
P
os
te
d
on

24
N
ov

20
22

—
C
C
-B

Y
-N

C
-N

D
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
8
90
2.
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Submesoscale potential vorticity

Christian Buckingham1
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Abstract

Ertel’s potential vorticity theorem is essentially a clever combination of two conservation principles. The result is a conserved

scalar q that accurately reflects vorticity values that fluid parcels can possess and acts as a tracer for fluid flow. While true at

large horizontal scales in the ocean and atmosphere, at increasingly smaller scales and in sharply curved fronts, its accuracy

breaks down. This is because Earth’s rotation imparts angular momentum to fluid parcels and the conservation of absolute

angular momentum L restricts the range of centripetal accelerations possible in balanced flow; this correspondingly restricts

vorticity. To address this discrepancy, we revisit Ertel’s derivation and obtain a new conserved scalar Lq that more properly

reflects the vorticity of fluid parcels at these small horizontal scales. Although limited to flows on the f plane, this theorem

nevertheless highlights a fundamental principle applicable to all geophysical fluids: at sufficiently small horizontal scales such

that L can appropriately be conserved, centripetal accelerations-or curvature-can modify the vorticity of fluid parcels observed

on the sphere.
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Ertel’s potential vorticity theorem is essentially a clever combination of two conservation7
principles. The result is a conserved scalar q that accurately reflects vorticity values that fluid8
parcels can possess and acts as a tracer for fluid flow. While true at large horizontal scales9
in the ocean and atmosphere, at increasingly smaller scales and in sharply curved fronts,10
its accuracy breaks down. This is because Earth’s rotation imparts angular momentum to11
fluid parcels and the conservation of absolute angular momentum L restricts the range of12
centripetal accelerations possible in balanced flow; this correspondingly restricts vorticity.13
To address this discrepancy, we revisit Ertel’s derivation and obtain a new conserved scalar14
!@ that more properly reflects the vorticity of fluid parcels at these small horizontal scales.15
Although limited to flows on the f plane, this theorem nevertheless highlights a fundamental16
principle applicable to all geophysical fluids: at sufficiently small horizontal scales such17
that ! can appropriately be defined, centripetal accelerations–or curvature–can modify the18
vorticity of fluid parcels observed on the sphere.19

Key words: These will be chosen by the author during the online submission process and20
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classifications will be added at the same time.22
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1. Introduction24

Ocean dynamics at small horizontal scales have garnered considerable attention in recent25
years. This attention has been evident in both observational and modelling sectors of the26
physical oceanographic community. New advancements in observing systems–including27
those from autonomous floats (D’Asaro et al. 2011), gliders (Thompson et al. 2016; du Plessis28
et al. 2019), and long-range surface vehicles such as SailDrones (Gentemann et al. 2020)–29
have increased our capability to resolve small-scale phenomena. One result is that gradients30
in velocity and density at horizontal scales between 1 and 10 km–previously only inferred31

† Email address for correspondence: christian.buckingham@gmail.com
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from spacecraft (e.g. Flament et al. 1985; Scully-Power 1986; Munk et al. 2000) and long-32
term moored measurements (e.g. Bane et al. 1989; Lilly & Rhines 2002; Buckingham et al.33
2016)–are now resolved or becoming resolved in targeted process studies (e.g. Thomas34
& Lee 2005; D’Asaro et al. 2011; Shcherbina et al. 2013; Thomas et al. 2013; Adams35
et al. 2017; Naveira Garabato et al. 2019). At the same time, computational resources36
have increased at an unimaginable rate, permitting scientists the ability to realistically37
simulate dynamics at such fine scales in numerical models. At present, models are capable38
of providing realistic ocean simulations within nested, regional configurations, horizontal39
grid resolutions of 100 m are possible (Onken et al. 2020), with the result that oceanic40
phenomena with 4-folding scales of several hundred meters can be resolved. These same41
simulations run on the globe produce simulations at horizontal resolutions approaching 1 km42
(https://data.nas.nasa.gov/ecco/data.php).43
Oceanic flows at these small spatial scales are commonly referred to as submesoscale44

processes (Thomas et al. 2008; McWilliams 2016) in order to distinguish them from45
larger-scale counter-parts, referred to as mesoscale processes. At mid-latitudes, these terms46
correspond to horizontal scales smaller than 10 km (submesoscale) and larger than 30 km47
(mesoscale), where the transition between these scales is roughly equal to the first-mode,48
baroclinic deformation radius '3 (Chelton et al. 1998; Smith 2007). It is notable that at49
high latitudes, '3 approaches 1-10 km (Timmermans et al. 2008; Nurser & Bacon 2014)50
such that assigning absolute scales to these phenomena is problematic. This has motivated a51
dynamical definition (Thomas et al. 2008; McWilliams 2016).52

1.1. A dynamical definition of the oceanic submesoscale53

Processes within the oceanic submesoscale regime are typically characterized by enhanced54
gradients in velocity and density. In particular, the vertical component of relative vorticity55
Z = (∇ × u) · k̂ rivals the vertical component of planetary vorticity 5 = 2
 · k̂ = 2Ω sin \56
and, as a consequence of thermal wind balance (TWB), mIuℎ = 1

5
k̂ × ∇ℎ1, pronounced57

horizontal density gradients imply enhanced vertical shears. Finally, mixing is typically58
enhanced within boundary layers, such that vertical stratification #2 is reduced. As a59
consequence, both gradient Rossby number ('> = Z/ 5 ) and gradient Richardson number60
('8 = #2/|mIuℎ |2) have values which approach 1.0 within the oceanic submesoscale regime61
(Thomas et al. 2008; McWilliams 2016).62

1.2. Broadening this definition to accommodate vortex flow63

It is common to assume that the mean flow within fronts is in geostrophic and hydrostatic64
balance–i.e. TWB mentioned above. In Cartesian coordinates oriented relative to the front,65
we can write this as 5 mIE = mG1, where "2 = mG1 denotes the mean cross-frontal buoyancy66
gradient. In these expressions, uh is the horizontal velocity, E denotes the mean velocity in67
the along-front direction, mIE is the mean vertical shear, 1 = −6d/d> denotes buoyancy (668
is gravity, d is density, and d> is a reference density), and G and H are cross-front and along-69
front coordinates, respectively. This is a reasonable approximation for density fronts with70
horizontal scales larger than '3 (Pedlosky 1987). However, at increasingly smaller scales,71
the momentum balance can shift from a geostrophic to cyclogeostrophic balance, reflecting72
the growing importance of centripetal accelerations. Together with the hydrostatic balance,73
this implies a gradient wind balance (GWB):74

