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Abstract

Risk assessments of air pollution impacts on human health and ecosystems would ideally consider a broad set of climate

and emission scenarios and the role of natural internal climate variability within a single scenario. We analyze initial condition

chemistry-climate ensembles to gauge the significance of greenhouse-gas-induced air pollution changes relative to internal climate

variability, and response differences in two models. To quantify the effects of climate change on the frequency and duration of

summertime regional-scale pollution episodes over the Eastern United States (EUS), we apply an Empirical Orthogonal Function

(EOF) analysis to a 3-member GFDL-CM3 ensemble with prognostic ozone and aerosols and a 12-member NCAR-CESM1

ensemble with prognostic aerosols under a 21st century RCP8.5 scenario with air pollutant emissions frozen in 2005. Correlations

between GFDL-CM3 principal components for ozone, PM2.5 and temperature represent spatiotemporal relationships discerned

previously from observational analysis. Over the Northeast region, both models simulate summertime surface temperature

increases of over 5 °C from 2006-2025 to 2081-2100 and PM2.5 of up to 1-4 μg m-3. The ensemble average decadal incidence of

upper quartile Northeast PM2.5 events lasting at least five days doubles in GFDL-CM3 and increases >50% in NCAR-CESM1.

In other EUS regions, inter-model differences in PM2.5 responses to climate change cannot be explained by internal climate

variability. Our EOF-based approach anticipates future opportunities to data-mine initial condition chemistry-climate model

ensembles for probabilistic assessments of changing frequency and duration of regional-scale pollution and heat events while

obviating the need to bias-correct concentration-based thresholds separately in individual models.
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Key Points: 22 

• Frequency and duration of Northeast US pollution events increase along with heat events 23 

under a high-warming scenario.   24 

• EOF approach enables rapid assessment of regional-scale changes in pollution events 25 

without needing to bias correct models individually. 26 

• Larger uncertainty in EUS PM2.5 from different model responses to climate change than 27 

from climate variability.  28 
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Abstract 30 

Risk assessments of air pollution impacts on human health and ecosystems would ideally 31 

consider a broad set of climate and emission scenarios and the role of natural internal climate 32 

variability within a single scenario. We analyze initial condition chemistry-climate ensembles to 33 

gauge the significance of greenhouse-gas-induced air pollution changes relative to internal 34 

climate variability, and response differences in two models. To quantify the effects of climate 35 

change on the frequency and duration of summertime regional-scale pollution episodes over the 36 

Eastern United States (EUS), we apply an Empirical Orthogonal Function (EOF) analysis to a 3-37 

member GFDL-CM3 ensemble with prognostic ozone and aerosols and a 12-member NCAR-38 

CESM1 ensemble with prognostic aerosols under a 21st century RCP8.5 scenario with air 39 

pollutant emissions frozen in 2005. Correlations between GFDL-CM3 principal components for 40 

ozone, PM2.5 and temperature represent spatiotemporal relationships discerned previously from 41 

observational analysis. Over the Northeast region, both models simulate summertime surface 42 

temperature increases of over 5 °C from 2006-2025 to 2081-2100 and PM2.5 of up to 1-4 μg m-3. 43 

The ensemble average decadal incidence of upper quartile Northeast PM2.5 events lasting at least 44 

five days doubles in GFDL-CM3 and increases >50% in NCAR-CESM1. In other EUS regions, 45 

inter-model differences in PM2.5 responses to climate change cannot be explained by internal 46 

climate variability. Our EOF-based approach anticipates future opportunities to data-mine initial 47 

condition chemistry-climate model ensembles for probabilistic assessments of changing 48 

frequency and duration of regional-scale pollution and heat events while obviating the need to 49 

bias-correct concentration-based thresholds separately in individual models. 50 

Plain Language Summary 51 

Prior studies conclude climate change will worsen air quality in some polluted regions but 52 

typically neglected the role of climate variability. Uncertainty also arises from differences in 53 

climate model responses to a given anthropogenic forcing scenario. Differentiating the relative 54 

contributions of these uncertainties (structural versus stochastic) to inter-model differences in 55 

projected air pollution responses to climate change is becoming possible with initial-condition 56 

climate model ensembles. We analyze day-by-day variations in pollutant levels over five eastern 57 

U.S. region to quantify changes in frequency and duration of regional-scale high pollution and 58 

heat events with small initial-condition ensembles from two different models. Under a 21st 59 

century climate change scenario in which air pollutant emissions are fixed at 2005 levels, our 60 

analysis shows longer-lasting and more frequent Northeast U.S. PM2.5 (and heat) episodes, which 61 

could exacerbate public health burdens. Projecting changes in other EUS regions is limited by 62 

inter-model differences that exceed the uncertainty attributable to climate variability. While our 63 

ensembles are small relative to those generated most recently with physical climate models, our 64 

findings add to a growing recognition that climate variability complicates the detection and 65 

attribution of observed and simulated air pollution trends under climate change scenarios. 66 

1 Introduction 67 

High ground-level concentrations of the top two U.S. air pollutants, fine particles (PM2.5) and 68 

ozone (O3) sometimes co-occur along with high temperatures across the eastern U.S.A. (EUS) 69 

during summer, with >50% same-day coincidence of at least two of these extremes in the Northeast 70 

(Schnell & Prather, 2017) and generally about one-third coincidence in the highest O3 and 71 

temperature events (Phalitnonkiat et al., 2018).  Air pollution health burdens in other mid-latitude 72 

regions have also been found to increase during heat waves (Filleul et al., 2006; García-Herrera et 73 
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al., 2010; Shaposhnikov et al., 2014), although it is unknown if prolonged versus intermittent 74 

exposure to high pollution events elicit different human health responses. Future increases in 75 

intensity and frequency of heat stress events are expected (Coffel et al., 2017), raising the 76 

possibility that climate change will also exacerbate air pollution and associated adverse health 77 

outcomes. Here, we describe an approach to characterize changes in frequency and duration of 78 

high pollution and heat events in simulations of 21st century climate change, with a primary focus 79 

on PM2.5, available from two models, and a secondary focus on the co-occurrence of high PM2.5, 80 

O3, and temperature events.   81 

Prior studies identified changes in the severity, duration and spatial extent of U.S. air pollution 82 

events under future climate scenarios (Mickley et al., 2004; Rieder et al., 2015; Schnell et al., 2016; 83 

S. Wu et al., 2008). Compound extreme weather events such as simultaneous occurrence of air 84 

stagnation and heat waves, which are likely to affect air pollution, are projected to increase by 85 

mid-to-late century (J. Zhang et al., 2018). Xu et al. (2020) showed a ten-fold increase in the co-86 

occurrence of heatwaves and high PM2.5 events by mid-21st century. Air pollution has long been 87 

observed to co-vary with meteorology on hourly to interannual time scales (e.g. Camalier et al., 88 

2007; Dawson et al., 2013; Kerr et al., 2019; Leibensperger et al., 2008; Lin et al., 2001; Logan, 89 

1989; Rao et al., 1995; Tai et al., 2010; Vukovich, 1995), with an emphasis on air stagnation, 90 

temperature inversions, heat waves, and wildfires responding to heat and drought as drivers of the 91 

most extreme pollution events (Hong et al., 2019; Horton et al., 2012; Horton et al., 2014; Hou & 92 

Wu, 2016; Konovalov et al., 2011; Porter & Heald, 2019; Porter et al., 2015; Shen et al., 2016; 93 

Spracklen et al., 2009; Sun et al., 2017; Wang & Angell, 1999). Other work indicates that local 94 

observed meteorology-pollutant relationships are strongly shaped by the underlying atmospheric 95 

dynamics that control synoptic transport (Barnes & Fiore, 2013; Kerr et al., 2020; Kerr et al., 2019; 96 

Oswald et al., 2015; Previdi & Fiore, 2019; Sun et al., 2019; Tai et al., 2012). Overall, a wide range 97 

of modeling systems project that climate change will degrade air quality in some currently polluted 98 

U.S. regions, although models disagree as to the regional extent and magnitude of projected air 99 

pollution changes (e.g., Fiore et al., 2015; Fu & Tian, 2019; Jacob & Winner, 2009; Kirtman et al., 100 

2013; Nolte et al., 2018; Schnell et al., 2016; Weaver et al., 2009). 101 

Some of the inter-model disagreement in the published literature likely reflects a lack of 102 

separation of forced climate change (i.e., “signal” due to rising greenhouse gases plus aerosols) 103 

from internal variability (i.e., climate “noise” due to natural processes within the climate system) 104 

