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Abstract

The Hellenic arc, where the African (Nubian) slab subducts beneath the Aegean and Anatolian microplates, has emerged as a

type-locality for understanding subduction dynamics, including slab tear, slab fragments, drips, and transfer zones. Based on

field evidence and geophysical, tectonics, and geochemical studies, it has been recognized that the subducting African slab is a

primary driver for extension in the Aegean and Anatolian microplates and plays a significant role in accommodating present-day

westward extrusion of the Anatolian microplate. Thus, understanding the Hellenic arc subduction zone initiation (SZI) age

is critical in deciphering ancient mantle flow, how plate tectonics is maintained, and the mechanisms involved in triggering

the onset of subduction. The SZI for the Hellenic arc has two disparate ages based on different lines of evidence. A Late

Cenozoic (Eocene-Pliocene) SZI is proposed using the analysis of topography combined with estimates of slab age and depth,

paleomagnetism, the timing of metamorphism, and volcanic activity, and timing of sedimentation within its accretionary wedge,

the Mediterranean Ridge. This age follows an induced-transference SZI model, where a new subduction zone initiates following

the jamming of an older subduction zone by buoyant crust due to regional compression, uplift, and underthrusting. A Late

Cretaceous-Jurassic SZI age has also been proposed using reconstructions of images of subducted slabs seen using tomography

and timing of obducted ophiolite fragments thought to be related to the system. In this case, the induced-transference SZI model

fails, and a single subduction zone persists. As a result, continental lithospheric fragments and the ancient oceans between them

become incorporated into the overall system without creating a new subduction zone. The presence of a long-lived subduction

zone has implications for understanding Earth’s mantle dynamics and how plate tectonics operates. This paper describes and

summarizes the evidence for both models in the Aegean-Western Anatolia region.
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Abstract 13 

The Hellenic arc, where the African (Nubian) slab subducts beneath the Aegean and Anatolian 14 

microplates, has emerged as a type-locality for understanding subduction dynamics, including 15 

slab tear, slab fragments, drips, and transfer zones. Based on field evidence and geophysical, 16 

tectonics, and geochemical studies, it has been recognized that the subducting African slab is a 17 

primary driver for extension in the Aegean and Anatolian microplates and plays a significant role 18 

in accommodating present-day westward extrusion of the Anatolian microplate. Thus, 19 

understanding the Hellenic arc subduction zone initiation (SZI) age is critical in deciphering 20 

ancient mantle flow, how plate tectonics is maintained, and the mechanisms involved in 21 

triggering the onset of subduction. The SZI for the Hellenic arc has two disparate ages based on 22 

different lines of evidence. A Late Cenozoic (Eocene-Pliocene) SZI is proposed using the 23 

analysis of topography combined with estimates of slab age and depth, paleomagnetism, the 24 

timing of metamorphism, and volcanic activity, and timing of sedimentation within its 25 

accretionary wedge, the Mediterranean Ridge. This age follows an induced-transference SZI 26 

model, where a new subduction zone initiates following the jamming of an older subduction 27 

zone by buoyant crust due to regional compression, uplift, and underthrusting. A Late 28 

Cretaceous-Jurassic SZI age has also been proposed using reconstructions of images of 29 

subducted slabs seen using tomography and timing of obducted ophiolite fragments thought to be 30 

related to the system. In this case, the induced-transference SZI model fails, and a single 31 

subduction zone persists. As a result, continental lithospheric fragments and the ancient oceans 32 

between them become incorporated into the overall system without creating a new subduction 33 

zone. The presence of a long-lived subduction zone has implications for understanding Earth’s 34 

mantle dynamics and how plate tectonics operates. This paper describes and summarizes the 35 

evidence for both models in the Aegean-Western Anatolia region. 36 
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1 Introduction 37 

Subduction zones form when two lithospheric plates converge, and one plate abruptly 38 

descends beneath the other (Figures 1 and 2) (e.g., White et al., 1970; Hayes, 2018; Stern & 39 

Gerya, 2018; Crameri et al., 2020). Large magnitude earthquakes, tsunamis, volcanic eruptions, 40 

and landslides occur near and are caused by this specific plate boundary. They are considered 41 

exceptional geological environments for recording significant ground-level changes that can 42 

trigger tsunamis, impact ground motion, and climate change. Earthquakes that occur in such 43 

zones and those triggered by the subduction process far-afield have global consequences. 44 

Understanding the dynamics of subduction zones involves diverse and multidisciplinary studies, 45 

critical for understanding their associated hazards and how they have influenced the dynamics of 46 

plate tectonics over Earth’s history (e.g., Stern, 2004; Gerya, 2011; Le Pichon et al., 2019; 47 

Crameri et al., 2020). 48 

The Aegean and Anatolian microplates (Figure 1) are significantly impacted by the dynamics 49 

of the subducting northern portion of the African (Nubian) plate, which has emerged as the 50 

primary driver for extension and the development of metamorphic core complexes in the Aegean 51 

region (e.g., Jolivet & Faccenna, 2000; Çemen et al., 2006; Dilek & Sandvol, 2009; van 52 

Hinsbergen et al., 2010; van Hinsbergen). The Hellenic and Cyprus arcs are the surface 53 

expression of the subducting Nubian Plate and eastern Mediterranean lithosphere beneath the 54 

Aegean and Anatolian microplates, respectively (e.g., Le Pichon & Angelier, 1979; Angelier et 55 

al., 1982; Anastasakis & Kelling, 1991; Papazachos et al., 2000; Ergün et al., 2005; Ganas & 56 

Parsons, 2009; Hall et al., 2009; Biryol et al., 2011; Royden & Papanikolaou, 2011; Hall et al., 57 

2014; Symeou et al., 2018; Ventouzi et al., 2018). 58 

Constraints regarding the subduction zone initiation (SZI) age of the present-day expression 59 

of the Hellenic arc developed from several independent approaches include timing of 60 

sedimentation within the intensely folded and faulted rocks of Mediterranean Ridge accretionary 61 

prism (Figures 1 and 2), paleomagnetism, the analysis of topography combined with estimates of 62 

slab age and depth, reconstructions of subducted slabs using tomography, and the timing of 63 

metamorphism and volcanic activity. SZI is defined as the onset of downward plate motion 64 

forming a new slab, which later evolves into a self-sustaining subduction zone (Crameri et al., 65 

2020). Some studies suggest a Cenozoic SZI age for Hellenic arc, although estimates vary 66 

significantly, from the Eocene-Pliocene (e.g., Meulenkamp et al., 1988; Spakman et al., 1988; 67 

Papadopoulos, 1997; Brun & Sokoutis, 2010; Le Pichon et al., 2019) to Mesozoic (Late 68 

Cretaceous-Jurassic) (Faccenna et al., 2003; van Hinsbergen et al., 2005; Royden & 69 

Papanikolaou, 2011; Jolivet et al., 2013; Malandri et al., 2017; Crameri et al., 2020, van 70 

Hinsbergen et al., 2021).  71 

The disparity in the SZI age of onset of Nubian slab subduction along the Hellenic arc is 72 

significant as it impacts the tectonic history of the entire Aegean-Anatolian region, one of the 73 

most rapidly deforming regions across the Alpine-Himalayan chain. The region has emerged as 74 

the type-locality for understanding subduction zone dynamics, including slab tear, slab 75 

fragments, drips, and the role of transfer zones triggered by subduction. Understanding its SZI is 76 

also critical in deciphering ancient mantle flow, how plate tectonics is maintained, and the 77 

mechanisms involved in triggering the onset of subduction, among other factors (e.g., Crameri et 78 

al., 2020; van Hinsbergen et al., 2021). This paper aims to summarize the approaches and results 79 

of studies that strive to constrain the SZI age of the African (Nubian) slab beneath the Aegean 80 

microplate that led to the formation of the Hellenic arc. 81 
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2 Geometry of the Hellenic arc (Greece to Western Turkey) 82 

2.1 Definitions 83 

The Hellenic subduction system extends ~1200 km from approximately 37.5°N, 20.0°E 84 

offshore the island of Zakynthos to 36.0°N, 29.0°E offshore of the island of Rhodes (Ganas & 85 

Parsons, 2009; Le Pichon et al., 2019; Papanikolaou, 2021) (Figures 2 and 3). The system 86 

defines the boundary between the northern portion of the Nubian Plate and the southern extent 87 

of the Aegean microplate within the central Mediterranean region (Pearce et al., 2012) and is 88 

sometimes referred to as the Aegean subduction zone (Wortel et al., 1990; Biryol et al., 2011; 89 

Bleier et al., 2007; Polat & Ozel, 2007; Taymaz et al., 2007; Crameri et al., 2020). This boundary 90 

between the Aegean microplate portion of Eurasia (Nyst & Thatcher, 2004) and the subducting 91 

Nubian slab is presently characterized by a strong curvature and fast slab rollback (e.g., Faccena 92 

et al., 2013; Evangelidis, 2017). Presently, the African plate advances towards Eurasia NNW at a 93 

rate of 5 mm/yr (Fernandes et al., 2003; Ganas & Parsons, 2009), but it subducts northward 94 

beneath Crete at a significantly faster rate of 35 mm/yr (McKenzie, 1972; Reilinger et al., 95 

2006). The Aegean area also records the highest deformation rate along the entire Africa/Eurasia 96 

convergence zone (McClusky et al., 2000; Kassaras et al., 2005).  97 

The Aegean and Anatolia microplates are sometimes classified as the single Aegean-98 