( 5 + 2E/A)mIE = mA1 (1.1)75

Factoring out the Coriolis parameter from the quantity in parentheses immediately leads76
to a nondimensional parameter which quantifies the impact of centripetal accelerations on77
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the vertical shear, the curvature number: �D = 2E/( 5 A). This nondimensional number also78
scales with the ratio of centripetal to Coriolis accelerations (Shakespeare 2016). In the79
expression above, A denotes the cross-front coordinate, such that "2 = mA1 is the radial80
gradient buoyancy gradient and implicitly contains information regarding frontal curvature.81
For clarity, note that �D > 0 for cyclonic curved fronts and �D < 0 negative for anticyclonic82
curved fronts. (In vortices, A is the distance from the vortex center, while E > 0 for cyclones83
and E < 0 for anticyclones. In meandering baroclinic frontal flows, we can replace A with a84
local radius of curvature '. Since the along-front flow is E > 0, 'must be signed.) Moreover,85
in the limit�D → 0 one recovers TWB. GWB is therefore descriptive of highly curved fronts86
and vortices and includes TWB as a limiting case. We therefore broaden the definition of87
the oceanic submesoscale as being a regime in which the mean flow is in GWB, and where88
gradient Rossby, Richardson, and curvature numbers ('>, '8, �D) can be of order-one.89

1.3. Observations of relative vorticity at kilometer-scales90

It is broadly understood that the distribution of relative vorticity as measured at submesoscale91
(i.e. 1-10 km) resolutions in the oceans has two limiting characteristics. First, the distribution92
of '> is predominantly cyclonic (positively skewed) for frontal flows and predominantly93
anticyclonic (negatively skewed) for eddying or vortex flows (Figure 1). By “vortex flow,” we94
include both highly curved fronts and coherent vortices. This has been noted, for example,95
in the upper ocean observations (Rudnick 2001; Shcherbina et al. 2013; Buckingham et al.96
2016) and model simulations (Roullet & Klein 2010; Shcherbina et al. 2013). Away from the97
upper ocean, the cyclone-anticyclone asymmetry has been documented in float trajectories,98
vertical hydrographic profiles, and moored measurements (e.g. McDowell & Rossby 1978;99
Riser et al. 1986; D’Asaro 1988; Bane et al. 1989; Zhao et al. 2014), but here the statistics100
are more limited.101
To aid in our discussions, we reproduce in Figure 1 the joint probability density function102

(PDF) of vorticity Z and strain rate U = [(mGD − mHE)2 + (mGE + mHD)2]1/2 as documented103
by (Shcherbina et al. 2013, Figure 5). As vorticity increases, the joint PDF approaches a104
pure shear relationship and is unbounded (Z ≈ U), indicative of fronts. By contrast, as105
vorticity decreases (becomes more negative), the negative vorticity is bounded, with a higher106
probability of solid-body rotation (Z � U), indicative of vortex flow. While the unbounded107
nature of cyclonic vorticity associated with straight fronts can be rationalized in terms of108
potential vorticity (PV) conservation (Hoskins&Bretherton 1972)†, the increased likelihood109
of anticyclonic vorticity associatedwith vortex flowhas not fully been explained. In this study,110
we provide an explanation for this characteristic.111

1.4. Motivation and outline of the study112

In a previous study (Buckingham et al. 2020a,b), it was suggested that a unique conservation113
principle may be present within highly curved fronts and vortices (hereafter “vortex flow”)114
on the 5 -plane. Moreover, this principle was invoked when proposing a mechanism for the115
evolution of small-scale (i.e. submesoscale and polar mesoscale) vortices in the ocean. The116
implication was that fluid parcels within curved baroclinic fronts and vortices do not simply117
conserve the Ertel PV (Ertel 1942), and therefore undergo vortex stretching and tilting to118

† It helps to think of this in the barotropic limit, for which the equation for the evolution of vorticity is
�Z/�C = ( 5 + Z)mIF − VE, where E is meridional velocity, F is vertical velocity, and V = 35 /3H. Letting
V = 0, dynamically, what occurs is that as a fluid parcel is stretched (mIF > 0), it spins up cyclonically
without bound. As this same fluid parcel is compressed (mIF < 0), it spins in an opposite direction. However,
this motion is bounded since �Z/�C becomes increasingly smaller as Z approaches − 5 . In non-dimensional
form, we find that '> > −1. In the baroclinic limit, other constraints (i.e. on density) become important and
modify this lower bound. In particular, the bound is '> > −1 + '8−1.
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Figure 1: The joint PDF of relative vorticity Z and magnitude strain rate U normalized by
the Coriolis parameter 5 as documented in observations in the vicinity of the Gulf Stream;
adapted from Shcherbina et al. (2013, Figure 5a). Two regimes are identified: (1) cyclonic
vorticity that approaches the strain rate U with increasing vorticity (indicative of straight
fronts) and (2) anticyclonic vorticity that is bounded in '> = Z/ 5 (indicative of vortex

flow). The unbounded nature of cyclonic vorticity can be explained using PV conservation
at a geostrophic front, while the peak associated with anticyclonic vortex flow can be

explained using !@ conservation.

