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Abstract

The Global Carbon Project estimates that the terrestrial biosphere has absorbed about one-third of anthropogenic CO2 emissions

during the 1959-2019 period. This sink-estimate is produced by an ensemble of terrestrial biosphere models collectively referred

to as the TRENDY ensemble and is consistent with the land uptake inferred from the residual of emissions and ocean uptake.

The purpose of our study is to understand how well TRENDY models reproduce the processes that drive the terrestrial carbon

sink. One challenge is to decide what level of agreement between model output and observation-based reference data is adequate

considering that reference data are prone to uncertainties. To define such a level of agreement, we compute benchmark scores

that quantify the similarity between independently derived reference datasets using multiple statistical metrics. Models are

considered to perform well if their model scores reach benchmark scores. Our results show that reference data can differ

1



P
os
te
d
on

21
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
88
92
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

considerably, causing benchmark scores to be low. Model scores are often of similar magnitude as benchmark scores, implying

that model performance is reasonable given how different reference data are. While model performance is encouraging, ample

potential for improvements remains, including a reduction in a positive leaf area index bias, improved representations of processes

that govern soil organic carbon in high latitudes, and an assessment of causes that drive the inter-model spread of gross primary

productivity in boreal regions and humid tropics. The success of future model development will increasingly depend on our

capacity to reduce and account for observational uncertainties.
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Key Points:36

• Poor model skill can result not only from model deficiencies but also from obser-37

vational uncertainties.38

• Although model performance is mostly reasonable, given how uncertain reference39

data are, ample potential for model improvements remains.40

• The effectiveness of future model development depends on our ability to account41

for and reduce observational uncertainties.42
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Abstract43

The Global Carbon Project estimates that the terrestrial biosphere has absorbed about44

one-third of anthropogenic CO2 emissions during the 1959-2019 period. This sink-estimate45

is produced by an ensemble of terrestrial biosphere models collectively referred to as the46

TRENDY ensemble and is consistent with the land uptake inferred from the residual of47

emissions and ocean uptake. The purpose of our study is to understand how well TRENDY48

models reproduce the processes that drive the terrestrial carbon sink. One challenge is49

to decide what level of agreement between model output and observation-based refer-50

ence data is adequate considering that reference data are prone to uncertainties. To de-51

fine such a level of agreement, we compute benchmark scores that quantify the similar-52

ity between independently derived reference datasets using multiple statistical metrics.53

Models are considered to perform well if their model scores reach benchmark scores. Our54

results show that reference data can differ considerably, causing benchmark scores to be55

low. Model scores are often of similar magnitude as benchmark scores, implying that model56

performance is reasonable given how different reference data are. While model perfor-57

mance is encouraging, ample potential for improvements remains, including a reduction58

in a positive leaf area index bias, improved representations of processes that govern soil59

organic carbon in high latitudes, and an assessment of causes that drive the inter-model60

spread of gross primary productivity in boreal regions and humid tropics. The success61

of future model development will increasingly depend on our capacity to reduce and ac-62

count for observational uncertainties.63

Plain Language Summary64

Earth’s natural vegetation absorbs about one-third of CO2 emissions caused by hu-65

man activities. This value is produced by a group of models rather than through direct66

observations. Our study assesses how well models reproduce the processes that drive the67

CO2 exchange between land and atmosphere using a wide range of datasets that are mainly68

derived from field measurements and satellite images. These reference datasets are prone69

to errors that are not quantified in a consistent manner. To account for such errors, we70

first compare different reference datasets against each other. We then compare model71

output against reference data and assess whether the differences are comparable to the72

differences among the reference datasets. We conclude that the performance of models73

is encouraging given how uncertain reference data are, but that ample potential for im-74

provements remains.75

1 Introduction76

Effective climate policies demand reliable estimates of global carbon fluxes and trends.77

The Global Carbon Project coordinates an annual publication on the Global Carbon Bud-78

get, which assesses and reports (i) CO2 emissions from fossil fuel combustion and oxi-79

dation from all energy and industrial processes (EFOS) and land use change (ELUC), (ii)80

atmospheric CO2 concentration growth rate (GATM ), and (iii) the uptake of CO2 by the81

ocean (SOCEAN ) and natural vegetation (SLAND), all expressed in GtC yr−1 (Friedlingstein82

et al., 2020):83

EFOS + ELUC = GATM + SOCEAN + SLAND +BIM . (1)

The components of the carbon budget are computed independently and the budget im-84

balance (BIM ) reflects the remaining uncertainty associated with imperfect spatial and/or85

temporal data coverage, observational errors, and omission of smaller terms. The land86

sink term SLAND arises from the combined effects of CO2 fertilization, nitrogen depo-87

sition, and climate change. Estimates for the 1959-2019 period show that anthropogenic88

CO2 emissions associated with fossil fuel combustion (365 GtC) and land use change (8589

GtC) are approximately balanced by the increase of atmospheric CO2 (205 GtC) and90

the uptake of CO2 by oceans (105 GtC) and land (145 GtC). The natural terrestrial ecosys-91
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tems would have therefore absorbed about one-third of anthropogenic CO2 emissions,92

which emphasizes the pivotal role of the terrestrial biosphere in the global climate sys-93

tem. Note that the values above are rounded to the nearest 5 GtC and BIM is estimated94

to equal 0 GtC for this period.95

The value for SLAND is not based on direct observations, but on the mean value96

from an ensemble of terrestrial biosphere models (TBMs) collectively referred to as the97

trends in the land carbon cycle project (TRENDY) ensemble. Results from TRENDY98

simulations have been used extensively to explore different aspects of the global carbon99

cycle (e.g. Forzieri et al. (2018); Fernández-Mart́ınez et al. (2019); Bastos et al. (2020);100

Kondo et al. (2020); Piao et al. (2020)). Friedlingstein et al. (2020) presented a brief as-101

sessment of model performance for key processes that are relevant for SLAND (their Fig-102

ure B2). Using a skill score system developed by the International Land Model Bench-103

marking Project (ILAMB; Collier et al. (2018)), the authors concluded that (i) TRENDY104

models show high skill scores for runoff, and to a lesser extent for vegetation biomass,105

gross primary productivity (GPP), and ecosystem respiration, and that (ii) skill scores106

are lowest for leaf area index (LAI) and net ecosystem exchange (NEE), with the widest107

disparity among models for soil organic carbon. The ILAMB skill scores summarize how108

well model output resembles reference data across multiple statistical metrics, includ-109

ing the bias, centralized root-mean square error, the timing of seasonal peaks, inter-annual110

variability, spatial correlation, and spatial variability (see section 2.4 for details).111

One challenge of model evaluation is accounting for observational uncertainty. Ob-112

servational uncertainty can be understood as an estimate characterizing the range of val-113

ues within which the true value of a measurand, i.e. the quantity to be measured, lies114

