers. In fact, the SNN based on sequential training with one batch size (Krasnopolsky, 2014) 365 

is fundamentally different from the batch learning in SWA (or SGD). The use of large batch 366 

size makes it difficult to converge to the global minimum, whereas the use of small batch can 367 

lead to highly fluctuating pattern in the cost function; thus it is generally understood that 368 

there is an optimal batch size to a given problem. In addition, Smith et al. (2018) insisted that 369 

batch size and learning rate should be proportional to each other in order to maintain good 370 

performance. The SNN was performed using adjustable learning rates (10
-3

 to 10
-6

) during the 371 



NN training and generally converged at optimal solutions of approximately 2,000 and 1,200 372 

epochs with a learning rate of 10
-4

. The empirical relationship observed between batch size 373 

and learning rate under the SNN (1 and 10
-4

) was thus applied to the experiments 374 

investigating batch sizes (100–9000) and initial learning rates (0.001–0.9) in the SWA. It 375 

should be noted that the learning rate of the SWA mode was reduced by half of its initial 376 

value under cosine annealing. The SWA group with the highest accuracy in the validation 377 

sets (2009–2018) was used in the final online testing for the year 2020. The RMSE evolutions 378 

during a one-week period were examined for LW/SW fluxes, skin temperature, 2-m air 379 

temperature, and 3-h accumulated precipitation. The evaluation of 2-m temperature and 380 

precipitation was performed by comparing with surface observation in South Korea, and the 381 

other variables were compared with the control run and WRF60. The learning rate of the 382 

SWA in the ideal simulation was determined empirically by multiplying the full batch size 383 

(equal to the number of datasets) by 2×10
-6

 based on a learning rate of 0.92997, which is less 384 

than 1 for the maximum number of datasets (464,985). Note that there were 316,322 LW 385 

clear, 464,985 LW cloud, 115,103 SW clear, and 215,821 SW cloud datasets for the sampling 386 

ratio of 90%, and the numbers were reduced proportionally to the sampling ratio. No 387 

sensitivity experiment was performed on batch size or learning rate in the ideal simulation, 388 

although the use of mini-batch and a proper learning rate may lead to better optimization. 389 

3. Results and Discussion 390 

Sampling ratios (ideal case) 391 

For the idealized squall-line simulation, nine-type datasets with a sampling ratio ranging 392 

from 10% to 90% were trained by the SNN and SWA methods. The two methods were based 393 

on the activation function of Tanh. The mean RMSEs for five variables (LW/SW heating 394 

rates, LW/SW fluxes, and surface temperature) were compared with the results of the control 395 

run, which was executed over 24 h in 20-s intervals over the 1000-km domain in Fig. 2. The 396 



emulator results were used 4,320 times temporally (number of time steps) and 201 times 397 

spatially (number of grids). Only daytime variables were considered in the RMSE calculation 398 

of SW radiation. No apparent dependency on the sampling ratio was observed in either SNN 399 

or SWA. Although the representation error should decrease when the sampling ratio is 400 

increased, the strong nonlinearity of the ideal simulation appears to have significantly 401 

influenced the results over 24 h. We can also suspect a strong correlation between training 402 

sets because 5-km and 20-s interval data were used. In such a situation, finding an optimal 403 

sampling ratio for NN training using advanced sampling techniques can be helpful and 404 

should be investigated in the future. Compared to the SNN, improvement of 9.9% was 405 

observed in the mean RMSE for all sampling ratios by using SWA, indicating that SWA can 406 

guarantee a better performance than SNN, regardless of the datasets used. Because the NN 407 

approximation tends to be optimized to reduce the total error, the improvements are not linear 408 

for all variables. On average, the SW heating rate showed the largest improvement (20.7%) 409 

of the five variables, and can increase the predictability during the daytime. Roh and Song 410 

(2020) also noted that the SW heating rate is the most uncertain variable among radiation 411 

products. The uncertainty of the SW heating rate is thought to be significantly reduced by 412 

using SWA. For a sampling ratio of 10%, the mean RMSE improvements generated by using 413 

SWA for the five variables were 13.2% higher than errors involved in using SNN (23.20% vs. 414 

10.03%). The improvements in the RMSE obtained by using SWA were relatively large for 415 

the SW outputs (12.2–20.7%). The difference between SNN and SWA was large for small 416 

sampling ratios (10% and 30%, respectively), which is thought to be because SWA can better 417 

generalize the training results compared to common NN (Izmailov et al., 2018). Because all 418 

of the data covering natural variability cannot be obtained, this benefit of using SWA is 419 

expected to exert a strong influence and improve the performance in the real-case simulation. 420 



These results suggest that datasets based on a 10% sampling ratio with the smallest 421 

redundancy should be used. 422 

Activation functions (ideal case) 423 

The activation function is an important hyperparameter that can significantly affect the 424 

performance of emulator because it is used not only in the learning process but also in the 425 

emulator code (within the WRF model). The SWA results using 16 activation functions 426 

(Tanh, Arctan, Tanhshrink, Sigmoid, Logsigmoid, SiLU, Softsign, Softplus, Mish, Hardtanh, 427 

