
P
os
te
d
on

22
N
ov

20
22

—
C
C
-B

Y
-N

C
-N

D
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
8
94
6.
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

A framework for estimating global river discharge from the Surface

Water and Ocean Topography satellite mission

Michael Durand1, Colin Joseph Gleason2, Tamlin M Pavelsky3, Renato Prata de Moraes
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Abstract

The forthcoming Surface Water and Ocean Topography (SWOT) mission will vastly expand measurements of global rivers,

providing critical new datasets for both gaged and ungaged basins. SWOT discharge products will provide discharge for all

river reaches wider than 100 m, but at lower accuracy and temporal resolution than what is possible in situ. In this paper, we

describe how SWOT discharge produced and archived by the US and French space agencies will be computed from measurements

of river water surface elevation, width, and slope and ancillary data, along with expected discharge accuracy. We present here

for the first time a complete estimate of SWOT discharge uncertainty budget, with separate terms for random (standard error)

and systematic (bias) uncertainty components in river discharge timeseries. We expect that discharge uncertainty will be less

than 30% for two thirds of global reaches and will be dominated by bias. Separate river discharge estimates will combine both

SWOT and in situ data; these “gage constrained” discharge estimates can be expected to have lower systematic uncertainty.

Temporal variations in river discharge timeseries will be dominated by random error and are expected to be estimated to within

15% for nearly all reaches, allowing accurate inference of event flow dynamics globally, including in ungaged basins. We believe

this level of accuracy lays the groundwork for SWOT to enable breakthroughs in global hydrologic science.
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Key Points:

• The Surface Water and Ocean Topography satellite mission will estimate
discharge for global rivers wider than 100 meters

• When unconstrained by in situ data, discharge uncertainty is expected to
be <30% for most reaches, and to be dominated by timeseries bias

• We expect discharge temporal variations to be estimated to within 15%
for nearly all reaches globally

Abstract
The forthcoming Surface Water and Ocean Topography (SWOT) mission will
vastly expand measurements of global rivers, providing critical new datasets
for both gaged and ungaged basins. SWOT discharge products will provide dis-
charge for all river reaches wider than 100 m, but at lower accuracy and temporal
resolution than what is possible in situ. In this paper, we describe how SWOT
discharge produced and archived by the US and French space agencies will be
computed from measurements of river water surface elevation, width, and slope
and ancillary data, along with expected discharge accuracy. We present here for
the first time a complete estimate of SWOT discharge uncertainty budget, with
separate terms for random (standard error) and systematic (bias) uncertainty
components in river discharge timeseries. We expect that discharge uncertainty
will be less than 30% for two thirds of global reaches and will be dominated
by bias. Separate river discharge estimates will combine both SWOT and in
situ data; these “gage constrained” discharge estimates can be expected to have
lower systematic uncertainty. Temporal variations in river discharge timeseries
will be dominated by random error and are expected to be estimated to within
15% for nearly all reaches, allowing accurate inference of event flow dynamics
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globally, including in ungaged basins. We believe this level of accuracy lays the
groundwork for SWOT to enable breakthroughs in global hydrologic science.

Plain Language Summary
The Surface Water and Ocean Topography (SWOT) satellite mission will launch
in 2022. SWOT will produce estimates of river discharge on many rivers where
no in situ discharge measurements are currently available, but will measure less
frequently and less accurately. This paper describes how SWOT discharge es-
timates will be created, and their expected accuracy. SWOT discharge will be
estimated using simple flow laws that combine SWOT measurements of river
water elevation above sea level, river width, and river slope, with ancillary data
such as river bathymetry. We expect that discharge uncertainty will be less
than 30% for two thirds of global reaches and will be dominated by a timseries
bias. Temporal variations in river discharge timeseries are expected to be esti-
mated to within 15% for nearly all reaches, thus capturing the response of river
discharge to rainfall and snowmelt events, including in basins that are currently
ungaged, and providing a new capability for scientists to better track the flows
of freshwater water through the Earth system.

Introduction
Scheduled for launch in 2022, the Surface Water and Ocean Topography
(SWOT) satellite will provide estimates of global river discharge, vastly in-
creasing the observational basis for understanding global hydrological processes
(Biancamaria, Lettenmaier, & Pavelsky, 2016). Measurements of river dis-
charge integrate upstream water cycle processes, and thus are among our most
important data resources for understanding hydrology from the watershed to
continental scales. However, most of the world’s rivers are functionally ungaged
due to a range of factors including lack of resources and lack of data sharing
(Gleason & Hamdan, 2017; Hannah et al., 2011). Remote sensing of river
discharge provides the possibility of global observation even in ungaged basins,
but with important tradeoffs, including decreased measurement accuracy,
precision, and sampling frequency as compared with observing discharge in
situ (Gleason & Durand, 2020). SWOT is a collaboration between the space
agencies of the US, France, UK, and Canada, and will measure oceans and
surface water. SWOT measurements of river water surface elevation (WSE),
top width and longitudinal water surface slope (JPL Internal Document, 2020)
enable SWOT discharge estimates, enabling potential global scale advances in
hydrology. A benchmarking study recently described focused on one aspect
of expected performance of algorithms used to estimate SWOT discharge in
ungaged basins (Frasson et al., 2021). However, a full exploration of SWOT
discharge philosophy, methodology, and expected uncertainty has not been
presented in the literature.
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The purpose of this paper is to document SWOT discharge creation, space-time
coverage, and expected precision and accuracy for the hydrologic community.
We first note that SWOT discharge is not monolithic – open satellite data will
allow for many “SWOT Discharge” products created by hydrologists from across
the scientific community. This paper is therefore primarily concerned with the
SWOT discharge to be archived and distributed by the US and French space
agencies (referred to as the “Agency” discharge estimates). We first describe
the philosophy behind the SWOT discharge (section 2), and datasets used to
produce SWOT discharge (section 3). We then describe how SWOT discharge
will be produced (section 4) and its expected accuracy (section 5). Our aim is
to describe SWOT discharge characteristics prior to launch, thus maximizing
hydrologic science returns from SWOT.

SWOT discharge philosophy
The SWOT science requirements document defines what SWOT products must
be produced and with what accuracy. This document dictates that river dis-
charge be estimated (JPL Internal Document, 2018), and thus discharge will be
produced as part of the official data product. Note that SWOT, like many large
satellite missions, has a “Science Team” comprised of researchers from around
the globe to support the mission. Not all the information needed to compute
discharge is directly available from the SWOT measurements of WSE, width,
and slope. The SWOT Science Team will develop and deploy methods to esti-
mate the additional properties of global rivers needed to produce the Agency
discharge estimate. (Note that the Science Team will likely create and distribute
additional discharge data products: see section 4.7 for details). The Agency dis-
charge estimates are thus a partnership between the Agencies and the Science
Team.

The philosophy and corresponding methods used to produce SWOT discharge
are shaped by the nature of the SWOT measurements, and the need to apply
SWOT to estimate discharge in ungaged basins. SWOT discharge methods thus
differ from the well-known two-step process to estimate river discharge at in situ
gages (Turnipseed & Sauer, 2010). In this traditional approach, gage discharge
is estimated by first establishing a “rating curve” by making joint measurements
of river stage (height above an arbitrary datum) and river discharge; the lat-
ter is obtained by measuring the river velocity profile at a river cross-section
with either a current meter or an Acoustic Doppler Current Profiler (ADCP).
Secondly, once the rating curve is established, discharge is predicted from the
rating curve via continuous observations of river stage, typically measured by
a pressure transducer. SWOT discharge will also be estimated by a two-step
process that is an analog to gages: In the first step, we establish a relationship
between SWOT observations and river discharge, and in the second step, SWOT
observations are used along with the relationship to estimate discharge on each
SWOT overpass. However, the methodological details for the first step differ
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significantly from the rating curve calibration approach due to the lack of in
situ discharge data for most of the world. As noted earlier, this article focuses
on the SWOT discharge produced by the space agencies (JPL Internal Docu-
ment, 2020), which follows this two-step methodology; see Section 4.7 for other
approaches to SWOT discharge. The philosophy governing Agency discharge
products can be summarized in five points (Figure 1); note that these are five
philosophical points, rather than five sequential steps in discharge estimation.