(JCGM, 2008). Any measurement consists of a series of transformations from the event115

observed to the final value, and each transformation may introduce and propagate er-116

rors (Merchant et al., 2017). For instance, sources of uncertainty in satellite LAI prod-117

ucts include uncertainties in the input data (e.g. surface reflectance, radiance, albedo,118

land cover type), the radiative transfer model, the inversion technique, and the prior in-119

formation (Fang et al., 2012). Unfortunately, observational uncertainty is not reported120

consistently among reference datasets (Merchant et al., 2017). To account for observa-121

tional uncertainty nevertheless, a pragmatic and common approach is to evaluate model122

output against multiple reference datasets per variable, which may underestimate un-123

certainty if reference data are not sufficiently independent and overestimate uncertainty124

if one reference dataset is strongly inferior compared to others (Covey et al., 2002). The125

ILAMB framework addresses observational uncertainty by using multiple reference datasets126

that are weighed depending on their estimated quality and spatiotemporal coverage (Collier127

et al., 2018). However, the ILAMB approach does not indicate what score a model should128

actually yield given how uncertain reference data are. This makes the interpretation of129

the ILAMB scores challenging, as it remains unclear to what extent low scores are re-130

lated to observational uncertainty. The purpose of our study is to evaluate how well TBMs131

reproduce processes that drive the terrestrial carbon sink term SLAND. As a novel con-132

tribution, we will demonstrate how well models should score given that reference data133

are imperfect.134

2 Methods135

2.1 Simulation protocol136

The TRENDY model ensemble consists of a variety of terrestrial ecosystem mod-137

els intended for climate simulations. Some TRENDY models are characterized as land138

surface models (LSMs), which were initially developed to simulate land-atmosphere fluxes139

of mass, energy, and momentum required as inputs for the atmospheric component of140

global climate models. Other TRENDY models are dynamic global vegetation models141

(DGVMs), which were designed to simulate terrestrial carbon pools and fluxes, as well142
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as biogeography and plant demography. To represent carbon cycle dynamics in global143

climate models, model developers have begun to incorporate DGVMs into LSMs in the144

early 2000s (Fisher & Koven, 2020). In this paper we use the more general term Terres-145

trial Biosphere Models (TBMs; G. Bonan (2019)) to describe all TRENDY models re-146

gardless of their original purpose. Model results evaluated in this study form part of TRENDY147

version 9, which was used for quantifying the global carbon budget of 2020 (Friedlingstein148

et al., 2020). We selected 15 TBMs for which most variables were available at the time149

of writing (Table 1).150

TRENDY models are run for three simulations that are designed to disentangle the151

role of changes in CO2, climate, as well as land-use and land-cover change (LULCC). The152

first simulation (S1) is driven by time-varying atmospheric CO2 concentration but land153

cover state is fixed for the year 1700 and repeating climate is used from the period 1901-154

1920. The S1 simulation is designed to infer the effect of increasing atmospheric CO2.155

The second simulation (S2) is driven with increasing CO2 concentrations and climate156

varying in time, but keeps the land cover state fixed to its pre-industrial state of 1700.157

Finally, in the third simulation (S3) all forcings (CO2, climate, and LULCC) are time158

varying. Models with a coupled carbon-nitrogen cycle are also forced with historical ni-159

trogen deposition (S1, S2, S3), pre-industrial nitrogen fertilization (S1, S2) and histor-160

ical nitrogen fertilization (S3). Our study only assess results for S3, as S1 and S2 are counter-161

factual.162

The term SLAND in equation 1 corresponds to the net biome productivity (NBP)163

in the S2 simulation, where NBP equals gross primary productivity minus ecosystem res-164

piration minus CO2 fluxes associated with disturbance. The SLAND term is a counter-165

factual value that represents the strength of the terrestrial carbon sink under pre-industrial166

land cover had land use change not taken place. Given the hypothetical nature of global167

SLAND, we cannot evaluate it against observations. However, we can evaluate NBP, and168

the processes that drive it, in the S3 experiment where CO2, climate, and LULCC forc-169

ings all vary in time. The variable NBP under S3 approximates SLAND (3.4 GtC yr−1
170

with a standard deviation of ±0.9 GtC yr−1) minus ELUC (1.6±0.7 GtC yr−1). Note171

that ELUC values can be obtained from TBMs or, as for the Global Carbon Budget, from172

bookkeeping models (BLUE, HandN2017, and OSCAR) (Friedlingstein et al., 2020).173

The S3 TRENDY simulation protocol (version 9) consists of a preindustrial spin174

up for the year 1700 and two transient runs for the periods 1701-1900 and 1901-2019,175

respectively (Friedlingstein et al., 2020). The preindustrial spin up uses a constant at-176

mospheric CO2 concentration of 276.59 ppm, repeating climate data from the early decades177

of the 20th century (i.e. 1901-1920), and land cover that uses crops and pasture distri-178

bution corresponding to the year 1700. Since TBMs use different sets of plant functional179

types (PFTs) their land covers are different although they are all expected to represent180

the crop and pasture distribution using the specified common LULCC forcing. The first181

transient run for the 1701-1900 period uses the same climate as for the spin up, but time-182

varying CO2 concentrations and land cover. The second transient run uses time-varying183

CO2, climate, and land use for the 1901-2017 period. Note that the two transient runs184

are typically combined in a single run, where meteorological data from the 1901-1920 pe-185

riod are repeatedly used during the 1701-1900 period. Meteorological inputs required by186

TRENDY models may include surface downwelling shortwave and longwave radiation,187

near-surface air temperature, precipitation, near-surface specific humidity, surface pres-188

sure, and near-surface horizontal wind speed. Models were forced by either the merged189

monthly Climate Research Unit (CRU) and 6-hourly Japanese 55-year Reanalysis (JRA-190

55) data or by the monthly CRU data (Harris et al., 2014; Kobayashi et al., 2015). The191

LULCC forcing was given by the Land-Use Harmonization 2 (LUH2) dataset (Hurtt et192

al., 2020). For the purpose of our study, all S3 model outputs were spatially interpolated193

to a common resolution of 1◦×1◦ using bilinear interpolation. In the case of the Cana-194

dian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC; Table 1), we reran195
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the model at the 1◦×1◦ resolution rather than spatially interpolating the original 2.8125◦×196

2.8125◦ grid.197

2.2 In situ reference data198

In situ reference data include the variables gross primary productivity (GPP), ecosys-199

tem respiration (RECO), net ecosystem exchange (NEE), vegetation carbon (CVEG),200

leaf area index (LAI), latent heat flux (HFLS), and streamflow (Table 2). The variable201

NEE is defined as RECO minus GPP, such that negative NEE values imply a net land202

carbon sink. In situ observations that fell into the same model grid cell were averaged203

prior to the comparison against model output. In situ reference data are compared against204

model output at the grid cell level. An evaluation that accounts for the presence of par-205

ticular plant functional types at a site would have been desirable, but most model data206

were reported on a grid cell level only. All comparisons are conducted for locations and207

time steps that models and reference data have in common. Time-invariant reference data208

(vegetation carbon) were compared against model output averaged from 1980 to 2019.209

Details on each in situ reference dataset are provided next.210

The FLUXNET2015 database includes 204 eddy covariance sites with measurements211

made sometime during the 1997-2014 period (Pastorello et al., 2020) (Table 2; Figure212

Appendix B1a). The corresponding variables are GPP, ecosystem respiration, NEE, and213

latent heat flux. Only sites with at least 3 years of data were considered. We assessed214