Hardsigmoid, Hardswish, ReLU, LeakyReLU, ELU, and SELU) are compared with the 428 

results obtained by SNN based on Tanh in Fig. 3, together with the RMSEs for 24 h over the 429 

1000-km domain. The mean and standard deviation of RMSEs varied by 2.21±0.12 K day
-1

 430 

for LW heating rate, 0.98±0.06 K day
-1

 for SW heating rate, 12.19±1.63 W m
-2

 for LW flux, 431 

118.93±19.58 W m
-2

 for SW flux, and 0.86±0.10 K for surface temperature. Some activation 432 

functions (e.g., Arctan and Hardswish) showed worse performance than SNN. The lowest 433 

error among the SWA experiments was observed when Tanh was used. This feature is in line 434 

with many emulator studies based on Tanh (Krasnopolsky et al., 2005, 2008, 2010; 435 

Belochitski et al., 2011; Roh and Song, 2020; Chantry et al., 2021; Song and Roh, 2021; 436 

Song et al., 2021), and we therefore used Tanh for subsequent experiments. 437 

Evaluation results (ideal case) 438 

Figure 4 shows the temporal and horizontal evolution for the LW/SW upward fluxes at 439 

the top (LWUPT/SWUPT), surface temperature, and precipitation rate at 10-min intervals. 440 

The control run, SNN, and SWA results (radt = 20 s) were compared with those of WRF60 441 

(radt = 20 m). The SNN, SWA, and WRF60 have the same computational cost with an 84% 442 

reduction compared to the control run. The control run shows evolutionary features in two 443 

directions (i.e., positive and negative X directions) that are initialized at the center position (0 444 

km). The highest SWUPT (an indicator of deep clouds) and the lowest surface temperature 445 



areas were observed along the positive X direction. These areas are associated with a squall-446 

line precipitating system. This squall-line feature was not evident in Roh and Song (2020), 447 

probably because of a strong interaction between radiation and microphysics in the small 448 

domain (50 km), although this experiment showed the squall-line feature in the microphysics 449 

scheme only. In the negative X direction, low LWUPT and high SWUPT (an indicator of 450 

clouds) and low surface temperature areas are characterized by non-precipitating clouds (e.g., 451 

anvils). The forecast error is more evident in the cloud areas. Interestingly, WRF60 showed 452 

discontinuous features for LWUPT and SWUPT, which are direct outputs from the radiation 453 

scheme, because the radiation scheme was used 60 times (radt = 20 m) less than the dt of 20 s. 454 

This problem was not found in the results of SNN and SWA because radt of 20 s was used, as 455 

in the control run. Overall, evolutionary features of the squall-line system appear to have 456 

been properly simulated in both SNN and SWA. 457 

The time series of the RMSEs for the five variables are shown in Fig. 5. The simulation 458 

was initialized at midnight and then integrated for 24 h. The zero SW heating rate and flux 459 

(i.e., nighttime) were excluded from the analysis. In WRF60, the RMSEs for the LW heating 460 

rate and flux tended to increase substantially with integration time until 16 LST because the 461 

error due to the infrequent use of radiation scheme accumulated during integration. The 462 

RMSEs of SW heating rate and flux were largest around noon in association with the strong 463 

incident SW radiation. The RMSEs of LW heating rate and flux decreased substantially after 464 

sunset when the effects of the SW radiation disappeared. The SNN results show an improved 465 

RMSE pattern as a whole compared to WRF60, with improvements evident for all variables 466 

before noon. However, the RMSE improvements tended to weaken after the afternoon. This 467 

clearly reveals the fundamental problem of radiation emulator, which is associated with 468 

accumulated errors during integration (Krasnopolsky et al., 2008; Song et al., 2021) in 469 

addition to the NN architecture itself. The use of SWA helps alleviate the problem that 470 



appeared when using SNN. Before 4 h, SWA showed a larger error than SNN for the LW 471 

heating rate, LW flux, and surface temperature. However, after 4 h, SWA produced 472 

significantly lower RMSEs for all variables. The RMSE improvements associated with SWA 473 

were evident in relation to the SW radiation during daytime. The largest improvement among 474 

the five variables was observed in the SW heating rate, as seen in Fig. 2. Around sunset and 475 

afterwards, the RMSE improvements gained by using SWA tended to decrease, indicating 476 

that the results are affected by the daily solar cycle; this assumption can be confirmed using 477 

the results obtained over multiple days in the subsequent real case simulations (i.e., one 478 

week). Furthermore, two-sample t-test results for the time series of RMSEs between SNN 479 

and SWA showed that the two NN results were significantly different at the 90% (95%) 480 

confidence level for LW flux (other four variables). Vertical RMSEs of LW and SW heating 481 

rates were given in Fig. 6. The SWA showed significantly lower RMSEs in all vertical layers 482 

than WRF60 and SNN, except for LW heating rates around 12 km. The magnitude of heating 483 

rate errors was thought to be closely related with cloud fraction (Fig. 6a). The total statistics 484 

of the ideal simulations are summarized in Table 3. In terms of the total improvement for the 485 

five variables compared with WRF60, the performance of the SNN with 60-fold speedup was 486 

located between WRF9 with 9-fold speedup (radt = 3 m) and WRF30 with 30-fold speedup 487 