First, river discharge estimates will be driven by “primary data”, defined by
Gleason and Durand (2020) as “electromagnetic radiation recorded directly by
the satellite”. Thus, the basic form of flow laws used to compute discharge
(𝑄𝑡) for each reach and for each SWOT overpass at a time 𝑡 must rely on
SWOT observations, and will in most cases be a modified form of the Gauckler-
Manning-Strickler equation (referred to as the “modified Manning’s equation”,
hereafter):

𝑄𝑡 = 1
𝑛𝑡

(𝐴 + 𝐴′
𝑡)

5/3 𝑊 −2/3
𝑡 𝑆1/2

𝑡 , (1)

where 𝑛𝑡 is the coefficient governing hydraulic resistance in the river, 𝐴 is the
time-series median cross-sectional area (equivalent to a constant offset applied
to the 𝐴0 quantity defined in Durand et al. (2014)), 𝐴′

𝑡 is the cross-sectional
area anomaly (i.e. the time-varying part), such that 𝐴 + 𝐴′

𝑡 estimates the
total cross-sectional area at time 𝑡, 𝑊𝑡 and 𝑆𝑡 are SWOT observations of reach
averaged river width and surface slope, respectively, and the 𝑡 subscript denotes
values that vary from pass to pass (note that all quantities vary spatially). 𝐴′

𝑡
will be computed from SWOT WSE and river width observations. Values of
𝑛𝑡 are computed from simple functions of SWOT observations as described
in section 4.2. All quantities in Equation 1 are reach averages. Equation 1
is derived from the shallow water equations under simplifying assumptions as
described in section 4.2. Discharge computations from these simple flow laws
enable straightforward uncertainty quantification (see section 5), and meet the
practical requirement that global discharge computation proceed with little or
no supervision by the space agencies. As discharge is predicted from these flow
laws, SWOT does not “measure” discharge but rather “estimates” it. SWOT
discharge estimates are thus driven by primary data in that time variations in
discharge are driven only by time variations in the remote sensing observations
of WSE, width, and slope.

Second, as described earlier in this section, discharge will be computed using a
two-step process: members of the SWOT Science Team will compute optimal
estimates of flow law parameters, then provide these to the space agencies for
regular computation of SWOT discharge using the chosen flow laws (Figure 2).
This two-step process is necessary because SWOT cannot not measure all flow
law terms, such as the coefficient governing hydraulic resistance and the river
bathymetry (represented by 𝑛𝑡 and 𝐴 respectively, in equation 1). These unob-
served terms in the flow laws are referred to as “flow law parameters” (FLPs)
hereafter. FLP estimates will be computed by the Science Team after SWOT

5



launch using algorithms described in section 4.3. After FLPs are estimated,
SWOT discharge will be produced automatically for each SWOT pass. These
two steps are referred to as “Flow Law Parameter Estimation” (FLPE) and
“Discharge Production”.

Third, SWOT discharge will be produced for reaches approximately 10 km in
length, driven by precision of reach averaged WSE, width and slope measure-
ments. SWOT WSE measurements will be noisy at the scale of individual radar
pixels (JPL Internal Document, 2017). Rodriguez, Durand, and Frasson (2020)
showed that averaging to reaches of approximately 10 km is necessary to re-
solve river features. Thus, the Agency discharge products will be produced at
reach scale; reach averaging necessitates adaptation of flow laws, as showed by
Rodriguez, Durand, and Frasson (2020), and discussed in section 4.2. Possible
Science Team discharge estimates at higher spatial resolution are discussed in
section 4.7.

Fourth, two branches of SWOT discharge will be produced: one where in situ
data are used to constrain SWOT discharge, and one where in situ data are
not used to constrain discharge, referred to as “gage constrained” and “uncon-
strained”, respectively. Philosophically, these two branches are driven by the
fact that SWOT discharge estimates will be used in both gaged and ungaged
basins, with different sets of expectations and requirements regarding discharge
accuracy. For example, most remotely-sensed precipitation estimates are con-
strained to precipitation gages, where these are available (Hou et al., 2014). The
constrained branch will leverage both historical and concurrent gaged discharge
data. A priori information (e.g., mean annual flow predicted by global hydrolog-
ical models) will still be used to “inform” the unconstrained products. This is
in accordance with our philosophy because methods to estimate “unconstrained”
flow law parameters use model data only as a priori information in the Bayesian
sense, and, the models used (e.g. the Water Balance Model (WBM) described
by Cohen, Kettner, and Syvitski (2014)) are not themselves calibrated on in situ
discharge data. In contrast, the “gage constrained” flow law parameters will be
chosen assuming the availability of suitable in situ discharge data and informed
by global models calibrated at specific gage sites. Gage discharge will be used
only during the calculation of the flow law parameters, not during the oper-
ational discharge calculation by space agencies. Additionally, some discharge
gages will be reserved for validation purposes (i.e., not used to constrained either
prior models or SWOT discharge) to assess discharge accuracy and precision of
both the gage-constrained and unconstrained products (see section 4.5, below).

Fifth, Agency products will include an ensemble of discharge estimates, pro-
duced using several different flow laws and FLPE algorithms described in section
4.3. A “consensus” discharge estimate based on a summary statistic computed
across the ensemble will also be included (see section 4.4). This ensemble ap-
proach is driven by the fact that FLPE in ungaged basins is challenging, and it is
unlikely that a single approach is optimal for all rivers. The ensemble approach
adds robustness to SWOT discharge.
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Data and datasets used for SWOT discharge es-
timation
In this section we describe the SWOT mission river database (SWORD; 3.1),
SWOT observations (3.2), and ancillary data (3.3) used for FLPE and discharge
production.

SWORD
SWORD archives both spatial data and reach attributes for SWOT reaches
(Altenau et al., 2021) and is critical to creation of SWOT river data products.
The primary spatial attributes of SWOT reaches are SWORD river centerlines,
which are specified based on the Global River Widths from Landsat dataset
(Allen & Pavelsky, 2018) at ~30 m spatial resolution, using Landsat data and
the RivWidth algorithm (Pavelsky & Smith, 2008). SWORD also defines spatial
data and attributes for river nodes, a series of points at approximately 200 m
increments along river longitudinal profiles defined by the SWORD centerline.
SWORD reaches and nodes are used in several stages of SWOT processing:
e.g., SWOT radar pixels are mapped onto SWORD node locations using the
RiverObs software (https://github.com/SWOTAlgorithms/RiverObs), translat-
ing two-dimensional imagery to one-dimensional measurements of WSE, width
and slope. SWORD archives river ice climatology (derived following the meth-
ods of (Yang, Pavelsky, & Allen, 2020) used for SWOT ice flagging. SWORD
distance from river outlet (also called “chainage”) and SWOT WSE at the node
scale are combined to compute SWOT reach averaged river slope. SWORD
also archives drainage area, extracted from datasets such as MERIT Hydro
(Yamazaki et al., 2019), river topology, and river obstructions data from the
Global River Obstruction Database (Whittemore et al., 2020). Once FLPs have
been computed by the Science Team, they will be attached to SWORD for the
Agencies to use in producing discharge estimates. See Altenau et al. (2021) for
further details.

SWOT observations: Spatial and temporal sampling char-
acteristics, and precision
SWOT WSE (defined relative to the EGM08 geoid), width and slope resolu-
tion and precision are relevant to methods used to calculate discharge, and so
are briefly reviewed here; for more details, see the SWOT River Single Pass
Product Description Document (JPL Internal Document, 2020) example data
products (https://podaac.jpl.nasa.gov/swot?tab=datasets), Science Require-
ments Document (JPL Internal Document, 2018)and Mission Performance and
Error Budget (JPL Internal Document, 2017). Note that the SWOT mission
has two phases, marked by different orbits and resulting spatiotemporal sam-
pling. In the first phase (nominally 3 months long), SWOT measures a small
subset of global rivers with daily sampling; this is the “fast repeat orbit”. In
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the second phase (nominally 3 years long), all rivers are covered with less fre-
quent temporal sampling; this is the “nominal science orbit”. Only spatial and
temporal sampling for the nominal science orbit is described here.

Spatial Characteristics

Figure 3a shows all rivers expected to be observed by SWOT based on SWORD
(Altenau et al., 2021), broken out by width. The Science Requirements Docu-
ment requires only that SWOT products be produced for rivers greater than 100
m, with a science goal of producing data products for all rivers wider than 50
m (JPL Internal Document, 2018). As shown by Pavelsky et al. (2014), SWOT
spatial coverage assuming either 50 m or 100 m is far greater than current gage
coverage. There are 213,485 SWORD river reaches, but many of these are too
narrow, represent lakes or reservoirs that fall along rivers, are short reaches
that span river obstructions, or are in areas of unreliable river topology; SWOT
discharge will not be produced for such reaches. After filtering such reaches, a
total of 62,809 reaches are wider than 100 m, and a total of 122,684 reaches are
wider than 50 m. SWOT discharge will be produced and is expected to be of
good quality for all rivers greater than 100 m; we will explore ability to produce
discharge for rivers as narrow as 50 m.

Temporal Characteristics

SWOT will measure most mid-latitude reaches twice on average during the 21
day repeat cycle (~35 observations per year), with more observations at higher
latitudes. Figure 3b shows the total number of expected observations per year,
after including the effect of ice cover (SWOT discharge will not be estimated
when rivers are ice covered). A total of 1,360 river reaches wider than 100 m
(2% of the total) are never observed due to small gaps in SWOT coverage. The
effect of ice cover is seen in that expected number of observations increases
with latitude, but then begins to decrease at the highest latitudes; this effect
is especially visible in Asia. Figure 4 illustrates SWOT temporal sampling for
four United States Geologic Survey (USGS) gages in North America.