NEE using two versions of the FLUXNET2015 database. The first version uses all avail-215

able sites with at least 3 years of data. This dataset was then filtered for sites that were216

located in forests where no disturbance occurred over the last 50 years as documented217

in Besnard et al. (2018) and for months that have ≥ 95% of high quality data. The first218

and second version of this reference dataset is here referred to as NEE-FLUXNET and219

NEE-FLUXNETB, respectively.220

Aboveground biomass measurements were obtained from two datasets. The first221

database consists of 1974 measurements that were compiled from literature by Xue et222

al. (2017). The second database consists of 1645 measurements from 274 sites provided223

by the Forest Observation System (Schepaschenko et al., 2019). We merged both datasets224

and replaced Xue et al. (2017) with the more recent Schepaschenko et al. (2019) data225

when a site was present in both datasets. We then converted aboveground biomass to226

total vegetation carbon using an empirical relation between root biomass y and shoot227

biomass x (y = 0.489 × x0.890) (Mokany et al., 2006), as well as a carbon-to-biomass228

ratio of 0.5. It must be noted that empirical data on root-shoot ratios are likely to be229

subject to a sampling bias towards smaller rather than larger trees, as the former are eas-230

ier to excavate (Huang et al., 2021). Since root-shoot ratios tend to be larger for smaller231

trees, this sampling bias may result in an overestimation of root-shoot ratios. The con-232

version from aboveground biomass to total vegetation carbon was necessary as the TRENDY233

dataset provides only total biomass without separation into below and aboveground com-234

ponents. Measurements located within the same model grid cells were averaged, lead-235

ing to a total of 592 grid cells with at least one in situ measurement (Figure Appendix236

B1c).237

LAI observations were taken from the Committee on Earth Observation Satellites238

(CEOS) which consists of 141 sites with monthly measurements during the 1999-2017239

period (Figure Appendix B1b) (Garrigues et al., 2008). The values are based on a trans-240

fer function that upscales ground LAI measurements to a moderate resolution grid cell241

using high spatial resolution surface reflectances.242

Annual stream flow gauge records were obtained from the Global Runoff Data Cen-243

tre (GRDC) for the world’s 50 largest basins (Figure Appendix B1d) (Dai & Trenberth,244

2002). Measurements were made some time between 1980 and 2010, depending on the245

basin.246
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2.3 Globally gridded reference data247

Globally gridded reference datasets include the variables GPP, NBP, vegetation car-248

bon, soil organic carbon, LAI, latent heat flux, and runoff. The variable NBP is defined249

as GPP minus RECO minus CO2 emissions associated with disturbance and LULCC,250

such that positive NBP values imply a net land carbon sink. All gridded reference data251

were spatially interpolated to a common resolution of 1◦×1◦ using bilinear interpola-252

tion. All comparisons are conducted for grid cells and time steps that models and ref-253

erence data have in common. Time-invariant reference data (vegetation carbon and soil254

organic carbon) were compared against model output averaged from 1980 to 2019. De-255

tails on each globally gridded reference dataset are provided next.256

2.3.1 Gross primary productivity257

We used three different globally gridded GPP reference datasets. The first dataset258

is based on satellite imagery from the Moderate Resolution Imaging Spectroradiometer259

(MODIS) for the period 2000-2016 (Zhang et al., 2017). The dataset estimates GPP as260

the product of light absorption by chlorophyll and the efficiency that converts the ab-261

sorbed energy to carbon fixed by plants through photosynthesis. The required inputs to262

the Zhang et al. (2017) algorithm include a range of MODIS products (surface temper-263

ature, land surface water index, enhanced vegetation index, and land cover classification),264

as well as air temperature and radiation fluxes from NCEP Reanalysis II (Kanamitsu265

et al., 2002).266

The second reference GPP data, referred to as GOSIF, consists of solar-induced267

chlorophyll fluorescence (SIF) soundings from the global Orbiting Carbon Observatory-268

2 (OCO-2). The dataset is based on a linear correlation between SIF soundings and GPP269

measurements from 91 eddy covariance measurements sites from FLUXNET for the pe-270

riod 2000-2017 (Li & Xiao, 2019).271

The third GPP reference data, referred to as FluxCom, is based on a variety of machine-272

learning algorithms that upscale eddy covariance data using remote sensing data and me-273

teorological data as global predictors (Tramontana et al., 2016; Jung et al., 2020). Re-274

mote sensing data employed by FluxCom include land surface temperature (LST; MOD11A226),275

land cover (MCD12Q127), fraction of absorbed photosynthetically active radiation by276

a canopy (fPAR; MOD15A228), and bidirectional reflectance distribution function (BRDF)-277

corrected reflectances (MCD43B429) from MODIS. Meteorological inputs for FluxCom278

were taken from the Climate Research Unit National Centers for Environmental Predic-279

tion version 8. The FluxCom values used in our study are the median values computed280

over a FluxCom ensemble for the 1980-2013 period. The GPP FluxCom ensemble con-281

sists of six ensemble members that vary with respect to the employed machine learning282

algorithm (Artificial Neural Network, Multivariate Adaptive Regression Splines, and Ran-283

dom forest) and partitioning method (Lasslop et al., 2010; Reichstein et al., 2005). It284

should be noted that neither the satellite based GPP estimates nor the FluxCom prod-285

uct explicitly account for the CO2 fertilization effect, which compromises the respective286

carbon flux trends (De Kauwe et al., 2016; Jung et al., 2020).287

2.3.2 Net biome productivity288

Globally gridded reference NBP was obtained from the three inversion models Coper-289

nicus Atmosphere Monitoring Service (CAMS) (Chevallier, 2013), the Jena CarboScope290

(Rödenbeck et al., 2018), and CarbonTracker 2019 (CT2019) (Jacobson et al., 2020). In-291

version models attempt to reproduce observed atmospheric CO2 concentrations by ad-292

justing CO2 fluxes at the surface. This process requires an atmospheric transport model293

and apriori estimates of surface CO2 fluxes. The prior fluxes are usually derived from294

TBMs. For CAMS, atmospheric CO2 concentrations are taken from 81 sites provided295
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by the National Oceanic and Atmospheric Administration (NOAA) Earth System Re-296

search Laboratory archive. The inversion is based on the global atmospheric transport297

model Laboratoire de Météorologie Dynamique (LMDZ) and covers the period 1979-2019298

(Hourdin et al., 2006). Land-atmosphere fluxes are based on priors from the Organiz-299

ing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) (Krinner et al., 2005)300

and GFED wild fire emissions. CO2 emissions from wild fires are compensated by the301

same annual flux of opposite sign representing the regrowth of burnt vegetation.302

The second inversion-based NBP estimate from Jena CarboScope (Run ID s99oc303

v2020) uses 48 CO2 measurement sites mostly from NOAA (Rödenbeck et al., 2018). The304

atmospheric transport is simulated by the Transport Model 3 (TM3) for the period 1999-305

2019. As for CAMS, the land CO2 flux of Jena CarboScope represents the net flux re-306

sulting from GPP, ecosystem respiration, and disturbances, such as wild fires and LULCC.307