(radt = 10 m). In contrast, the SWA results were even better than those of WRF9. Note that 488 

WRF9 performed the best among the infrequent uses of radiation scheme with radts of 1 m to 489 

5 m. These results suggest that SWA can produce more accurate and fast results compared 490 

with the operational method based on infrequent radiation scheme. 491 

Hidden layers (ideal case) 492 

Before examining the real case simulation, we further examined the effect of multiple 493 

hidden layers (i.e., DNN) on the SWA emulator under the idealized squall-line framework. 494 

Here, we focus on six speedup conditions of 15, 30, 45, 60, 90, and 120 times for the 495 



radiation process, which correspond to 360, 180, 120, 90, 60, and 45 neurons in a single 496 

hidden layer. For each speedup condition, we considered DNN structures with two to five 497 

hidden layers that have the same numerical complexity as a single hidden layer. For example, 498 

in relation to 60-fold speedup, 90, 68-68, 58-58-58, 52-52-52-52, and 47-47-47-47-47 499 

neurons were used for one, two, three, four, and five hidden layers, respectively. Figure 7 500 

shows that the use of a single hidden layer produced the lowest error among all experiments 501 

under the same speedup conditions. Note that dark gray colors (i.e., low errors) predominated 502 

in the single hidden layer (Fig. 7) and the use of multiple hidden layers showed 7.41–9.80% 503 

degradation compared to the single hidden layer on an average of six speedup cases in terms 504 

of the mean RMSE improvement for five variables compared with WRF60. This is thought to 505 

be related to the reduction in the number of neurons used for the DNN and provides 506 

experimental evidence for the conceptual argument by Belochitski and Krasnopolsky (2021) 507 

that the nonlinearity of the DNN can be rapidly increased owing to the complex structure of 508 

hidden layers, which can lead to more unstable generalization such as nonlinear extrapolation. 509 

Vapnik (2019) also noted that the use of DNN does not always guarantee the best solution for 510 

a given problem. However, this result was based on one ideal case from which we cannot 511 

draw general conclusions regarding the usefulness of the DNN in developing radiation 512 

emulator. 513 

Batch sizes and learning rates (real case) 514 

As described in the Data and Methods section, the real case simulation was primarily 515 

based on KLAPS, which is one of the operational NWP models in the KMA. The training 516 

sets were based on the period between 2009 and 2019. The 48 days that were not used for 517 

training data were used as the validation sets to optimize the hyperparameters in the SWA. 518 

This can be considered as offline testing, whereas the final evaluation for the year 2020 519 

connected with WRF modeling was tested online. Unlike the online prognostic test, which is 520 



affected by the integration of the numerical model, the accuracy of the offline test should be 521 

relatively high because the error does not accumulate. In the offline test, we mainly examined 522 

the optimization of the batch size and learning rate in the SWA method. The batch size is an 523 

important hyperparameter in determining the fundamental difference between SNN, which is 524 

based on sequential training (batch size = 1), and SWA, which is based on batch training 525 

(batch size > 1). Here, we empirically forced a proportional relationship of 10
-4

 between 526 

batch size and learning rate based on the relationship observed in the SNN (1 and 10
-4

). We 527 

empirically set the minimum batch size as 100 in consideration of computational resource in 528 

our GPU system (the use of too small batch size makes less parallelization and the slowdown 529 

of training speed). The batch size was extended to 1000 with 100 intervals and 9000 with 530 

1000 intervals. The corresponding learning rates were 0.001 to 0.9. Figure 8 shows the 531 

validation results for the LW/SW heating rates and LW/SW fluxes. Here, 12 months, 532 

land/ocean, and clear/cloud results were averaged. The fraction of land over the entire 533 

domain was 45.3% and the mean fraction of cloud was assumed to 50%. Regardless of the 534 

batch sizes and learning rates used, SWA exhibited superior performance compared to SNN. 535 

On average of 10 experiments, the RMSEs of the LW/SW heating rates and LW/SW fluxes 536 

were improved by 3.15%, 8.68%, 7.92%, and 9.70%, respectively, compared with the 537 

RMSEs obtained using SNN (0.4740 K day
-1

, 0.1968 K day
-1

, 3.9140 W m
-2

, and 21.6417 W 538 

m
-2

, respectively). Among the 10 experiments, the result obtained with a batch size of 500 539 

and a learning rate of 0.05 showed the best performance with RMSE improvements by 3.21%, 540 

10.21%, 8.18%, and 11.59% for the LW/SW heating rates and LW/SW fluxes, respectively. 541 