(Deser et al., 2020; East & Garcia-Menendez, 2020; Garcia-Menendez et al., 2017). Computational 105 

limitations restricted the length and number of simulations for most prior model projections of 106 

future changes in air pollution (Fiore et al., 2015; Fiore et al., 2012; Jacob & Winner, 2009; Weaver 107 

et al., 2009). Prior analysis of initial condition ensembles within a single climate model has 108 

demonstrated a major role for internal climate variability, measured by the inter-ensemble range, 109 

in shaping the near-term regional meteorological trends (Deser et al., 2012ab) to which air 110 

pollution will respond. Each ensemble member is one possible future air pollution response to the 111 

same forcing scenario, such that with sufficiently large ensembles, statistics can be developed to 112 

quantify the probability of ‘rare’ events in the observed record. Extracting signals of climate 113 

change is particularly challenging for extreme quantities. Advances in computational power now 114 

permit large ensemble simulations with physical climate models (Deser et al., 2012ab; Deser et 115 

al., 2013; Kay et al., 2015), where each ensemble member has different initial conditions but 116 

otherwise is forced by the same greenhouse gas and aerosol emission scenarios. The range across 117 

individual ensemble members offers a measure of the noise associated with internal climate 118 

variability, while the ensemble mean provides an estimate of the forced signal.   119 
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Schnell et al. (2014; 2015) have previously concluded that coarse resolution global models 120 

capture the observed spatial extent and timing of large-scale O3 episodes, providing a strong basis 121 

for our analysis of air pollution simulated by global climate models.  Challenges to quantifying 122 

simulated changes in high pollution events include selecting an appropriate threshold and 123 

accounting for model biases that may require adjusting the model threshold to ensure a similar 124 

frequency of high events as observed. Separate adjustments may be needed not only within each 125 

individual model (e.g., as in Horton et al. (2012), but also each region of interest (Schnell et al., 126 

2015; Turnock et al., 2020). 127 

Here, we examine changes in the frequency and duration of high pollution events over five 128 

distinct EUS regions. We expand upon Eder et al. (1993), who first applied Empirical Orthogonal 129 

Function (EOF) analysis to identify EUS regions in which ground-level ozone is high or low 130 

simultaneously across the region. This statistical approach avoids the pervasive problem of 131 

identifying relevant model thresholds in the presence of model biases by instead targeting model 132 

skill at representing the underlying patterns of spatiotemporal variability.  We probe the role of 133 

natural climate variability, which arises internally within the climate system, as represented by two 134 

chemistry-climate models with interactive aerosol simulations. We also consider co-variations in 135 

high PM2.5, O3, and temperature events in one model with full tropospheric chemistry, and compare 136 

to observed relationships. The approach described below can be applied to rapidly gauge changing 137 

air pollution events as simulated by future large initial condition climate model ensembles that 138 

include full tropospheric (gas-phase plus aerosol) chemistry. 139 

2 Data and Methods 140 

2.1 Models and Observations 141 

Our analysis centers on an existing 3-member ensemble generated with the GFDL-CM3 142 

chemistry-climate model to project air pollution during the 21st century under a high warming 143 

scenario. We refer to this scenario as “RCP8.5_WMGG” in which Well-Mixed Greenhouse Gases 144 

(WMGG) follow the RCP8.5 scenario.  Both particulate matter (PM) and ozone precursor 145 

emissions are held fixed at 2005 levels as described by Clifton et al. (2014). The simulated 146 

warming is less than in the standard RCP8.5 scenario in which aerosol and precursor emissions 147 

decline. The GFDL-CM3 model includes fully coupled ocean-atmosphere-sea ice-dynamic 148 

vegetation land models, and stratospheric and tropospheric gas-phase chemistry and aerosols 149 

(Austin et al., 2013; Donner et al., 2011; Naik et al., 2013). The native model resolution is a c48 150 

cubed sphere which is post-processed to a 2°x2° horizontal grid. All RCP8.5_WMGG ensemble 151 

members are identical except for their initial conditions, which are taken from the final day of a 152 

corresponding transient 1860-2005 historical simulation. Each historical ensemble member was 153 

launched using initial conditions sampled at 50-year intervals in a “pre-industrial control” 154 

simulation that perpetually repeats 1860 greenhouse gas, aerosol, air pollutant emissions and other 155 

forcings. RCP8.5_WMGG simulations use the same monthly-varying dry deposition and isoprene, 156 

soil NOx and biomass burning emissions every year. Diurnal cycles are imposed for isoprene 157 

emissions and ozone dry deposition. Wet deposition and sources of lightning NOx, dimethyl sulfide 158 

(DMS), marine organic aerosol, sea salt and dust are coupled to the simulated meteorology and 159 

thus respond to changes in climate (Naik et al., 2013).  The simulations neglect feedbacks to air 160 

pollution through wildland fires (Abatzoglou & Williams, 2016; Spracklen et al., 2009) as well as 161 

changes in terrestrial biogenic emissions or dry deposition (Andersson & Engardt, 2010).  These 162 
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idealized simulations enable us to isolate the influence of rising well-mixed greenhouse gases on 163 

pollution events, mainly by changing the meteorology.  164 

Hourly surface ozone, daily maximum temperature at 2m reference height (Tmax), daily 165 

surface PM2.5, and monthly chemical components of PM2.5 were archived from the lowermost 166 

atmospheric layer of all GFDL-CM3 simulations.  The PM2.5 diagnostic includes sulfate (assumed 167 

to be ammonium sulfate), carbonaceous aerosol (organic matter, black carbon, and secondary 168 

organic aerosol), the smallest size bin (of five) for dust, and the smallest two size bins (of five) for 169 

sea salt. We calculate maximum daily 8-hour average (MDA8) ozone from the hourly ozone fields.  170 

We draw on a 12-member ensemble with the CESM1 climate model generated at NCAR 171 

to provide additional context for the changes in high-PM2.5 and temperature events diagnosed with 172 

the GFDL-CM3 ensemble. As described by Xu and Lamarque (2018), this coupled atmosphere-173 

ocean-sea ice-land model at 1°x1° horizontal resolution includes an interactive aerosol scheme 174 

with three internally mixed modes (Ghan et al., 2012; Liu et al., 2012).  As for GFDL-CM3, the 175 

NCAR-CESM1 simulations hold aerosol and precursor emissions fixed at 2005 levels, as well as 176 

the oxidant fields used to drive secondary aerosol formation, but greenhouse gas concentrations 177 

rise along the RCP8.5 scenario from 2006 to 2100.  In contrast to GFDL-CM3, the CESM1 178 

configuration does not include the fully interactive tropospheric chemistry needed to simulate 179 

changes in oxidants. Each NCAR-CESM1 ensemble member is configured identically except for 180 

a tiny perturbation (O(10-14) K)  imposed in the atmospheric temperature initial condition fields 181 

(Kay et al., 2015; Xu & Lamarque, 2018). Dust and sea salt emissions respond to meteorology and 182 

land surface conditions, while biogenic VOC emissions are held constant (Lamarque et al., 2011). 183 

PM2.5 is defined as the sum of daily mean sulfate, dust, black carbon, and primary and secondary 184 

organic aerosol in the Aitken and accumulation mode in the lowermost atmospheric layer, which 185 

we convert from the native model mass mixing ratio (kg/kg) to mass density (ug/m3). We also use 186 

daily mean temperatures at the surface and at 2m reference height from these simulations.  187 

To evaluate simulated EUS spatiotemporal patterns in air pollution, we use observations 188 

of near-surface daily mean PM2.5 and MDA8 ozone measured at U.S. and Canadian ground-based 189 

networks that were optimally interpolated to a 1ºx1º grid over the EUS (Schnell et al., 2014; 190 

Schnell & Prather, 2017).  These gridded datasets are available for 1999-2013 and 1993-2013 for 191 

PM2.5 and ozone, respectively.  We also use the 1ºx1º temperature fields that Schnell and Prather 192 

(2017) regridded from the 0.5°×0.5° European Centre for Medium-Range Weather Forecasting 193 

(ECMWF) Interim reanalysis maximum daily 6-hourly temperatures sampled at 2 m reference 194 

height.  195 

2.2 Empirical Orthogonal Function (EOF) analysis 196 

We analyze daily PM2.5, ozone, and temperature data during summer (June-July-August). 197 

We focus on summer, the season when ozone is highest, because we are interested in co-occurrence 198 

of ozone and PM2.5, which we examine in the GFDL-CM3 model (Section 5). Before conducting 199 

Empirical Orthogonal Function (EOF) analysis, we standardize all data, separately for each grid 200 

cell, by removing the mean of the entire time series and dividing by the standard deviation. The 201 

EOFs are the eigenvectors of the covariance matrix derived from the data matrix (dimensioned 202 

space by time). Each EOF is a spatial loading pattern for a mode of spatiotemporal variability that 203 

identifies where air pollution or temperature varies coherently (i.e., polluted/clean air and hot/cold 204 
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temperatures occur across the region indicated by the EOF at the same time). For some of the 205 

analysis below we use the EOFs to define a regional mask where the EOF loading exceeds 0.5.   206 