conserve this quantity. Rather, fluid parcels adjust barotropic and baroclinic components of119
another scalar,‡ which is proportional to the product of the Ertel PV (@) and the vertical120
component of absolute angular momentum (!). If true, the fact that this additional term !121
enters the conserved quantity provides an added constraint to the problem, making inviscid,122
adiabatic motions within highly curved baroclinic flows differ from those in which PV alone123
is the conserved scalar. As is demonstrated below, this places constraints on relative vorticity124
and may help to explain the characteristic of vorticity just described (cf. Figure 1). A key125
assumption is continuity of the fluid in the direction of the mean flow at radius A such that126
! can be appropriately defined (Rayleigh 1917; Shakespeare 2016). In the oceans, at scales127
dynamically described as “submesoscale” (e.g. horizontal scales 1-10 km) this is possible.128
The purpose of this manuscript is three-fold. First, we wish to provide a rational argument129

for the statement that “the product of the absolute angular momentum and Ertel PV is130
conserved following fluid parcels.” Second, we wish to assess under which conditions such131
a statement is true. Third, we seek to fully explain above feature within the distributions of132
relative vorticity. In doing so, we indirectly lay a more formal foundation for the analysis of133
flows in which centrifugal forces are present.134
The outline of the study is as follows. We first derive a conservation equation for the new135

scalar quantity !@ (section 2). This derivation follows that of Ertel (1942) but includes a136
presentation of absolute angularmomentum, a topic neglected inmost oceanographic studies.137
Application of the theorem to oceanic flows is discussed in section 3 and its limitations are138
described in section 4. The study concludes in section 5.139

‡ Buckingham et al. (2020a,b) suggested that the generalized Rayleigh discriminant Φ = 2!@/A2 was
conserved following fluid parcels in highly curved fronts and vortices. However, as demonstrated below, this
statement is incorrect: it is !@ or A2Φ that is conserved following fluid parcels. This difference is critical
because it implies cross-frontal motion will modify the stability “seen” by fluid parcels.

Focus on Fluids articles must not exceed this page length
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Figure 2: A Venn diagram conceptually depicting the intersection of three conservation
principles: absolute vorticity 8a , density d, and the vertical component of absolute

angular momentum !. Ertel (1942) focused on the intersection of density and vorticity
conservation. This study examines a subset of such flows for which both PV @ and

absolute angular momentum ! can be conserved (i.e. vortex flow).

2. Derivation140

Ertel’s (1942) PV theorem is a clever combination of two independent conservation141
principles, each with its conditions. It is therefore logical to presume that the inclusion142
of a third conservation principle together with its corresponding conditions could permit a143
new vorticity theorem subject to these additional limitations. This is illustrated conceptually144
in Figure 2.145

2.1. Governing equations146

The equations of motion describing the balance of forces per unit mass of a fluid parcel within147
a rotating reference frame are (Batchelor 1967; Pedlosky 1987; Cushman-Roisin 1994)148

�u

�C
+ 2
 × u = − 1

d
∇? + g∗ + ac︸  ︷︷  ︸

g

+ℱ
d
, (2.1)149

where it is understood that all terms are evaluated within the rotating reference frame. Here,150
�/�C = mC + u · ∇u denotes the material or substantial derivative, r is the position vector,151

 is the angular rotation rate (|
| = 2c/day ≈ 7.22 × 10−5 s−1 for Earth) and assumed152
to be constant, 2
 × u is the Coriolis acceleration, ac = −
 × (
 × r) = |
|2r⊥ is the153
centrifugal acceleration due to the rotation of the reference frame, d is density, ? is pressure,154
g∗ is the acceleration due to gravity, and ℱ denotes the frictional force. It is customary to155
combine centrifugal and gravitational accelerations into a resultant acceleration g = g∗ + ac ,156
or effective gravity. The resultant is then approximately perpendicular to geopotential surfaces157
and, hence, oriented vertically† (Cushman-Roisin 1994). For clarity, we illustrate planetary158
vorticity, gravitational acceleration, gravity, and centrifugal acceleration vectors (Figure 3).159
Mass conservation is given by the continuity equation160

md

mC
+ ∇ · (du) = 0. (2.2)161

An equation of state is typically necessary to relate d to known or measured variables. In the162
ocean, this is a complex function of temperature, salinity, and pressure. For simplicity in the163
present work, we assume we know the density perfectly.164

† Local changes to the gravitational potential, for example, due to irregular topography or seamounts,
will perturb g∗ from its mean direction.

Page 5 of 19

Cambridge University Press

Journal of Fluid Mechanics



6

Figure 3: Illustration of vectors present within the equations of motion on the sphere
(cf. Equation 2.1) and 5 -plane approximation (cf. Equation 2.3). In (a), we depict

planetary vorticity 2
 (orange), the position vector r (heavy black), components of the
position vector r⊥ and r | | (gray), and vertical unit vector k̂ (green). In (b), we depict the

gravitational vector g∗ (black), the centrifugal acceleration vector
ac = −
 × (
 × r) = |
|2r⊥ (red), and the vector resultant, or effective gravity

g = g∗ + ac (dashed black). We also illustrate the surface of Earth as represented by a
sphere (solid blue) and oblate spheroid (dashed blue). The unit vector k̂ is anti-parallel to

g and, therefore, approximately perpendicular to the surface of the oblate spheroid.

The 5 -plane approximation: rational and self-consistent165

The corresponding equations of motion valid under the 5 plane approximation are obtained166
by expressing Equation 2.1 in spherical coordinates, scaling the equations of motion, and167
discarding terms multiplied by X = |3B |/'4 � 1 or smaller, where |3B | = '43\ denotes a168
meridional arc length and '4 is the mean radius of Earth (Grimshaw 1975). The result is a169
vectorized set of equations comparable to Equation 2.1 except where 2
 × u is evaluated at170
a specific latitude \>:171

�u

�C
+ 2
o × u = −

1
d
∇? + g + ℱ

d
. (2.3)172

In the cylindrical coordinate system, where the triad of orthogonal unit vectors ( r̂, 5̂, k̂)173
point in radial, azimuthal, and vertical (upward) directions, respectively, the position174
vector is denoted by rc = (A, q, I) and velocity by u = (D, E, F) (Figure 4). The material175
derivative is then�/�C = mC + u · ∇ = mC + DmA + (E/A)mq + FmI . Finally, the frictional force176
is ℱ = (�A , �q, �I) and effective gravity is g = (0, 0,−6). The choice of a cylindrical177
coordinate system on the 5 plane slightly complicates expression of planetary vorticity178
2
o owing to its variation with azimuth angle q. Defining q with respect to east, we have179
2
o = (0, 2|
| cos \> sin q, 2|
| sin \>) = (0, 5̃ , 5 ). To retain generality in our derivation180
below, we use Equation 2.3 together with the full Coriolis vector 
o . Note, Equation 2.2181
remains unaltered under the 5 plane approximation. Additionally, the position vectors in the182
spherical and cylindrical coordinate systems are related by r = ro + rc , where ro denotes the183
origin of the cylindrical system at latitude \>(Figure 4).184
Equation 2.3 is rational in that it follows logically from the spherical equations in the limit185