The RMSEs of SWA for training sets were 3.26–6.09% higher for LW outputs, but 1.11–4.28% 542 

lower for SW outputs than those of SNN. Although SWA represented lower training accuracy 543 

for LW outputs than SNN, it also showed better performance when applied to independent 544 

test data (Fig. 8). These results reveal the characteristics by which SWA strengthens 545 



generalization at the expense of training accuracy (Izmailov et al, 2018). The obtained 546 

settings (500 and 0.05) were thus used to evaluate the final performance of the online testing 547 

results in the real-case simulation. We further examined the effects of activation functions 548 

using the validation sets, such as in ideal case. The RMSEs of LW/SW heating rates and 549 

LW/SW fluxes for 15 activation functions (except for Tanh) were distributed over the range 550 

of 0.45–0.54 K day
-1

, 0.18–0.22 K day
-1

, 3.64–4.15 W m
-2

, and 19.23–21.79 W m
-2

. 551 

Compared with those of Tanh (0.4588 K day
-1

, 0.1767 K day
-1

, 3.5937 W m
-2

, and 19.1334 552 

W m
-2

), the RMSEs for 15 activation functions were all higher than those of Tanh (Softsign 553 

was ranked second along with lower RMSE for LW heating rate than Tanh). These results 554 

indicate that the use of Tanh is the most appropriate for developing the radiation emulator; it 555 

is also consistent with results in the ideal simulation. Lastly, it is also of note that the SGD 556 

without the SWA represented larger RMSEs by 9.03%, 10.37%, 5.95%, and 9.48% for 557 

LW/SW heating rates and LW/SW fluxes, respectively, compared to the final results based 558 

on the SWA. The SGD results for four variables (0.5002 K day
-1

, 0.1950 K day
-1

, 3.8074 W 559 

m
-2

, and 20.9466 W m
-2

) were relatively similar to the SNN results. 560 

Evaluation results (real case) 561 

Figure 9 represents the spatial distribution of LWUPT, SWUPT, and skin temperature for 562 

a real-case example (typhoon HAISEN, 12LST September 17, 2020). The typhoon is the 563 

most extreme weather event that occurs over the Korean peninsula. Since it was initialized on 564 

00LST September 1, this case corresponds to a 6.5-day forecast result; thus, the radiation 565 

scheme used 28,080 times with a radt of 20 s. Note that this is a more long-term result 566 

compared with the 12-h forecast result for typhoon SANBA in Song and Roh (2021). Despite 567 

the 156-h forecast, the SNN and SWA emulator results show similar patterns to the WRF 568 

control run, with differences in the detailed patterns. The LWUPT and SWUPT around the 569 

typhoon were characterized by low and high values, respectively; mainly over the northern 570 



part of the Korean Peninsula. These areas were also connected to cold surface temperatures. 571 

During the event, the RMSEs for LWUPT and SWUPT in the SNN (SWA) were improved 572 

by 11.11% (10.89%) and 6.08% (6.84%), respectively, compared to WRF60 (13.68 W m
-2

 573 

and 138.92 W m
-2

). However, SNN exhibited a 15% higher RMSE for skin temperature. This 574 

feature was significantly improved by using SWA, with a 1% decrease in RMSE compared to 575 

WRF60, implying that SWA produces more stable result. 576 

More generalized evaluations of the total cases are shown in Fig. 10, in which 48 real-577 

case simulations are presented. Each simulation was initialized on the 1
st
, 8

th
, 15

th
, and 22

nd
 of 578 

each month in 2020 and then integrated for one week. Thus, 29
th

–31
st
 days in each month 579 

were excluded from the analysis. Each RMSE at a given 5-km grid in Fig. 10 represents a 580 

statistical result for a one-week forecast over 48 cases in 2020. As shown in Fig. 9, both SNN 581 

and SWA tended to improve the forecast accuracy of LW/SW fluxes compared with WRF60, 582 

and SWA showed further reduced RMSEs for LW flux, SW flux, and skin temperature than 583 

SNN. Relatively large errors of LW flux and skin temperature remain in the mountainous 584 

area of North Korea. A more quantitative analysis is presented in Fig. 11. The RMSE time 585 

series denotes a statistical result over 226×274 grids (excluding  4 boundary points) and 48 586 

weeks at 3-h intervals (totaling 166 million data points). In Fig. 11a, the RMSE for the LW 587 

flux under WRF60 tended to increase rapidly before day 2, and then steadily fluctuated with 588 

diurnal perturbation observed after day 2. The improvements in the RMSE of the LW flux for 589 

SNN (compared to the WRF60) decreased substantially from 15.5% before day 1 to only 1.4% 590 

after day 6 (Fig. 11a). This represents a weakness in the radiation emulator that the 591 

accumulation of errors caused by the NN approximation can be rapidly amplified in long-592 

term forecast. However, because the SWA method is effective in reducing the uncertainty, 593 

the RMSE improvements seen in the LW flux were 19.7% before day 1 and 9.0% after day 6 594 

(Fig. 11a). In particular, the RMSE of the LW flux after day 6 was 7.8% lower using SWA 595 



than that obtained using SNN. For the SW flux (Fig. 11b), the time series of the RMSEs were 596 

relatively similar to those for the LW flux. Looking at the maximum RMSEs of SW flux 597 

around noon, both SNN and SWA emulators showed smaller RMSEs until day 5, whereas the 598 