The first five EOFs derived from the PM2.5 observations capture 77% of the variance in 207 

daily summertime PM2.5 concentrations over the EUS (Figure 1). The EOFs derived from the 208 

observed MDA8 O3 and daily maximum temperature datasets capture 77% and 73% of the total 209 

variance, respectively. We select five EOFs for Varimax rotation after considering a change point 210 

for the amount of variance explained by each successive EOF derived from observations (Wilks, 211 

1995). Table S1 lists the variance explained by the first ten EOFs.  We retain the first five EOFs 212 

across all variables. The EOF analysis thus reduces the dataset size for further temporal analysis, 213 

from the number of individual grid cells (424, 447, and 424 from the gridded PM2.5, ozone, and 214 

temperature observations, respectively) to five EUS regions. Below we refer to the EOFs by the 215 

region names shown in Figure 1. 216 

 217 

Figure 1. Regions emerging from an EOF analysis on standardized anomalies of summertime 218 

daily surface PM2.5 over the EUS. Shown are the EOF pattern loadings derived from (top) 219 

gridded observations, (middle) one of three ensemble members in the GFDL-CM3 chemistry-220 

climate model, and (bottom) one of 12 NCAR-CESM1 ensemble members.  Blue text indicates 221 

the total variance explained by each EOF.  222 

Prior analysis of summertime daily ground-level ozone over the EUS for earlier time 223 

periods revealed similar EOFs to those in Figure 1 (Eder et al., 1993; Fiore et al., 2003; Lehman 224 

et al., 2004). The EOFs derived from summertime ground-level MDA8 ozone observations (Figure 225 

S1a) spatially correlate with those for PM2.5 (r =0.93-0.99 highest in the Northeast).  EOFs for 226 

daily Tmax (Figure S1b) also correlate with those for PM2.5 (r = 0.85-0.95, highest in the Northeast 227 

and Upper Midwest). 228 

We apply a parallel analysis to the model data; see Tables S2-S3ab for variance explained 229 

by the first 10 raw EOFs in the GFDL-CM3 (PM2.5, O3 and temperature) and CESM1 (PM2.5 and 230 
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temperature only) models, respectively (Figures 1, S1ab). The spatial dimension decreases from 231 

113 grid cells in the GFDL-CM3 model and 465 from CESM1 to five regions. We confirm in the 232 

GFDL model that the EOFs change little under the 21st century climate change scenario, by 233 

conducting the EOF analysis separately on the simulated daily PM2.5 for 2006-2025 versus 2086-234 

2100 (Figure S2). We also find that the EOFs are robust across ensemble members (Figures S3ab).  235 

Each EOF is accompanied by a principal component (PC) time series spanning summer 236 

days in all years.  By definition, the PCs are uncorrelated and combine linearly to explain the 237 

largest possible variance captured by the reduced version of the overall dataset. The PC represents 238 

how strongly expressed a particular EOF is on each summer day. We orient each PC such that high 239 

pollution or temperature values are positive. These time series are the foci for our analysis of 240 

changes in the frequency and duration of regional-scale high-pollution events.  241 

We illustrate how the PC can be used to quantify the number of summertime regional-scale 242 

pollution events for the Northeast (Figure 2). We consider the observational period during which 243 

numerous studies have documented decreasing EUS air pollution in response to emission control 244 

programs implemented in the 1990s and 2000s (e.g., Boys et al., 2014; Cooper et al., 2012; Frost 245 

et al., 2006; Murphy et al., 2011).  For example, 60% decreases in sulfur dioxide emissions from 246 

1990 to 2010 have been linked to 45% lower sulfate aerosol (Skyllakou et al., 2021). Summertime 247 

ozone decreases have been attributed to NOx and VOC emissions reductions of 40% and 14%, 248 

respectively, from 2002-2011 (Simon et al., 2015). We define events in the upper quartile (75th 249 

percentile; red line in Figure 2) as ‘high’.  To quantify changes in observed high PM2.5 and O3 250 

events, we count the number of days on which the PC exceeds this threshold. From 1999-2006 to 251 

2007-2013 (time periods separated by the blue dashed vertical line in Figure 2), the number of 252 

observed days with high pollution over the Northeast drops: from 265 to 80 days for PM2.5 and 253 

from 243 to 102 days for MDA8 O3. This EOF analysis thus enables us to diagnose changes in the 254 
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frequency of regional-scale high pollution events, without defining an event locally at each 255 

monitor or model grid cell relative to a specific concentration threshold.  256 

 257 

Figure 2. Proof-of-concept demonstration of EOF analysis to track high pollution events. 258 

Northeast principal components derived from observed summertime (top) daily mean PM2.5 and 259 

(bottom) MDA8 ozone from 1999-2013.  Shown are the 75th percentile thresholds (red lines) 260 

used to define and count the number of high regional-scale pollution events. 261 

Our analysis does not focus on the magnitude of the pollution levels during these events.  262 

Rather, our primary interest is to define changes in event frequency and duration, and co-263 

occurrence of high PM2.5, O3, and temperature events under the RCP8.5_WMGG climate change 264 

scenario for the 21st century.  In any case, the largest, longest-lasting pollution episodes – 265 

especially those that are coincident (i.e., high heat, high O3,, and high PM2.5) – typically have the 266 

highest pollution levels (Schnell and Prather, 2017). 267 

3 Model Evaluation 268 

Typical approaches evaluating models with observations at specific locations and times are 269 

problematic for our study. First, these free-running, fully-coupled chemistry-climate models 270 

generate their own weather and thus cannot reproduce the climate variability present in the real 271 

atmosphere that is stochastic but imprinted on the air pollutant measurements (e.g. year-to-year 272 

variations). These measurements are available for a limited number of years when considering 273 

variability but can be helpful for evaluating mean errors. Second, the simulations cannot capture 274 
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observed trends due to changing anthropogenic emissions (since 2005) because they hold air 275 

pollutant emissions constant at 2005 levels.  In light of these challenges, we evaluate three aspects 276 

of the simulations: (1) simulated multi-year summertime average PM2.5 and the dominant chemical 277 

components (sulfate and organic carbon versus observations, (2) EOFs derived from modeled 278 

versus observed daily PM2.5, and (3) probability distributions of regionally averaged daily PM2.5 279 

derived from the same datasets as in (2). Application of the EOF analysis does not require exact 280 

space-time matching, and is ideally suited to evaluate spatiotemporal patterns in climate models 281 

that generate their own weather and thus cannot be expected to reproduce observations at a 282 

particular location and time. This spatiotemporal evaluation, however, requires extensive 283 

observational networks with data of sufficient length and quality, such as are available over the 284 

EUS.  Section 5 additionally compares observed and simulated cross-correlative relationships 285 

between regions and variables.  286 

Summertime mean PM2.5 and its major components.  The summertime ensemble mean PM2.5 287 

simulated by both models reflects the observed spatial pattern of summertime ensemble mean 288 

PM2.5 in the gridded observations. The NCAR-CESM1 simulation is biased high over the 289 

Southeast (Figure S4a). Comparison with the IMPROVE network (Solomon et al., 2014) suggests 290 

that both tend to models overestimate EUS PM2.5 at these rural sites (Figure S4b), although we 291 

note that the comparison with the gridded observations at spatial scales similar to the horizontal 292 

resolution of the models is most pertinent here. We also evaluate chemical composition at the 293 

IMPROVE sites, which reveals that CESM1 simulates excessive organic carbon, although sulfate 294 

tends to be biased low. GFDL-CM3 has a slight tendency to overestimate both species at the 295 

IMPROVE sites.  296 

EOFs derived from summertime daily PM2.5. The regional patterns that emerge from the EOF 297 

analysis applied to daily surface PM2.5 are similar in the observations from 1999-2013 and from 298 

each of the three GFDL-CM3 model ensemble members for the 2006-2100 period (Figure 1 and 299 

S3a). The CM3-derived EOFs capture less overall variance (64-65%; range is over ensemble 300 

members) than the observation-derived EOFs (77%). The overall similarity of the patterns implies 301 

that this model captures the underlying dynamical and chemical processes that shape the observed 302 

spatiotemporal variability. Figure 1 also shows EOFs derived from summertime daily PM2.5 303 

simulated by one NCAR-CESM1 ensemble member (Figure S3b displays other ensemble 304 

members). The PM2.5 EOFs derived from CESM1 capture 54% of the overall variance in the 305 

modeled dataset, and four of the EOFs correspond to those derived from observations (Figure 1). 306 

Rather than a coastal mid-Atlantic EOF, CESM1 highlights a spatial mode of variability centered 307 

over Missouri and Kansas. The spatial error in this pattern as compared to the observation-derived 308 

EOF may reflect shortcomings in the geographical placement of the Atlantic or Pacific subtropical 309 

high pressure systems and the Great Plains Low Level Jet, and their accompanying precipitation 310 

patterns (Bowden et al., 2013; Li et al., 2013; Schmidt & Grise, 2019; Tang et al., 2017). The 311 