Anatolian microplate (e.g., Jackson, 1994; Oral, 1995; Doutsos & Kokkalas, 2001; Le Pichon 99 

et al., 1995) with an Euler pole located north of the Sinai Penninsula (Cianetti et al., 2001). The 100 

Anatolian microplate itself is a distinct entity that includes over two-thirds of the country of 101 

Turkey (Figure 1) (Le Pichon et al., 1995; Oral et al., 1995; Reilinger et al., 1997; Papazachos, 102 

1999). Şengör & Zabcı (2019) consider the whole of Turkey and the Balkan Peninsula within a 103 

plate boundary zone. 104 

The Nubian Plate includes the African continent. When Somalia is part of the definition, it is 105 

referred to as the African Plate or the Nubia-Somalia Plate (e.g., McCluksy et al., 2003). The 106 

African plate itself is defined by Nubia to the west and Somalia to the east, both of which are 107 

separated by a diffuse plate boundary (Chase, 1978, Gordon & Stein 1992, Lemaux et al., 2002; 108 

McCluksy et al., 2003; DeMets & Merkouriev, 2016). The African plate is geographically 109 

significant and is, at present, the third-largest major tectonic plate (Gaina et al., 2013). A wide 110 

range of tectonic interactions characterizes its boundaries and internal dynamics, which were 111 

influenced by the collision between the plate and Eurasia (e.g., Meijer & Wortel, 1999; 112 

McCluksy et al., 2003; Fernandes et al., 2006; Catalano et al., 2008; DeMets & Merkouriev, 113 

2016). The plate boundary between the Indian and African plates is over 12,000-km-long and 114 

may have initiated around 105 Ma in the Early Cretaceous (e.g., van Hinsbergen et al., 2021). 115 

Rifting in the Gulf of Aden and the Red Sea signaled the break-off of the Arabian peninsula from 116 

Africa at 29-24 Ma (e.g., Bosworth et al., 2005; Wolfenden et al., 2005) fragmentation of the 117 

Africa plate and the onset of motion between Somalia and Nubia. Alternatively, the separation 118 

may have been more recent (11-10 Ma, Wolfenden et al., 2004; Keranen & Klemperer, 2008; 119 

Corti, 2009; see discussion in DeMets & Merkouriev, 2016). 120 

The overriding Aegean microplate (Nyst & Thatcher, 2004) consists mainly of continental 121 

lithosphere with a similar thickness as the Anatolian plate (e.g., Zhu et al., 2006; Sodoudi et al., 122 

2006). Large crustal thickness variations exist from western Greece to eastern Anatolia (20–47 123 

km), but within specific regions of the Anatolian plate, thickness appears fairly uniform (Özacar 124 

et al., 2010; Karabulut et al., 2019). Moho depth across the Anatolian plate varies between 24 125 
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and 48 km, with the thinnest crustal thickness located on the coast of western Turkey and the 126 

thickest in Eastern Turkey (Tezel et al., 2013). The Aegean Sea crustal thickness averages ~25 127 

km (Zhu et al., 2006; Tirel et al., 2004; Kind et al., 2015), similar to thickness beneath the central 128 

Menderes Massif at 25-30 km (Zhu et al., 2006; Karabulut et al., 2019). Estimates in the eastern 129 

Mediterranean overall show the Moho at an average 30 km depth (Marone et al., 2003). The 130 

Aegean microplate crustal thickness has thinner southern and central parts (20–22 km) compared 131 

to its northern portions (25–28 km) (Karagianni et al., 2005; Sodoudi et al., 2006). An exception 132 

to this observation is the crustal thickness beneath western Crete, 32.5-35 km or up to 45-50 km 133 

(Bohnhoff et al., 2001; Meier et al., 2004; Snopek et al., 2007). The eastern part of Crete appears 134 

thinner (24-26 km) compared to its western portion (32.5 km) (Bohnhoff et al., 2001). Crustal 135 

thickness also decreases to 15 km below the central Cretan Sea and to 17 km, approximately 100 136 

km off the southern coast of Crete (Bohnhoff et al., 2001). A crustal thickness of ~40 km is 137 

reported for western Greece (Karagianni et al., 2005), north of Antalya Bay (Karabulut et al., 138 

2019), Eastern Anatolia (Kind et al., 2015), and the Anatolian plateau (e.g., Saunders et al., 139 

1998). In Eastern Anatolia, the crustal thickness increases towards the north, from 35 km at the 140 

Arabian foreland to 45 km further north (Özacar et al., 2010).  141 

The subducting portion of the African plate has multiple names based on the time frame that 142 

was active and differentiate it from other nearby subduction zone systems. In the Aegean and 143 

Western Anatolia region, the subducting plate is sometimes referred to as the Aegean 144 

slab (Wortel & Spakman, 2000; Widiyantoro et al., 2004; Vanderhaeghe et al., 2007; Biryol, 145 

2009; van der Meer et al., 2018; El-Sharkawy et al., 2020), the African-Mediterranean 146 

slab (Sachpazi et al., 2016), the Hellenic plate or Hellenic slab (Chang et al., 2010; Vernant et 147 

al., 2014; Sachpazi et al., 2016; Confal et al., 2018; Hayes, 2018; Wei et al., 2019; Blom et al., 148 

2020). The Aegean slab usually describes the system during the Late Cretaceous, whereas the 149 

other specific names distinguish the Aegean Sea and Western Anatolia subduction system from 150 

that beneath Antalya and Cyprus. The subducting slab near Cyprus is referred to as the Cyprus 151 

slab (Confal et al., 2018), Cyprus/Tethys slab (Taylor et al., 2019), Cyprus–Bitlis slab (Govers 152 

and Fichtner, 2016). The Antalya slab is recently defined between the Hellenic and Cyprus arcs 153 

(Güvercin et al., 2021). 154 

The western edge of the Hellenic arc is bounded by the Kephalonia (also Kefalonia, 155 

Cephalonia) Transform Zone (KTZ) (Figure 1) (Bocchini et al., 2018; Hansen et al., 2019). 156 

This feature is a dextral strike-slip system that delineates the boundary between the Apulian 157 

platform (Adria microplate) and the Eurasian plate or Aegean microplate (Kokinou et al., 2006; 158 

Pearce et al., 2012). The KTZ has structural trends and seismicity that extend onshore, and it is 159 

the most active zone of shallow seismicity in the broader Aegean region (Kokinou et al., 2006). 160 

Over the last 1–4 Myr, the KTZ has linked to the North Anatolian Fault (NAF) system via the 161 

Central Hellenic Shear Zone (Papanikolaou & Royden, 2007; Reilinger et al., 2010; Vassilakis 162 

et al., 2011; Royden & Papanikolaou, 2011; Halpaap et al., 2018). The KTZ is considered one of 163 

the most seismically active zones in Europe (Pearce et al., 2012; Halpaap et al., 2018) and has 164 

been represented as a vertical tear between oceanic and continental lithosphere (Suckale et al., 165 

2009), forming a Subduction-Transform-Edge-Propagator (STEP) fault (Govers & Wortel, 166 

2005). The STEP fault may be in its initial stages of forming (Evangelidis, 2017; Özbakır et al., 167 

2020), or the slab may have entirely detached (Wortel & Spakman, 2000). A smooth transition is 168 

also proposed between two segments without a tear between, at least at depths shallower than 169 

100 km (Pearce et al., 2012; Halpaap et al., 2018). Nine STEP structures may exist beneath 170 

southern Greece, segmenting the subducting African slab and contributing to seismicity and 171 
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deformation (Sachpazi et al., 2016). Overall, the southwestward expansion and stretching of the 172 

Aegean microplate during Plio-Quaternary is accommodated by a northern right lateral tectonic 173 

boundary defined by the KTZ and NASZ and a southern left-lateral tectonic boundary, marked 174 

by the Pliny and Strabo trenches (Sakellariou et al., 2013). 175 

The active right-lateral NAF and North Anatolian Shear Zone (NASZ) extends for ~1200 176 

from the Karlıova triple junction through the Sea of Marmara and Biga Peninsula (Figure 1) 177 

(Ketin, 1948; Barka, 1992; Armijo et al., 1999; Şengör & Zabcı, 2019). The NASZ contains the 178 

NAF, which accommodated from 25 to 110 km of displacement, depending on location since the 179 

Late Miocene (Westaway 1994; Yoshioka 1996; Armijo et al., 1999; Hubert-Ferrari et al. 2002; 180 

Şengör & Zabcı, 2019). The fault system disrupts the Aegean extensional domain in its northern 181 

section and may have been activated due to subduction rollback processes (e.g., Flerit et al., 182 

2004; Facenna et al., 2006). Current timing estimates suggest the NAF initiated in east Anatolia 183 

at 10-12 Ma, and propagated westward through central Anatolia from 7-6 Ma, and was activated 184 

in the Aegean region by the Pliocene (Şengör et al., 2005; Facenna et al., 2006). Its western and 185 

eastern terminations of the NASZ are poorly defined (Barbot & Weiss, 2021), but the system 186 

itself presently accommodates ~24 mm/year of slip along northern Turkey (McClusky et al., 187 

2000; Bulut et al., 2018).  188 

Westward extrusion of the Anatolian plate accommodated by the NASZ and NAF dominates 189 

the present-day geodynamics of the Aegean microplate such that active extensional strain has 190 

been stated to be absent, except near the Corinth rift, south Viotia, south of Evia, and across the 191 