of small arc length. Moreover, as pointed out by Grimshaw (1975), the equation is also self-186
consistent; it possesses certain mathematical properties–e.g. differentiation is commutative–187
that permit subsequent derivations of vorticity, Ertel’s PV theorem, etc. to be equivalent to188
those in spherical coordinates subject to these limiting conditions. This self-consistency is189
an important aspect of the derivation as it enables us to write a conservation equation for the190
absolute angular momentum that properly reflects dynamics on the oblate sphere. In contrast,191
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Figure 4: A cylindrical coordinate system on an 5 -plane at latitude \ = \>: (a) perspective
view and (b) plan view, illustrating the orthogonal unit basis ( r̂, 5̂, k̂), position vector
rc = (A, q, I) (red), where the angle q is defined relative to an eastward direction, and a
vector ro (yellow) which helps define the origin of the cylindrical coordinate system.

Although not shown, the velocity is u = (D, E, F) and its components point in r̂, 5̂, and k̂
directions, respectively.

the equations of motion under the V-plane approximation are not self-consistent (Grimshaw192
1975) and may introduce dynamics not encountered on the sphere.193

2.2. Absolute vorticity194

Starting with the equations of motion, one can derive a conservation equation for absolute195
vorticity (Batchelor 1967; Pedlosky 1987; Müller 1995). We first re-express Equation 2.3 in196
terms of absolute vorticity 8a = ∇ × ua = 2
o + ∇ × u = 2
o + 8 (Batchelor 1967):197

mu

mC
+ 8a × u = −

1
d
∇? + ∇ [g · rc − (u · u)/2] +

ℱ

d
, (2.4)198

where ua = u +
 × rc is absolute velocity. Taking the curl of Equation 2.4 gives199

m8

mC
+ ∇ × (8a × u) =

∇d × ∇?
d2

+ ∇ ×
(
ℱ

d

)
. (2.5)200

Using ∇ × (G × H) = G∇ · H + (H · ∇)G − H∇ · G − (G · ∇)H (e.g. Riley et al. 2006),201
noting that the planetary vorticity is constant,†, and using the continuity equation (cf. Equa-202
tion 2.2), we obtain a conservation equation for the absolute vorticity per unit mass:203

�

�C

(
8a

d

)
=

(
8a

d
· ∇

)
u + ∇d × ∇?

d3
+

(
∇ × ℱ

d

)
1
d
. (2.6)204

Here, the divergence term l0∇ · u has been eliminated from the right-hand-side (RHS) by205
including density within the material derivative on the left-hand-side (LHS).206

† This is true regardless of the chosen coordinate system since, ignoring the precession of Earth’s rotation
axis, the vector 2
 is unchanged.
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2.3. Density or buoyancy (i.e. a thermodynamic variable)207

Here, we follow Pedlosky (1987) (Ertel assumes �d/�C = 0) and write the conservation of208
a scalar _ as209

�_/�C = m_
mC
+ u · ∇_ = Ψ. (2.7)210

Taking the inner product of ∇_ and Equation 2.6, one obtains211

∇_ · �
�C

(
8a

d

)
= ∇_ ·

[(
8a

d
· ∇

)
u

]
+ ∇_ · ∇d × ∇?

d3
+ ∇_
d
·
(
∇ × ℱ

d

)
. (2.8)212

Incorporating ∇_ into the material derivative on the LHS,† we obtain213

�@

�C
=
�

�C

(
8a

d
· ∇_

)
=
8a

d
· ∇Ψ + ∇_ · ∇d × ∇?

d3
+ ∇_
d
·
(
∇ × ℱ

d

)
. (2.9)214

Choosing, for example, density (or a quantity proportional to density) as our scalar _ = d,215
while requiring frictional and diabatic processes to be zero so that the flow is inviscid and216
density is conserved, we see that all three terms on the RHS vanish and @ = (8a/d) · ∇_ is217
conserved following fluid parcels. This is Ertel’s PV theorem.218

2.4. Absolute angular momentum219

One of the contributions of Rayleigh (1917) was to demonstrate that, if a vortex is220
axisymmetric (i.e. m/mq = 0), then the azimuthal momentum equation can be multiplied221
by A and re-expressed as a conservation equation for the angular momentum per unit mass:222
�/�C (AE) = 0, where E denotes the azimuthal velocity. Application of this approach to a223
fluid parcel in a rotating reference frame with constant rotation rate also permits such a224
rearrangement: �!/�C = 0, where ! = AE + 5 A2/2 is now the absolute angular momentum,225
and is the sum of relative angular momentum (AE) and planetary angular momentum imparted226
by the rotating reference frame. Importantly, the absolute angular momentum of a fluid parcel227
in a vortex on the 5 -plane is exactly the same as if the vortex were located at the center of228
the rotating reference frame, where A is the magnitude of the position vector (Kloosterziel &229
van Heĳst 1991). This motivates the following vector representation.230
We orient our coordinate system so that its origin is at the center of a curved front or vortex231

(cf. Figure 4). Taking the cross product of the position vector rc and each of the terms in232
Equation 2.3, one obtains after some effort233

�ma

�C
= −
o × m − rc × ∇?

d
+ rc × g + rc ×ℱ

d
, (2.10)234

where ma = rc × ua and m = rc × u are absolute and relative angular momentum,235
respectively. Using the definition of absolute velocity, ua = u +
o × rc , we observe that236
ma = m + m
 is the sum of relative angular momentum m = rc × u and planetary angular237
momentum m
 = rc × (
o × rc) in a manner analogous to absolute vorticity 8a.238
For our purposes,wewish to isolate the vertical component of absolute angularmomentum.239

We take the inner product of Equation 2.10 and the vertical unit vector k̂ to obtain240

�!