While Rödenbeck et al. (2018) refer to the Jena CarboScope land CO2 flux as NEE, we308

refer to it as NBP, as it includes the effects of disturbances and LULUC.309

The third inversion-based NBP estimate from CT2019 uses 460 CO2 measurement310

sites provided by the GLOBALVIEW+ data product version 5.0 (Masarie et al., 2014).311

The transport model employed by CT2019 is the Transport Model 5 (TM5), which is312

run for the period 1999-2019 (Huijnen et al., 2010). The apriori land-atmosphere fluxes313

are taken from the Carnegie-Ames Stanford Approach (CASA) biogeochemical model314

(Potter et al., 1993). Carbon emissions from fires are prescribed from the Global Fire315

Emissions Database (GFED) (van der Werf et al., 2017), and are not modified by the316

optimization process.317

2.3.3 Vegetation carbon318

We used three globally gridded and time-invariant vegetation carbon reference datasets.319

Two of the three datasets originally consisted of aboveground biomass. As for our in situ320

measurements, we converted aboveground biomass to vegetation carbon using the em-321

pirical relation between root biomass and shoot biomass provided by Mokany et al. (2006).322

Again, this was necessary as most TRENDY models only reported total rather than above-323

ground biomass.324

The first reference dataset, here referred to as GEOCARBON-Mokany, integrates325

local high-quality biomass data with a boreal forest biomass map by Santoro et al. (2015)326

and a pan-tropical biomass map by Avitabile et al. (2016), which is based on data from327

Saatchi et al. (2011) and Baccini et al. (2012). The dataset covers only areas that are328

dominated by trees in the Global Land Cover 2000 map (Bartholome & Belward, 2005).329

The boreal biomass estimates are based on radar imagery provided by the Envisat Ad-330

vanced Synthetic Aperture Radar (ASAR). The pan-tropical biomass maps are based331

on Light Detection and Ranging (LiDAR) observations that were calibrated with in situ332

measurements of tree allometry. Baccini et al. (2012) upscaled data using a random for-333

est machine learning algorithm and satellite imagery, including the MODIS Nadir BRDF-334

Adjusted Reflectance (NBAR), MODIS land surface temperature, and shuttle radar to-335

pography mission (SRTM) digital elevation data.336

The second vegetation carbon reference dataset, here referred to as Zhang-Mokany,337

was obtained from Zhang and Liang (2020), who integrated ten existing local and global338

aboveground biomass maps using a data fusion technique. It must be noted that one of339

the ten maps is the pan-tropical biomass map by Avitabile et al. (2016), which also forms340

part of the above-mentioned dataset by Santoro et al. (2015). Zhang and Liang (2020)341

evaluated each of the ten datasets against in situ observations and high-resolution air-342

borne lidar data.343

The third vegetation carbon dataset was obtained by Huang et al. (2021), who up-344

scaled in situ measurements of root biomass using a machine learning algorithm (Ran-345
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dom Forest) and globally gridded predictors of shoot biomass, tree height, soil proper-346

ties, and climatological data. The shoot biomass presented by Huang et al. (2021) was347

derived from the above ground biomass by Santoro et al. (2021). Adding root and shoot348

mass, and converting biomass to carbon mass using a carbon-to-biomass ratio of 0.5, we349

obtained a globally gridded dataset for vegetation carbon associated with trees.350

2.3.4 Soil organic carbon351

Reference data for soil organic carbon in the top 100 cm were obtained from the352

Harmonized World Soil Database (HWSD) (Wieder, 2014) and from SoilGrids250m (SG250m)353

(Hengl et al., 2017). The HWSD data provided by the Food Agriculture Organization354

(FAO) combines existing regional and national updates of soil information worldwide with355

the information contained by the FAO Soil Map of the World (Wieder, 2014). The val-356

ues correspond to the top 100 cm soil depth. The SoilGrids250m (SG250m) dataset pro-357

vides a globally gridded dataset of soil organic carbon at various depths between the sur-358

face and 200 cm belowground. The estimates are produced by an ensemble of machine359

learning methods that used 150,000 soil profiles and 158 remote sensing-based soil co-360

variates. Our study considers only the top 100 cm to ensure that the values are compa-361

rable to estimates from the HWSD dataset. It must be noted that both reference datasets362

differ considerably, with lower values in HWSD compared to SG250m, in part due to a363

poor representaion of wetlands and permafrost soils in HWSD Tifafi et al. (2018).364

2.3.5 Leaf area index365

We used three globally gridded reference LAI that are derived from satellite im-366

agery. MODIS LAI (MOD15A2H, collection 6) (R. Myneni et al., 2015) is based on the367

inversion of a three dimensional canopy radiative transfer model that simulates surface368

reflectance from canopy structural characteristics (Knyazikhin et al., 1998).369

A second LAI reference dataset was provided by Claverie et al. (2016) for the pe-370

riod 1982-2010. This dataset is based on an artificial neural network that relates LAI371

to surface reflectance from the Advanced Very High Resolution Radiometer (AVHRR).372

The artificial neural network was calibrated with LAI from MODIS (MCD15A2) and in373

situ data from BELMANIP2 (445 sites) (Baret et al., 2006). The performance of the al-374

gorithm was assessed against in situ observations from the DIRECT database (113) (Garrigues375

et al., 2008).376

A third LAI dataset was provided by the Copernicus Global Land Service for the377

period 1999-2019 (Verger et al., 2014). This product uses an artificial neural network that378

gives instantaneous estimates from reflectances by SPOT/VEGETATION satellite im-379

agery. The data are filtered to reduce the impacts of atmospheric effects and snow cover,380

temporally smoothed, and gap-filled. For the purpose of this study only non-gap filled381

grid cell values were used.382

2.3.6 Latent heat flux and runoff383

We used two globally gridded reference latent heat flux datasets. The first dataset384

provided by FluxCom covers the period 2001-2013 (Jung et al., 2019). As for GPP, Flux-385

Com upscales FLUXNET observations, where remote sensing data and meteorological386

data serve as global predictors. Our study uses median values from 36 FluxCom ensem-387

ble members that vary with respect to the employed meteorological forcing (Climate Re-388

search Unit National Centers for Environmental Prediction version 8, WATCH Forcing389

Data ERA Interim, the Global Soil Wetness Project 3, and Clouds and the Earth’s Ra-390

diant Energy System in combination with the Global Precipitation Climatology Project),391

the machine learning algorithm (Artificial Neural Network, Multivariate Adaptive Re-392
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gression Splines, and Random forest), and the energy balance closure correction (none,393

Bowen ratio correction and residual approach).394

Our second reference dataset was taken from the Conserving Land-Atmosphere Syn-395

thesis Suite (CLASSr), which covers the period 2003-2009 (Hobeichi et al., 2019). The396