Sperchios-Kammena Vourla rift (Brooks & Ferentinos 1984; Papanikolaou and Royden, 2007; 192 

Chousianitis et al., 2013, 2015). However, seismogenic faults in the internal Aegean domain 193 

associated with the Hellenic subduction arc are characterized by pure normal and strike-slip 194 

kinematics or by a combination, and active thrusting is limited to the central and western sectors 195 

of the Hellenic subduction zone and the offshore regions external with respect to it (Maggini & 196 

Caputo, 2020). The nature of earthquakes varies with Hellenic arc depth, with normal senses of 197 

motion at depths up to 40 km and strike-slip faulting present parallel to strike for events deeper 198 

than 40 km (Benetatos et al., 2004). One of the strongest earthquakes of the 20th century, with an 199 

Mw 7.7 (or 7.8), occurred in the area of the South Aegean off the coast of the island of Amorgos 200 

on 09 July 1956 03:11 UTC (Figure 1) (Okal et al., 2009; Alatza et al., 2020). This event has 201 

debated focal mechanisms, as either strike-slip or normal faulting geometries (Okal et al., 2009). 202 

An Mw 4.4 earthquake with normal motion recently occurred near its epicenter on 11/27/2018 203 

(23:16 UTC, 36.7565ºN, 25.877 ºE). A normal sense of motion also is found with some recent 204 

earthquakes near the NASZ, including 6/12/2017 Mw 6.2 (12:28 UTC, 38.8486ºN, 26.313ºE) 205 

and 2017 Mw 5.3 (10:58 UTC, 39.5275 ºN,  26.1373 ºE), likely associated with transtensional 206 

motion.  207 

The Hellenic arc itself is separated into a western portion based on well-defined bathymetry. 208 

This portion is sometimes termed the Western Hellenic Subduction Zone or Western Hellenic 209 

Arc and Trench (WHA-T) system and extends ~400 km NW from the central Adriatic Sea to 210 

the west coast of Crete (Figures 1 and 3) (Papadopoulos et al., 2010; Pearce et al., 2012; Hansen 211 

et al., 2019). This part of the Hellenic Arc is divided into northern and southern sections termed 212 

the Northern Hellenic arc and Southern Hellenic arc (Royden & Papanikolaou, 2011). The 213 

Southern Hellenic arc exhibits classical features, but in the north, thick continental crust is 214 

subducted beneath northern Greece (Pearce et al., 2012; Halpaap et al., 2018). As a result, this 215 

area has significant variations in subduction rate, trench retreat, the occurrence of deep 216 
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seismicity, and overriding plate extension, likely related to a change in convergence regime from 217 

the subduction of oceanic crust in the south to continental crust in the north (Papanikolaou & 218 

Royden, 2007; Halpaap et al., 2018). The southern portion of the Hellenic arc near the island of 219 

Crete is also affected by the subduction of continental crust (e.g., Meier et al., 2007). 220 

Overall, the Hellenic arc has three distinct regions: an outer compressional non-volcanic arc, 221 

a volcanic arc, and an extensional back-arc region covering the broader Aegean Sea region 222 

(Figures 1 and 2) (McKenzie 1972; Papazachos, 2019). The Pliocene-Quaternary volcanic arc is 223 

located in the Methana Peninsula, along the islands of Milos and Santorini in the Cycladic 224 

archipelago, and the island of Nisryos in the Dodecanese (Figure 1) (Le Pichon and Angelier, 225 

1979; McKenzie, 1972; Papazachos and Nolet, 1997, see review in Scoon, 2021). The majority 226 

of the subducting Nubian Plate is oceanic, except along the central sector of its southern margin, 227 

where the Mediterranean Ridge accretionary complex collides with the African continental 228 

margin (Chaumillon & Mascle, 1997; Westbrook & Reston, 2002). High-resolution scattered 229 

wave images of the northern portion of the Western Hellenic arc also show the subduction of 230 

thick continental crust beneath northern Greece (Pearce et al., 2012; Halpaap et al., 2018) and 231 

Crete (e.g., Meier et al., 2007).  232 

The connection of the western portion of the Hellenic arc to its central and eastern sections is 233 

diffuse (Beißer et al., 1990; Shaw & Jackson, 2010; Biryol et al., 2011; Özbakır et al., 2013). 234 

The eastern portions of the Hellenic arc are sometimes referred to as the East Hellenic Arc and 235 

Trench system (HA-T) (Papadopoulos et al., 2007). The boundary between the Hellenic and 236 

Cyprus arcs in this area is obstructed by up to 300-km wide, 6-10 km-thick section of sediments 237 

that comprise the Mediterranean Ridge (Figures 1-3; Heezen & Ewing, 1963; Emery et al., 238 

1966; Le Pichon et al., 1982; Kenyon et al., 1982; Kastens et al., 1992; Foucher et al., 1993; 239 

Westbrook & Reston, 2002; Kopf et al., 2003). This accretionary complex is the largest 240 

structural unit of the Eastern Mediterranean Sea, extending ~2000 km from the Calabrian Rise 241 

east of Greece to the Florence Rise (Liminov et al., 1996; Cita et al., 1996). The front of 242 

subduction of the Hellenic arc is located south of the Mediterranean Ridge (Figures 1-3) (e.g., Le 243 

Pichon et al., 1995; Mascle & Chaumillon, 1997; Mascle et al., 1999; Jost et al., 2002; 244 

Westbrook & Reston, 2002; Meier et al., 2007; Jolivet et al., 2013).   245 

The significant size of the Mediterranean Ridge indicates that the Hellenic arc is an 246 

accretionary as opposed to an erosive margin (e.g., Von Huene and Scholl, 1991, Von Huene and 247 

Scholl, 1993, Cloos and Shreve, 1996; Clift and Vannucchi, 2004). In this case, material is 248 

transferred from the subducting plate to the fore-arc wedge and plate boundary zone (e.g., 249 

DeFranco et al., 2008; Scholl and Von Huene, 2009). This type of margin is favored when 250 

subduction rates are low and seismic moment release rates are high (Le Pichon et al., 1993; Clift 251 

and Vannuchi, 2004; DeFranco et al., 2008). However, the Mediterranean Ridge accretionary 252 

complex is unusual compared to others worldwide. It formed in a continent-continent collisional 253 

setting and has shallow, Messinian-age evaporites (e.g., Cita et al., 1996; Chaumillon & Mascle, 254 

1997). These evaporites influence its deformation and growth rates due to their mechanical 255 

properties and effect on fluid flow and pressure (Kastens, 1991; Westbrook & Reston, 2002; 256 

Kopf et al., 2003). Extensive mud volcanism associated with the Mediterranean Ridge began in 257 

the early Pleistocene 1.75-1.25 Ma (Nikitas et al., 2021). 258 

Understanding the development of the Mediterranean Ridge is critical to determining the 259 

Hellenic arc SZI because it is thought to grow via off scraping against a backstop formed by the 260 

Alpine nappes of the Hellenic Arc (Kastens, 1991) at a very fast rate (10 km/Myr; Kastens, 1991; 261 
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Kopf et al., 2003; Papanikolaou, 2021). The ridge itself varies in geometry along strike (Cita et 262 

al., 1996; Chaumillon & Mascle, 1997; Westbrook & Reston, 2002; Kopf et al., 2003; 263 

Andronikidis et al., 2017; Papanikolaou, 2021). The wedge accumulates sediments in its western 264 

and eastern portions, but the ridge behaves unlike a typical accretionary complex in the central 265 

portion between Libya and Crete, where it experienced maximum deformation, and incipient 266 

collision had already caused uplift of the area (Chaumillon and Mascle, 1997; Kopf, 2002). Crete 267 

is situated on the central forearc of the Hellenic subduction zone and is underlain by material 268 

from two microcontinents, leading to larger observed crustal thicknesses (~50 km, e.g., Thomson 269 

et al. 1998; Stöckhert 1999; Meier et al., 2004; 2007). 270 

South of Crete, the Hellenic trenches, Ptolemy, Pliny, and Strabo (Figure 1) developed 271 

between the Mediterranean Ridge and volcanic arc. These trenches are not classical ocean 272 

trenches, as earthquakes beneath them originate along low-angle thrusts at 20–40 km (Taymaz et 273 

al., 1990; Shaw & Jackson, 2010). Instead, they develop due to back-thrusting beneath the 274 

northern edge of the accretionary complex (Galindo-Zaldivar et al., 1996; Westbrook & Reston, 275 

2002) or due to the tearing of the Nubian slab (Özbakır et al., 2013). The Hellenic Trench has 276 

been described as the surface expression of a steep (∼30°) reverse fault splaying off the deeper 277 

underlying thrust-fault interface of the subduction zone (Shaw et al., 2008; Shaw & Jackson, 278 

2010).  279 

Low-angle thrust faults along the Aegean coast associated with subduction zone tectonics 280 

pose significant tsunami hazards (e.g., Tinti et al., 2005; Basili et al., 2013; Howell et al., 2015; 281 

Bocchini et al., 2020). Offshore Crete Island is considered one of the most tsunamigenic areas in 282 

the entire Mediterranean Sea region (Papadpoulos et al., 2010; Triantafyllou et al., 2019). 283 

However, the complexity of the overall Hellenic arc plate boundary combined with its aseismic 284 

nature makes earthquake data alone a misleading guide for identifying the likely sources of 285 

tsunamigenic earthquakes (Yolsal et al., 2007; England et al., 2015; Howell et al., 2015). 286 