Northeast EOF, where the two models agree most in their projected changes, serves as a major 312 

focus of our analysis and is similarly well captured by both CESM1 and GFDL-CM3.  313 

Probability distributions of daily regional averaged PM2.5 in summer.  From Figure 1, we 314 

selects grid cells in which the EOF loading exceeds 0.5 to define a regional mask separately for 315 

each model and the observations. We apply this mask to calculate a daily regional mean PM2.5 for 316 

the 2006-2010 and 2003-2007 time periods for the models and observations, respectively, and sort 317 

the data into 2 μg m-3 concentration bins.  The mis-match of time periods reflects a compromise 318 



manuscript submitted to Journal of Geophysical Research - Atmospheres 

 

to align the model, with constant year 2005 emissions, and the observations, with a 5-year period 319 

intended to minimize influences from both emission trends and weather fluctuations. Figure 3 320 

shows the distribution of the average number of days each summer as a function of regional mean 321 

PM2.5 concentrations for the Northeast, Upper Midwest, and East Texas regions (Figure S5 shows 322 

the mid-Atlantic and Southeast). The individual GFDL-CM3 ensemble members fall near or span 323 

the observed frequency for the PM2.5 bins > 22 μg m-3 (Figure 3). This high tail is most relevant to 324 

understanding how high PM2.5 events will change as the planet warms, and is generally better 325 

captured by GFDL-CM3 than CESM1, except over the East Texas region where GFDL-CM3 326 

captures the mode but underestimates the frequency of the highest PM2.5 concentrations (>17 μg 327 

m-3; Figure 3). While the mode over East Texas is underestimated by CESM1, some ensemble 328 

members simulate observed PM2.5 levels >26 μg m-3 as observed. The GFDL-CM3 distributions 329 

over the Northeast, mid-Atlantic and Southeast reflect the mean positive bias evident from Figures 330 

S4ab. In CESM1, the positive bias is even higher over the Northeast (and Southeast), with little 331 

similarity to the observed distribution shape.  Despite mis-placing the Mid-Atlantic EOF relative 332 

to observations, CESM1 captures the mode with a slight underestimate, but misses the high tail of 333 

the distribution (Figure S5).  Below we analyze more deeply high events in GFDL-CM3, which 334 

enables us to examine high events of surface O3 alongside PM2.5 and temperature. The NCAR-335 

CESM1 simulations provide a broader context on inter-model differences and on climate 336 

variability as measured by the range across ensemble members. 337 

 338 

Figure 3. Distributions of the number of summer days with regionally averaged daily PM2.5 339 

falling within 2 μg m-3 concentration bins.  Averages are taken over the regions where the EOF 340 

loading in Figure 1 exceeds > 0.5 in the observations (black) for the years 2003-2007 and in the 341 
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individual (orange) GFDL-CM3 (left) NCAR-CESM1 (right) ensemble members over the 342 

Northeast (top), Midwest (middle), and East Texas (bottom) for model years 2006-2010. 343 

4 21st Century Changes in Summertime PM2.5  344 

4.1 Mean values, composition, and probability density functions  345 

Summertime mean PM2.5 increases across the contiguous U.S.A. during the 21st century in 346 

the GFDL-CM3 ensemble mean, with the largest increases occurring over the Northeast and Upper 347 

Midwest, by up to 1-2 and 3-4 μg m-3 by mid- (2041-2060; Figure S6) and end-of-century (2081-348 

2100; Figure 4), respectively. These changes are deemed significant if the ensemble mean change 349 

exceeds the inter-ensemble range of simulated changes. Grid cells labeled with an ‘x’ in Figures 4 350 

and S6 do not meet this significance criterion. CESM1 projects smaller ensemble mean PM2.5 351 

increases (<1.5 μg m-3) across the Northeast by end-of-century, and decreases over Louisiana, 352 

southern Mississippi and Alabama of more than 0.5 μg m-3 and 2 μg m-3 by mid- and end-of-353 

century, respectively.  By 2081-2100, CESM1 also simulates decreases exceeding 0.5 μg m-3 over 354 

the central Plains, in some of the Northwest and along the southern Atlantic seaboard, though many 355 

of these decreases are not significant (Figure 4).  In both models, sulfate and organic carbon drive 356 

PM2.5 increases in the Northeast, with organic carbon contributing more to simulated changes in 357 
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the Southeast. Significant sulfate increases are projected by both models in parts of the West. 358 

GFDL-CM3 also simulates organic carbon increases in the Northwest. 359 

 360 

    361 

Figure 4. Change in summertime (June-July-August) PM2.5, sulfate, organic carbon (OC), daily 362 

2m air temperature (max for GFDL-CM3; mean for CESM1), and precipitation from 2006-2025 363 

to 2081-2100, simulated with GFDL-CM3 (left; 3 ensemble member mean) and CESM1 (right; 12 364 
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ensemble member mean) for the RCP8.5_WMGG scenario. Grid cells marked with ‘x’ indicate 365 

that the ensemble mean change is smaller than the range of the changes simulated by individual 366 

ensemble members.   367 

Simulated changes in average temperature and precipitation are also shown in Figures 4 368 

and S6. Summertime daily maximum near-surface air temperatures warm in both models, by over 369 

2 K and 4 K by mid- and end-of-century respectively. While GFDL-CM3 simulates a warmer, 370 

drier summer over the Northeast, CESM1 warms but wettens (though insignificantly).  We do not 371 

find evidence that a warmer and drier climate always accompanies higher PM2.5, or that more 372 

rainfall lowers PM2.5. For example, CESM1 simulates declining PM2.5 along the Gulf coast without 373 

increasing precipitation, which instead increases northeast of this region. Earlier work also 374 

demonstrated complex relationships between PM2.5 and meteorology that do not simply scale with 375 

temperature or precipitation (Dawson et al., 2013; Tai et al., 2010).  376 

For each region and ensemble member, we construct probability density functions by 377 

averaging PM2.5 over each region on every summer day for the first, middle, and last decade in the 378 

RCP8.5_WMGG simulations. The degree to which the ensemble members in different time 379 

periods separate from each other offers a measure of significance. GFDL-CM3 simulates decreases 380 

in the number of days with low PM2.5 concentrations in favor of higher values over the Northeast, 381 

Midwest, and Mid-Atlantic regions (light to darker to darkest curves in Figure 5). Little detectable 382 

change occurs over the East Texas and Southeast regions as the ensemble members overlap in all 383 

three time periods (Figure 5). CESM1 does not project significant changes although a shift towards 384 

higher values is perceptible over the Northeast (Figure S7). Overall, this analysis indicates that the 385 
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uncertainty arising from differences in the model responses to climate change (structural 386 

uncertainty) exceeds that from internal variability.  387 

 388 

Figure 5. Increasing frequency of high PM2.5 events under the RCP8.5_WMGG climate scenario 389 

in the GFDL-CM3 model over much of the EUS. Average number of summer days with daily 390 

PM2.5 falling within 2 μg m-3 concentration bins, regionally averaged (where EOF loading > 0.5 in 391 

Figure 1) in each GFDL CM3 ensemble member for the years 2006-2015 (light), 2051-2060 392 

(darker) and 2091-2100 (darkest). 393 

4.2 High-PM2.5 events: Frequency, duration and intensity  394 

We illustrate our approach with the GFDL-CM3 Northeast EOF for PM2.5.  We select the 395 

upper quartile defined by the full 2006-2100 time series (all values above the red line in Figure 396 

S8) and count, separately for each ensemble member, the number of summer days when PM2.5 397 

falls in the upper quartile. Over the 21st century, all three GFDL-CM3 ensemble members simulate 398 

an increase in this statistic (Figure 6).  An ordinary least squares regression suggests an increase 399 

in the number of summer days with PM2.5 concentrations falling in the upper quartile of 16-20 days 400 

(r2 = 0.3-0.4; range is across ensemble members) by end-of-century. While the changes are not 401 

linear with time, this simple metric enables a comparison of changing event frequency over time 402 
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across ensemble members and variables. Table S4 reports the GFDL-CM3 ensemble mean of these 403 

regression statistics for high-PM events, as well as ozone and temperature, in all five regions. 404 

 405 

Figure 6. Number of summer days with daily PM2.5 falling within the upper quartile defined with 406 

respect to the full 2006-2100 period, separately for each GFDL-CM3 ensemble member (colors).  407 

Slopes and coefficients of determination (r2) from ordinary least squares regression are shown in 408 

the panel. 409 

To assess changes in the duration of high PM2.5 events, we define short (1-2 day), medium 410 

(3-4 day) and long (5+ days) durations of top quartile summertime PM2.5 events by tracking the 411 

number of successive days the PC stays in the upper quartile. For each decade, we sum over all 412 

short, medium, and long events. We then average across all ensemble members and report the 413 

ensemble mean number of events per decade (colored bars in Figures 7 and S9). Anthropogenic 414 

climate change increases the number of  5+ day events over the 21st century, in all regions (green 415 

bars in Figures 7 and S9) in GFDL-CM3, although not all changes are significant relative to 416 

internal variability (Section 4.3).  CESM1 also shows a 21st century increase in 5+ day Northeast 417 