SWOT discharge is included in both the “single pass” data product, defined as
the discharge observed at the time of each overpass, and a “cycle averaged” data
product. Cycle averaged discharge will be computed as a simple average of all
the single pass discharge estimates for each cycle.

Measurement precision

SWOT discharge accuracy is impacted by the SWOT WSE, width and slope
measurement accuracy. SWOT science requirements specify that WSE, width,
and slope will be computed on all reaches with average width greater than
100 m to reach-scale accuracies of 10 cm, 15%, and 17 mm/km, respectively
(JPL Internal Document, 2018). Current estimates of these accuracies differ
slightly from the requirements: e.g., nominal width accuracy is expected to
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be on the order of 10 m (Frasson et al., 2017). Uncertainty in 𝐴′ can be
approximated as shown in Durand et al. (2020). The effects of WSE, width and
slope uncertainty on SWOT discharge uncertainty is described in section 5.

Additional datasets and the SWORD of Science
In addition to SWORD and SWOT data, additional datasets will be leveraged
to create SWOT data. Specifically, in situ discharge data and modeled discharge
estimates will be used in various parts of the discharge creation process. The
constrained branch of SWOT discharge will leverage gage data - both historical
and concurrent with the SWOT mission; some of the concurrent gage data will
be held out for discharge product validation. Details of these datasets are not
provided here, but all available gage data will be leveraged.

A priori information for FLPE will be derived from historical global hydrolog-
ical model simulations. Prior estimates of flow statistics for the unconstrained
branch will come from the WBM dataset of Cohen, Kettner, and Syvitski (2014).
Note that this WBM simulation was not calibrated using gage discharge data
and is thus philosophically consistent with unconstrained branch. Prior esti-
mates for the gage-constrained branch will come from GRADES, the Global
Reach‐Level A Priori Discharge Estimates for SWOT (Lin et al., 2019), a hydro-
logic model run calibrated to in situ gages, and further bias-corrected by gages.
Note that the gage constraints in GRADES are not the result of traditional
model calibration. i.e., GRADES did not use gage time series data to calibrate
model parameters, but instead used only global runoff statistics regionalized
from several thousand small and naturalized catchments using a neural network
(Beck, de Roo, & van Dijk, 2015) to constrain the model, which was then run at
2.9 million locations. As a result, the gage constraints in GRADES should be
considered indirect and limited, because the runoff percentiles were regionalized
from small catchments (10-10,000 km2) that mostly fall below the SWOT ob-
servable river width limit (50-100 m). A number of additional datasets will be
used as prior information in the FLPE process; these are collectively referred to
as the “SWORD of Science” (SoS). The SoS combines all additional databases
needed for FLPE; some additional details of such datasets are described below.

How will SWOT discharge be produced?
SWOT discharge is created by a partnership between the Agencies and Science
Team. “Confluence” is the Science Team computational framework for FLPE
(section 4.1), encoding flow laws (section 4.2), and FLPE methods (section 4.3).
SWOT discharge is produced by the Agencies as part of SWOT data products
(section 4.4). We also present a timeline for SWOT discharge production (section
4.5), a plan for discharge evaluation (section 4.6), and possible Science Team
discharge estimates (section 4.7).
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Confluence: A computational engine for SWOT discharge
and FLPE
The Confluence computational engine has been developed to enable FLPE in
a timely manner from SWOT observations for multiple flow laws across global
reaches. To support the agency discharge products, the Science Team will be
required to produce FLP estimates rapidly at the global scale. This means we
must ingest SWOT observations, reference many data fields within the SWORD
database, and run computationally expensive discharge algorithms for on the
order of 105 reaches, all on a short timeline. This is far from trivial, both in
terms of logistics and in terms of the required computational resources. Con-
fluence is a cloud-based computation engine that facilitates these operations;
Confluence produces both discharge (to be available as a Science Team data
product) and FLP estimates from multiple FLPE algorithms in parallel. Con-
fluence is scalable on demand, both in terms of computational resources and
storage capacity: it is deployable on Amazon Web Services and similar cloud
environments with massive computational resources, shortening needed compu-
tation time. Optimal FLP estimates produced by Confluence will be merged
into SWORD and passed to the agencies to use with discharge production (i.e.
step 2, in Figure 2). Confluence includes input modules to interface to all three
major datasets described in section 3.3: SWOT, SWORD, and the SoS. The
algorithms inside Confluence each calculate discharge as well as FLPs, but dis-
charge values computed in Confluence are not passed to the Agencies, but are
planned to be available to the community as so called ‘Science Team discharge
products’ (Figure 5; section 4.7).

Flow laws
Flow laws are the functional form that relate SWOT observations of WSE, width
and slope and FLP estimates to river discharge. The following describes how
these flow laws relate to more general physical relationships such as the Saint
Venant equations, and is relevant to all the flow laws used by Agency discharge
estimates; flow laws and FLPEs for each discharge estimate is described in the
following section.

The modified Manning’s flow law shown in Equation 1 is presented as an ex-
ample flow law; it can be derived from the shallow water equations under the
following assumptions. First, the modified Manning’s equation assumes that
the so-called friction slope or rate of momentum loss downstream is equal to
the slope of the water surface. It does not assume that the bed slope and sur-
face slope are identical, and thus it does not assume uniform flow (Tuozzolo et
al., 2019a). The surface slope represents the sum of two forces acting on the
water: the downward pull of gravity, and the spatial gradient in hydrostatic
forces, represented as downstream changes in river depth. Thus, Equation 1
corresponds exactly to the steady state equilibrium of the “diffusion wave” ap-
proximation (Trigg et al., 2009). Garambois and Monnier (2015) provide an
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objective basis for the modified Manning’s equation by showing that it results
from neglecting the acceleration terms in the shallow water equations with the
assumption that Froude numbers are low (i.e. <0.3). Garambois and Monnier
(2015) suggested that the modified Manning’s equation is thus a “low Froude
approximation”. Most rivers that SWOT can measure will have Froude < 0.3,
most of the time: e.g. see Bjerklie et al. (2020), which makes this approxima-
tion reasonable. However, even if Froude numbers are significantly higher than
0.3, the modified Manning equation can be expected to function adequately in
most cases as it has several degrees of freedom with which to fit the data. In
other words, Fr<0.3 is a sufficient condition to justify the modified Manning
formulation, but it is not necessary. Nonetheless, care must be taken not to
apply the modified Manning’s equation in parts of the river such as riffles or
low-head dams where there is a significant elevation drop across a very short
distance where flow is expected to be supercritical. This is handled for SWOT
discharge by using a database of such structures within SWORD to define reach
boundaries that exclude such structures. The length of river that includes the
hydraulic structure is defined as a “dam reach” (Altenau et al., 2021), a special
class of reach for which discharge is not computed. Similarly, lakes on SWOT
rivers are expected to have a surface slope too low to resolve; discharge is not
computed for lakes (Altenau et al., 2021).

Second, Equation 1 assumes a large width-to-depth ratio such that wetted
perimeter can be replaced by the river top width (Strelkoff & Clemmens, 2000).
Over typical SWOT rivers, this approximation is likely to contribute at most a
few percent error.

Third, Equation 1 assumes that the many non-linear dynamics of open channel
flow in natural rivers can be parameterized via the resistance coefficient with
different possible parameterization models, as described by Rodriguez, Durand,
and Frasson (2020) or (Larnier et al., 2020). Some flow laws specify 𝑛𝑡 to vary
as a function of WSE, while others specify it to vary as a function of 𝐴′, and
still others specify it to be a constant. In all these options, these parameters are
still functions of space, and therefore possibly different for each node or reach.
We describe one example resistance parameterization, for illustration purposes.
Following Rodriguez, Durand, and Frasson (2020), the resistance coefficient 𝑛𝑡
could take this form:

𝑛𝑡 = 𝑛b (1 + 5
6 [ 𝑊𝑡𝜎𝑧

𝐴+𝐴′
𝑡
]

2
), (2)

where 𝑛b is the resistance coefficient at a high flow, such as bankfull, and 𝜎𝑧
is the within-reach spatial variation of river bed elevation. Thus, the terms in
parentheses on the right-hand side of Equation 2 describe the effect of spatial
variability within the reach, and 𝑛b describes any and all forms of energy and
momentum loss in the channel including irregular channel geometry, flow irreg-
ularities, bedload transport, turbulent lateral and vertical motion in the flow
field, form drag around large obstacles (e.g. boulders and fallen trees on the
channel bottom) as well as viscous friction losses (Gualtieri et al., 2018). Equa-
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tion 2 assumes that the effect of river width spatial variability of river width is
small compared with that of river depth. Given this formulation for 𝑛𝑡, in com-
bination with Equation (1), 𝐴, 𝑛b and 𝜎𝑧 denote time-invariant parameter that
must be estimated for each reach, using methods described in the next section.
While each algorithm will apply a slightly different version of both the flow law
and the resistance coefficient formulation, Equations 1 and 2 are representative
examples.