Tsunamigenic earthquakes infrequently occur in the eastern Mediterranean (Papazachos and 287 

Dimitriu, 1991; Papadopoulos et al., 2007). An evaluation of historical data, including the 1956 288 

Amorgos event that generated the largest of the most recent tsunamis, indicate that a likely 289 

trigger of some past tsunamis in the region were submarine landslides generated by earthquakes 290 

(e.g., Dominey-Howes, 2002; Okal et al., 2009; Ebeling et al., 2012). Factors that contribute to 291 

slope instability across portions of the Hellenic Arc include its sloping bottom, thick 292 

accumulations and high rates of recent sedimentation, the presence of closely spaced active 293 

faults, active earthquakes, and diapirism (e.g., Ferentinos, 1990; Hooft et al., 2017). The eruption 294 

of Santorini (Figure 1) in 1610 BCE generated a tsunami that affected civilizations throughout 295 

the eastern Mediterranean (Dominey-Howes, 2004, Friedrich, 2006, Marinatos, 1939, 296 

Papadopoulos, 2015; Hooft et al., 2017). Detailed bathymetry across the Mediterranean is critical 297 

in understanding tsunami propagation and mitigating its impacts (Figure 1) (e.g., CIESM, 2011). 298 

The Rhodes Basin bounds the eastern portion of the Hellenic arc (Figure 1) (Ganas & 299 

Parsons, 2009) and is a deep depression lying in continuity with the Pliny and Strabo trenches. 300 

The depth of the basin is >4000 m and is one of the deepest portions of the Mediterranean Sea 301 

(Woodside et al., 2000). The Rhodes basin may represent an un-subducted portion of the deep 302 

Mesozoic Levantine basin (Rotsein & Ben-Avraham, 1985) or a remnant of a former upper-303 

Miocene subduction trench that remained after a shift in the primary convergence zone (Mascle 304 

et al., 1986). Deep faults buried beneath the zone may mark the onset of extension (Woodside et 305 

al., 2000). Hall et al. (2009) suggest a two-part history of the basin. Following Miocene 306 
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convergence, the basin experienced middle Pliocene-Quaternary sinistral transpression due to 307 

actively curving Hellenic arc and change in the convergence vector of the African plate. Slab tear 308 

has been proposed to interpret the presence and structures within the deep Rhodes Basin 309 

(Woodside et al., 2000; Faccenna et al., 2014).  310 

A STEP is also suggested for the transition between the Cyprus and Hellenic arcs (Elitez et 311 

al., 2016). Trench‐parallel tear affects the subducting African lithosphere between northern 312 

Greece and the Gulf of Corinth along the Western Hellenic Arc (Hansen et al., 2019). Trench-313 

perpendicular tear may accommodate the region between the Hellenic and Cyprian arcs, which 314 

differ in subduction steepness and material subducted (Dilek & Sandvol, 2009). The Cyprian arc 315 

involves shallower subduction dynamics with the Eratosthenes seamount and Anixamander 316 

Mountains (mud volcanoes; Lykousis et al., 2009) impinging on the trench (Kempler & Ben-317 

Avraham 1987; Zitter et al., 2003; Biryol et al., 2011). This arc became effectively inactive 318 

during the onset of westward extrusion of the Anatolian plate (Papanikolaou, 2021). 319 

2.2 Geometry of the Hellenic arc subduction zone  320 

To understand when and why the Hellenic subduction zone was established, we must 321 

consider its present-day structure. The Hayes (2018) Slab2 model uses active-source seismic data 322 

interpretations, receiver functions, local and regional seismicity catalogs, and seismic 323 

tomography and models the subducting Nubian slab as uniformly northward dipping to >440 km 324 

depths in its northern portion (Figure 3). The Hellenic arc has a well-developed Wadati-Benioff 325 

zone at shallower depths but a debated slab geometry at intermediate depths (150-250 km, 326 

Suckale et al., 2009; Agostini et al., 2010; see review in Hansen et al., 2019). Figure 4A shows 327 

the slab clearly defined by earthquake depth vs. latitude across the Hellenic subduction zone. 328 

Detailed analysis of the distribution of earthquakes indicate that the western part of the 329 

subduction zone dips under 20-30° to the NE and reaches the maximum depth of 180 km, and its 330 

eastern section dips under 40° to the NW and reaches a maximum depth of 170 km (Papazachos 331 

& Comninakis, 1971; Vaněk et al., 1987; Papazachos et al., 2000; Suckale et al., 2009; 332 

Papazachos, 2019). At deeper levels (100–180 km), the Wadati–Benioff zone dips freely 333 

(without coupling) at a high angle (~45°) beneath the south Aegean trough and the volcanic arc 334 

(Mahatsente et al., 2017; Papazachos, 2019).  335 

Seismic coupling is defined as the ratio between the observed seismic moment release and 336 

the rate calculated from plate tectonic velocities (e.g., Ruff and Kanamori, 1983; Scholz and 337 

Campos, 2012). The plate interface coupling between the Hellenic trench fault and the Nubia–338 

Aegean is low (<20%) (Papadimitriou and Karakostas, 2008; Vernant et al., 2014) and only 10% 339 

in the southwestern portion of the arc (Papadimitriou and Karakostas, 2005). A low seismic 340 

coupling scenario tends to produce earthquakes with small rupture zones and high moment 341 

release that occur as small isolated patches on the subduction interface (Scholz 1990; Messini et 342 

al., 2007). However, in the region near the Ionian islands (Figure 1), complete seismic coupling 343 

of the subduction is most consistent with the observed moderate seismic moment release (Laigle 344 

et al., 2002; 2004). Higher degrees of seismic coupling are also found in specific regions in the 345 

Western Hellenic arc (Jackson and McKenzie, 1988; Messini et al., 2007; Ganas et al., 2020). 346 

Classical ray tomography using body and surface waves is often applied to the Mediterranean 347 

region to image the Hellenic arc subduction system (e.g., Piromallo and Morelli, 1997; Spakman 348 

et al., 1988; Snieder, 1988; Zielhuis and Nolet, 1994; Piromallo and Morelli, 2003; Marone et al., 349 

2004; Amaru, 2007; Schivardi and Morelli, 2009; Chang et al., 2010; Biryol et al., 2011; Salaün 350 
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et al., 2012; Legendre et al., 2012; Portner et al., 2018; Blom et al., 2019; Wei et al., 2019; El-351 

Sharkawy et al., 2020). We present a P-wave tomographic image of the Aegean anomaly as an 352 

example in Figure 4B. Although surface wave data improves ray coverage and allows the 353 

visualization of regions with low seismicity and few stations, body wave tomography affords 354 

better resolution yet suffers from vertical smearing and an unknown background velocity model 355 

compared to surface waves (Piromallo & Morelli 1997; Kassaras et al., 2005; Schivardi & 356 

Morelli, 2009; Salaün et al., 2012). Body wave tomographic images across the Hellenic arc 357 

shows the geometry of the subduction zone clearly (e.g., Figure 4B), with the slab sometimes 358 

exhibiting a strong velocity contrast (up to 6%) compared to the background model (e.g., 359 

Papazachos & Nolet, 1997; Kassaras et al., 2005). Some regional studies show the slab forms an 360 

asymmetrical shape, shallowly dipping and larger along the western side and a steeper and 361 

smaller in the eastern section (Papazachos & Nolet, 1997; Blom et al., 2019).  362 

Segments of the African slab have long been imaged as subducting into the lower mantle 363 

(Figure 4B) (1400±100 km depth; Spakman et al., 1988; Spakman, 1990; 1991; Spakman et al., 364 

1993; Papadopoulos, 1997; Bijwaard et al., 1998; Kárason & van der Hilst, 2000; Wortel & 365 

Spakman, 2000; Romanowicz, 2003; Kassaras et al., 2005; Chang et al., 2010; Biryol et al., 366 

2011; Legendre et al., 2012; Govers & Fichtner, 2016; van der Meer et al., 2018; Bocchini et al., 367 

2018; Wei et al., 2019; El-Sharkawy et al., 2020). The width of the subducting slab differs 368 

depending on the approach applied to image it. For example, Chang et al. (2010) show the slab 369 

widening beneath 660 km in the lower mantle, whereas Primallo & Morelli (2003) has widening 370 

within the transition zone. Widening can be associated with a slab avalanche where high 371 

viscosity occurs in the lower mantle (Capitanio et al., 2009; Chang et al., 2010). Slab avalanches 372 

form when large-volume subducted slabs that temporarily stagnate within the transition zone 373 

periodically penetrate the lower mantle (e.g., Solheim and Peltier, 1994; Deschamps and 374 

Tackley, 2009; Yang et al., 2018). Slab avalanches are unstable, controlled by mantle thermal 375 

instabilities, and will accelerate as slab sinking rates increase with time (e.g., Solheim and 376 

Peltier, 1994; Yang et al., 2018). More recent tomographic images show the Hellenic slab 377 

extends from the surface to the transition zone in a bent, arcuate shape with a high-velocity 378 

structure that flattens from the 410 km discontinuity and is not seen at deeper levels (Blom et al., 379 

2019).  380 

Mantle tomography has also shown that not all slabs in the Mediterranean region are 381 

connected to the lithosphere at the surface due to delamination (e.g., Spakman et al., 1988; Dilek 382 