SNN results produced the largest error after day 5. Thus, we can assume that the rapid 599 

increase in the RMSE of the LW flux is also affected by SW radiation. Note that the mean 600 

RMSE of SW flux for the SNN decreased by 8.8% after day 5, whereas that of the SWA 601 

improved by 6.3% compared to WRF60. For skin temperature, both emulator results showed 602 

degradation after day 4 (Fig. 11c). The maximum RMSEs of skin temperature during both 603 

daytime and nighttime were larger than those of WRF60, whereas SWA was better than SNN. 604 

Skin temperature is not a direct output of the radiation scheme, and it can interact with other 605 

processes in a complex manner. In determining skin temperature, it is thought that the 606 

influence of clouds (e.g., the amount and location of clouds) will be greater than that of the 607 

radiation process. This can lead to an interpretation of Fig. 11d, which shows the evaluation 608 

results with 2-m temperature observations in South Korea. In Fig. 11d, while the RMSEs 609 

were distributed over 1.9–2.7 K, the difference obtained from the various experiments was 610 

relatively small. The final RMSEs are listed in Table 4. The RMSEs were 2.2438 K for 611 

WRF60, 2.2466 K for SNN, and 2.2563 K for SWA, and their difference was much smaller 612 

than the observation error (0.1 K). However, the observation error of 2-m temperature for the 613 

RRTMG scheme (Iacono et al., 2008), which is very popular all over the world, was 2.3405 614 

K, which was higher at level of 0.1 K than the RRTMG-K (2.2581 K) and emulators. It 615 

represents that the emulator results can be more accurate than common parameterization if 616 

the emulator mimics more advanced scheme. 617 

Similar results were also found in the evaluation of precipitation compared with the 618 

gauge-radar merged observations in South Korea (Fig. 12), with RMSEs of 12.1987–12.3120 619 

mm (Table 4). The standard deviation of the RMSEs was only 0.4% of the mean RMSE 620 



obtained for precipitation. As noted by Song and Roh (2021), because the control run also 621 

had errors as compared with observation, the error induced by the use of a radiation emulator 622 

can be insignificant in terms of observation. Instead, the uncertainty associated with clouds 623 

can play a more important role in determining surface temperature. Even so, these results 624 

imply that the radiation emulators in this study produce accurate one-week forecasts at the 625 

NWP level, in addition to a significant 60-fold speedup. In this context, the use of SWA 626 

guarantees robust results in terms of speed, accuracy, and stability. The RMSEs for both 627 

emulators were between those of WRF30 and WRF60 (Table 4). 628 

When multiple hidden layers and a small number of neurons (i.e., keeping the same 60-629 

fold speedup) were considered, the RMSEs for the one-week forecast changed (Table 4). 630 

Among the five SWA experiments using the different numbers of hidden layers, the use of 631 

two hidden layers showed the lowest RMSEs for LW/SW fluxes and skin temperature, 632 

exhibiting 0.4–1.3% lower RMSEs compared with the use of one hidden layer. As a result, 633 

the RMSEs of LW/SW fluxes and skin temperature were improved by 12.6%, 8.0%, and 4.4% 634 

compared with those of WRF60. In particular, t scores of two-sample t-test for the time series 635 

of LW flux errors between SNN and SWA in Fig. 11a were increased from 1.9101 (single 636 

hidden layer) to 2.0517 (two hidden layers), indicating the difference between SNN and 637 

SWA is significant at the 90% to 95% confidence level. The use of four and five hidden 638 

layers resulted in a worse performance than the results obtained with one hidden layer. This 639 

implies that there is an optimal number of hidden layers for a given problem. Gentine et al. 640 

(2018) and Pal et al. (2019) also used eight and three hidden layers as the optimal numbers of 641 

hidden layers, respectively, when developing their emulators. In a similar context, the use of 642 

an optimizer for tuning hyperparameters (e.g., Hertel et al., 2020), including the number of 643 

neurons and hidden layers, may improve the accuracy of the training data, but it does not 644 

always guarantee a universal performance for independent test data (e.g., the overfitting 645 



problem). However, the RMSEs for 2-m temperature and precipitation among the 646 

experiments using different hidden layers changed within 1%, implying that the operational 647 

use of the developed emulator is possible as it is now. 648 

4. Summary and Conclusions 649 

This study examined the performance of radiation emulators based on SNN and SWA 650 

training methods under idealized squall-line and real case (over the Korean peninsula) 651 

frameworks. Both frameworks used the WRF model with 5-km horizontal resolution, 39 652 

vertical layers, a model/radiation time step of 20 s, and the RRTMG-K radiation scheme. 653 

Ideal and real case simulations were integrated for 24 h and 168 h, respectively. Input 654 

variables of 157–187 (ideal) and 158–190 (real), and 42 output variables were prepared, and 655 