PM2.5 events but simulates little change or an ensemble average decrease in the longest duration 418 

events over other regions (Figures 7 and S9). The differences between the two models in the 419 
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simulated number of long-lasting events are generally of the same sign as the differences between 420 

the simulated summertime mean PM2.5 changes in Figure 4.  421 

 422 

Figure 7. Longer duration upper quartile regional-scale PM2.5 events occur under the 423 

RCP8.5_WMGG scenario in some regions in the GFDL-CM3 model, but only over the Northeast, 424 

and to a lesser extent in CESM1. Shown are the number of times the PC derived from daily mean 425 

PM2.5 exceeds the upper quartile value, calculated from the full 2006-2100 time period, and stays 426 

above that value for 1-2 (blue), 3-4 (red), or 5+ (green) days, summed over each decade within 427 

each ensemble member prior to averaging over all GFDL-CM3 (left) and NCAR-CESM1 (right) 428 

ensemble members (N) over the Northeast (top), Upper Midwest (middle) and East Texas (bottom) 429 

under the RCP8.5_WMGG scenario.  The decadal sums for each individual ensemble member are 430 
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shown as gray horizontal lines. The range across the gray lines for a given decade is a measure of 431 

internal variability.  A forced response to rising greenhouse gases is ‘detected’ when all of the gray 432 

lines in a later decade emerge from the range in the early decades.   433 

Our approach thus far defines the upper quartile across the whole time series, which could 434 

diagnose a change in duration solely because the frequency changed.  Such a change in duration 435 

is still relevant from a health impact perspective, especially if extended duration events trigger 436 

non-linear health responses. We also investigate the extent to which duration has changed 437 

independently from frequency, such as may occur from changing atmospheric circulation. We 438 

sample the 10 days each summer with the highest intensity pollution events in GFDL-CM3. We 439 

then calculate an average length of episode over the first three vs last three decades of the 21st 440 

century.  Figure 8 implies that much of the change occurring in Figure 7 is due to changes in 441 

frequency.  A lengthening of over 0.5 days in the Midwest and almost a full day over the Mid-442 

Atlantic may suggest some underlying fundamental change in ventilation, such as a northward 443 

shift of the summertime mid-latitude jet (Barnes & Fiore, 2013; Kerr et al., 2020). 444 

 445 

Figure 8. Average length of regional-scale (EOF regions from Figure 1) summertime PM2.5 events 446 

in the beginning (blue; 2011-2040) versus end (red; 2071-2100) of the 21st century in the GFDL-447 

CM3 model, sampled from 10 days each summer with the highest PM2.5 concentrations. The 448 

vertical bars indicate the range across the three ensemble members. 449 

As a means of gauging changes in the ‘intensity’ of events, we construct regional averages 450 

of daily PM2.5 over the five regions in Figure 1 (where EOFl loadings > 0.5) and report the 451 

ensemble mean changes in both models during the 21st century in Table S5. Ensemble mean 452 

increases occur in this statistic across all time periods and regions within the GFDL-CM3 model.  453 

In CESM1, the ensemble mean increases only over the Northeast, with a slight increase in the 454 

upper Midwest by mid-century.  We explore the range across individual ensemble members in the 455 

next section. 456 

4.3 Changing regional high-PM2.5 events in the context of internal climate variability  457 

A novel aspect of our analysis is the use of multiple ensemble members to gauge the 458 

significance of changes in high pollution events in light of the variability that arises naturally 459 
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(internally) in the climate system. The gray lines in Figure 7 denote individual ensemble members 460 

(3 GFDL-CM3; 12 NCAR-CESM1). We first consider changes to be significant from one period 461 

to another if all ensemble members in the later period fall outside the range of values from the 462 

earlier period. GFDL-CM3 simulates significant changes in the longest duration (5+ day) events 463 

between the first three and last three decades of the 21st century over the Northeast and mid-464 

Atlantic, and between the first and last two decades of the 21st century in the Southeast (Figures 7 465 

and S9).  While the ensemble mean suggests increases in the longest duration events between the 466 

early and late 21st century over East Texas and the Upper Midwest (Figure 7), the ensemble 467 

member ranges in early versus late decades overlap, implying that these changes are not fully 468 

emerging from those that might arise solely due to internal climate variability. While CESM1 469 

indicates a tendency towards increases in the number of 5+ day events, unlike the 3-member 470 

GFDL-CM3 ensemble, the ranges across ensemble members in the last few decades do not fully 471 

separate from the ranges in the first few decades, even over the Northeast. With a sufficiently large 472 

ensemble, such as the multi-model100-member ensembles now being generated for physical 473 

climate models, one could better quantify the probability that these changes could arise solely from 474 

climate variability, and more cleanly separate inter-model differences from climate variability.  475 

     To explore the range of changes one might have diagnosed with a 3-member ensemble 476 

as compared to a 12-member ensemble, we consider two end-member cases by comparing the 477 

simulated changes in PM2.5 event duration from the first two to the last two decades of the 21st 478 

century diagnosed by sampling only six of the NCAR-CESM1 ensemble members: three with the 479 

smallest (or largest decreases) or largest increases in PM2.5.  We aim to demonstrate the range that 480 

might have occurred if we only had 3 members available, as a way to gauge the potential variability 481 

we might have sampled with a larger GFDL-CM3 ensemble. For the longest duration events over 482 

the Northeast, increases from the beginning to end-of-century range from 4 to 9.5 days across 483 

individual NCAR-CESM1 ensemble members, with the three smallest averaging an increase of 484 

4.2 events per decade that last 5+ days, and the three largest ensemble members averaging an 485 

increase of 9.5. For 3-4 day events in the Northeast, the full range spans a decrease of 0.5 to an 486 

increase of 11 events, while the averages of the three smallest versus largest ensemble members 487 

are 0.83 and 9.5, respectively.  We conclude that our limited sampling of three ensemble members 488 

in GFDL-CM3 is likely under-representing internal variability, leading to over-confident detection 489 

of significant changes in Figure 7.  490 

An analysis of maximum and minimum changes in the 75th percentile daily mean 491 

summertime PM2.5 values reveals that structural (model response) uncertainty outweighs the role 492 

of climate variability (Table S5). The range of changes simulated by the 3-member GFDL 493 

ensemble lies completely outside that of the 12-member NCAR ensemble for the Northeast, 494 

Midwest, and Mid-Atlantic regions.  All three GFDL ensemble members simulate increasing 75th 495 

percentile values across all regions except for the East Texas region at mid-Century. In contrast, 496 

the sign of the change simulated by CESM1 is only consistent across all 12 ensemble members for 497 

the Northeast (increase) and Mid-Atlantic (decrease) by end of century (recall that the mid-Atlantic 498 

EOF is displaced inland in CESM1 with respect to observations, Figure 1).   499 

We also select the three NCAR-CESM1 ensemble members with either the smallest or 500 

largest changes in 75th percentile daily mean summertime PM2.5 concentrations (Table S5). Nearly 501 

a factor of 3 range occurs if one considers the average of the 3 NCAR-CESM1 ensemble members 502 

with the smallest versus the largest simulated changes over the Northeast.  We conclude that inter-503 
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model discrepancies reported in the published literature regarding the sign and magnitude of the 504 

PM2.5 response to climate change reflect not only model structural differences but also internally 505 

arising climate variability. This ‘climate noise’ could be quantified with sufficiently large 506 

ensembles that isolate the anthropogenic climate change “signal” (ensemble mean) from the 507 

“noise” (ensemble range). Multi-model large ensembles can further distinguish inter-model 508 

differences (structural or model response uncertainty) from internal variability (Deser et al., 2020).   509 

5 PM2.5-O3-Temperature Linkages Within and Across Regions 510 

The observational analysis of Schnell and Prather (2017) indicates that extreme events in 511 

temperature, MDA8 O3 and daily mean PM2.5 often occur within about a day of each other across 512 

the EUS, but the specific relationships vary by region. Climate change induced by rising long-513 

lived greenhouse gases does not change the regional-scale modes of variability in PM2.5, O3, or 514 

daily Tmax as the patterns remain similar throughout the 21st century (Figure S2). Table 1 shows 515 

relationships between the 2006-2100 PCs derived from GFDL-CM3 MDA8 O3, daily mean PM2.5 516 

and daily Tmax within each region. We also examine changes in these relationships over the 21st 517 

century by separately analyzing correlations for two decades in the beginning (2006-2025) versus 518 

end (2081-2100) of the simulations. The timing of the strongest correlations in Table 1, derived 519 

from the daily summertime PCs, are broadly consistent with those emerging from analysis of the 520 

95th percentile of observed warm season pollution and temperature events by Schnell and Prather 521 