& Sandvol, 2009; Wortel & Spakman, 2000). For example, gaps are visible in the slab at depths 383 

of 60-100 km just west of the south Hellenides, and slab tear may be visible at the 660 km 384 

discontinuity (Wei et al., 2020). Multiple remnant slabs are imaged beneath the North Hellenides 385 

(e.g., Wei et al., 2020) and most of Anatolia (e.g., Salaün et al., 2012). Vote Maps, generated 386 

from stacking tomography models and identifying where the models agree based on an 387 

increasing vote count at a specified depth (Shephard et al. 2017; ), show a slab interpreted to be 388 

the African plate between 250-1550 km depths (Crameri et al., 2020). 389 

Although tomographic images are central in some studies of Hellenic arc SZI, their results 390 

are challenging to interpret, especially in locating regions of slab tear (e.g., Piromallo & Morelli 391 

2003). The subduction zone’s small size, its spatially highly variable nature, and the uneven 392 

distribution of its seismic stations make imaging the area more challenging (El-Sharkawy et al., 393 

2020). The presence of slow velocity anomalies throughout the uppermost mantle beneath 394 

Anatolia and very slow velocities beneath eastern Anatolia have been explained by innovative 395 



manuscript accepted to AGU Books 

 

ideas regarding how the mantle and lithosphere behave in terms of mantle upwelling, drip-style 396 

lithospheric delamination (Göğüş et al., 2017), or rollback (see discussion in Portner et al., 397 

2018). Tomographic images of both the Hellenic and Cyrus arc have transformed ideas regarding 398 

how subducting slabs operate as they enter the deep mantle and their impacts on seismicity and 399 

the creation of transfer zones (e.g., Meighan et al., 2013), large volume magmatism (e.g., Cocchi 400 

et al., 2017), and controlling ore-forming process and mineral deposits (e.g., de Boorder et al., 401 

1998; Rabayrol et al., 2019; Rabayrol & Hart, 2021). Changes in the subducting slab dynamics 402 

significantly affect plate dynamics, including plate motion and mantle dynamics (e.g., Gianni et 403 

al., 2019). 404 

3 Geological background of Aegean-Anatolian Suture Zones 405 

Determining the geological relationship between the present-day Hellenic arc and ancient 406 

subduction zones associated with the Aegean and Anatolian microplates is complicated due to 407 

the amalgamation of terranes that occurred over its tectonic history. The western portion of the 408 

Anatolian microplate exposes ophiolite remnants and other evidence of ancient subduction zones 409 

that may have influenced the onset of the present-day Hellenic arc. The Anatolian microplate’s 410 

development is characterized by continental fragments separated by branches of the Paleo- and 411 

Neo-Tethyan oceans that collided and ultimately combined by the Late Cretaceous-Eocene. 412 

These exposures of ophiolitic and high-pressure/low-temperature (HP/LT) rock assemblages 413 

identify suture zones (Figure 5) (e.g., Şengör & Yılmaz, 1981; Okay, 2008; Moix et al., 2008; 414 

Okay & Tuysuz, 1999; Pourteau et al., 2016; Okay et al., 2020). This section describes the 415 

evidence of ancient subduction zones that may be linked to or influenced the development of the 416 

Hellenic arc. 417 

3.1 Intra-Pontide Suture Zone 418 

Western Anatolia contains the Pontide Mountains to the north and the Taurides Mountains to 419 

the south (Figure 5) (e.g., Şengör & Yılmaz, 1981; Yilmaz et al., 1997; Okay & Tuysuz, 1999; 420 

Pourteau et al., 2016). The Pontide Mountains include a southern Eurasia margin affinity and are 421 

characterized by a Pan-African basement with Phanerozoic sedimentary cover units (Yilmaz et 422 

al., 1997; Moix et al., 2008; Pourteau et al., 2010; Okay et al., 2013). The Intra-Pontide suture 423 

zone (IPS) is mapped within the Pontide zone between the Sakarya continental zones and 424 

Istanbul-Zonguldak Unit (Istanbul–Zonguldak Zone, Istanbul Nappe, or Istanbul Zone, Yiğitbaş 425 

et al., 2004; Yilmaz et al., 2021). The IPS has been interpreted as an accretionary complex, a 426 

suprasubduction zone, and a remnant of a former ocean basin that may have extended into 427 

eastern Europe (e.g., Okay et al., 1996; Robertson & Ustaömer, 2004; Göncüoğlu et al., 2012; 428 

2014; Marroni et al., 2014; Akbayram et al., 2016; Sayit et al., 2016; Frassi et al., 2018). Its 429 

complex geology, comprised of components from the Istanbul-Zonguldak and/or Sakarya zones, 430 

has led to a debate about its presence and utility in paleogeographic reconstructions (Moix et al., 431 

2008). Geochemical data from mafic rocks collected along the IPS show signatures related to a 432 

supra-subduction zone that opened in the Middle Jurassic-Early Cretaceous, obducted during the 433 

Early-Late Cretaceous boundary, and had closed by the Late Paleocene (Göncüoglu et al., 2014; 434 

Sayit et al., 2016). 435 

In Greece, the Vardar suture connects to the IPS (Şengör & Yılmaz, 1981; Okay & Satir, 436 

2000; Okay et al., 2001; Beccaletto & Jenny, 2004; Okay et al., 2010; d'Atri et al., 2012; Di Rosa 437 

et al., 2019) or Meliata-Balkan suture (Stampfli, 2000). In Turkey’s Biga Penisula, the IPS and 438 

Vardar connection may be recorded by an isolated ophiolite-bearing accretionary complex active 439 
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until the Late Cretaceous (Figure 5) (e.g., Okay et al., 1991). However, this connection is 440 

debated by several researchers (Altunkaynak & Genc, 2008; Burchfiel et al., 2008; Şengün et al., 441 

2011). Furthermore, due to the uncertain link between IPS and Izmir-Ankara-Erzincan Suture 442 

Zone (IAESZ), the relationship of the Biga Peninsula basement assemblages to those in the 443 

Rhodope-Thrace Massif is also debated (e.g., Bonev & Beccaletto, 2007; Elmas, 2012). Both the 444 

IPS and IAESZ are thought to mark Late Cretaceous–earliest Tertiary closure of Neo-Tethyan 445 

ocean basins (e.g., Pourteau et al., 2010; Akbayram et al., 2016). 446 

3.2 Izmir-Ankara-Erzincan Suture Zone (IAESZ) 447 

The IAESZ separates the Pontide’s Sakarya Composite Terrane in the north from the 448 

Anatolide-Tauride block to the south (Figure 5) (Şengör & Yılmaz, 1981; Okay & Tüysüz, 1999; 449 

Tekin et al., 2002; Göncüoğlu, 2010; Yilmaz et al., 2021). In the Aegean microplate, the IAESZ 450 

is thought to record the closure of the Vardar ocean and link with the Vardar ophiolite (or Axios-451 

Vardar suture zone) (Figure 1) (Channell & Kozur, 1997; Okay & Tuysuz, 1999; Tekin et al., 452 

2002; Moix et al., 2008). However, the feature is not exposed due to the presence of the Aegean 453 

Sea (e.g., Burtman, 1994; Stampfli, 2000; Yılmaz et al., 2001; Burchfiel et al., 2008).  454 

In Western Anatolia, blueschist assemblages exposed along the IAESZ are intruded by 455 

Suture Zone Granitoids (SZGs) [Topuk, Orhaneli, Tepeldag (Gürgenyayla and Gürgenyayla)] 456 

with Paleocene (63.5±2.8 Ma) to Oligocene (31.4±0.6 Ma) ages but primarily characterized by 457 

early Eocene emplacement (~45-47 Ma, Okay & Satir, 2006; Altunkaynak, 2007). The SGZs 458 

intrude the western portion of the Tavşanlı Zone, a blueschist sequence overlain by a Cretaceous 459 

accretionary complex and ophiolitic sheet. The Tavşanlı Zone is narrow (~50 km) and trends E-460 

W for approximately 250-350 km (Okay & Whitney, 2010; Plunder et al., 2013). Its western and 461 

central portions contain blueschist facies metavolcanic and metasedimentary rocks with rare 462 

metabasalts (Okay, 1980a, 1980b, 1982; Okay & Kelley, 1994, see Seaton et al., 2009). The zone 463 

is thought to have formed as a result of northward-dipping subduction and represents the 464 

Mesozoic-Eocene closing of the northern branch of the Neo-Tethyan Ocean (Okay, 1986; 2008; 465 

Okay & Kelley, 1994; Sherlock et al., 1999; Moix et al., 2008, Shin et al., 2013; Plunder et al., 466 

2013; Fornash & Whitney, 2020). The Sivrihisar Massif in the eastern portion of the Tavşanlı 467 

has eclogite, blueschist, and Barrovian sequences (Gautier, 1984; Seaton et al., 2009). Paleocene-468 

Eocene ages from the Tavşanlı Zone granites mark the timing of the closure of the IAESZ (e.g., 469 

Okay et al., 2020).  470 

The Afyon zone (Afyon–Bolkardag Zone of Okay, 1986; Özdamar et al., 2013 or Ören–471 

Afyon Zone of Pourteau et al., 2013) is considered the southward palaeogeographic extension of 472 

the Tavşanlı zone (Candan et al., 2005; Pourteau et al., 2010; Akal, 2013; Özdamar et al., 2013). 473 

Although its southern extent is unclear, the Afyon zone is mapped parallel to the Tavşanlı Zone. 474 