CLASSr provides estimates of simultaneously balanced surface water and energy bud-397

get components. Each variable presents a weighted mean computed from multiple data398

products that are, to some extent, observation-based. The data are observationally con-399

strained with in situ measurements, and each term is adjusted to allow for energy and400

water balance closure. Latent heat flux provided by CLASSr is based on blending data401

from remote sensing, reanalysis, and TBMs.402

The CLASSr dataset described above also provides monthly runoff. The values are403

based on 11 runoff estimates from eight hydrological models that are constrained by ob-404

servational streamflow records from around 600 downstream stations. To obtain bench-405

mark scores for streamflow we converted monthly CLASSr runoff to annual streamflow406

for the earth’s 50 largest river basins and compared annual values against gauge mea-407

surements from GRDC.408

2.4 Automated Model Benchmarking R package (AMBER)409

The Automated Model Benchmarking R package developed by Seiler (2020) quan-410

tifies model performance using a skill score system that is based on the ILAMB frame-411

work (Collier et al., 2018). The method employs five scores that assess the model’s an-412

nual mean bias (Sbias), monthly centralized root-mean-square-error (Srmse), the timing413

of the seasonal peak (Sphase), inter-annual variability (Siav), and spatial distribution (Sdist).414

The exact definition of each skill score is provided in Appendix A. The main steps for415

computing a score usually include (i) computing a dimensionless statistical metric, (ii)416

scaling this metric onto a unit interval, and (iii) computing a spatial mean. All scores417

are dimensionless and range from zero to one, where increasing values imply better per-418

formance. These properties allow us to average skill scores across different statistical met-419

rics in order to obtain an overall score for each variable (Soverall) (Collier et al., 2018):420

Soverall =
Sbias + 2Srmse + Sphase + Siav + Sdist

1 + 2 + 1 + 1 + 1
. (2)

To reward models that reproduce a realistic response to changes in the meteorological421

forcing, we increase the weight of Srmse by a factor of two. In the case of GPP FluxCom422

we assign Siav a weight of zero, since the reference data are known to underestimate in-423

terannual variability (Jung et al., 2020).424

Model scores are calculated by comparing model output against observation-based425

reference data (Figure 1). Benchmark scores are computed by comparing multiple ref-426

erence datasets of a variable among each other. The purpose of benchmark scores is to427

quantify the similarity between equally plausible reference datasets, which indicates what428

level of agreement between model output and reference data can be expected, given how429

uncertain reference data are. For instance, consider the three inversion-based NBP ref-430

erence datasets CAMS, CT2019, and CarboScope. Comparing CT2019 using CAMS as431

a reference yields an overall score (Soverall) of 0.57. Comparing CarboScope using CAMS432

as a reference yields an Soverall value of 0.56. The benchmark score is then chosen to equal433

the minimum of both scores (0.56), which accounts for the full uncertainty range. This434

benchmark score only applies when using CAMS as reference data. Using CT2019 or Car-435

boScope as reference data may yield different benchmark scores for the following rea-436

son. Recall that evaluating CT2019 using CAMS as a reference data yields an overall437

score Soverall of 0.57. Evaluating CAMS using CT2019 as a reference data, on the other438

hand, yields an Soverall value of 0.58. The difference arises due to the normalization of439

a statistical metric. In the case of Sbias, the bias is divided by the standard deviation440

of the reference data σref (Equation A2). If we evaluate CT2019 using CAMS as a ref-441
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erence, the value of σref is given by CAMS, and if we evaluate CAMS using CT2019 as442

a reference, the value of σref is given by CT2019. We can therefore have different bench-443

mark scores for different reference datasets for the same variable in question.444

The final benchmarking step in Figure 1 consists of comparing model scores against445

benchmark scores. If model scores reach benchmark scores, then the degree of similar-446

ity between model output and reference data is the same as between two independent447

reference datasets. Using this criteria, we then judge models to perform sufficiently well,448

given how uncertain reference data are. Note that model scores may also exceed bench-449

mark scores when, for instance, model values are enclosed by the uncertainty range span450

by two or more reference data. All AMBER outputs for TRENDY are available at https://451

cseiler.shinyapps.io/TRENDY2020/ (last visited on November 22, 2021).452

3 Results453

3.1 Gross primary productivity and ecosystem respiration454

Reference data estimate global annual GPP fluxes to range from 108.9 (FluxCom)455

to 123.8 PgC yr−1 (GOSIF; Table 3). The corresponding TRENDY multi-model mean456

values lie within this uncertainty range, with values ranging between 115.0 and 119.3 PgC457

yr−1, depending on the choice of reference data. The multi-model mean values vary with458

the choice of reference data, because all comparisons are conducted for grid cells and time459

steps that models and reference data have in common. If the spatiotemporal coverage460

varies among reference data, so do the multi-model mean values. In relative terms, the461

mean bias across models ranges from -6% when evaluating models against GOSIF and462

+6% when choosing FluxCom as reference data. The biases of the individual models range463

between -27% and +25%, with 7/15 models lying within the uncertainty range of the464

reference data. Note that differences between reference values, listed in Table 3, may be465

caused by differences in the observational period and grid. Although all reference data466

are regridded to a common horizontal resolution of 1◦×1◦, datasets may still differ with467

respect to the distribution of grid cells with missing data. Reducing reference data to468

a common period and identical grid leads to similar results, with 5/15 models within the469

uncertainty range of global mean values, which is depicted in Figure 2a).470

Zonal mean values are well reproduced, but the inter-model spread is large, with471

values ranging from 5 to 10 gC m−2 day−1 at the equator (Figure 2a). The models re-472

produce the seasonal GPP cycle well across regions, with a tendency to overestimate the473

GPP amplitude in the boreal region of North America and Eurasia (Figure 3). Two mod-474

els with particularly large positive biases in the boreal regions are LPX-Bern and CLM5.0.475

This bias is confined to the boreal regions and does not extend across the globe. Eval-476

uations against FLUXNET data confirm that both models simulate larger-than-observed477

GPP values in boreal regions (Figure B2 e and l). GPP benchmark scores for globally478

gridded data equals 0.72, and multi-model mean scores range between 0.61 and 0.64 (Fig-479

ure 4). None of the models reach GPP benchmark scores, but some come close with model480

scores of 0.70 (ISAM, ORCHIDEE, and SDGVM).481

Concerning ecosystem respiration, our evaluation relies on in situ measurements482

only. This is because the currently available gridded reference datasets, which rely on483

spatially upscaled eddy covariance measurements, yield results that are inconsistent with484

inversion-based estimates in the tropics (Jung et al., 2020). Evaluating modeled ecosys-485

tem respiration against FLUXNET data shows that annual mean values are reasonably486

well reproduced with correlation coefficients ranging between 0.44 (ORCHIDEE-CNP)487

and 0.75 (ISBA-CTRIP) (Figure B3). The corresponding overall score values are sim-488

ilar to the GPP scores for FLUXNET data, with a multi-model mean score value of 0.62489

for both ecosystem respiration and GPP (Figure 4). Note that we did not compute ecosys-490

tem respiration benchmark scores as we lack a second reference dataset.491
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3.2 Net ecosystem exchange492

Evaluating modeled NEE against FLUXNET data shows no correlation for annual493

mean values (Figure B4). Annual mean FLUXNET NEE values range from -4.8 to +2.0494

gC m−2 day−1, with a mean value of -0.6 gC m−2 day−1. Modeled values cover a smaller495

NEE range from -1.3 to +0.4 gC m−2 day−1 with a mean value of -0.2 gC m−2 day−1.496