Flow laws are currently being developed to handle two special cases. First, Du-
rand et al. (2020) showed that a significant number (10-20%) of global reaches
will have surface slopes that are small compared with the expected SWOT slope
error, necessitating an approach to relate discharge and SWOT observations that
is not dependent on surface slope. The simplest “low slope” algorithm would
simply relate WSE and river discharge using a three-parameter rating curve
approach. Note that low slope reaches may additionally be impacted by back-
water effects and hysteresis in the relationship between WSE and river discharge.
Thus, more sophisticated approaches to discharge estimation may be developed
for future versions of the SWOT discharge estimates. Second, multi-channel
rivers are not well-represented by the assumptions of Equation 1. SWOT will
measure many quantities that could in principle be used to improve discharge
estimates. Efforts are underway to formulate flow laws that take these multiple
channels into account in their formulation.

Flow Law Parameter Estimation algorithms
As outlined in section 2, FLPE is the first step of the two-step process to estimate
river discharge using SWOT measurements (see Figure 2). The time-invariant
parameters described earlier (𝐴, 𝑛b and 𝜎𝑧 for Equations (1) and (2), as an
example) must be estimated for each reach, globally, and for each flow law.
Gleason and Durand (2020) describe several approaches to this problem. Here
we present an overview of FLPE methods planned for SWOT discharge (Figure
6). Note that a full description of these methods, including their needed inputs
and prior information, is outside the scope of this manuscript; for more details
on the reach-scale algorithms, see Frasson et al. (2021).

Reach-scale calibration algorithms

As described above, rating curve calibration as it is typically done using field
measurements estimates FLPs in order to minimize the difference between flow
law discharge estimates and discharge field measurements. The Modified Opti-
mized Manning Method Algorithm (MOMMA) operates on a similar principle:
it estimates FLPs based on specifying a target discharge estimate. MOMMA
is a revised version of the Mean Flow and Geomorphology algorithm (MFG)
described in Bonnema et al. (2016) and Durand et al. (2016). MOMMA uses a
slightly different version of the modified Manning’s equation as Equation 1, and
is based on estimation of bankfull WSE based on analyzing the WSE-width re-
lationship for each reach. MOMMA requires an estimate of bankfull discharge,
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which it estimates from hydrological model output where in situ discharge is
not available. The accuracy of SWOT discharge estimated via MOMMA is by
construction limited to the accuracy of the data used to calibrate, which may
include a range of discharge measurements made in the reach or an estimate
of the mean discharge for the reach derived from another source. This is a
significant limitation for reaches that do not contain stream gage data or have
accurate estimates of the mean discharge.

Reach-scale inverse algorithms

Reach-scale inverse algorithms are designed for use in ungaged basins in areas
where there is no in situ data to calibrate against, and where modeled estimates
of discharge may be poor. These algorithms solve a poorly-constrained inverse
problem; they incorporate existing estimates of discharge using Bayesian prin-
ciples, modeling the uncertainty of SWOT observations, flow laws, and prior
discharge as part of the inverse algorithm. Tuozzolo et al. (2019b) and Frasson
et al. (2021) showed that such algorithms improve on prior discharge estimates,
but that final discharge accuracy is nonetheless dependent to some extent on the
prior. Indeed, Larnier et al. (2020) demonstrated that the inversion is ill-posed
if based on the flow equations alone; prior information is necessary. Significant
effort has been devoted to FLPE inverse algorithms in the SWOT context over
the past decade or so (Durand et al., 2010; Durand et al., 2014; Durand et al.,
2016; Garambois & Monnier, 2015; Gleason & Smith, 2014; Gleason, Smith, &
Lee, 2014; Hagemann, Gleason, & Durand, 2017; Larnier et al., 2020; Nickles et
al., 2020; Oubanas et al., 2018; Tuozzolo et al., 2019a; Yoon et al., 2016). The
key difference between these and the calibration approach described in the pre-
vious section is that these algorithms are designed to solve an under-constrained
inverse problem, whereas the calibration approach is well-constrained.

The inverse algorithms described in this section are designed to run on one of
two spatial domains: either a single reach, or a set of several reaches. The
algorithms that run on a set of several reaches (called an “Inversion Set” here)
estimate reach averaged discharge and FLPs for each reach in the Inversion Set,
using only reach averaged SWOT observations. Inversion Sets are chosen to
minimize lateral inflows, while including as many reaches as possible. Other
algorithms operate on a spatial domain of a single reach and estimate discharge
and flow law parameters at each node within the reach using SWOT observations
at the node scale. Output from inverse algorithms applied at the node scale are
averaged to apply to reach scale quantities, in order to interface with the Agency
reach-scale discharge estimates.

The algorithms often implicitly or explicitly invoke some form of the continuity
equation applied to the spatial domain over which they are applied. They thus
neglect tributary inflows and groundwater exchange, making the assumption
that such lateral inflows lead to minimal discrepancy between upstream and
downstream of the spatial domain. This assumption is obviously more secure
when inverting over a single reach at the node scale, but with a tradeoff that
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SWOT observations are much more uncertain at the node scale than the reach
scale: as there are ~50 nodes per reach, node level errors will be on the order
of seven times larger. In general continuity-related errors are expected to be
minimal across sets of reaches when lateral inflows change the discharge by less
than 5% (Nickles et al., 2020).

There are multiple classes of algorithms proposed to be used, including Mass-
Conserved Flow Law Inversion (McFLI) and variational data assimilation (VDA)
as shown in Figure 6 and described in the next two subsections.

Mass-Conserved Flow Law Inversion McFLI refers to inverse algorithms
that infer FLPs by equating discharge in neighboring adjacent reaches or nodes
of the river, over a specified spatial domain (Gleason, Garambois, & Durand,
2017). Two McFLI algorithms are currently planned for use with SWOT.

The Geomorphically-informed Bayesian At many stations hydraulic geometry-
Manning Algorithm (geoBAM, Brinkerhoff et al. (2020)) leverages the concept
of At many stations hydraulic geometry (AMHG, Gleason and Smith (2014))
to jointly invert Equation 1 and traditional hydraulic geometry as expressed by
Brinkerhoff, Gleason, and Ostendorf (2019) following Dingman (2007). geoBAM
builds from the original BAM algorithm of Hagemann, Gleason, and Durand
(2017) by introducing additional prior information. geoBAM assumes steady
flow within each reach and is fully Bayesian: it models the uncertainty on
each input including the observations and prior estimates of discharge and the
flow law parameters to produce explicit posteriors on all terms in Equation 1.
geoBAM first classifies rivers in SWORD according to their geomorphology, and
then assigns priors according to geomorphology and discharge prior information.

The Metropolis-Manning (MetroMan) algorithm (Durand et al., 2014) is con-
ceptually similar to geoBAM, and thus we highlight only the most important
differences. MetroMan uses only the Manning’s equation flow law as written in
Equation 1. MetroMan for SWOT will be applied to reaches, whereas geoBAM
will be applied to nodes. MetroMan applies a continuity equation to adjacent
reaches such that the difference in flow between adjacent reaches is equated to
the change in storage within the reaches; thus, steady flow among reaches is
not assumed as it is for geoBAM. The MetroMan mass balance equation will
revert to steady flow when the time-resolution of SWOT is inadequate to resolve
floodwave dynamics for a particular river. MetroMan will use a subset of the
prior information used by geoBAM.

Data Assimilation Data assimilation (DA) approaches differ from McFLI
in that they invoke a calibration process and/or a parameter identification pro-
cess using a hydraulic model. The hydraulic model could be dynamic (e.g. the
shallow water equations) or steady (e.g. the gradually-varied flow equation),
but in both cases the model requires river discharge and cross-section geometry
as inputs, and computes WSE and river width as outputs. DA with hydraulic
models requires a prior estimate of FLPs (bathymetry, friction) and discharge,
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which are then optimized by minimizing the difference between the model out-
puts and the observations. For SWOT discharge, DA algorithms provide FLP
values based on the assimilation output.

Variational data assimilation (VDA) algorithms in this context invoke a 1-D
dynamic hydraulic model, and its adjoint counterpart. They allow assimilation
of available SWOT observations within an assimilation window (i.e., a subset
of the available observation times) through a forward and a backward run of
the model at each minimization step. The observed hydraulic dynamics are
propagated in both space and time. They provide an estimate of the model
inputs/variables (posterior estimate) over the entire window (Oubanas et al.,
2018).