A portion may also be exposed between the southern Menderes Massif and Lycian Nappes 475 

(Okay, 1986; Candan et al., 2005; Pourteau et al., 2013; Ustaömer et al., 2020). Afyon Zone 476 

stratigraphy resembles the Tavşanlı Zone and consists of Palaeozoic-Mesozoic Tauride shelf 477 

sequences of metasedimentary and metavolcanic rocks that experienced regional greenschist to 478 

blueschist facies (Fe–Mg carpholite and glaucophane) metamorphism overlying Pan-African-479 

related basement (Okay, 1984; Candan et al., 2005, Pourteau et al., 2010; Özdamar et al., 2013). 480 

HP/LT metamorphism in the Afyon Zone is thought to have occurred coincident with the closure 481 

of the Neo-Tethyan Ocean at 70-65 Ma (Pourteau et al., 2010, 2013; Özdamar et al., 2013; 482 

Plunder et al., 2013). Portions of the Afyon Zone may have subducted beneath the Tavşanlı Zone 483 
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during the Late Cretaceous based on zircon ages of granites that intrude Tavşanlı Zone blueschist 484 

and altered ophiolitic assemblages (Speciale et al., 2012; Shin et al., 2013). 485 

4. Age constraints on the initiation of subduction 486 

4.1 Cenozoic estimates 487 

Early estimates for the initiation age of Hellenic arc subduction were Late Miocene to 488 

Pliocene (13±3-5 Ma, Le Pichon & Angelier, 1979 and 5-10 Ma, McKenzie, 1978; Mercier, 489 

1981) based on interpretations of seismic activity coupled with assumptions regarding the age of 490 

subducted lithosphere and subduction depths. These ages are similar to the earliest volcanic 491 

activity in the South Aegean arc (Pliocene, Pe-Piper & Piper, 2005) and the onset of the KTZ 492 

based on geodynamic modeling and GPS data (6-8 Ma, Royden & Papanikolaou, 2011). The 493 

Late Miocene time frame is also cited as when the Western Hellenic arc divided into its northern 494 

and southern portions along the KTZ (Papanikolaou, 2010). Reconstructions of fault systems in 495 

the northern margin of the eastern Mediterranean Sea are also consistent with 15 Ma (Le Pichon 496 

et al., 2019). 497 

Interpretations of the Aegean seismic velocity structure, tomography, and seismicity data in 498 

the Aegean area suggest Eocene to Late Oligocene onset of the Hellenic arc subduction zone 499 

(40-26 Ma; Meulenkamp et al., 1988; Spakman et al., 1988; Papadopoulos, 1997; Brun & 500 

Sokoutis, 2010). These ages are consistent with the timing of granite crystallization throughout 501 

Western Anatolia and Mediterranean Ridge sedimentation (33-23.6 Ma, Fytikas et al., 1984; 502 

Kastens, 1991). Younger estimates from the ridge are also reported (~19 Ma, Kopf et al., 2003). 503 

Plate reconstructions suggest that the Northern Hellenic trench from the Western portion of the 504 

Hellenic arc experienced the onset of subduction from 34-27 Ma. In contrast, the Southern 505 

Hellenic arc was active at 34 Ma (Royden & Papanikolaou, 2011).  506 

The progressive deceleration in motion of Africa with respect to Europe in the Mediterranean 507 

region has been observed to occur since 35 Ma, and in the eastern Mediterranean from 35 Ma to 508 

10 Ma to a convergence rate of a few mm/yr (Savostin et al., 1986; Marsellos et al., 2010). The 509 

rate of trench retreat may have accelerated from ~0.6 cm/yr during the first 30 m.y. of subduction 510 

to 3.2 cm/yr during the past 15 m.y., perhaps due to slab tear during the Middle Miocene-511 

Pliocene (Brun et al., 2017). Timing constraints on Aegean forearc curvature, due to opposite 512 

rotations, clockwise in the west and counterclockwise in the east, are Eocene and Middle 513 

Miocene (Morris & Robertson 1993; Cornée et al., 2018). Trench bending and rollback increased 514 

obliquity of subduction over time, which was accommodated by strain partitioning within the 515 

upper Eurasian plate (Faccenna et al., 2013; Philippon et al., 2014; Brun et al., 2016; Cornée et 516 

al., 2018). By the Early Oligocene-Eocene, back-arc basin formation was ongoing in the Aegean 517 

region as the African plate retreated as it subducted beneath Eurasia (Le Pichon & Angelier, 518 

1981; Royden, 1993; Jolivet & Faccenna, 2000; Agostini et al., 2010; Carminati et al., 2012; 519 

Jolivet et al., 2018). 520 

Figures 6 and 7 are N-S temporal cross-sections across Western Anatolia that describe the 521 

region's tectonic evolution from the Late Cretaceous to the present. Figure 6A (from Dilek & 522 

Altunkaynak, 2009) illustrates the closure of a branch of the Neo-Tethyan Ocean (Izmir-Ankara 523 

Ocean), which occurred during the Late Cretaceous when the IPS already marked the division 524 

between the Sakarya and Rhodope continents. Break off of the subducting Neo-Tethyan slab 525 

occurs ca. 54 Ma along the IAESZ (Figure 6B), concurrent with the development and 526 

emplacement of SZG and ophiolite obduction. The Hellenic arc forms due to subduction step-527 
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back processes that are completed by the Miocene (~25 Ma) (Figure 6C). Subduction rollback 528 

was most likely initiated soon after the complete formation of the Hellenic Arc to start Aegean 529 

back-arc extension (Figure 6D). Some variations of this model exist. For example, Shin et al. 530 

(2013) proposed an additional subduction system concurrent with the IAESZ but located further 531 

south between the IAESZ and the Hellenic arc (Figure 7).  532 

These models are the outcome of large data sets comprised of primarily field observations, 533 

geophysical, geochemical, petrological, geochronological, and structural data from multiple rock 534 

types, but primarily those affiliated with the upper mantle and continental crust (lithosphere). 535 

They provide testable hypotheses for the timing and generation mechanisms of particular 536 

magmatic and structural features in the Aegean and western Anatolia to predict the presence of 537 

multiple suture zones and subducted slabs. They also delineate the affinity of specific crustal 538 

fragments north of the Hellenic arc to be distinct from the African plate in terms of their origin 539 

and geological history. 540 

4.2 Mesozoic estimates 541 

Significantly older estimates for the onset of the Hellenic subduction exist and suggest the 542 

arc has been long-lived since the Jurassic-Late Cretaceous, with stipulations that Cenozoic age 543 

estimates are considering only the latest episode of its evolutionary history and disregard its 544 

earlier history (Figure 8) (e.g., Jolivet et al., 2018). In this model, the African slab has been part 545 

of a single, evolving subduction zone system that was initiated sometime in the Mesozoic during 546 

the initiation of the closure of the northern branch of the Neo-Tethys ocean (Faccenna et al., 547 

2003; van Hinsbergen et al., 2005; Royden & Papanikolaou, 2011; Jolivet et al., 2013; Malandri 548 

et al., 2017; Jolivet et al., 2018; Crameri et al., 2020; van Hinsbergen et al., 2021). The model 549 

has been primarily applied to explain the evolution of the Western Hellenic arc. The Vardar 550 

suture in Greece, equivalent to the IAESZ (Channell & Kozur, 1997; Okay & Tuysuz, 1999; 551 

Moix et al., 2008), and Pindos suture zone, equivalent to units within the Antalya domain and 552 

Dilek peninsula (Stampfli & Kozur, 2006) had buoyant microcontinents that entered and locked 553 

subduction. This process triggered southward slab rollback and migration of the volcanic arc 554 

(Figure 8) (van Hinsbergen et al., 2005; Brun & Faccenna 2008; Jolivet & Brun 2010; Jolivet et 555 

al., 2013; Cornée et al., 2018). In this model, the subduction zone accumulates tectonic 556 

fragments, terrains, and oceanic lithosphere, instead of following the induced transference model 557 

of subduction (Figures 6 and 7; e.g., Stern, 2004). In this model, a suture is created, and a new 558 

subduction zone develops. Instead, the Hellenic subduction zone front has behaved like an 559 

accretionary wedge during its entire development since the Jurassic-Late Cretaceous. 560 

The model also requires a stationary trench from 100-45 Ma to allow for the penetration of 561 

the African slab into mantle depths (Bonneau, 1982; Stampfli & Borel, 2002; Jolivet et al., 2003; 562 

Capitanio et al., 2010). Penetration to 1200-1400 km depths is estimated to have occurred by ~50 563 

Ma, which triggers the onset of extension in the region by 45 Ma (Jolivet & Faccenna, 2000; 564 

Brun & Faccenna, 2008; Capitanio et al., 2009; 2010). The present-day curvature of the Hellenic 565 

forearc represents oblique subduction that grew systematically (Huchon et al., 1982; Le Pichon 566 

et al., 1995; ten Veen & Kleinspehn, 2003; Gautier et al., 1999; Le Pichon et al., 2002; Wallace 567 

et al., 2005, 2008; van Hinsbergen & Schmid, 2012; Philippon et al., 2014; Cornée et al., 2018). 568 

The single subduction model was developed primarily using interpretations of mantle 569 

tomography coupled with estimates of subduction rates over long periods of geological time. 570 

Thus, ages found in suture zones that would be entirely unrelated to the Hellenic arc in early SZI 571 
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models now time the onset of subduction of the African slab. For example, the Late Cretaceous 572 