90 neurons with a single hidden layer were primarily used in the NN training. The variables 656 

were further separated into four categories (LW/SW and clear/cloud) in the ideal simulation 657 

and 96 categories (LW/SW, clear/cloud, land/ocean, and 12 months) in the real case 658 

simulation. The weight and bias coefficients obtained from the NN training were 659 

implemented in the WRF model by replacing the RRTMG-K code. The resultant radiation 660 

process was speed up 60 times with a total reduction in the computation time of 84–87%. In 661 

the ideal simulation, sensitivity experiments were conducted examining the sampling ratio, 662 

activation functions, and number of hidden layers. Regardless of the sampling ratios, SWA 663 

improved the RMSEs by 10% as compared to SNN. At a sampling ratio of 10%, the 664 

performance increased even further to 13.2%. Compared to the infrequent use of radiation 665 

scheme by 60 times, SNN improved RMSEs by 5.8–14.1% for five forecast variables, and 666 

SWA further increased these improvements by 18.2–26.9%. Among the 16 activation 667 

functions, the use of Tanh showed the best performance. This was also consistent with the 668 

real case simulation. However, even if multiple hidden layers were considered, the 669 

performance was not superior to that of the single hidden layer in the ideal simulation. The 670 



final performance of the SWA was better than operational methods based on infrequent 671 

radiation scheme by 3 to 60 times, suggesting improvements in both accuracy and speed for 672 

SWA emulator. The ideal framework served as the testbed for various sensitivity experiments 673 

before the real case simulation, which requires significant computational effort. 674 

In the real case simulation, the training sets were prepared for the period 2009 to 2019. To 675 

optimize batch size and learning rate, independent validation sets were prepared. After 10 676 

sensitivity experiments based on the SWA, the optimal batch size and learning rate were 677 

determined to be 500 and 0.05, respectively. This contributed to the mean RMSE 678 

improvement of 8.30% for the four variables (LW/SW heating rates and fluxes) compared to 679 

the SNN that was based on sequential training with one batch size. In a case study, both 680 

emulators properly simulated the 156-h forecast patterns of typhoon HAISEN (12LST 681 

September 17, 2020). However, SWA showed better performance for predicting skin 682 

temperature with a 14% reduction in the RMSE compared to SNN. The final evaluation was 683 

performed for 2020. Here, 48 cases were initialized from 1, 8, 15, and 22 days of each month, 684 

which were then integrated over one week. Compared to WRF60, SNN showed 8.8% and 4.7% 685 

RMSE improvements for LW and SW fluxes; however, these improvements deceased 686 

significantly after a 5-day forecast, resulting the RMSE of skin temperature was increased by 687 

1.8%. By contrast, the use of the SWA alleviated this problem, and the resultant RMSE 688 

improvements were 12.3%, 7.2%, and 3.2% for LW flux, SW flux, and skin temperature, 689 

respectively, compared to WRF60. These RMSEs were further improved by the use of two 690 

hidden layers, to 12.6%, 8.0%, and 4.4%. This is in contrast to the ideal experiment, which 691 

showed the best performance under the use of a single hidden layer. Therefore, we can 692 

conclude that the use of multiple hidden layers can be helpful for optimizing forecast 693 

accuracy, but it does not always guarantee better performance owing to the constraint of 694 

computational cost (i.e., a smaller number of neurons should be used in the DNN). When 695 



compared with surface temperature and precipitation observations, the maximum RMSE 696 

difference between experiments (control run, infrequent methods of radiation scheme, and 697 

emulators) was less than 1%, confirming the robustness of the developed emulators. 698 

The radiation emulators in this study will replace the radiation scheme of the KMA 699 

operational short-range weather forecasting model over the Korean peninsula. The one-year 700 

evaluation suggests that the use of this scheme can contribute to maintaining accuracy while 701 

significantly improving the computational speed of the NWP model. Operational 702 

implementation should be more technically optimized through the combination of the 703 

radiation emulator and its infrequent use (Song and Roh, 2021), and the use of compound 704 

parameterization (Song et al., 2021). In this study, the advantages of SWA with better 705 

generalization were emphasized. The strengths of SWA for long-term integration can be 706 

beneficial for developing a radiation emulator that can be used for seasonal prediction or 707 

multi-model climate simulations that require high computational costs (e.g., O'Neill et al., 708 

2016). Furthermore, it can be also applied to improve the NN emulation studies for other 709 

physical parameterizations (Brenowitz and Bretherton, 2018; Gentine et al., 2018; Rasp et al., 710 

2018; Wang et al., 2019; Chantry et al., 2021; Mooers et al., 2021). Various sensitivity 711 

experiments on important hyperparameters (activation functions, hidden layers, batch sizes, 712 

and learning rates) are worthwhile. These efforts will provide guidance for future 713 

development toward the total replacement of numerical weather–climate forecasting models 714 

using machine learning emulators. 715 
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Table 1. List of inputs and outputs for longwave (LW) and shortwave (SW) radiation 900 

emulators. The numbers of inputs decreased by 157 and 158 for ideal and real cases under 901 