(2017; see their Figure 4DEF), despite our use of a different metric.  522 

Over all regions and time periods, the strongest correlations in GFDL-CM3 emerge for PM2.5 523 

lagging MDA8 O3 by a day. Future work is needed to determine if these relationships are solely 524 

governed by meteorological processes or if, for instance, enhanced O3 (and OH) production on 525 

one day contributes to secondary aerosol formation that accumulates to high PM2.5 levels the 526 

following day. While secondary inorganic aerosol formation is represented in our GFDL-CM3 527 

configuration, the treatment of secondary organic aerosol is highly simplified and biogenic 528 

emissions do not respond to meteorology. Along with the increase in upper quartile PM2.5 events 529 

discussed in Section 4.2, GFDL-CM3 also projects more frequent O3 events in both the Northeast 530 

and the Mid-Atlantic as well as heat events (Table S4). All three GFDL-CM3 ensemble members 531 

show that PM2.5-O3 correlations strengthen or remain similar from 2006-2025 to 2081-2100, with 532 
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the largest ensemble mean increases occurring over the Southeast (r increases by 0.09) and East 533 

Texas (r increases by 0.13) regions. 534 

Table 1. Ensemble mean correlation coefficients (r) between principal components for pairs of 535 

variables simulated by the GFDL-CM3 model (Tmax is daily maximum temperature at a 2m 536 

reference height; O3 is MDA8 O3; PM is daily mean PM2.5).  Correlations are reported for each 537 

region on the same day (Lag 0) or with the first variable lagging (Lag -1) or leading (Lag +1) by 538 

one day. Correlations are taken for each individual ensemble member prior to averaging.  The 539 

strongest correlation for each pair of variables is shown in bold where r ≥ 0.45. 540 

The correlation of temperature with O3 is strongest for zero lag (same day) in the Northeast, 541 

and for the same day or O3 preceding temperature by a day over the Mid-Atlantic, and when ozone 542 

precedes temperature by a day over the Upper Midwest. GFDL-CM3 projects a weakening of this 543 

temperature-O3 correlation over the 21st century, with ensemble mean decreases of r=0.17, 0.11, 544 

and 0.17 for the Northeast, Mid-Atlantic, and Upper Midwest, respectively. The degraded 545 

correlation between O3 and temperature under climate change was previously shown to occur in 546 

this model, and attributed to the summertime mid-latitude jet shifting northward (Barnes & Fiore, 547 

2013). We find no correlation in either of the southern regions (East Texas and Southeast) between 548 

temperature and O3. The absence of an O3-temperature relationship in GFDL-CM3 agrees with 549 

earlier observation-based work showing that humidity offers more explanatory power for O3 in 550 

 Tmax and O3 Tmax and PM O3 and PM 
REGION Lag -1 Lag 0 Lag +1 Lag -1 Lag 0 Lag +1 Lag -1 Lag 0 Lag +1 

Over all summers of 2006-2100 
Northeast 0.47 0.50 0.38 0.48 0.57 0.57 0.25 0.58 0.71 
Mid-

Atlantic 
0.67 0.67 0.58 0.33 0.37 0.37 0.40 0.57 0.65 

Upper 

Midwest 
0.59 0.54 0.39 0.51 0.56 0.51 0.36 0.61 0.71 

East Texas 0.03 -0.01 -0.02 0.05 0.04 0.02 0.34 0.51 0.61 
Southeast 0.03 -0.01 -0.01 0.16 0.15 0.14 0.27 0.46 0.49 

Only summers of 2006-2025 
Northeast 0.56 0.59 0.42 0.52 0.65 0.63 0.26 0.58 0.72 

Mid-

Atlantic 0.71 0.71 0.59 0.26 0.34 0.33 0.33 0.51 0.60 
Upper 

Midwest 0.70 0.62 0.42 0.50 0.57 0.49 0.31 0.58 0.71 
East Texas 0.12 0.06 0.04 -0.02 -0.05 -0.08 0.26 0.44 0.55 
Southeast 0.00 -0.05 -0.04 0.07 0.05 0.04 0.23 0.42 0.45 

Only summers of 2081-2100 
Northeast 0.39 0.42 0.29 0.45 0.55 0.55 0.19 0.55 0.70 
Mid-

Atlantic 0.60 0.60 0.51 0.26 0.31 0.30 0.39 0.57 0.64 
Upper 

Midwest 0.53 0.47 0.31 0.50 0.56 0.49 0.31 0.58 0.68 
East Texas 0.00 -0.02 0.00 -0.01 -0.01 -0.03 0.45 0.61 0.68 

Southeast 0.06 0.03 0.03 0.17 0.17 0.16 0.32 0.51 0.54 
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these regions (Camalier et al., 2007), possibly reflecting a key role for land-atmosphere couplings 551 

(Kavassalis & Murphy, 2017; Tawfik & Steiner, 2013).  552 

For temperature and PM2.5, we additionally draw on the NCAR-CESM1 simulations.  Both 553 

models simulate the strongest correlations with zero lag (Tables 1 and S6). All NCAR-CESM1 554 

ensemble members simulate the strongest PM-temperature correlations over the Northeast 555 

(ensemble mean r = 0.58, with a range of r=0.55 to 0.60; Table S6), but unlike GFDL-CM3, PM2.5 556 

and temperature are not correlated over the displaced Mid-Atlantic region in CESM1 even though 557 

an EOF analysis of the CESM1 daily summertime temperature fields reveals a similarly shifted 558 

pattern as for PM2.5 (Figure S1b). While GFDL-CM3 simulates no relationship between 559 

temperature and PM2.5 in either southern region, CESM1 indicates a weak temperature-PM2.5 560 

anticorrelation for East Texas (Table S6). Prior observation-based work has demonstrated more 561 

complex relationships between PM2.5 and meteorology (Dawson et al., 2013), in part because 562 

individual PM2.5 components display different relationships with meteorological variables (Tai et 563 

al., 2010; X. Wu et al., 2019).  For the highest observed EUS summertime PM2.5 events, however, 564 

strong relationships with temperature have been found (Porter et al., 2015). The Northeast is the 565 

only region for which we identify a consistent change in the PM2.5-T relationship across the three 566 

GFDL ensemble members from 2006-2025 to 2081-2100, where the correlation declines by an 567 

ensemble average of r=0.10 (Table 1).  568 

At present, the EUS climatological summertime near-surface winds are associated with the large-569 

scale circulation around the North Atlantic Subtropical High system, with southerly flow across 570 

the southern portion of the domain becoming southwesterly or westerly to the north. A simple 571 

inter-regional correlation analysis for MDA8 O3 and daily mean PM2.5 (Table S7) implies a 572 

continuation of this circulation pattern over the course of the century. The Northeast and Mid-573 

Atlantic PCs for both air pollutants correlate most strongly with zero lag (r ~ 0.5) whereas both 574 

regions tend to lag the Upper Midwest PC by a day (r ~ 0.7).  The East Texas and Southeast PCs 575 

for O3 and PM correlate most strongly on the same day (r ~ 0.5, 0.6, respectively), and the Upper 576 

Midwest PM PCs correlate most strongly with the East Texas region when lagged by a day (r ~ 577 

0.5). In contrast, the inter-regional correlations for the temperature PCs are almost always strongest 578 

for zero lag (not shown).  We also conduct this inter-regional correlation analysis separately for 579 

simulation years 2006-2025 versus 2081-2100 in each of the 3 GFDL-CM3 ensemble members, 580 

but do not detect any robust changes over the course of the century. 581 

6 Discussion and Conclusions 582 

Prior work has shown that some regions experiencing high pollution levels at present will 583 

suffer from additional degradation of air quality as the planet continues to warm, if additional 584 

controls on air pollutant emissions are not implemented. These studies, however, often conflict 585 

(Fiore et al., 2015; Jacob & Winner, 2009; Weaver et al., 2009) and have typically neglected the 586 

role of naturally arising internal climate variability by simulating only a small number of years 587 

(Deser et al., 2012ab; Garcia-Menendez et al., 2017; Hawkins & Sutton, 2009). With initial 588 

condition ensembles in the GFDL-CM3 and CESM1 climate models under a 21st century RCP8.5 589 

scenario with air pollutant emissions frozen in 2005 (denoted RCP8.5_WMGG), we estimate 590 

uncertainty due to internal climate variability as the range across the ensemble members available 591 

from each model.  Relative to this internal variability, we evaluate long-term trends in mean and 592 
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high air pollution events driven by rising greenhouse gases, as well as model response differences.  593 

Differences between the two models serve as a measure of model response (structural) uncertainty. 594 

We demonstrate how Empirical Orthogonal Function (EOF) analysis can be applied to quantify 595 

changes in both the frequency and duration of summertime regional-scale pollution episodes over 596 

the Eastern United States (EUS).  By revealing underlying spatiotemporal patterns of variability, 597 

this statistical approach avoids the challenge of bias-correcting individual models, which would 598 

be necessary if we were to define high pollution events using an absolute concentration threshold.  599 