(104 Ma) estimate of Hellenic arc SZI is based on the ages of ophiolites exposed in the Tavsanli 573 

Zone of Western Anatolia, part of the IAESZ (Peters et al., 2017; Pourteau et al., 2019; Crameri 574 

et al., 2020). The single subduction system also has implications for the affinity of Aegean 575 

crustal fragments and terranes in paleogeographical reconstructions. The model requires all the 576 

lower plate continental crust to be accreted into the upper plate while subducting continental 577 

lithosphere. It also requires the entire Aegean crust from the Vardar (Izmir-Ankara) suture to the 578 

Mediterranean ridge to be derived from the lower plate (Figure 6-8). Oceans between the 579 

accreted domains were of significant size (500 km in some cases). The process would lead to 580 

significant elevation changes and crustal thicknesses that should be recorded in the geological 581 

and tomographic record. Critical changes in the zone of subduction transitions also occurred as 582 

shear zones developed to accommodate oceanic and continental lithosphere (see discussion in Le 583 

Pichon et al., 2019). The model also eliminates the need for multiple sutures and subducted slabs 584 

to be present beneath western Turkey and the Aegean and simplifies the evolution of the Aegean 585 

microplate to a single evolving, long-lived subduction system (van Hinsbergen et al., 2005).  586 

5 Discussion 587 

Plate interactions are thought to be most clear at convergent plate boundaries (Silver et al., 588 

1998). However, several outstanding issues remain regarding timing the onset of convergence 589 

between the Nubian Plate and Aegean microplate. Several observations indicate that the Aegean 590 

microplate does not behave like a typical back-arc basin (Agostini et al., 2010; Doglioni et al., 591 

2002). It lacks an ocean floor and associated ocean crust and is underlain by a thick layer of 592 

continental crust (e.g., Makris, 1978). In fact, the Aegean crust is basically comprised of stacked 593 

carbonate and oceanic nappes, metamorphic massifs, and core complexes (Jolivet et al. 2013; 594 

Papazachos, 2019). Models of deformation along the Hellenic arc intended to capture the large-595 

scale 3-D structure of the Nubian plate suggest the region more closely resembles a continental 596 

thrust than a typical oceanic subduction zone (Ganas and Parsons, 2009). 597 

The Aegean microplate is also bound to the north by the active strike-slip systems (NAF, 598 

NASZ, KTZ, and Central Hellenic Shear Zone; Brooks & Ferentinos, 1984; Lyberis, 1984; Nyst 599 

& Thatcher, 2004; Gürer et al., 2006; Kreemer et al., 2004; Kokkalas et al., 2006; Papanikolaou 600 

& Royden, 2007; Reilinger et al., 2010; Royden & Papanikolaou, 2011; Vassilakis et al., 2011; 601 

Halpaap et al., 2018). This results in a complex tensional regime where crustal stretching is 602 

inconsistent with the geometry and direction of the subducting Hellenic slab (e.g., Mantovani et 603 

al., 1997; Agostini et al., 2010). Differences in the timing of initiation and rate of subduction 604 

exist between segments along the Western Hellenic Arc and should also be expected to occur 605 

along other portions of the Hellenic and Cyprus arcs (Royden & Papanikolaou, 2011). 606 

Subduction zones behave chaotically and may retreat advance or remain stationary at different 607 

stages, especially if the incoming lithosphere is heterogeneous (e.g., Royden & Husson 2009; 608 

Husson et al., 2009). The extent and role of several ancient fault systems, including older Neo-609 

Tethyan suture zones that likely played a significant role in its development, are thus debated.  610 

The Mesozoic SZI age for the Hellenic arc requires all of the lower plate continental crust to 611 

be accreted into the upper plate while subducting continental lithosphere. The entire Aegean 612 

Crust from the Vardar suture to the Mediterranean ridge would be derived from the lower plate 613 

(Figure 8). This process requires a redefinition of components associated with ancient 614 

supercontinents and would impact paleogeographic reconstructions of the region. Oceans 615 

between the accreted domains were of significant size (500 km in some cases). The process 616 
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would lead not only to changes in elevation and crustal thicknesses, but also critical changes in 617 

the zone of subduction transitions occurring from oceanic to continental shear zones (see 618 

discussion in Le Pichon et al., 2019) (see discussion in Le Pichon et al., 2019). Not all units 619 

record blueschist facies conditions, and some experienced Barrovian prograde (burial) P-T paths, 620 

such as on the island of Naxos (e.g., Lamont et al., 2019).  621 

Subduction zones with limited trench-parallel lengths on the order of the Hellenic arc (600-622 

800 km) and narrow slabs (<1,500 km) typically have rapid retreat rates (Schellart et al., 2007; 623 

Bolhar et al., 2010). The requirement of a stationary trench from 100-45 Ma to allow for the 624 

African slab to enter mantle depths (Bonneau, 1982; Stampfli & Borel, 2002; Jolivet et al., 2003; 625 

Capitanio et al., 2010) seems unusual in that most of the slab today is characterized by 626 

significant slab tear. Sites of slab tear vary in scale from regional to local and include the 627 

boundary between the Hellenic and Cyprus arcs (Wortel & Spakman, 1992; Biryol et al., 2011), 628 

south of Crete at the Pliny–Strabo Shear Zone (Özbakır et al., 2013), the İzmir-Balıkesir Transfer 629 

Zone (e.g., Kaya, 1981; Gessner et al., 2013; Cemen et al., 2014; Ersoy et al., 2014), and beneath 630 

the Menderes Massif (Biryol et al., 2011; Rabayrol & Hart, 2021), and the eastern Aegean 631 

(Jolivet et al., 2015).  632 

At present, it is unclear how the subducting African (Nubian) slab could survive through the 633 

Earth’s transition zone, suggesting that its composition and convergent rate, and the material 634 

properties of the mantle were critical constraints to allow this process to occur (e.g., Kárason & 635 

van der Hilst, 2000). Interpretations of the deeper images are debated: the subducted slab may be 636 

a single folded body that overturned in the lower mantle (Faccenna et al., 2003) or two different 637 

slabs between 2000-1500 km and from 1500 km to the surface (van Hinsbergen et al., 2005; van 638 

der Meer et al., 2018). The unhindered slab penetration into lower mantle depths is unexpected 639 

due to the relationship between slab morphology and trench migration (e.g., Widiyantoro et al., 640 

2004). However, the process of slabs reaching depths of 1700 km is not uncommon (e.g., 641 

Kárason & van der Hilst, 2000). 642 

Numerous examples also suggest significant slab tear across the Aegean and Western 643 

Anatolia (e.g., Wortel & Spakman, 1992; Woodside et al., 2000; Biryol et al., 2011; Gessner et 644 

al., 2013; Faccenna et al., 2014; Roche et al., 2019; Rabayrol & Hart, 2021). Legrande et al. 645 

(2012) note that body wave studies show slab segments are trapped within the mantle transition 646 

zone in the western Mediterranean and Alpine region and do not dive deeper as is observed in 647 

the Aegean region. Overall, the Mediterranean Sea exhibits lateral variations in crustal and upper 648 

mantle structures (Marone et al., 2004a).  649 

Long-lived Aegean subduction would have affected the mantle's thermal and chemical 650 

convection and impacted surface conditions, including climate over time (e.g., Sigl et al., 2005). 651 

The region contains active and quiescent volcanoes located in the Methana Peninsula 652 

(Peloponnese) and islands of the Cycladic archipelago (Figure 1) (see review in Scoon, 2021). 653 

Holocene volcanism along the Hellenic arc allows for identifying and characterizing high-654 

frequency climatic changes during the Holocene in particular (e.g., Zanchetta et al., 2011). Fluids 655 

released from past and present subducting lithosphere have affected not only volcanism, but also 656 

grain mobility and seismic anisotropy throughout the Mediterranean and elsewhere (e.g., Karato, 657 

1995; Van der Meijde et al., 2003; Marone et al., 2004b; Faccenda et al., 2008). This impact over 658 

the length of planetary history may have been significant in terms of triggering other subduction 659 

zones, controlling sites of seismicity and magmatism, as well as the generation of ore deposits. A 660 

Jurassic-age subduction zone that is presently active and capable of generating significant 661 
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hazards even today has important implications for our understanding of lithospheric strength, the 662 

driving force of plate tectonics over geological time, and the tectonic history of the Aegean 663 

region.  664 

The single subduction system has its roots in tomography and the interpretation of large low 665 

shear-wave velocity anomalies in the lowermost mantle. These compositional anomalies thus 666 

appear as crucial as continents are for the surface, yet they are inaccessible and have limited data 667 

regarding their thermal histories and chemical compositions. Their role as reservoirs and impact 668 

on the evolution of the Hellenic arc over time is unclear. The interpretation that the seismic 669 

tomography images reveal a single, long-lived subduction system may be incorrect. The Aegean-670 

Anatolian microplates have long been known to have an extensive and complex orogenic history 671 

based on surface geology. With the presence and data from mapped suture zones, it is expected 672 

that the region would record multiple subducted slabs from earlier collisional events.  673 