The apparent mismatch between modeled and observed values could be due to a vari-497

ety of reasons. First, grid cell values represent a much larger region compared to eddy498

covariance measurements. Second, the globally gridded data are not necessarily repre-499

sentative of the actual meteorological conditions at the site level. Third, models do not500

reproduce the disturbance history of FLUXNET sites. And fourth, gap-filling observa-501

tions may have reduced data quality. To address at least the last two issues, we filtered502

FLUXNET data for sites with mature forests and for months that have 95% of high qual-503

ity data (here referred to as FLUXNETB, see section 2.2). Evaluating models against504

high-quality sites located in mature forests improves the correlation between models and505

observations, with correlation coefficients reaching up to 0.69 (Figure 5). However, the506

modeled NEE ranges are still substantially smaller compared to the observations. This507

also holds true when considering only CO2 fluxes associated with tree PFTs (not shown,508

and tested for CLASSIC only due to data availability). Looking at model scores for each509

site shows that models perform best for sites that present modest sinks, with NEE val-510

ues of -0.5 gC m−2 day−1. The multi-model mean score improves from 0.48 to 0.55 when511

comparing modeled NEE against FLUXNET and FLUXNETB, respectively (Figure 4).512

This improvement is mainly due to an increase in the model score associated with the513

spatial distribution (Sdist). As for ecosystem respiration, we did not compute NEE bench-514

mark scores as we lack a second reference dataset.515

3.3 Net biome productivity516

Inversion models estimate a net CO2 sink with a global NBP that ranges between517

1.3 PgC yr−1 for CarboScope (1999-2019) and CT2019 (2000-2017) and 1.9 PgC yr−1
518

for CAMS (1979-2019) (Table 3). About half of the models (7/13) lie within the NBP519

uncertainty range (ISBA-CTRIP, JSBACH, OCN, ORCHIDEE, ORCHIDEEv3, SDGVM,520

VISIT), with a multi-model mean value that is in closer agreement with CarboScope and521

CT2019 than with CAMS (Table Appendix B).522

The zonal mean NBP of CAMS, CarboScope, and CT2019 show very little agree-523

ment, with opposing signs in multiple regions (Figure 2b). TRENDY models do not re-524

produce the zonal mean values of either reference dataset. The only region with some525

reasonable agreement between both reference datasets and models is the tendency for526

a carbon sink between 50◦N and 65◦N. Averaging NBP values across every 30 degrees527

latitude shows that models and reference data agree on a stronger sink in higher lati-528

tudes compared to the tropics (Figure 2c).529

All three reference datasets show a very similar global seasonal cycle, with a net530

carbon source during the NH winter and a net carbon sink during the NH summer (Fig-531

ure 6). While the seasonal cycle of the multi-model mean is in reasonable agreement with532

the reference data, the inter-model spread can be large. For instance, model values in533

the boreal region range between 0 and 2 gC m−2 day−1 during summer (Figure 6a and534

g). Multi-model mean scores (0.50-0.53) and benchmark scores (0.52, 0.56) are similar,535

with six models reaching benchmark scores (IBIS, ISAM, ISBA-CTRIP, ORCHIDEE,536

ORCHIDEEv3 and VISIT; Figure 4).537

3.4 Vegetation carbon538

The amount of vegetation carbon stored in forested regions on a global scale varies539

strongly among reference data, with 264.6 PgC for Geocarbon-Mokany, 310.2 PgC for540
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Huang2021, and 482.5 PgC for Zhang-Mokany (Table 3). As a comparison, global veg-541

etation carbon estimates for all biomes reported by Friedlingstein et al. (2020) range from542

450 to 650 PgC. This range is taken from the 5th Assessment Report of the Intergov-543

ernmental Panel on Climate Change (AR5) (Ciais et al., 2013), which cites the 3rd As-544

sessment Report (AR3) (Houghton et al., 2001). The values in AR3 are based on data545

provided by Dixon et al. (1994) (466 PgC) and Roy et al. (2001) (654 PgC). The cor-546

responding range for vegetation biomass in forests only is 359-539 PgC (Houghton et al.,547

2001), which is larger compared to the range reported in our study. The multi-model mean548

value (403.3-429.2 PgC) lies within the observational uncertainty range (Table 3 and Fig-549

ure 2c). The biases of the individual models range between -35% and +109%, with 10/15550

models that are within the uncertainty range.551

The zonal mean values tend to be largest for Zhang-Mokany followed by Huang2021552

and GEOCARBON-Mokay (Figure 2d). The Zhang-Mokany dataset is in stronger agree-553

ment with forest inventory data (Soverall = 0.76) than the Huang2021 (Soverall = 0.69)554

or the Geocarbon-Mokany dataset (Soverall = 0.68). All three tend towards a negative555

bias, with a larger bias for Geocarbon-Mokany (-57%) than for Huang2021 (-38%), and556

Zhang-Mokany (-26%), suggesting that the latter is likely to provide more accurate val-557

ues, at least for regions where forest inventory data are present (Figure B5). It must be558

noted that this comparison is limited by the fact that the three data sets Geocarbon-559

Mokany, Zhang-Mokany, and FOSXue all use the same approach for estimating below-560

ground biomass, which makes them more similar by construction.561

Multi-model zonal mean values are in closer agreement with data from Zhang-Mokany562

compared to Huang2021 and Geocarbon-Mokany. All models tend towards a negative563

bias when assessed against forest inventory. Benchmark scores (0.62-0.74) and multi-model564

mean scores (0.60-0.69) are similar, where 6/15 models meet benchmarks when evalu-565

ated against in situ measurements (CLM5.0, ISAM, ISBA-CTRIP, JSBACH, OCN, SDGVM),566

and 5/15 models reach benchmarks when assessed against Geocarbon-Mokany (Figure567

4).568

3.5 Soil organic carbon569

The global soil organic carbon pool in the top 100 cm is estimated to range between570

1143 PgC (HWSD) and 2708 PgC (SG250m). The larger values in SG250 are found across571

all latitudes, but differences are particularly large at high latitudes (50-80◦N) as well as572

the equator associated with differences in SE Asia (Table 3 and Figure 2e). As a com-573

parison, the global soil carbon pool reported by Friedlingstein et al. (2020) is estimated574

to range from 1500 to 2400 PgC. This range is taken from AR5 (Ciais et al., 2013), and575

is based on a global soil carbon map developed by Batjes (1996), who estimate a soil or-576

ganic carbon pool of 1462-1548 PgC in the upper 100 cm and 2376-2456 PgC in the up-577

per 200 cm.578

Models are in much closer agreement with HWSD (-3% mean bias) than with SG250m579

(-57% mean bias), with 5/15 models showing values that are within the observational580

uncertainty range (Table 3 and Figure 2d). Zonal multi-model mean values are in close581

agreement with HWSD, lacking the large increase of soil organic carbon at higher lat-582

itudes present in SG250m (Figure 2e). The model CLM5.0 was excluded from Figure583

2e, as it produces zonal mean values that exceed 200 kgC m−2, dwarfing values from all584

other datasets. The top three models with largest soil organic carbon stocks are CLM5.0585

(3139 PgC), LPX-Bern (1838 PgC), and ISBA-CTRIP (1549 PgC), all of which include586

processes required for simulating carbon dynamics in permafrost regions (Table 1).587