clear conditions, respectively, because cloud fractions were not used. 902 

Inputs (ideal case) # 

Pressure 1–39 

Temperature 40–78 

Water Vapor 79–117 

Ozone 118–156 

Cloud Fraction 157–186 

Skin Temperature (LW) 187 

Solar Constant × Cosine Zenith Angle (SW) 187 

Inputs (real case) # 

Pressure 1–39 

Temperature 40–78 

Water Vapor 79–117 

Ozone 118–156 

Cloud Fraction 157–188 

Skin Temperature (LW) 189 

Surface Emissivity (LW) 190 

Solar Constant × Cosine Zenith Angle (SW) 189 

Surface albedo (SW) 190 

Outputs # 

Heating Rate (LW, SW) 1–39 

Upward Flux at the Top (LW, SW) 40 

Upward Flux at the Bottom (LW, SW) 41 

Downward Flux at the Bottom (LW, SW) 42 

 903 

  904 



Table 2. Definitions of the activation functions used. All empirical coefficients were based 905 

on the default settings in pytorch. 906 

# Functions Equations Ranges 

1 Tanh (exp(x) − exp(−x))÷(exp(x) + exp(−x)) −1, 1 

2 Arctan tan
-1

(x) −π/2, π/2 

3 Tanhshrink x – tanh(x) −∞, ∞ 

4 Sigmoid 1÷ (1+exp(−x)) 0, 1 

5 Logsigmoid log(1÷(1+exp(−x))) −∞, 0 

6 SiLU x÷ (1+exp(−x)) 0, ∞ 

7 Softsign x÷(1+|x|) −1, 1 

8 Softplus log(1+exp(x)) 0, ∞ 

9 Mish x×tanh(softplus(x)) 0, ∞ 

10 Hardtanh [−1, x ≤ −1], [x, −1 < x < 1], [1, x ≥ 1] −1, 1 

11 Hardsigmoid [0, x ≤ −3], [x÷6 + 1÷2, −3 < x < 3], [1, x ≥ 3]  0, 1 

12 Hardswish [0, x ≤ −3], [x×(x+3)÷6, −3 < x < 3], [x, x ≥ 3] 0, ∞ 

13 ReLU max(0,x) 0, ∞ 

14 LeakyReLU max(0,x) + 0.01×min(0,x) −∞, ∞ 

15 ELU [x, x > 0], [exp(x) −1, x ≤ 0] −1, ∞ 

16 SELU α×(max(0,x)+min(0, β×(exp(x) −1))) 

α = 1.0507009873554804934193349852946 

β = 1.6732632423543772848170429916717 

− α×β, ∞ 

 907 

  908 



Table 3. Statistical results of the idealized squall-line simulation for the infrequent use of 909 

radiation scheme by 9, 30, and 60 times (WRF9, WRF30, and WRF60), and the SNN/SWA 910 

emulation results compared to the control run. Total improvement is the relative reduction of 911 

RMSE (%) in WRF60 for five variables (LW/SW hearing rates, LW/SW flux, and surface 912 

temperature). In fluxes, ―UP‖, ―DN‖, ―T‖, and ―B‖ denote upward, downward, top, and 913 

bottom, respectively. The numbers in parenthesis denote T-score for the time series of 914 

RMSEs series between the SNN and SWA. 915 

Experiments WRF9 WRF30 WRF60 SNN SWA 

Radiation time step (radt) 3 m 10 m 20 m 20 s 20 s 

Speedup of radiation 9 30 60 59.7 60.1 

Reduced total time 75.56% 82.17% 83.58% 83.61% 83.69% 

LW heating rate [K day
-1

]  2.40 2.57 2.58 2.43 2.11 

SW hearing rate [K day
-1

] 1.16 1.20 1.24 1.15 0.91 

LW flux [W m
-2

] 11.12 12.28 13.29 11.76 10.58 

LWUPT 23.37 25.57 27.34 24.46 22.61 

LWUPB 1.30 1.47 1.63 1.41 1.20 

LWDNB 8.68 9.79 10.89 9.40 7.92 

SW flux [W m
-2

] 102.08 113.43 132.15 116.78 96.56 

SWUPT 124.04 136.53 158.25 142.59 119.68 

SWUPB 30.35 33.94 39.68 34.62 28.34 

SWDNB 151.77 169.74 198.42 173.12 141.66 

Surface temperature [K] 0.72 0.77 0.92 0.79 0.70 

Total improvement (%) 14.74 8.21 - 10.03 23.20 

 916 

  917 



Table 4. Root mean square error (RMSE) results of fluxes and skin temperature (Ts) in the 918 

real case simulation under the infrequent use of radiation scheme by 15, 30, and 60 times 919 

(WRF15, WRF30, and WRF60), the SNN, and the SWA with one to five hidden layers (1 h to 920 

5 h), compared to the control run. The results of 2-m temperature (T2m) and 3-h accumulated 921 

precipitation were produced through comparison with surface observations in South Korea. 922 

Note that the RMSE of the control run for 2-m temperature and precipitation observations 923 

were 2.2581 K and 12.3526 mm, respectively. 924 

Experiments 
LW flux 

[W m
-2

] 

SW flux 

[W m
-2

] 

Ts 

[K] 

T2m 

[K] 

Precipitation 

[mm] 