�C
= − (
o × m) · k̂ − rc × ∇?

d
· k̂ + (rc × g) · k̂ + rc ×ℱ

d
· k̂, (2.11)241

where we have introduced the notation ! = ma · k̂ to denote the vertical component of242
absolute angular momentum, consistent with the literature (Holton 1992; Shakespeare 2016).243

† This follows from G · � (∇_)
�C

= G · ∇�_
�C
− ∇_ · (G · ∇u), where G = 8a/d.
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Thus, the vertical component of absolute angular momentum ! of a fluid parcel is modified244
by torques due to pressure, gravitation, and friction, as well as a torque produced by Earth’s245
rotation acting on the relative angular momentum m. For cases when m is not vertical, the246
latter reduces !, tilting the absolute angular momentum vector away from the vertical.247

A comparison with angular momentum conservation on the spheroid248

It is helpful to compare the conservation equation above (cf. Equation 2.10) with that obtained249
for the oblate sphere (e.g Barnes et al. 1983; Peixoto & Oort 1992; Bell 1994). In spherical250
coordinates, the position vector r extends from Earth’s center to the fluid parcel (Figure 3).251
Computing the cross product of r and themore general equations of motion (cf. Equation 2.1)252
gives (e.g. Egger 2001, Equation 2.7)253

�ma

�C
= −
 × ma −

r × ∇?
d
+ r × (g − ac)︸    ︷︷    ︸

g∗

+ r ×ℱ
d

, (2.12)254

where absolute, relative, and planetary angular momentum are now given by ma = m + m
,255
m = r × u, and m
 = r × (
 × r), respectively. A useful simplification can now be made.256
Expanding the first term on the RHS and examining only the planetary portion, we see that257
Earth’s rotation induces a torquewithmagnitude | −
 × m
 | = |r | | | |
| |
 × r⊥ | = |
|2 |r⊥ | |r | | |258
and directed eastward.† Similarly, the torque induced by the centrifugal acceleration has259
magnitude | − r × ac | = |
|2 |r⊥ | |r | | | and is directed westward. The two terms cancel and260
Equation 2.12 becomes261

�ma

�C
= −
 × m − r × ∇?

d
+ r × g + r ×ℱ

d
. (2.13)262

Therefore, Equation 2.10 is identical to Equation 2.13 is except where r is replaced by rc263
and
 by
o . This fact follows from the self-consistency of the governing equations on the 5264
plane (Grimshaw 1975). Thus, while a formal proof remains, we argue that absolute angular265
momentum is conserved on the 5 plane in the same way that it is conserved on the sphere.‡266
This may be why, for sufficiently small horizontal scales and balanced (i.e. hydrostatic) flows267
in which the meridional component of Coriolis is neglected, the volume-integrated, vertical268
component of absolute angular momentum is approximately conserved (Egger 2001, Fig. 2e).269

2.5. A vorticity theorem for the 5 plane270

We are now in a position to combine conservation laws (cf. Equations 2.9 and 2.11). It is271
simple to show that if ��

�C
= 0 and if ��

�C
= 0, then �

�C
(��) = 0. This is the logic behind the272

following step. We therefore multiply Equation 2.9 by ! = ma · k̂ = (m + m
) · k̂ and add273
this to @ = (8a/d) · ∇_ multiplied by Equation 2.11. This gives274

�

�C
(!@) = !

[
8a

d
· ∇Ψ + ∇_ · ∇d × ∇?

d3
+ ∇_
d
·
(
∇ × ℱ

d

)]
275

+ @
[
−(
o × m) · k̂ − rc × ∇?

d
· k̂ + (rc × g) · k̂ + rc ×ℱ

d
· k̂

]
, (2.14)276

† Note: 
 × r = 
 × r⊥ together with G × (H × I) = (G · I)H − (G · H)I allow us to write the
planetary angular momentum as m
 = |r⊥ |2
 − |r | | | |
|r⊥.
‡ Egger (2001) did not demonstrate this vector cancellation and led him to conclude that angular

momentum conservation was different in the 5 plane approximation than on the spheroid (in the limit
of small aspect ratio X = |3B |/'4). We disagree with this statement for the reasons stated above, although
we acknowledge Egger (2001) was principally concerned with the V plane approximation.
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where we emphasize that rc is the position vector in the cylindrical coordinate system and g277
is directed anti-parallel to the unit vector k̂ (Figure 4).278
Equation 2.14 states that the scalar !@ is conserved following fluid parcels on the 5 plane279

if, for non-zero ! and @, all of the following conditions are met:280
(i) density is conserved (Ψ = 0)281
(ii) the fluid is inviscid (ℱ = 0)282
(iii) the fluid is barotropic (∇d × ∇? = 0) or the fluid is baroclinic (∇d × ∇? ≠ 0) and _283

is chosen to be a “thermodynamic variable”284
(iv) relative angular momentum m is directed vertically so that (
o × m) · k̂ = 0285
(v) pressure torques are zero or orthogonal to the vertical so that (rc × ∇?) · k̂ = 0286
(vi) perturbations in Earth’s gravitational field are zero so that (rc × g) · k̂ = 0, and287
While this equation may find reduced application when compared to Ertel’s PV theorem,288

several simplifications are possible. For inviscid, adiabatic baroclinic flows, selecting _ as289
proportional to density (e.g. _ = −d6) satisfies conditions (i)-(iii). For geophysical flows of290
the type considered here, the flow is nearly two-dimensional such thatm points approximately291
vertically and condition (iv) is met. For azimuthally symmetric flow away from boundaries292
pressure gradient torques are zero, so that (v) is satisfied. (Undulating bottom topographywill293
introduce pressure torques.) Finally, in the absence of geopotential perturbations, the sixth294
term is zero. In conclusion, we have a vorticity theorem valid on the 5 plane but different295
than Ertel’s PV theorem and yet, at least in highly curved flows away from boundaries, has296
the potential to satisfy all of the aforementioned conditions. If these conditions are met,297
the product of the vertical component of absolute angular momentum and Ertel PV (!@) is298
conserved following fluid parcels.299