Two VDA algorithms are under development for use with SWOT observations.
The Hierarchical Variational Discharge Inference (HiVDI) algorithm is based
on a hierarchical McFLI - VDA method; it is planned to run globally (Larnier
et al., 2020). The McFLI-based modules in HiVDI enable production of con-
sistent prior estimates, as well as final FLP and corresponding estimates. The
VDA module, based on the Saint-Venant equations, estimates discharge in both
space and time, along with the bathymetry and a time-varying friction coeffi-
cient. The VDA module takes node-scale inputs, and creates node-scale FLP
outputs. The final reach-scale FLP estimates are computed from the node-scale
results. This algorithm and the related DassFlow software are open source
(http://www.math.univ-toulouse.fr/DassFlow/).

A simplified version of the SIC4DVar algorithm described by Oubanas et al.
(2018) will also be deployed at the global scale. In this version, a steady flow
model will be configured and deployed for SWOT reaches instead of the full
unsteady flow model. A Bayesian analysis is performed, weighing the prior
information on average flow statistics with the likelihood function based on
the difference between modeled and measured WSE, width and slope. FLPs
will then be estimated by minimizing difference between the discharge outputs
obtained from the Bayesian analysis and the modified Manning equation applied
to the SWOT observations.

The SWOT Assimilated Discharge (SAD) algorithm (Andreadis, Brinkerhoff,
& Gleason, 2020) differs significantly from the VDA algorithms. SAD is best
thought of as a batch ensemble Kalman smoother. An ensemble of flow law
parameters at the node scale is created from prior information. The prior flow
law parameters are used to create an ensemble of river discharge estimates, for
each pass, assuming steady flow. Then the steady gradually-varied flow equation
is solved for the prior ensemble, predicting river WSE and width at each node for
each member of the ensemble. The differences between SWOT measurements
and prior predictions are used in the Kalman analysis to compute a posterior
estimate of both discharge and FLPs.

15

http://www.math.univ-toulouse.fr/DassFlow/


Basin-scale integrator algorithms

The reach-scale algorithms (sections 4.3.1 and 4.3.2) are designed to run on a
limited spatial domain. Applying the inverse algorithms described above across
an entire river network in a single computational analysis is currently compu-
tationally infeasible, necessitating that a large river network be handled either
one reach at a time, or one Inversion Set at a time. Thus, a second class of
algorithms is being developed that will “integrate” reach-scale algorithm results
across river networks. Integrators will ensure that flow is conserved at river con-
fluences. These algorithms are designed to run at basin scale, and to be used
for both the gage-constrained and the unconstrained discharge estimates. In
addition to leveraging flow conservation across river networks, integrators will
combine reach-scale algorithm results with in situ data for the gage-constrained
products.

The Mean Optimization Integrator (MOI, unpublished; see section 5 for exam-
ple results) is designed to run over a timeseries of SWOT observations once dis-
charge has been computed. First, MOI estimates mean flow for each river in the
network. This estimate can be computed mathematically as a linear problem by
enforcing flow conservation at river junctions and throughout the river network
and solving for the estimates of river discharge that are closest to the estimates
derived from the inverse and calibration algorithms. For gage-constrained dis-
charge, MOI will add in situ gages to the optimization objective function with
a far lower uncertainty than specified for the FLPE estimates where gages are
not available. This is a straightforward constrained optimization problem and
can be solved with widely available computational solvers. Outliers from the
reach-scale algorithms will be identified by running MOI iteratively. Second,
MOI computes discharge uncertainty via an ensemble approach. An ensemble
of mean flow is computed from reach-level estimates of discharge uncertainty,
and the optimization problem is solved for each ensemble member. The final
uncertainty is computed from the standard deviation across the ensemble of
optimal mean flow estimates. Third, the optimized mean flow estimates are
used to infer optimal FLPs. Integrators would be applied to both the gage-
constrained and unconstrained discharge estimates. MOI will account for inflow
from rivers not observed by SWOT, channel withdrawals, and gain or loss of
discharge from hyporheic exchange from globally available datasets by modify-
ing the optimization constraints. For example, contribution of discharge from
rivers not observed by SWOT will be estimated from models used for global
prior estimates of mean flow.

MOI will also be run across river networks that include storage features such
as lakes and reservoirs. Invoking mass balance between the rivers and lakes,
the difference between flow into and out of lakes is equal to the change in lake
storage, and evaporation from the lake surface (assuming limited groundwater
exchange). As suggested by Xin, Wang, and Allen (2020), SWOT measurements
of lake volume variation can largely capture this discharge-storage interaction,
and be used as another constraint on river discharge. Lake evaporation estimates
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derived following Zhao and Gao (2019) will thus be combined with SWOT lake
storage change measurements in order to improve the estimates of FLPs.

MOI constrains mean flow to be conserved across the SWOT-observed river
network but does not enforce physical constraints on the time-varying SWOT
discharge data. Although they will not be in place by SWOT launch, future
integrators could include global scale hydraulic models and data assimilation
such as the approach of Ishitsuka et al. (2021).

FLPE for the gage-constrained discharge estimates

FLPE is performed similarly for the gage-constrained and unconstrained dis-
charge estimates. For the reach-scale algorithms, unconstrained FLPE uses
priors from WBM, a model which was not calibrated to in situ gages. Gage-
constrained FLPE uses priors from GRADES, which did use in situ gages; fur-
thermore, gages are applied directly as priors for reach-scale algorithms, where
available. For the basin-scale, no gages are used for MOI FLPE for the un-
constrained products. For the gage-constrained products, MOI applies gaged
mean flow directly to the analysis wherever gages are available. The constrained
discharge will leverage both real-time and historical data. Historical gage data
will be leveraged by creating relationships between satellite measurements from
other remote platforms (e.g. river width derived from Landsat) and historical
discharge data. This will allow discharge prediction concurrent with SWOT ob-
servations, which can then be used for both reach-scale and basin-scale FLPE
for the gage-constrained product.

Agency discharge estimates and SWOT data products
In this paper “data product” refers to the Level 2 KaRIn high rate river single
pass vector product (JPL Internal Document, 2020), and “data element” refers
to discharge estimates computed by each flow law within that data product,
unless otherwise noted.

As described in section 2, SWOT discharge will contain both a gage-constrained
and an unconstrained branch of discharge estimates. For each branch, SWOT
discharge will also include a small ensemble of discharge estimates, computed
using the various FLPEs described in the previous section. Finally, the “con-
sensus” discharge will be computed in the second of the two-step process for
computing river discharge, computed as an average across the ensemble of dis-
charge estimates estimated from the six other algorithms, weighted by their
respective uncertainties. Thus, the discharge data elements listed in Table 1
will be produced for each reach and each pass (available after the FLPE step is
complete): seven for the unconstrained branch, and seven for the constrained
branch.
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FLPE and discharge production timeline
Agency-produced discharge will be available after the Science Team has com-
puted FLP estimates and provided them to the space agencies. For optimal
results, FLPE must be performed over periods with significant changes in river
flows. As many seasonal rivers vary little in the dry season, the Science Team
expects to deliver the first estimate of FLPs to the Agencies after performing
FLPE analyses on approximately one year of data. The so-called “validation
meeting” (a key mission landmark) is expected to take place eight months af-
ter transitioning to the nominal science orbit (see section 3.2). The SWOT
Science Requirements Document specifies that Agency discharge will begin to
be produced not later than 6 months after the validation meeting; assuming
launch takes place November 2022, Agency discharge would be available July
2024. Following the initial release of the Agency discharge estimates, discharge
estimates will be available in near-real time following each satellite overpass. As
the length of time to perform FLPE grows with the mission lifetime, the FLPEs
are expected to become more accurate and more precise; thus, FLPs for the
Agency discharge product expected to be updated multiple times throughout
the mission lifetime.

Discharge evaluation
Both the gage-constrained and the unconstrained branches of the SWOT dis-
charge estimates will be validated using in situ discharge data that was not used
(and is completely independent from) data used to produce gage-constrained dis-
charge. The purpose of evaluating or validating discharge is to produce reliable
discharge benchmark values that can be used to approximate globally accuracy.
We expect that discharge accuracy and uncertainty will vary among rivers, and
we will stratify accuracy assessment across rivers by geomorphic class, river size,
and other factors. Discharge evaluation is planned to be complete by the time
the Agency product is publicly available.

It is important to note that gage and field discharge measurements are not
perfect, even though they are the reference for evaluating SWOT discharge.
Any difference between SWOT discharge and gage discharge necessarily reflects
error in both SWOT discharge and in situ discharge. In their review, McMillan,
Krueger, and Freer (2012) present uncertainties from discharge predicted by
a rating curve of at least 10%, with significantly higher uncertainty cited for
special cases such as low flows and out of-bank-flows. These values are consistent
with other more recent studies (Coxon et al., 2015; Kiang et al., 2018; Sorengard
& Di Baldassarre, 2017). Gage discharge uncertainty is not trivial, and thus
must be considered both in the FLPE and in the evaluation of SWOT discharge.