Determining the Hellenic arc SZI is also important because the timing constraints shed light 674 

on the mode of initiation (i.e., induced or spontaneous; from compression or extension; Gurnis et 675 

al., 2004; Stern, 2004; Gerya, 2011; Stern & Gerya, 2018) based on our understanding of the 676 

geology at that time. Subduction initiation requires breaking a zone of weakness in the 677 

lithosphere (e.g., Stern & Gerya, 2018; Baes et al., 2020a; Cloetingh et al., 2021). The process 678 

may be accommodated along passive margins (e.g., Cloetingh et al., 1984), although the 679 

conversion of a passive margin into an active one has not been observed to have occurred during 680 

the Cenozoic (Gurnis et al., 2004; Cloetingh et al., 2021). Subduction initiation could also occur 681 

due to motion along transform or fracture zones associated with mid-ocean ridges due to large-682 

scale changes in plate motion (e.g., Hall et al., 2003). This process could occur across extinct 683 

mid-ocean ridges or within back-arc regions within mature subduction zones, as well as mantle 684 

plume interactions with old oceanic lithosphere (Baes et al., 2020a,b; Cloetingh et al., 2021). No 685 

evidence or hypothesis exists for a mantle plume as triggering the development of the Hellenic 686 

arc. A young SZI initiation age suggests the Hellenic arc developed due to the Late Cenozoic 687 

collision of the African plate with Eurasia (e.g., Meulenkamp et al., 1988). An older SZI links its 688 

origination to near and parallel to a spreading ridge associated with the western portion of the 689 

NeoTethyan ocean (e.g., Maffione and van Hinsbergen, 2018). 690 

Younger estimates for the Hellenic arc are consistent with the observation that nearly half of 691 

Earth’s active subduction zones were initiated during the Cenozoic (Gurnis et al., 2004). Crameri 692 

et al. (2020) indicate that SZI has happened at least thirteen times during the last hundred million 693 

years, with global occurrences of SZI occurring within 55-40 Ma and 16-6 Ma. These times 694 

mark higher SZI activity on Earth and are remarkably consistent with Cenozoic estimates of the 695 

onset of the Hellenic arc (McKenzie, 1978; Le Pichon & Angelier, 1979; Mercier, 1981; 696 

Meulenkamp et al., 1988; Spakman et al., 1988; Papadopoulos, 1997; Brun & Sokoutis, 2010; 697 

Royden & Papanikolaou, 2011; Le Pichon et al., 2019). A significant slowdown between 698 

Africa’s northward motion relative to surrounding plates has also been attributed to the Eocene-699 

Oligocene collision of Africa and Eurasia, which altered the kinematics and tectonic evolution of 700 

not only the Aegean region but the restructuring, reorganization, and fracturing of the African 701 

plate elsewhere (e.g., DeMets & Merkouriev, 2016). 702 

6 Conclusions 703 

The Hellenic arc results from the convergence of the northern margin of the African (Nubian) 704 

plate with the southern portion of the Aegean microplate. The region has emerged as the type 705 
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locality for subduction zone tectonics, and many novel ideas regarding the development of this 706 

particular plate boundary have emerged from the area. Two end-member models for the SZI age 707 

of the Hellenic arc evolved using disparate datasets. Seismic tomography images help determine 708 

the present-day subduction-related structure beneath the Aegean microplate, and some 709 

interpretations suggest a long-lived subduction zone since the Jurassic to Late Cretaceous. 710 

However, tomographic images can be limited in their interpretations of deeper depths and our 711 

ability to observe slab tears or structures that disrupt the subducting slab. Surface geological data 712 

sets suggest a complex, long-lived history of the Aegean region with multiple suture zones. 713 

These observations are more consistent with multiple detached slabs, even some unrelated to the 714 

African plate. Geological, geochemical, and geochronological constraints from the continental 715 

lithosphere affected by subduction help constrain the pathways of rocks affected by subduction 716 

dynamics. However, these are limited by the currently available datasets and interpretation 717 

within an existing framework with limited exposure. The Hellenic arc is a significant plate 718 

boundary that would likely be influenced by differential retreat, inherited lower plate lithospheric 719 

heterogeneities, and mantle upwelling. Multidisciplinary studies that couple detailed field 720 

mapping of available outcrops in the Western Anatolian and Aegean microplates with 721 

geophysical observations, geochemistry, and geochronology are needed to determine its SZI age 722 

and which model, a long-lived single subduction zone or multiple subduction zones with the 723 

latest SZI in Cenozoic, applies to the region. 724 
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Figure 1. EMODnet Digital Bathymetry maps with some structures overlain.  The circular inset 

shows higher magnification of the region as indicated by the arrow. The Aegean and Anatolian 

microplate boundaries are shown in grey after Nyst & Thatcher (2004). Other structures after 

Hall et al. (1984) and (2009), Woodside et al. (2002), Peterek & Schwarze (2004), Meier et al. 

(2007), Kinnaird & Robertson (2012), and Symeou et al. (2018). Abbreviations: AM= 

Anaximander Mountains; BT= Backthrust; ES = Eratosthenes Seamount; IAESZ = Izmir-

Ankara-Erzincan Suture Zone; IPS= Intra-Pontide Suture; KFZ = Kephalonia Fault Zone; KM= 

Kirşehir Massif; MP = Methana Peninsula; MM= Menderes Massif; NHSZ = North Hellenic 

Shear Zone; PTF = Paphos Transform Fault; SHSZ = South Hellenic Shear Zone. See 

supplementary documents for this figure in color. 



 
Figure 2. North-south generalized cross-section through the Hellenic arc system showing the 

key structural elements. Map of the Mediterranean Ridge after Westbrook & Reston (2002).  

 



 

Figure 3. Map of the geometry of the Hellenic and part of the Cyprus subduction zones after 

Hayes (2018). The figure shows both the depth (up to 440 km) and strike of the subducted 

African plate (African, Nubian, Aegean, or Hellenic slab) based on the Slab2 model. Overlain 

in red are fault systems from NOAFaults, a digital database of active faults in Greece (Ganas 

et al., 2013). Countries and some features are indicated. See supplementary documents for this 

figure in color. 
 



 

Figure 4. (A) Depth vs. latitude of earthquakes taken from a line of the section of 28°-43° and 

longitude of 24°-28°. Events were extracted from the Turkish Ministry of the Interior, Disaster 

and Emergency Management Presidency, Earthquake Department Earthquake Catalog (M>=4.0), 

1900-20XX (https://deprem.afad.gov.tr/depremkatalogu) from 01/24/1900 to 6/17/2021. We 

indicate the largest event (6/26/1926, 19:46). The legend shows how the size of the earthquake 

correlates to the symbol. (B) Cross-section of the Aegean anomaly interpreted as the African slab 

using the UUP07 P-wave model (Amaru, 2007). The depths of the dashed lines are 410, 660, 

1000 km from the surface. Interpretations of the geology below 1000 are debated and discussed 

in the text. Image created using Hosseini et al. (2018). See text for references to additional 

tomographic images. 



 
Figure 5. Geological map of Western Anatolia focusing on the ophiolite and granite 

assemblages along the boundary between the Aegean and Anatolia microplates. Plate 

boundary after Nyst & Thatcher (2004). Terrane boundaries, major fault systems, and transfer 

zones after Okay (2008), Akbayram et al. (2016), Oner et al. (2010), and Karaoğlu & Helvacı 

(2014). Abbreviations: RPA= Rhodope -Pontide Arc; İBTZ = Izmir –Balıkesir Transfer Zone 

(also sometimes referred to as the Western Anatolia Transfer Zone, Gessner et al., 2013; 

2017); SWASZ= South West Anatolian Shear Zone; IPS= Intra -Pontide suture zone; IAESZ = 

Izmir -Ankara -Erzincan suture zone; PS = Pamphylian suture zone; UMTZ= Uşak -Mugla 

Transfer Zone. 

 



 
Figure 6. North-south cross section across the Aegean region from c. 95 Ma to <2 Ma. In this 

scenario, the Hellenic arc forms due to the transition from a divergent plate boundary to 

convergence sometime between 54 Ma and 25 Ma (Dilek & Altunkaynak, 2007). Scale is only 

a rough approximation. See Dilek & Altunkaynak (2007) for a color image of this figure. 

Abbreviations: ATC= Anatolide-Tauride Continent; IASZ= Izmir-Ankara Suture Zone; 

IPSZO= Intra-Pontide Suture Zone ophiolites; MG= Magmatic Granites; NAFZ= North 

Anatolian Fault Zone; SC = Sakarya Continent; SSZ = supra-subduction zone; SZG = Suture 

Zone Granitoids; RPC= Rhodope-Pontide Continent. 

 
 



 
Figure 7. Lithospheric-scale cross sections of a model of the Aegean region through Western 

Anatolia in which the region records and experiences progressively younger subduction zones 

after Shin et al. (2013). The subduction zone cartoon is adapted from Cloos et al. (2005). 

Scale is only a rough approximation. Panel (A) shows the development of the IAESZ during 

the Early to Late Cretaceous. Panel (B) records the peak metamorphism of the zone and the 

development of the Afyon Zone subduction zone at ~85 Ma. Panel (C) shows granitoid arc 

magmas from the Afyon Zone intrude the IAESZ at ~45 Ma, emplacing granite bodies that 

intrude the ophiolite sequences. Panel (D) records the break off of the IAESZ slab and 

additional magma emplacement at 30 Ma. In this scenario, the Hellenic Arc experiences 

ongoing subduction. 
 



 
Figure 8. Schematic overview of development of nappe stack and subduction during Alpine 

orogeny in Greece from van Hinsbergen et al. (2005). The cross-section displays the single 

subduction zone model for the development of the Hellenic arc. See van Hinsbergen et al. 

(2005) for a color version of this figure. 
 