3. Discussion300

It is not clear how best to refer to the quantity !@. We were at first tempted to refer to301
this quantity as the generalized potential vorticity since fluid parcels have possible vorticity302
values set by the sign of !@ through the stability discriminantΦ = 2!@/A2 (Buckingham et al.303
2020a,b). However, the validity of the theorem is restricted to small horizontal scales such304
that !@ is not universally conserved. For this reason, submesoscale potential vorticity is a305
suitable alternative.† However, to avoid conflict with the Ertel PV and given its relationship306
to angular momentum (Rayleigh 1917; Solberg 1936; Fjortoft 1950), we adopt the term307
potential momentum below (denoting it as Π = !@), in order to reflect that changes in308
angular momentum (or curvature) can occur as a result of alterations in the baroclinic nature309
of the fluid.310
Given the restriction to the 5 plane and our interest in the oceans, the conservation theorem311

will find greatest application in understanding vortex flows at mid-to-high-latitudes in the312
oceanic submesoscale regime. Here, we have in mind curved fronts and vortices found at313
hydrothermal vents and convective plumes (Helfrich & Battisti 1991; D’Asaro et al. 1994;314
Legg & McWilliams 2001; Deremble 2016), within mid-latitude vortices (McDowell &315
Rossby 1978; McWilliams 1985; Riser et al. 1986; Bane et al. 1989; Konstianoy & Belkin316
1989; Lilly & Rhines 2002; Bosse et al. 2016; Meunier et al. 2018), and polar mesoscale317
vortices (D’Asaro 1988; Timmermans et al. 2008; Zhao et al. 2014). The theorem may also318
aid in better understanding laboratory vortex flows (Stegner et al. 2004; Kloosterziel et al.319
2007; Lazar et al. 2013) and parcel motion within highly curved fronts in the upper ocean320

† The scalar Φ/ 5 = 2!@/( 5 A2) = (1 + Cu)@ is perhaps a better variable to be named “submesoscale
potential vorticity” since it shares the same units as @ and applies to straight and curved fronts. One recovers
the Ertel PV in the limit Cu→ 0.

Rapids articles must not exceed this page length
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(M. Freilich 2020, personal communication). Such examples are frequently found in strong321
boundary currents (e.g. Gulf Stream and Kuroshio) and the Southern Ocean.322
While presenting a framework for understanding sources and sinks of “potential mo-323

mentum” (Haynes & McIntyre 1987, 1990; Marshall & Nurser 1992) is beyond the scope324
of this study, one can nevertheless conceptually consider the theorem’s application to the325
aforementioned flows by expressing Equation 2.14 for an axisymmetric vortex flow. This is326
done below, followed by a discussion of the conservation principle’s imprint on vorticity.327

3.1. Axisymmetric vortex flow328

We consider an axisymmetric vortex flow set at high latitudes in cyclogeostrophic and hy-329
drostatic balance (i.e.GWB). We assume the flow is located in shallow waters (|I | < 100 m).330
Examples can be found in the halocline eddies observed in the Arctic (Timmermans et al.331
2008) but we could equally consider application to highly curved fronts in this region332
(MacKinnon et al. 2021). Frictional and diabatic effects are weak such that this balance holds333
(Eliassen 1951). Formally, we state that deviations from the balanced state are small such334
that u = u + u∗ ≈ (0, E, 0) and 1 = 1 + 1∗ ≈ 1, where the overbar denotes mean quantities335
and asterisks (∗) denote perturbations from this state. We neglect compressibility, make the336
Boussinesq approximation, and define _ = −6d, allowing the Ertel PV to be written as337
@ = 8a · ∇1, where 1 = −6d/d> is buoyancy and d> is a constant reference density. Finally,338
we set the meridional component of Coriolis to zero given its distance from the Equator.339
We now express Equation 2.14 in cylindrical coordinates. The vertical component340

of absolute angular momentum is ! = ma · k̂ = (m + m
) · k̂, where m = rc × u and341
m
 = rc × (
 × rc) are the relative and planetary angular momentum. Together with342
rc = (A, q, I), u = (D, E, F), and 
 = (0, 0, 5 ), we find ! = AE + 5 A2/2. The Ertel PV for343
this vortex is @ = (2
 + ∇ × u) · ∇1. Together with GWB ( 5 + 2E/A)mIE = mA1 = "2, we344
have @ = ( 5 + Z)#2 − ( 5 + 2E/A) |mIE |2, where we have neglected the horizontal vorticity345
owing to its smallness relative to other terms. The relative vorticity associated with the346
balanced state is Z = (1/A)mA (AE) = E/A + mAE and vertical stratification is #2 = mI1. With347
these definitions in hand, Equation 2.14 becomes348

�Π

�C
= (ℱ+�+�+ℊ+Ω, (3.1)349

where the potential momentum is350

Π = !@ =

(
AE + 5 A

2

2

) [(
5 + Z

)
#2 −

(
5 + 2E

A

)
|mIE |2

]
=
A2Φ

2
(3.2)351

and (ℱ+�+�+ℊ+Ω represents sources and sinks of momentum due to frictional, diabatic,352
pressure, and gravitational sources, as well as Earth’s rotation acting on the relative353
momentum (i.e. RHS of Equation 2.14). Note: Φ is the generalized Rayleigh discriminant354
and consists of barotropic and baroclinic components (Yim et al. 2019; Buckingham et al.355
2020a):356

Φ = ( 5 + 2E/A) ( 5 + Z)#2 − ( 5 + 2E/A)2 |mIE |2 = j2#2︸︷︷︸
10A>CA>?82

− "4︸︷︷︸
10A>2;8=82

, (3.3)357

where j2 = ( 5 + 2E/A) ( 5 + Z) is the generalized Rayleigh discriminant for barotropic358
vortices (Kloosterziel & van Heĳst 1991; Mutabazi et al. 1992). We can define non-359
dimensional gradient Rossby, gradient Richardson, and curvature numbers as '> = Z/ 5 ,360
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'8 = #2/|mIE |2, and �D = 2E/ 5 A , allowing us to also write the potential momentum as361

Π = !@ =

(
5 2#2A2

2

)
Φ′, (3.4)362

where363

Φ′ = ! ′@′ = (1 + �D) (1 + '>) − (1 + �D)2 · '8−1. (3.5)364

is a nondimensional form of the Rayleigh discriminant, and ! ′ = 1 + �D and @′ denote365
nondimensional forms of ! and @, respectively. Expanding Equation 3.1, we find366