Each gage will be assigned to be for either FLPE or validation; we will not
split the record at each gage into calibration vs. validation but will instead
assign the entire timeseries record for each gage to either calibration or vali-
dation. The strategy to split in situ gage data into calibration/training and
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validation can be thought of as an experiment design problem. The purpose
of the experiment design is twofold: First, we require characterization of the
performance of all SWOT discharge products, in order to fulfill the science re-
quirement that: “The SWOT discharge performance shall be quantified by a
payload independent measurement or analysis during a post-launch validation
period as well as during the mission lifetime.” (JPL Internal Document, 2018).
Secondly, we seek to make the gage-constrained products as accurate as possi-
ble, using a subset of available in situ discharge data. Thus, we will split the
data into calibration/training and validation sets, with the goal being to make
the constrained products as accurate as possible, while saving enough data to
fully evaluate SWOT discharge accuracy. In addition to gage data, the SWOT
validation team will use Acoustic Doppler Current Profilers to collect in situ
discharge measurements coincident with SWOT overpasses at select locations
during the mission. We expect SWOT discharge accuracy for each reach to vary
significantly in time, similar as accuracy varies at a gage, and thus will break
out SWOT discharge evaluation by flow regime.

Discharge Estimates Beyond the Agency Products
The preceding sections have discussed only Agency discharge estimates that
will be provided globally in fulfillment of the SWOT Science Requirements doc-
ument: i.e., river discharge computed by the space Agencies using SWOT ob-
servations and FLPs computed by the Science Team. Agency discharge will be
available through Agency-funded data distribution centers, with full documen-
tation compliance. However, SWOT measurements of WSE, width, and slope
enable a wide range of methods to estimate discharge. The Agency-produced
discharge paradigm is somewhat restricting: it requires, e.g., that discharge be
computed using simple flow laws with parameters estimated offline. One possi-
ble example of a science team produced data product would be spatio-temporal
interpolation of Agency-produced products (Paiva, Durand, & Hossain, 2015),
or to assimilate the Agency products (Emery et al., 2020). A second possible
product could assimilate the discharge estimates computed in the reach-scale
algorithms into a global hydrological model (Ishitsuka et al., 2021). A third
approach is to assimilate the SWOT observations of WSE, width, and slope
directly into global hydraulic and hydrologic models (Andreadis et al., 2007;
Biancamaria et al., 2011; Li et al., 2020; Wongchuig-Correa et al., 2020; Yang
et al., 2019). This approach would require global hydraulic models that ad-
equately represent river hydraulic structures, waterfalls, etc. Now that such
datasets are beginning to be available globally, along with global simulations
of river hydraulics (Getirana et al., 2017; Yamazaki et al., 2011) and noting
the possibility that bathymetry could be refined in real-time by the assimilation
(Yoon et al., 2012), such an approach appears increasingly feasible. A fourth
possible product could use the Agency products as priors to estimate discharge
and bathymetry at finer scales using hydraulic models and data assimilation in
order to account for dynamics over a larger area of the river and hence a denser
spatial and temporal SWOT coverage (Oubanas et al., 2018). A fifth example
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could begin to work towards a constellation approach for surface water, similar
to the Global Precipitation Mission (Huffman et al., 2020). SWOT measure-
ments would be complemented by measurements of WSE from nadir altimeters,
and measurements of river width from visible band imagery and radar. FLPE
may rely on SWOT measurements, but once these parameters are estimated
they can be applied to any measurements of WSE and river width. Ultimately,
one advantage of Science Team data products is that they can be flexible based
on the characteristics of the SWOT data after launch and the creativity of the
research community. As such, we expect rapid innovations in these algorithms,
some of which may ultimately be incorporated into later versions of the Agency-
led discharge products.

Expected SWOT discharge accuracy
The previous section described how SWOT discharge is computed; this section
describes how accurate SWOT is expected to be, which determines its potential
scientific applications. Discharge accuracy is the degree to which discharge
estimates conform to the true discharge values and is assessed by a range of
accuracy measures based on the error at each time 𝜀𝑡:

𝑄𝑡 = 𝑄∗
𝑡 + 𝜀𝑡 (3)

where 𝑄𝑡 is the SWOT discharge estimate, and 𝑄∗
𝑡 is the true discharge at

SWOT overpass times for a given river reach. Note that 𝑄∗
𝑡 is unknown: the

gaged discharge we will use for evaluating SWOT products has its own uncer-
tainty. SWOT discharge errors will have both random and systematic compo-
nents; for the purpose of this paper, we define systematic errors as those that
would produce a discharge timeseries bias, and random errors as those that
would produce a zero mean 𝜀𝑡 timeseries. Uncertainty of a discharge estimate
“describes the expected magnitude of the error by characterizing the distribution
of error that would be found if the [estimate] was infinitely repeated” (Povey &
Grainger, 2015). As both systematic and random errors are important in this
context, SWOT discharge will include measures of both random and systematic
uncertainty, to be estimated using the process of Uncertainty Quantification
(UQ) described by Smith (2013). Uncertainty estimates themselves are subject
to evaluation through validation against in situ discharge data: after accounting
for gage discharge uncertainties, inaccurate SWOT discharge uncertainty esti-
mates will not correctly describe the magnitude of differences between gaged
and SWOT discharge. Considering Equation 1, discharge uncertainty derives
from flow law parameters, SWOT measurements, and the “approximation error”
(as defined by Povey and Grainger (2015)) associated with the flow law itself.

Based on algorithm intercomparison studies (Durand et al., 2016; Frasson et
al., 2021), SWOT discharge is expected to be dominated by systematic error,
manifesting as timeseries bias. Systematic errors as we define them arise predom-
inantly because the FLP estimates are constant in time and used in Equation
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1 for all discharge computations in a timeseries (Frasson et al., 2021). The re-
sult will be that all discharge estimates in the time series at that reach will be
affected in the same way.

We define random and systematic measures of both accuracy and uncertainty.
In evaluating the discharge products against field data, the expected magnitude
of error 𝜀𝑡will be measured by the mean and standard deviation of 𝜀𝑡, which we
denote as 𝑏∗

𝑄 and 𝜎∗
𝑄, respectively, where the * superscript indicates that these

measures are assumed to characterize the actual error. The gage uncertainty
must also be considered in interpreting values of 𝑏∗

𝑄 and 𝜎∗
𝑄: though we refer to

𝜀𝑡 as “error” for simplicity, in interpretation we must treat 𝜀𝑡 only as a difference
between two uncertain estimates. A range of other accuracy measures will also
be used: see Frasson et al. (2021). We propose two measures of uncertainty.
The random part of the time-varying discharge timeseries uncertainty 𝜎𝑄rand

;
we allow for 𝜎𝑄rand

to vary from pass to pass, and thus we expect uncertainty
to capture any seasonal variations in SWOT discharge accuracy, as well as
pass-to-pass variations in WSE, width, and slope measurement accuracy. The
systematic part of the discharge timeseries uncertainty will be defined as 𝑠𝑏𝑄;
it reflects the uncertainty in the timeseries mean of the discharge at a reach.
The sum of squared relative and systematic uncertainty is analogous to the
relative RMSE metric defined by Bjerklie, Dingman, and Bolster (2005). The
following sections describe how 𝜎𝑄rand

and 𝑠𝑏𝑄 are calculated from the three
main sources of uncertainty for SWOT discharge: SWOT observation error, flow
law approximation error, and flow law parameter error.

Uncertainty due to SWOT observation error
SWOT observations contribute to the random part of SWOT discharge uncer-
tainty. Discharge uncertainty due to SWOT observations can be represented via
first-order Taylor series uncertainty propagation following Yoon et al. (2016).
Normalized by discharge, 𝜎𝑄Obs

𝑄−1 is the uncertainty in SWOT discharge due
to observations, and be computed as:

( 𝜎𝑄Obs
𝑄 )2 = ( 5

3
𝜎𝐴′

𝐴+𝐴′ )2 + ( 2
3

𝜎𝑊
𝑊 )2 + ( 1

2
𝜎𝑆
𝑆 )2 (4)

Uncertainty in the SWOT observations are denoted by “𝜎”, and will be available
as part of the SWOT river single pass data product (JPL Internal Document,
2020); see section 3.2.3 for more details.

Uncertainty due to flow law approximation error
Flow law approximation error contributes to the random part of SWOT dis-
charge uncertainty. Using a single flow law to describe the full range of discharge
in a river reach assumes that the energy loss at different flow levels can be cap-
tured by a continuous mathematical representation of the balance between the
energy supplied (the slope) and the energy lost (flow resistance). In fact, the
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relation between energy gained and lost can be discontinuous and highly vari-
able depending on the level of flow, the shape of the channel (in planform and
in cross-section), sediment transport, and the non-uniform distribution of ob-
stacles in the river. Many estimates of Manning equation flow law accuracy are
provided in the literature, but relatively few exist that meet the criteria that
match how SWOT data will be used, using precise, time-varying estimates of
river slope (Tuozzolo et al., 2019a). Moreover, most studies do not partition out
the part of the validation accuracy due to observation uncertainty (in both dis-
charge and river WSE, width and slope), and due to the flow law itself. Frasson
et al. (2021) assessed flow law accuracy across a range of river reaches, and river
flows, by comparing the simple flow law formulations described in section 4.2
applied at the reach scale to hydraulic models that resolve the complete shallow
water equations at the cross-section scale, and demonstrated typical flow law
accuracy of approximately 5%, for a nominal case when flow is in bank.