We find that the models agree best over the Northeast region, where summertime mean surface 600 

temperatures increase by over 5 °C during this century, accompanied by a rise in summertime 601 

mean PM2.5 (up to 1-4 μg m-3).  Our analysis of principal components (PCs), the time series 602 

accompanying each EOF that indicates how strongly expressed each spatial pattern is on each 603 

summer day, reveals an increase in the decadal incidence of upper quartile PM2.5 events lasting at 604 

least five days over the Northeast that is significant relative to climate variability in GFDL-CM3, 605 

and bordering on significant in CESM1 (Figure 7). 606 

The GFDL-CM3 simulations capture, at least qualitatively, observed temporal relationships 607 

between EUS MDA8 O3, daily average PM2.5, and daily Tmax, including those identified by Schnell 608 

and Prather (2017). The close temporal occurrence of O3 and PM2.5, and in some cases temperature, 609 

events could be relevant to public health, particularly if non-linear responses occur from 610 

consecutive or simultaneous exposure. Same-day and consecutive-day exposure to O3 and PM2.5 611 

occurs across the EUS, with GDFL-CM3 projecting a strengthening of this correlation in the 612 

southern EUS during the 21st century.  Correlated extremes of air pollution and temperature may 613 

become more relevant for public health in future decades, particularly in the northern part of our 614 

domain where both O3 and PM2.5 remain correlated with temperature (Table 1) and where the 615 

frequency and duration of events may increase (Figures 7 and 8). Mascioli et al. (2016) showed 616 

that GFDL-CM3 simulates daily Tmax in excess of the 90th percentile defined relative to 1961-1990 617 

for nearly the entire summer by the 2090s in the RCP8.5 scenario. This standard RCP8.5 scenario 618 

warms even more than RCP8.5_WMGG because global aerosols decline, removing the net cooling 619 

influence from aerosols, while air quality improves.  620 

The changes we diagnose from GFDL-CM3 imply a trend towards longer-lasting exposures to 621 

high pollution events, which may have implications for human and plant health, particularly when 622 

accompanied by more intense heat events.  By holding anthropogenic emissions fixed in our 623 

scenario, we do not consider the potential for human activities to exacerbate or mitigate air 624 

pollution levels. This major source of uncertainty has been emphasized in prior studies assessed in 625 

Intergovernmental Panel on Climate Change reports (e.g., Kirtman et al., 2013).  While we focused 626 

on summertime, climate change may extend what is currently ‘summer’ weather and the 627 

accompanying pollutant levels over the EUS into spring and fall, as occurred in October 2010 over 628 

the Southeast, triggering high fire and biogenic emissions (Y. Zhang & Wang, 2016). Our study 629 

focused on the response of air pollution to changes in meteorology under rising greenhouse gases. 630 

Weather-sensitive emission feedbacks such as from wildfires and biogenic emissions were not 631 

included in our simulations, and would most likely further amplify pollutant exposure of 632 

vulnerable populations and vegetation. 633 

The 12-member NCAR-CESM1 ensemble provides a broader sampling of possible climate 634 

states than the 3-member GFDL-CM3 ensemble. Outside of the Northeast, CESM1 simulates 635 
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different changes in summertime mean PM2.5 and upper quartile events, and we find that in some 636 

regions, the models do not overlap in their simulated 21st century changes. While three ensemble 637 

members is a poor sampling of climate variability, the discrepancies between the two models are 638 

sufficiently large as to imply fundamental model differences in their climate responses to rising 639 

greenhouse gases. As emphasized by Hawkins & Sutton (2009), uncertain model responses have 640 

the potential to be reduced by advancing process-level understanding and improving its 641 

representation in models. Air quality projections produced with multi-model chemistry-climate 642 

ensembles could transform the capacity to develop probabilistic assessments of changes in 643 

regional-scale pollution event frequency and duration, and their co-occurrence with heat, as well 644 

as any other metrics of interest for public health or ecosystem welfare. Such ensembles can be 645 

parsed separately for uncertainty arising from climate variability versus different model responses. 646 

Our EOF-based approach can be readily applied to any future single or multi-model initial 647 

condition chemistry-climate model ensembles.  For example, future simulations could sample a 648 

wide range of scenarios and incorporate potentially important feedbacks that were neglected in our 649 

simulations. A more immediate direction could link EOF patterns to specific meteorological 650 

conditions, in which case one could probe existing multi-model initial-condition physical climate 651 

model ensembles, with as many as 100 members per model already available (C. Deser et al., 652 

2020), for insights into projected changes in daily MDA8 O3 and PM2.5 events. Understanding and 653 

preparing for the range of changes in pollution events that could arise from climate variability may 654 

be as important as quantifying the signal from climate change, particularly if climate mitigation  655 

leads to less extreme warming scenarios for the 21st century than simulated here.  656 
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Figure S1a. Regions emerging from an EOF analysis on standardized anomalies of 

summertime daily maximum 8-hour average (MDA8) O3 over the EUS. Shown are the 

EOF pattern loadings derived from (top) gridded observations, (bottom) one of three 

ensemble members in the GFDL-CM3 chemistry-climate model.  Blue text indicates the 

total variance explained by each EOF.  

 

 

Figure S1b. Regions emerging from an EOF analysis on standardized anomalies of daily 

temperature over the EUS during summer (June-July-August). Shown are the EOF pattern 

loadings derived from (top) gridded observations of daily Tmax, (middle row) daily Tmax 

simulated by one of three ensemble members in the GFDL-CM3 chemistry-climate 
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model, (bottom) daily mean surface temperature simulated by one of 12 NCAR-CESM1 

ensemble members.  Blue text indicates the total variance explained by each EOF.  

.   

 



 

 

4 

 

 

Figure S2. EOFs derived from daily mean PM2.5 at the end of the century versus the 

beginning of the century in the GFDL-CM3 simulation (ensemble member 1).   
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Figure S3a. EOFs derived from daily mean PM2.5 in the two GFDL-CM3 ensemble 

members not shown in Figure 1.  Blue text shows the percentage variance explained by 

each EOF. 
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Figure S3b. EOFs derived from daily mean PM2.5 in the 11 NCAR-CESM ensemble 

members not shown in Figure 1. Blue text shows the percentage variance explained by 

each EOF. 
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Figure S4a. Model evaluation of summertime ensemble mean PM2.5. with the gridded 

observational dataset used to derive the EOFs from daily data in Figure 1.  Observations 

are averaged from 2003-2007, centered around 2005, the year for which emissions are 

perpetually repeated in the model, to avoid strong influence of trends driven by 
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anthropogenic emissions. By selecting the first five simulation years (2006-2010) for this 

comparison, we also minimize the influence of climate change. 

 

Figure S4b. Model evaluation of summertime ensemble mean PM2.5. with measurements 

from the IMPROVE network. Both models overestimate observed EUS PM2.5 in summer 

(June-July-August) but differ in their simulation of individual components. Shown are 

summertime, ensemble mean surface PM2.5 (top), sulfate (middle), and organic carbon 

(bottom) in the GFDL-CM3 (left) and NCAR-CESM1 (right) chemistry-climate models 

averaged over 2006-2010 in the RCP8.5_WMGG scenario (Section 2).  Filled circles show 

observations at the IMPROVE network, averaged over 2003-2007. The observed dataset 

centers around 2005, the year for which emissions are perpetually repeated in the model, 

to avoid strong influence of trends driven by anthropogenic emissions. By selecting the 

first five simulation years (2006-2010), we also minimize the influence of climate change. 
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Figure S5. Average number of summer days with daily PM2.5 falling within 2 μg m-3 

concentration bins, regionally averaged (where EOF loading in Figure 1 exceeds > 0.5) in 

the observations (black) for the years 2003-2007 and in the individual ensemble 

members (orange) for GFDL-CM3 (left) and NCAR-CESM1 (right) for model years 2006-

2010.  Note that the mid-Atlantic EOFs derived from CESM1 and observations differ.   
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Figure S6. Change in summertime (June-July-August) PM2.5, sulfate, organic carbon (OC), 

daily 2m air temperature (max for GFDL-CM3; mean for CESM1), and precipitation from 
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2006-2025 to 2041-2060 in the GFDL-CM3 (left; 3 ensemble members) and CESM1 (right; 

12 ensemble members) under the RCP8.5_WMGG scenario. Grid cells marked with ‘x’ 

indicate that the ensemble mean change is smaller than the range of the changes 

simulated by individual ensemble members.       