�Φ

�C
= 2(ℱ+�+�+ℊ+Ω −

2D
A
Φ. (3.6)367

In the absence of sources and sinks of potential momentum ((ℱ+�+�+ℊ+Ω = 0) and assuming368
no cross-frontal motion (D = 0), the stability of the flow is constant: �Φ/�C = 0. However,369
if a fluid parcel moves radially (D ≠ 0)–even in the absence of sources and sinks of potential370
momentum–there must be a corresponding change in the stability of the flow.371
We nowmake a clarifying comment. It was previously suggested that the theoremmay find372

utility in understanding parcel motion at curved baroclinic fronts. As a fluid parcel is advected373
along its path in a meandering flow, we generally expect cross-frontal motion (Bower 1989;374
Samelson 1992). However, as evidenced by Equation 3.6, Φ is not conserved. Moreover,375
�Φ/�C = 0 does not imply �Φ′/�C = 0, except if #2 and A2 do not change following a376
fluid parcel (cf. Equation 3.4). These conditions can be met within the axisymmetric vortex377
(mq1 ≈ 0 and D ≈ 0) but will not generally bemet following fluid parcels within ameandering378
front. These points therefore clarify statements made by Buckingham et al. (2020a,b).379

3.1.1. A special case: (ℱ+�+�+ℊ+Ω = 0380

One of the consequences of Equation 2.14 is that geophysical vortices which reside away from381
boundaries and perturbations in Earth’s geopotential approximately conserve the product of382
! and @. In the absence of sources and sinks of potential momentum ((ℱ+�+�+ℊ+Ω = 0), we383
can safely approximate cross-frontal motion within an axisymmetric vortex as zero (D ≈ 0).384
By virtue of Equation 3.6, this also implies that the Rayleigh discriminant Φ is conserved:385
�Φ/�C ≈ 0. To understand the consequences of these statements, we consider the evolution386
of small-scale baroclinic vortices discussed by Buckingham et al. (2020b).387
While the details of this evolution remain unclear without corroborating model support,388

the following arguments are reasonable. Small-scale baroclinic vortices (radii of 1-10 km)389
are typically generated in proximity to ocean boundaries due to horizontal shear, baroclinic390
instability, and convection (Barkley 1972; Legg & McWilliams 2001; Eldevik & Dysthe391
2002; Boccaletti et al. 2007; Stegner 2014; Bosse et al. 2016; Gula et al. 2016; MacKinnon392
et al. 2019; Srinivasan et al. 2019;Wenegrat et al. 2018). These boundaries include the ocean393
surface, bottom boundary, and ice-ocean boundary. Immediately following formation, they394
undergo a form of cyclogeostrophic adjustment (Stegner et al. 2004), trapping and carrying395
with them water properties reflective of the boundary layers in which they were formed.396
Boundary layer fluid is often characterized by reduced stratification such that, in the397

presence of vertical shears, '8 ∼ 1. If this fluid is trapped within the vortex core, then the398
fluid with low '8 will persist even as the vortex subducts or is advected away from the399
boundary. One measure of this trapping is the metric E/2, where E is the azimuthal velocity400
and 2 is the translation speed of the vortex (Samelson 1992). It follows that the results from401
Buckingham et al. (2020b) apply. That is, symmetric instability will be active within cyclonic402
vortices, while anticyclonic vortices will remain marginally stable, decaying over longer time403
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scales due to weak inertial-symmetric instabilities.† If the vortex is advected into a different404
environment, the vortex must alter barotropic and baroclinic components of Φ so as to keep405
Φ constant. Thus, stratification, shear, and centripetal accelerations (cf. Equation 3.3) must406
change. In non-dimensional form (cf. Equations 3.4 and 3.5), we see that '>, '8, and�Dmust407
change in concert so as to conserve Π = !@. Note: Equation 3.4 applies but �/�C (#2) ≠ 0.408

3.2. Revisiting the distribution of relative vorticity409

We return to the joint PDF of vorticity and strain rate observed near the Gulf Stream410
(Figure 1). We previously noted that as vorticity increased in the cyclonic direction, the411
joint PDF approached a pure shear relationship, indicative of straight fronts. In contrast,412
the vorticity was bounded as vorticity decreased toward the negative direction, and a higher413
probability of vortex flow. While the unbounded nature of cyclonic vorticity associated414
with straight fronts can be rationalized in terms of PV conservation (Hoskins & Bretherton415
1972)‡, the higher probability of anticyclonic vorticity associated with vortex flow has not416
been explained.417
Requiring !@ > 0 for all time requires Φ > 0 for all time since !@ = A2Φ/2. In this case,418

�/�C (!@) = 0 together with an initial positive state !@ > 0 places constraints on the sign419
of Φ and determines the distribution of relative vorticity in the oceans. This is analogous to420
how �@/�C = 0 together with an initial positive state 5 @ > 0 determines the distribution of421
relative vorticity at straight fronts (Buckingham et al. 2016). Another way to state this is that422
the statistics of vorticity are determined by the possible set of Rossby numbers which ensure423
the stability discriminant is positive:Φ > 0 orΦ′ > 0. If one requires that Equation 3.3 or 3.5424
be positive and solves for the set of Rossby numbers which ensure this is true, the negative425
skewness discussed above will emerge at low '8 (Buckingham et al. 2020b).426
Figure 5 displays Φ′ = ! ′@′ (cf. Equation 3.5) for a range of Richardson, Rossby, and427

curvature numbers characteristic of a Gaussian vortex in the upper ocean. For clarity, we428
identify regions of centrifugal and symmetric instability. WhileΦ′ is locally evaluated (here,429
at the radius of maximum velocity A<) and cannot describe the global stability of a vortex430
flow, this nonetheless demonstrates an important point: centripetal accelerations or curvature431
can shape the distribution of '>. In particular, for '8 = 1.0, anticyclonic flow is (weakly)432
stable while cyclonic flow is significantly unstable. We therefore expect to see a greater433
occurrence of anticyclonic vortex flow at '8 ∼ 1. This is remarkably different than if the434
front were geostrophic, which predicts cyclonic flow: '> > −1 + '8−1, or '> > 0.435
We now demonstrate this analytically. Introducing a non-dimensional parameter436