Uncertainty due to flow law parameter error
As a tangible example to help visualize flow law parameter error, consider the
following thought experiment. Imagine that for a particular reach, McFLI is
performed using an ensemble of prior estimates of mean annual flow, derived
from different global hydrological models. Consider the posterior set of FLP
estimates for each member of the ensemble, along with the bias 𝑏∗

𝑄 of each
ensemble member. The standard deviation across the ensemble of mean flow
estimates is analogous to 𝑠𝑏𝑄

. Note that 𝑠𝑏𝑄
does not indicate the standard

deviation of a timeseries, but rather is a measure of the expected dispersion of
the mean flow for that reach due to FLP estimates. The key element of this
definition of 𝑏∗

𝑄 is that it includes not just the uncertainty encapsulated in the
posterior covariance of the handful of parameters given by a Bayesian McFLI
algorithm, but also the uncertainty introduced by errors in the mean annual
flow supplied to that McFLI algorithm. At the moment, McFLI algorithms
do not account adequately for these error sources, but we want to leave the
path open for this to be tackled in future work. The definition of 𝑠𝑏𝑄

will be
re-evaluated after launch, and will be replaced with the interquartile range or
another statistic if it becomes evident that discharge uncertainty in mean flow
is highly skewed.

Systematic error in discharge is mostly due to error in FLP estimates but relat-
ing 𝑠𝑏𝑄

to parameter uncertainty is not trivial. For one thing, not all reach-scale
algorithms produce explicit estimates of the parameter variances. Thus, in prac-
tice, 𝑠𝑏𝑄 values for each reach-scale algorithm will be specified based on algo-
rithm intercomparison studies such as Durand et al. (2016) and more recently
Frasson et al. (2021). Future work will explore mapping between parameters
and systematic error. Basin-scale integrators will be applied to reach-scale out-
put, and thus 𝑠𝑏𝑄 estimates will be refined as a result, as shown in a simple
example, in section 5.5.
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Combined estimates of random and systematic uncertainty
We here assume that SWOT observations and flow law parameters contribute
only to systematic error, and that parameters do not impact random error in
discharge. This is not a perfect assumption in all cases: e.g., error in param-
eter estimates contribute to distortion in the hydrograph, which could impact
discharge standard error (Durand et al., 2010). Similarly, because Manning’s
equation is non-linear, random error in the observations may contribute a change
in the mean of the discharge predictions. The assumptions we make here allow
us to make a first-order estimate of SWOT discharge uncertainty.

The total random error component can be estimated from the component due
to flow law approximation (𝜎𝑄FLA

), and to observations (𝜎𝑄Obs
):

( 𝜎𝑄rand
𝑄 )2 = ( 𝜎𝑄Obs

𝑄 )2 + ( 𝜎𝑄FLA
𝑄 )2

(6)

The total uncertainty 𝜎𝑄tot
is analogous to a relative root mean square error

(rRMSE as defined by Bjerklie, Dingman, and Bolster (2005)), and can be writ-
ten as the combination of the mean and standard deviation, i.e. the random
and systematic terms:

( 𝜎𝑄tot
𝑄 )2 = ( 𝜎𝑄rand

𝑄 )2 + ( 𝑠𝑏𝑄
𝑄 )

2
(7)

The next step is to relate 𝜎𝑄rand
and 𝑠𝑏𝑄

to the three primary sources of discharge
error: flow law parameter error, error in SWOT observations, and flow law
approximation. In the following sections we model these quantities, and describe
current best estimates of their magnitudes, to better visualize SWOT discharge
uncertainty.

Example estimates of uncertainty in SWOT discharge
We apply the MOI integrator described in Section 4.3.3. to enforce conservation
among reaches, and incorporating gage discharge where available, in order to
reduce systematic discharge uncertainty. Here we are leveraging the fact that
inverse algorithm results have generally been found to have uncorrelated errors
from one river reach to another (Durand et al., 2016; Frasson et al., 2021). In re-
ality some degree of correlation is to be expected; we here conservatively assume
a correlation coefficient of 0.7 among reaches. This conservativism also compen-
sates for the fact that such features as diversions and hyporheic exchange are not
otherwise accounted for in the integrator accuracy estimation. We applied MOI
over the SWOT river network over the study area shown in Figure 7a, which
amounts to all rivers which have mouths along the Alaska coastline. We chose
this domain for two reasons: first, it includes both a large river (the Yukon) and
many smaller rivers (e.g. the rivers north of the Yukon basin); we hypothesize
that the integrators will reduce uncertainty for large rivers more so than small
rivers, for both gage-constrained and unconstrained discharge. Second, this do-
main is a good example of an area with some gages (as shown in Figure 7a),
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but not the high density of gages in e.g. western Europe or CONUS, which is
generally unrepresentative of the rest of the world.

To apply the integrator, we must specify values of uncertainty associated with
SWOT observations, flow law parameters, and flow law approximation. Here
we assume SWOT observation uncertainty as described in 3.2.3. We assume
𝑠𝑏𝑄

𝑄−1 of 40 %, which seems achievable for ungaged areas based on our reach-
level experiments to date (Frasson et al., 2021). We assume 𝜎𝑄FLA

𝑄−1 of 5 %.
We note that gage measurements of river discharge have their own uncertainty
(Kiang et al., 2018), and assume that mean annual flow computed from gages
has an uncertainty of 5 %; if actual discharge estimates are larger, constrained
discharge uncertainty will be greater than that shown below.

Random discharge uncertainty

Figure 7b, c, and d show the discharge uncertainty due to WSE, slope and
width uncertainty respectively, and Figure 7e and Figure 7f shows the combined
random discharge uncertainty. Figures 7b, c, and d show that observation errors
generally lead to larger relative discharge uncertainty for smaller rivers; this is
especially clear for WSE and width. Uncertainty for WSE and width remain
below 0.15 (15 %) throughout most of the domain and decrease with river width.
Uncertainty for river slope differs, in that as rivers become flatter downstream,
relative discharge error due to slope increases (compare Equation 4). The areas
where no data is shown on the river network in Figure 7c are where the “low
slope” algorithm described in section 1.1 will be used. For these reaches, we
assume a rating curve form of the flow law and thus only keep the discharge
uncertainty due to 𝐴′ ; however, we assume that 𝜎𝑄Struct

𝑄−1 is twice as large
(0.1), as we are using only WSE to approximate discharge, and thus ignoring
changes in slope. Figure 7e for the total random uncertainty shows that random
uncertainty no longer decreases for the largest rivers, because these large rivers
are flat, and are expected to have larger flow law approximation error. The CDFs
in Figure 7f show how these terms interact. Slope is the smallest factor in overall
discharge uncertainty, for most (80%) of reaches. For the flatter reaches, slope
tends to dominate, and is the only one of the three individual observation terms
to show a long tail. Indeed, the discharge uncertainties for 𝐴′ and width are
approximately linear in their CDFs, despite the underlying width data following
the usual long-tail exponential distribution over the domain (Frasson et al.,
2019). Combining the observation and flow law approximation error leads to
the estimate of total random error 𝜎𝑄rand

𝑄−1, which has a minimum value of
0.05, due to the minimum value of flow law approximation error assumed for
all reaches. For approximately a third of reaches in the domain, 𝜎𝑄rand

𝑄−1

is dominated by 𝐴′, as indicated by the linear shape of the CDF up to the
0.3 quantile. Between 0.3 and 0.8, 𝐴′ width and slope all play an important
role in determining the final uncertainty. Above 0.8, slope dominates: i.e. the
reaches with highest random error are dominated by slope. Considering the
total random error, the 67th percentile is 0.12, and the vast majority (>95%) of
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reaches have random error less than 0.15.

Systematic discharge uncertainty

Figure 8 shows the values of 𝑠𝑏𝑄
over the study domain. Figure 8a shows the

unconstrained case: along the mainstem rivers, uncertainty is predicted by MOI
is 0.3, or a little lower, whereas on the smaller rivers upstream, uncertainty is
closer to the assumed value of 0.4. Figure 8b shows the constrained case: note
near gages, uncertainty reaches 0.05, matching the assumed value noted above.
Figure 8c shows the comparison of the 𝑠𝑏𝑄

cdf for the Yukon River for the
constrained and unconstrained cases. The effect of the gages is very stark: many
reaches are either unconnected to rivers with gages or are located so far from
the gage that the impact is relatively minimal; future work will present methods
to compute the distance along river networks at which gage impact is minimal.
Nonetheless, a little over half of the reaches in the Yukon basin benefit from the
gages. Figure 8d shows the impact of gages on rivers north of the Yukon basin,
including the North Slope, Noatak and Koyukuk Rivers. Gages show a similar
impact in this region: for both cases, the 67th percentile of 𝑠𝑏𝑄

is unchanged
due to gages, whereas the median is reduced from 0.3 to 0.2, a 50% reduction.