Due to the large differences between HWSD and SG250m, the benchmarking val-588

ues are very small (0.33-0.42). All models but CLM5.0 therefore exceed the benchmark589

when assessed against HWSD. However, this result must be interpreted with caution.590

The large discrepancy between HWSD and SG250m suggests that the datasets have fun-591
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damental differences, possibly related to a poor representation of wetlands and permafrost592

soils in HWSD (Tifafi et al., 2018). It is therefore likely that SG250m is more accurate593

than HWSD, which implies that the difference between HWSD and SG250m overesti-594

mates the true observational uncertainty.595

3.6 Leaf area index596

Remotely sensed estimates of LAI yield very similar global mean values, ranging597

from 1.4 to 1.5 m2 m−2 (Table 3 and Figure 2f). The multi-model mean value exceeds598

the observational uncertainty range by up to 67%, with biases from individual models599

between -4% and +220%. Only one model (ORCHIDEE-CNP) is within the uncertainty600

range, while all other models (13/14) show positive biases for all three global reference601

data.602

Zonal mean values of annual mean LAI are very similar among all three reference603

datasets (Figure 2e). The multi-model zonal mean values reproduce the general pattern604

of the reference data, with a positive bias of up to 2 m2 m−2 across most latitudes. In-605

dividual ensemble members can have very large biases of up to 7 m2 m−2 at the equa-606

tor. The tendency for a positive LAI bias is evident for all regions and seasons (Figure607

7). The seasonal peak of maximum LAI tends to lag behind the reference data by about608

one month in the boreal and temperate regions. Also, the model IBIS lacks a seasonal609

LAI cycle in the tropics.610

Comparing satellite-based LAI against in situ measurements from CEOS suggests611

that global reference data tend towards a negative bias ranging between -0.2 m2 m−2
612

(-10%) for Copernicus to -0.4 m2 m−2 (-19%) for MODIS when evaluated against data613

from CEOS. This leads to the question whether the positive LAI of TBMs described above614

is due to an underestimation of LAI in satellite-based reference data. Comparing mod-615

elled LAI against the same in situ data yields far greater biases for multiple models, most616

notably for the models IBIS (+71%), LPX-Bern (+144%), and OCN (85%; Figure 8 g,617

k, l). Furthermore model biases derived from globally gridded reference data and in situ618

data are correlated (R = 0.95) and of similar magnitude. For instance, a model with619

a large bias with respect to globally gridded reference LAI (LPX-Bern, 154% with re-620

spect to Copernicus) also has a large bias when assessed against in situ measurements621

(144% with respect to CEOS). Conversely, a model with a small bias with respect to glob-622

ally gridded reference LAI (ORCHIDEE-CNP, -4%) also has a small bias when assessed623

against in situ data (1%). This suggests that the positive LAI bias present in some mod-624

els is real, and not just due to an underestimation of LAI in satellite products. However,625

it must be noted that the evaluation against CEOS data is limited by the fact that sam-626

pling size varies substantially among regions, with the largest sampling density located627

in Europe. While none of the models reaches benchmarks for globally gridded reference628

LAI (0.65-0.66), 5/15 models reach the benchmark for in situ data (0.66; CLM5.0, ISBA-629

CTRIP, ORCHIDEE, ORCHIDEE-CNP, and ORCHIDEEv3) (Figure 4).630

3.7 Latent heat flux631

Global fluxes of annual mean latent heat from CLASSr and FluxCom range from632

32.6 to 45.2 W m−2 (Table 3 and Figure 2f). The multi-model mean value, as well as633

the values from most individual models (14/15), lie within the observational uncertainty634

range. FluxCom values exceed CLASSr values across all latitudes. The inter-quartile range635

of models reproduces zonal patterns well, mostly within the observational uncertainty636

range. However, considerable inter-model spread remains in the tropics, where zonal mean637

latent heat fluxes range between 70 and 120 W m−2 at the equator, confirming previ-638

ous findings from Pan et al. (2020). Multi-model mean values reproduce the seasonal cy-639

cle well, but the inter-model range is very large in the tropical parts of South America640

and Asia (Figure B6). The large inter-model spread is also present at the site-level, where641
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annual mean biases across all sites range from -31% (LPX-Bern) to +20% (JSBACH)642

(Figure B7).643

The multi model mean scores (0.67 and 0.70 when assessed against FluxCom and644

CLASSr, respectively) exceed the benchmark scores for globally gridded and site-level645

reference data (0.62-0.67). Most of the individual models reach the benchmark scores,646

suggesting that most models perform well given how uncertain current reference data647

are. One exception is JSBACH with a systematic positive bias across all regions and sea-648

sons.649

3.8 Runoff and streamflow650

Global mean reference runoff (CLASSr) is estimated to be 0.7 kg m−2 day−1 (Fig-651

ure 3 and Figure 2g). The multi-model mean bias is -8%, with biases from individual652

models ranging between -55% (JSBACH) and +9% (ORCHIDEE-CNP). There is no clear653

tendency for models to have either positive or negative biases.654

The models reproduce the zonal mean pattern of annual mean runoff reasonably655

well (Figure 2g). The seasonal runoff peak, however, is two months earlier compared to656

CLASSr (Figure B8). The time lag is present in multiple parts of the globe, including657

the boreal regions, tropical South America, and Europe (Figure B8).658

Converting runoff to annual streamflow for the earth’s 50 largest river basins and659

comparing values against gauge measurements from GRDC shows that models repro-660

duce annual streamflow reasonably well (11/14 models with R ≥ 0.9; Figure B9). How-661

ever, none of the models nor the multi-model mean streamflow score of 0.71 reach the662

corresponding benchmark score of 0.82 (Figure 4).663

3.9 Model performance664

Our findings documented above show that benchmark scores vary considerably among665

variables, ranging from 0.33 for soil organic carbon to 0.82 for runoff. Model scores range666

from 0.39 to 0.71 for the same variables, which raises the question to what extent both667

scores are correlated. Figure 9 compares model scores against benchmark scores, where668

dots represent mean score values and bars show total ranges. The Figure shows that model669

scores and benchmark scores are positively correlated, suggesting that low model scores670

can result not only from model deficiencies, but also from observational uncertainties.671

One important exception is LAI, with model scores (0.50) that are much lower than bench-672

mark scores (0.66 minimum) for globally gridded products. The large difference suggests673

that models have a great potential for improving their representation of LAI. This also674

applies when evaluating models against in situ LAI data from CEOS.675

Another question we want to address here is to what extent model score differences676

are related to dynamic carbon-nitrogen (CN) interactions, permafrost, and wetlands (Ta-677

ble 1). There is no indication that a representation of CN interactions improves model678

performance. Comparing the model versions ORCHIDEE (with CN-interactions) against679