` = �D/'>, which is independent of depth and positive definite within the vortex437
core (0 < A < A<), and examining solutions for '8 < ` subject to Φ′ > 0, one finds438
that vorticity '> principally resides between two curves in dimensionless space, or439
marginal stability curves (Buckingham et al. 2020b): '>0 = −`−1 (barotropic root) and440
'>1 = −('8 − 1)/('8 − `) (baroclinic root). The barotropic root corresponds to the threshold441
for centrifugal instability (�D = −1), while the baroclinic root corresponds to the threshold442
for symmetric instability. Selecting '8 = 1, one finds that gradient Rossby numbers lie443
between −`−1 and 0. Arbitrarily choosing ` = 2.0 (characteristic of Gaussian vortices at444

† A timescale for the decay of the cyclonic vortex can be estimated from the growth rate of symmetric
disturbances: ) = 2c/f, where f = 5 (−Φ′)1/2 is an approximate growth rate of symmetric disturbances
under a simplified axisymmetric vortex model (Buckingham et al. 2020a, Appendix A). Mahdinia et al.
(2017) document a decay timescale greater than 50 eddy “turnaround times” for the anticyclonic vortex.
‡ Assuming an initially positive state 5 @ > 0, �@/�C = 0 requires that 5 @ remain positive for all future

states. For geostrophic flow and positive stratification, 5 @ > 0 can also be written in terms of gradient
Rossby and Richardson numbers: 1 + '> − '8−1 > 0. Since '8 > 0, it follows that '> is unbounded in the
cyclonic direction: '> > −1 + '8−1.
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Figure 5: Stability discriminant Φ′ = !′@′ as a function of '>, '8, and �D. Observed
flows in which !@ is conserved are expected to reside within the stable region Φ′ > 0
(blue). This region is delineated from the unstable region (white) by the roots '>0 and
'>1 of Φ′ when expressed in terms of the ratio ` (see text). These roots correspond to
thresholds for centrifugal and symmetric instability, respectively. For '8 = 1 (vertical
dashed line), we observe only (weakly) stable anticyclonic flow. This is remarkably

different than if the front were geostrophic, which predicts only cyclonic flow (not shown).
The stable region in the bottom right corner corresponds to intense, stratified anticyclones
for which Φ′ > 0, despite that !′ and @′ are both negative. Such a situation might occur as
a result of flow past topography. This graphic is characteristic of Gaussian vortices at the

radius of maximum velocity A = A< (i.e. valid for ` = 2).

A = A<) gives −0.5 < '> < 0. That is, the vorticity must be anticyclonic if !@ is conserved.445
Mahdinia et al. (2017) find similar constraints on anticyclonic vortices in their numerical446
investigation of the stability of three-dimensional Gaussian vortices.447

4. Limitations448

Our derivationmakes the 5 plane approximation and therefore is restricted to small horizontal449
scales. Additionally, we isolated the vertical component of absolute angular momentum. As450
a result, Equation 2.14 cannot be used predict !@ except at the poles since ! is coupled to451
the other components of ma through 
 × m. As stated above, this term arises from Earth’s452
rotation and tilts the absolute angular momentum vector away from the vertical, reducing !.453
This torque is greatest at the Equator and zero at the poles. This does not make Equation 2.14454
incorrect but simply limits its utility in certain cases. In summary, the two main limitations to455
the theory are (i) restriction to the 5 plane and (ii) reduced applicability in the tropics. These456
are important limitations since intense frontal flows are frequently found near the Equator457
(Marchesiello et al. 2011; Holmes et al. 2013; Simoes-Sousa et al. 2021). Progress in this458
area might be made by examining the recent work of Kloosterziel et al. (2017).459
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It may be worth noting that the 5 plane approximation together with angular momentum460
conservation principles have previously been successful for investigating tropical cyclone461
dynamics (Houze 1993), indicating that these limitations–which grow for vortices closer to462
the Equator–may not be so severe. It is probable that a more elegant intersection of these463
three principles will be presented in the future (i.e. Figure 2 but where ! is replaced by ma).464

5. Conclusions465

In this study, we have presented a vorticity equation valid on the 5 plane. It is an extension466
of Ertel’s PV theorem to vortex flow at small horizontal scales such that absolute angular467
momentum can properly be defined. This leads to a non-trivial result: the combination of468
absolute angular momentum conservation together with Ertel’s theorem has implications469
for the motion of fluid parcels. In particular, two important consequences of the theorem470
are (1) stratification, shear, and centripetal accelerations are modified in concert in an effort471
to conserve !@ and (2) modification to the distribution of relative vorticity opposite to472
that predicted by geostrophic theory, permitting the occurrence of stable anticyclonic flow,473
while limiting the occurrences of cyclonic flow at low Richardson numbers. That is, if474
!@ > 0 initially, then �/�C (!@) = 0 has important consequences for the range of vorticity475
values seen at small horizontal scales in the ocean.While this may find obvious application in476
explainingwhy submesoscale vortices are overwhelmingly anticyclonic, the theoremwill also477
find use in understanding Lagrangian motion within highly curved baroclinic fronts. Given478
that our present theory of submesoscale flows assumes the mean state to be in geostrophic479
balance (Thomas et al. 2008; McWilliams 2016), the inclusion of centripetal accelerations480
at the submesoscale represents a shift in direction for the oceanographic community.481
The topic of absolute angular momentum conservation has received little attention482

in oceanography texts, while this same topic has received considerable attention in the483
atmospheric literature (Holton 1992; Peixoto & Oort 1992; Barnes et al. 1983; Bell 1994).484
This appears to be due to the presence of continental boundaries in the ocean but which are485
absent in the atmosphere (Griffies 2004), causing PV rather than absolute angular momentum486
to be a more universally conserved quantity at large horizontal scales (Pedlosky 1987).487
An exception may be in the Southern Ocean, where obstacles to zonal flow are absent488
(Straub 1993). However, for small-scale geophysical flows in which centripetal accelerations489
are present and Earth’s rotation plays a dynamically important role,† the conservation of490
absolute angular momentum finds its place. Submesoscale and polar mesoscale flows are491
ideal examples in which such a conservation principle may apply. It is in the context of these492
phenomena that the combined theorem should find greater use.493
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† Earth’s rotation imparts angular momentum to fluid parcels and can limit centripetal accelerations
present in anticyclonic flow through the constraint, !′ = 1 + �D > 0, assuming �D > −1 initially. This is
analogous to how Earth’s rotation imparts vorticity to fluid parcels and limits horizontal shear present in
anticyclonic barotropic flow through the constraint, 1 + '> > 0.
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