Combined discharge uncertainty

Figure 9 shows the total uncertainty, combining both the 𝑠𝑏𝑄
and 𝜎𝑄rand

𝑄−1.
Figure 9a and 9b shows the stark contrast that adding gages has on the 𝜎𝑄tot

𝑄−1

discharge uncertainty: reaches with gages, and located further downstream gen-
erally have lower uncertainty for the constrained product. The uncertainty
CDF for the unconstrained products (Figure 9c) shows that the systematic er-
ror due to parameters 𝑠𝑏𝑄

dominates the total uncertainty in essentially all
cases. This is still true most of the time for the gage-constrained case (Figure
9d): 𝑠𝑏𝑄

> 𝜎𝑄rand
for 90% of the reaches in the domain.

This exercise to examine SWOT discharge uncertainty has illustrated three
things. First, uncertainty is dominated by bias or systematic error. Second,
the inclusion of gages means that the gage-constrained products will be able
to provide nearly unbiased discharge for reaches that have gages or are located
near gages. Third, the random error in SWOT discharge should be less than
15%; i.e., time variations in discharge should be known to within 15%, for the
vast majority of reaches.

Conclusion
SWOT river discharge estimates following the satellite’s launch in 2022 will pro-
vide global discharge data for rivers wider than 100 m, including the world’s
largest ungaged basins. These discharge data have the potential to spark a
revolution in global hydrologic science if their space-time sampling and uncer-
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tainty characteristics are accepted by the global community. SWOT discharge
estimates will be created using relatively simple flow laws that combine SWOT
measurements of WSE, width and slope, and flow law parameter estimates. The
observations will lead to approximately random uncertainty in SWOT discharge,
on the order of 15%. Uncertainty in the flow law parameters will lead to system-
atic error, that will express itself as bias in river discharge timeseries and will
vary widely. For the “gage-constrained” branch of SWOT discharge estimates,
mean flow is expected to be estimated within 20% for reaches that are near gages.
Based on example results presented for Alaska rivers, for the “unconstrained”
branch of SWOT discharge, mean flow is expected to be estimated to within
30%. Results in other basins are expected to vary somewhat. Note that gage
data themselves are imperfect, with uncertainties regularly exceeding the 5-10%
value often assumed by users (Coxon et al., 2015), with larger uncertainties in
the presence of unsteady flow or complex geomorphology (Cheng et al., 2019).

SWOT discharge has the potential to lead to transformative new hydrologic
science. Our study indicates that the combined random and systematic uncer-
tainty for single pass discharge estimates can be as low or lower than 35% for
most reaches, even when no gage data is used to constrain the SWOT discharge
estimates. While calibrated hydrologic models can easily achieve this accuracy,
in basins where no calibration data are available, this will be a significant im-
provement on global uncalibrated models (Emery et al., 2018). The temporal
variations or anomaly in SWOT discharge will be estimated far more accurately
than the total discharge with a random uncertainty of < 15% for most reaches,
as we have shown, although the sparse sampling means that hydrographs will
not be fully resolved (Sikder et al., 2021), especially for smaller and flashier
rivers. The ability to accurately estimate streamflow variations implies that
SWOT will provide accurate measurements of what amounts to the event flow
hydrographs for all of the world’s ungaged basins. Though available only for
large rivers, and at temporal sampling on the order of ten days on average,
this will provide a massive new resource for understanding global hydrological
processes.
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List of Acronyms
FLP Flow Law Parameters

FLPE Flow Law Parameter Estimation

geoBAM Geomorphically-informed Bayesian At many stations hydraulic
geometry- Manning Algorithm

GRADES Global Reach‐Level A Priori Discharge Estimates for SWOT

McFLI Mass Conserved Flow Law Inversion

SoS SWORD of Science

SWOT Surface Water and Ocean Topography

USGS United States Geologic Survey

WBM Water Balance Model

WSC Water Survey of Canada
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Figure 1. The five points numbered in the figure correspond to the five points
governing Agency discharge. The blue and red lines in the cartoon illustrate
two conceptual river reaches. The hydrographs on the right-hand side of
the figure are derived from simulated SWOT observations (Frasson et al.,
2017) on the Sacramento River. “Consensus” discharge estimates (see text for
description) are not shown.
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Figure 2. Summary of the two steps of SWOT discharge production. In step
1 (denoted by the dashed line box in the figure), FLPs are estimated by the
Science Team. In step 2 (denoted by the solid line box) discharge is produced
using the estimated flow law parameters, and SWOT observations.
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Figure
3. a) SWORD river reaches shown by whether they meet the width cutoff for re-
quired discharge production (100 m). b) Total number of SWOT passes per year
observed on each reach, globally for all river reaches in SWORD, including the
effects of ice cover reduction in SWOT passes. The inset shows the empirical cu-
mulative distribution (CDF) and histogram (PDF) of annual number of SWOT

36



passes.

Figure 4. Illustration of SWOT temporal sampling at four arbitrary gages (see
panels 1-4) in the United States (see map for gage locations), adapted from
Frasson (2021). The vertical lines indicate SWOT overpass timing, where each
pass is represented by a different line style. The timing of each pass assumes an
arbitrary mission start day of January 1 chosen for illustration purposes.
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Figure 5. FLPE flowchart, in the Confluence software environment. Many
of the acronyms and terms are defined in following subsections. The FLPE
algorithms are labeled by whether they operate at the scale of reaches or river
basins: see section 4.3 for more details.
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Figure 6. Conceptual tree diagram showing the hierarchy of FLPE algorithms
that make up the first of the two-step process (see section 2) to estimate
SWOT discharge. Circles with solid lines denote the classes of algorithms
described in the manuscript, whereas circles with dashed lines denote individ-
ual FLPE algorithms. Reach-scale calibration algorithms, reach-scale inverse
algorithms and basin-scale algorithms are shown in blue, yellow and red, and
described in sections 4.3.1, 4.3.2 and 4.3.3, respectively. Conceptual links
in the tree diagram are shown with solid lines, whereas mechanical links
are shown with dashed lines: output from the reach scale FLPEs (shown
in yellow) is fed into the basin-scale FLPE (shown in red). All acronyms
are defined in the text below or in the “List of Acronyms” at the end of the
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manuscript.

Figure 7. Study area and random error estimates. a) River width, and stream-
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flow gages from the United States Geologic Survey (USGS) and the Water Sur-
vey of Canada (WSC) used to create the constrained discharge estimate, and
shaded relief. Relative random discharge errors (𝜎𝑄rand

𝑄−1) errors due to b)
WSE c) slope, d) width. e) Total random discharge errors error due to observa-
tions and flow law approximation error. f) Cumulative distribution functions of
random discharge error components and total. Axes b)-e) have nearly identical
spatial extent to a) and are unlabeled for simplicity.

Figure 8. Systematic uncertainty, 𝑠𝑏𝑄
, over Alaska. Maps showing spatial

variations in 𝑠𝑏𝑄
for the a) unconstrained b) constrained discharge estimates.

The difference between unconstrained (blue) and constrained (red) values of
𝑠𝑏𝑄

for the c) rivers north of the Yukon basin and d) Yukon River basin.
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Figure 9. Maps of total uncertainty (𝜎𝑄tot
𝑄−1), over Alaska for the a) un-

constrained b) gage-constrained discharge estimates. Cumulative distribution
functions of random (blue), systematic (red) and total uncertainty (gold) for
the c) unconstrained and d) unconstrained discharge estimates.

Table 1. List of the 14 discharge data values to be produced for each SWOT
pass. The source of the prior on historical river discharge statistics is also
provided; note that other a priori information required for each algorithm is not
detailed here.

# Branch Prior discharge estimates FLPE algorithm Integrator
1 Unconstrained WBM BAM MOI
2 Unconstrained WBM HiVDI MOI
3 Unconstrained WBM MetroMan MOI
4 Unconstrained WBM MOMMA MOI
5 Unconstrained WBM SAD MOI
6 Unconstrained WBM SIC4DVar MOI
7 Unconstrained WBM Consensus -
8 Gage-constrained GRADES BAM MOI
9 Gage-constrained GRADES HiVDI MOI
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# Branch Prior discharge estimates FLPE algorithm Integrator
10 Gage-constrained GRADES MetroMan MOI
11 Gage-constrained GRADES MOMMA MOI
12 Gage-constrained GRADES SAD MOI
13 Gage-constrained GRADES SIC4DVar MOI
12 Gage-constrained GRADES Consensus -
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