 

 

Figure S7. Little detectable change in the surface PM2.5 distributions under the 

RCP8.5_WMGG scenario in the 12-member NCAR-CESM1 ensemble. Average number of 

summer days with daily PM2.5 falling within 2 μg m-3 concentration bins, regionally 

averaged (where EOF loading > 0.5 in Figure 1) in each NCAR-CESM1 ensemble member 

for the years 2006-2015 (light), 2051-2060 (darker) and 2091-2100 (darkest). 
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Figure S8. Principal component accompanying the Northeast EOF derived from the 

GFDL-CM3 model for the first of three ensemble members under the RCP8.5_WMGG 

scenario from 2006-2100.  The red line indicates the 75th percentile.   

 

Figure S9. As in Figure 7 in the main text, but for the Mid-Atlantic and Southeast. 
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EOF PM2.5 MDA8 O3 Tmax 

1 0.371 0.322 0.386 

2 0.172 0.202 0.165 

3 0.123 0.123 0.076 

4 0.06 0.062 0.058 

5 0.047 0.056 0.043 

6 0.036 0.031 0.036 

7 0.025 0.025 0.025 

8 0.02 0.024 0.019 

9 0.015 0.016 0.018 

10 0.012 0.012 0.016 

Table S1. Fraction of total variance explained by the first 10 raw EOFs (empirical 

orthogonal functions) over the EUS derived from the observational datasets of Schnell 

and Prather (2017). 

 

EOF Z1 PM Z3 PM Z5 PM Z1 O3 Z3 O3 Z5 O3 Z1 T Z3 T Z5 T 

1 0.251 0.243 0.254 0.226 0.226 0.235 0.582 0.601 0.605 

2 0.158 0.162 0.163 0.158 0.155 0.154 0.117 0.105 0.111 

3 0.102 0.102 0.1 0.1 0.1 0.098 0.055 0.052 0.054 

4 0.074 0.074 0.073 0.085 0.085 0.084 0.039 0.039 0.037 

5 0.058 0.057 0.055 0.056 0.055 0.055 0.033 0.032 0.03 

6 0.045 0.048 0.046 0.039 0.039 0.039 0.021 0.019 0.02 

7 0.037 0.038 0.037 0.034 0.034 0.034 0.016 0.016 0.014 

8 0.028 0.028 0.028 0.028 0.028 0.028 0.013 0.012 0.012 

9 0.024 0.024 0.025 0.026 0.025 0.026 0.011 0.011 0.01 

10 0.022 0.023 0.022 0.02 0.02 0.02 0.009 0.01 0.01 

Table S2. Fraction of total variance explained by the first 10 raw EOFs over the EUS 

derived from the GFDL-CM3 model in each individual ensemble member (denoted Z1, 

Z3, Z5) for surface PM2.5 (PM), MDA8 O3 (O3) and daily maximum temperature (T) for the 

simulated years 2006-2100 under the RCP8.5_WMGG scenario.  Ensemble member labels 

follow GFDL internal naming conventions. 
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EOF E16 E17 E18 E19 E20  E21  E22  E25 E26 E27 E28  E30  

1 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.21 0.22 0.22 0.22 

2 0.11 0.10 0.10 0.11 0.10 0.10 0.10 0.10 0.11 0.10 0.11 0.10 

3 0.07 0.08 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

4 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 

5 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 

6 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

7 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

8 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

9 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

10 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Table S3a. Fraction of total variance explained by the first 10 raw EUS EOFs derived from 

surface PM2.5 in the 12 individual NCAR-CESM1 ensemble members. The ensemble 

number follows NCAR internal naming conventions. 

 

EOF E16 E17 E18 E19 E20  E21  E22  E25 E26 E27 E28  E30  

1 0.59 0.58 0.58 0.59 0.56 0.57 0.57 0.58 0.57 0.57 0.57 0.57 

2 0.11 0.12 0.11 0.11 0.12 0.11 0.11 0.11 0.12 0.12 0.11 0.12 

3 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 

4 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

5 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

6 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

7 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

8 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

9 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Table S3b. As for Table S3a but for daily mean surface temperature (T). 
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EOF PM2.5 O3 Tmax 
Northeast 0.18 (r=0.6) 0.13 (r=0.5) 0.73 (r=0.9) 

Midwest 0.19 (r=0.5) 0.03 (r=0.2) 0.72 (r=0.9) 

Mid-Atlantic 0.17 (r=0.4) 0.21 (r=0.6) 0.64 (r=0.8) 

Texas-Gulf 0.08 (r=0.2) -0.1 (r=0.3) 0.63 (r=0.8) 

Southeast 0.08 (r=0.2) -0.1 (r=0.1) 0.70 (r=0.8) 

Table S4. Regression statistics (slopes in days per year and correlation (r)) for GFDL-CM3 

ensemble mean trends in 21st century upper quartile events. 
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Table S5. Changes in 75th percentile values of PM2.5 concentrations (g m-3) within EOF-

defined regions (loading > 0.5 in Figure 1) from the beginning (2006-2015) to the middle 

(2051-2060) or end (2091-2100) of the 21st century in the GFDL-CM3 and CESM1 models. 

 

 

 

 

 

 

 

Region defined by 
EOF 

Northeast Midwest East Texas Southeast Mid-
Atlantic 

GFDL-CM3 (3 ensemble members) 

Change from 2006-2015 to 2051-2060 

min 1.6 1.8 -0.1 0.6 1.2 

mean 2.3 2.1 1.5 1.3 1.9 

max 2.7 2.4 2.6 2.5 2.4 

Change from 2006-2015 to 2091-2100 

min 3.4 2.3 0.1 -0.2 1.3 

mean 3.7 2.8 0.8 0.9 2.2 

max 4.0 3.3 1.7 2.6 2.9 

CESM1 (12 ensemble members) 

Change from 2006-2015 to 2051-2060 

min -0.1 -0.3 -2.2 -0.6 -1.1 

mean 0.5 0.1 -0.4 -0.1 -0.4 

max 1.1 0.3 0.5 0.9 0.6 

3 lowest members 0.1 -0.1 -1.5 -0.5 -1.0 

3 highest 
members 

1.0 0.3 0.4 0.6 0.3 

Change from 2006-2015 to 2091-2100 

min 0.3 -0.4 -2.4 -1.6 -1.8 

mean 1.0 0.0 -1.6 -0.5 -1.1 

max 1.5 0.5 0.0 1.1 -0.1 

3 lowest members 0.5 -0.3 -2.3 -1.4 -1.6 

3 highest 
members 

1.4 0.4 -0.7 0.7 -0.7 
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  T and PM: ENS MIN T and PM: ENS MEAN T and PM: ENS MAX 

REGION Lag -1 Lag 0 Lag +1 Lag -1 Lag 0 Lag +1 Lag -1 Lag 0 Lag +1 

Northeast 0.50 0.55 0.45 0.53 0.58 0.48 0.55 0.60 0.50 

Mid-
Atlantic 

0.13 0.10 0.04 0.18 0.16 0.08 0.23 0.21 0.13 

Upper 
Midwest 

0.42 0.44 0.36 0.45 0.46 0.37 0.47 0.49 0.40 

East 
Texas 

-0.42 -0.45 -0.43 -0.39 -0.41 -0.39 -0.36 -0.38 -0.36 

Southeast 0.15 0.18 0.16 0.24 0.26 0.24 0.27 0.30 0.27 

Table S6. Ensemble minimum, mean, and maximum correlation coefficients (r) between 

principal component time series for temperature and PM simulated by the 12 NCAR-

CESM1 ensemble members (T is daily mean temperature; PM is daily mean PM2.5) within 

each region on the same day (Lag 0) or with temperature lagging (Lag -1) or leading (Lag 

+1) by a day relative to PM (e.g., Lag -1 indicates that T lags PM by 1 day). Correlations 

are taken for each individual ensemble member prior to averaging.  The strongest 

correlation for each pair of variables is shown in bold where r ≥ |0.45|. 

 

  O3  PM 

Region 1 Region 2 Lag 0 Lag -1 Lag -2 Lag 0 Lag -1 Lag -2 

Northeast Mid-
Atlantic 0.50 0.39 0.22 0.53 0.49 0.38 

Northeast Upper 
Midwest 0.44 0.69 0.52 0.51 0.71 0.61 

Mid-
Atlantic 

Upper 
Midwest 0.58 0.67 0.54 0.67 0.69 0.57 

Upper 
Midwest 

East 
Texas 0.20 0.29 0.24 0.39 0.48 0.43 

Mid-
Atlantic 

East 
Texas 0.04 0.16 0.18 0.38 0.46 0.44 

Southeast East 
Texas 0.46 0.38 0.20 0.62 0.56 0.44 

Table S7. Ensemble mean correlation coefficients (r) between principal component time 

series in Region 1 versus Region 2 for O3 or PM (O3 is MDA8 O3; PM is daily mean PM2.5) 

simulated by the GFDL-CM3 model on the same day (Lag 0) or with Region 1 lagging by 

one (Lag -1) or two (Lag -2) days relative to Region 2. Correlations are taken for each 
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individual ensemble member prior to averaging.  The strongest correlation for each pair 

of regions is shown in bold where r ≥ 0.4. 
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