WRF15 7.8756 53.9819 0.5371 2.2590 12.2649 

WRF30 8.6558 57.6258 0.5753 2.2532 12.1987 

WRF60 10.1513 64.8639 0.6602 2.2438 12.2897 

SNN 9.2629 61.8149 0.6721 2.2466 12.3120 

SWA (1h) 8.9027 60.2215 0.6389 2.2563 12.2551 

SWA (2h) 8.8680 59.6838 0.6309 2.2487 12.2944 

SWA (3h) 8.9614 59.9000 0.6390 2.2470 12.3060 

SWA (4h) 9.2006 60.9223 0.6563 2.2424 12.2800 

SWA (5h) 9.4009 62.1192 0.6559 2.2593 12.2230 

 925 

 926 

  927 



928 
Figure 1. Learning curves for ideal (top) and real (bottom) cases. The SNN and SWA results 929 

were based on the settings determined as the best in subsequent analyses. Optimal epoch and 930 

normalized RMSE for all outputs were given in parentheses. 931 
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933 
Figure 2. Sensitivity experiments with the sampling ratio of training sets. The SNN and SWA 934 

results are represented by the ratio of training sets to full sets. Statistical values denote the 935 

RMSE using 5-km and 20-s intervals over the entire domain and period compared with the 936 

control run (radt = 20 s). Compared to the WRF60, the mean reduced RMSEs for five 937 

variables and nine ratios are presented in the upper right corner. 938 
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942 
Figure 3. Sensitivity experiments with activation functions for (a) LW heating rate, (b) SW 943 

heating rate, (c) LW flux, (d) SW flux, and (e) surface temperature. Vertical bars denote the 944 

RMSE with 5-km and 20-s intervals over the entire domain and a 24-h period compared with 945 

the control run (radt = 20 s). The SNN is displayed as the red bar and the best experiment 946 

among the SWA experiments is highlighted as the blue bar. 947 
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951 
Figure 4. Evolutionary features for idealized squall-line simulation. The control run, WRF60 952 

(radt = 20 m), SNN, and SWA results are displayed for LW and SW upward fluxes at the top 953 

(LWUPT and SWUPT), surface temperature, and precipitation rate. 954 
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958 
Figure 5. Time series of RMSEs for (a) LW heating rate, (b) SW heating rate, (c) LW flux, 959 

(d) SW flux, and (e) surface temperature. The RMSE results of WRF60 (radt = 20 m), SNN, 960 

and SWA compared with the control run were given. 961 
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963 
Figure 6. Vertical profiles of (a) mean cloud fraction (error bar: standard deviation), and 964 

RMSEs of (b) LW and (c) SW heating rates for the WRF60, SNN, and SWA results. 965 
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967 
Figure 7. Sensitivity experiments with hidden layers and speedups for (a) LW heating rate, (b) 968 

SW heating rate, (c) LW flux, (d) SW flux, and (e) surface temperature. The speedups of 15, 969 

30, 45, 60, 90, and 120 times correspond to the use of 360, 180, 120, 90, 60, and 45 neurons 970 

for the case of single hidden layer. For the case of multiple hidden layers, the reduced 971 

neurons were used to maintain the same numerical complexity and resulting speedup. The 972 

values inside each figure denote the RMSE with 5-km and 20-s intervals over the entire 973 

domain and a 24-h period compared with the control run. 974 
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977 
Figure 8. Sensitivity experiments with batch sizes and learning rates based on the SWA. The 978 

RMSE values of (a) LW heating rate, (b) SW heating rate, (c) LW flux, and (d) SW flux for 979 

validation sets are given in each figure. The percentages in the right corner denote the mean 980 

RMSE improvements for four variables compared with SNN. This is an offline validation 981 

which is not linked to the WRF simulation. 982 
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985 
Figure 9. Example for Typhoon HAISEN (12LST September 7, 2020). Because the initial 986 

conditions started at 00LST 1 September 2020, it is 156-h forecast result. The control run, 987 

WRF60 (radt = 20 m), SNN, and SWA results are displayed for LW and SW upward fluxes 988 

at the top (LWUPT and SWUPT), and surface temperature. 989 
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992 
Figure 10. RMSE distributions of LW flux, SW flux, and skin temperature (Ts) for the 993 

WRF60 (radt = 20 m), SNN, and SWA compared with the control run. Each RMSE at a 994 

given 5-km grid represents a statistical result for one-week forecasts over 48 simulations of 995 

2020. 996 
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999 
Figure 11. Time series of RMSEs for (a) LW flux, (b) SW flux, (c) skin temperature, and (d) 1000 

2-m air temperature compared with surface observations in South Korea. The RMSE 1001 

represents a statistical result over the entire domain or points (for 2-m temperature) and one-1002 

year period. The WRF60 (radt = 20 m), SNN, and SWA results are compared. 1003 
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1006 
Figure 12. RMSE distributions of 3-h accumulated precipitation (mm) compared with the 1007 

observations in South Korea. The results of infrequent radiation scheme (WRF15, WRF30, 1008 

and WRF60), SNN, and SWA (one to five hidden layers; 1 h to 5 h) are compared. 1009 
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