ORCHIDEEv3 (without CN-interactions) shows no statistically significant difference be-680

tween the mean scores when considering all evaluations combined (two-sided t-test, p-681

value = 0.05). Comparing the mean score of all models that include CN-interactions (ten682

models) against the mean score of all models that lack such representation (five mod-683

els) suggests that the inclusion of CN-interactions leads to statistically significant lower684

scores when assessing models for NBP from CT2019 (-0.03) and CAMS (-0.04). This re-685

sult suggests that modeling groups may consider retuning their models when incorpo-686

rating CN interactions. Models that include a representation of processes required for687

simulating carbon dynamics in permafrost regions (four models) tend to perform bet-688

ter than models that lack such representation when assessing runoff (0.02 for CLASSr689

and GRDC) and vegetation carbon (0.05 for FOSXue). Models that represent carbon690
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dynamics in wetlands (three models) perform better for NBP (0.04 for CarboScope) but691

worse for vegetation carbon (-0.05 for ZhangMokany). Since only two models include a692

representation of carbon dynamics in peatlands, we cannot assess to what extent the in-693

clusion of such processes have any statistical significance on model performance.694

4 Discussion695

Our study evaluates how well TRENDY models reproduce variables that drive the696

terrestrial carbon sink. A particular focus was to quantify what level of agreement be-697

tween model output and reference data should be expected given that reference data are698

imperfect. Our approach accounts for observational uncertainties using two sets of skill699

scores. Model scores summarize the similarity between model output and reference data700

across multiple statistical metrics, including the bias, the centralized root mean square701

error, time lags of seasonal maxima or minima, inter-annual variability, as well as spa-702

tial variability and correlation. Scores range from zero to unity, where unity implies per-703

fect agreement. Using the same statistical framework we then compute benchmark scores704

that quantify the similarity between independently derived reference data, which serves705

as an approximation of observational uncertainty. If model scores reach benchmark scores,706

then models perform sufficiently well, given how uncertain reference data are. For in-707

stance, comparing modeled against reference GPP from FluxCom yields a maximum model708

score of 0.70, suggesting that model performance is modest. However, comparing remotely709

sensed GPP (GOSIF) against FluxCom yields a benchmark score of 0.72, which suggests710

that model performance is reasonable given how uncertain reference data are.711

Our results show that the disagreement between independently derived reference712

data are much larger than expected, with benchmark scores ranging between 0.33 for soil713

organic carbon, to 0.82 for annual streamflow. Comparing model scores against bench-714

mark scores shows that both scores are positively correlated, suggesting that low model715

scores is often a sign of large observational uncertainty rather than poor model perfor-716

mance alone. For instance, model and benchmark scores are both relatively low for NBP717

(0.51 and 0.55, respectively) and relatively high for streamflow (0.71 and 0.82, respec-718

tively). The larger the gap between model scores and benchmark scores, the greater the719

potential for model improvement. For instance, this applies to LAI, with a model score720

of about 0.49 and a benchmark score of about 0.66 for globally gridded data. We fur-721

ther conclude that the lower the benchmark score, the greater the need to reduce obser-722

vational uncertainty. This applies in particular to gridded reference data for soil organic723

carbon and inversion-based estimates for NBP.724

Considering these findings, can we conclude that TRENDY models are fit for sim-725

ulating the terrestrial carbon sink? Let us recall that the terrestrial carbon sink, which726

is here defined by the term SLAND in equation 1, represents the natural carbon sink un-727

der present-day conditions for atmospheric CO2 and climate, but pre-industrial land cover728

(S2 simulation). Given the counter-factual nature of SLAND, we can only evaluate it in-729

directly by assessing NBP, and the processes that drive it, in the S3 simulation where730

CO2, climate, and LULCC forcings all vary in time. The better a model performs for731

those variables, the greater the likelihood that its estimate of SLAND is reliable. In the732

best case, all models, or at least the multi-model mean, would reach benchmark scores733

for all variables assessed in this study. While this is clearly not the case, for multiple vari-734

ables (NBP, vegetation carbon, LAI, latent heat flux) there is at least one model that735

reaches the benchmark. In the case of GPP, none of the models reach the benchmark736

for globally gridded values (0.72), but some models come reasonably close (e.g. ORCHIDEE737

and SDGVM with 0.70). Furthermore, for GPP, vegetation carbon, and latent heat flux,738

the global multi-model annual mean values are within the uncertainty range of the ref-739

erence data. This supports the notion that model diversity is a healthy aspect of any sci-740

entific community. Finally, the seasonal cycle of NBP across TransCom regions is rea-741

sonably consistent with results from inversion models, although the inter-model spread742
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remains large, in particular in the boreal regions. We conclude that the performance of743

the TRENDY ensemble is encouraging, but that ample potential for improvements re-744

mains. Future efforts should focus on reducing the positive LAI bias across the globe,745

improving the representation of processes that govern soil organic carbon in high lati-746

tudes, and assessing the causes that drive the large inter-model spread of GPP ampli-747

tude in boreal regions and zonal mean GPP in the humid tropics. The potential for model748

improvement, however, also relies on our capability to reduce observational uncertainty.749

This applies in particular to globally gridded products of NBP and soil organic carbon.750

Our approach leads to a new interpretation of the TRENDY model scores presented751

by Friedlingstein et al. (2020). Their main findings are that (i) TRENDY models show752

high skill scores for runoff, and to a lesser extent for vegetation biomass, GPP, and ecosys-753

tem respiration, and that (ii) skill scores are lowest for LAI and NEE, with a widest dis-754

parity among models for soil organic carbon. While our model scores are mainly con-755

sistent with these findings, our benchmark scores lead to a somewhat different interpre-756

tation. For instance, we confirm that model scores are larger for runoff than for GPP,757

but the difference between model and benchmark scores, and hence model performance,758

is approximately the same for both variables. Furthermore, the effectiveness of future759

model development is dependent on our ability to reduce observational uncertainties of760

these two variables. For soil organic carbon in particular, the observational uncertain-761

ties must be reduced substantially to provide adequate guidance for model development.762

If the large values in SG250m are due to a better representation of wetlands and per-763

mafrost soils compared to HWSD (Tifafi et al., 2018), then modeling groups may con-764

sider masking-out wetlands and permafrost soils when evaluating model output against765

HWSD (Tian, Lu, et al., 2015).766

One limitation of our study is that our evaluation does not assess the CO2 fertil-767

ization effect, which presents an important driver of SLAND next to changes in climate.768

This could be addressed by including evaluations against Free Air CO2 Enrichment (FACE)769

experiments in mature forests, which are currently in progress (Norby et al., 2016). An-770

other limitation is that we are unable to assess how uncertainty in model inputs affects771

model scores as the TRENDY ensemble includes only a single set of model forcing data.772

However, this has been investigated by G. B. Bonan et al. (2019) and Seiler et al. (2021)773

for the terrestrial biosphere models CLM and CLASSIC, respectively. Both studies con-774

clude that the uncertainties associated with climate forcing are too large to be neglected.775

For instance, Seiler et al. (2021) show that the global mean biases of seven out of 19 vari-776

ables switches sign when forcing CLASSIC with different meteorological datasets. Such777

results suggest that robust model development must consider multiple forcing datasets778

to avoid tuning models towards a particular forcing dataset.779

Future evaluations of TRENDY models would benefit from having access to above-780

ground vegetation carbon model output, which is currently available for some models781

only. Evaluating above ground rather than total vegetation carbon is an advantage be-782

cause below ground vegetation carbon is difficult to measure. Furthermore, modeling groups783

should provide PFT-specific values for aboveground vegetation carbon and NEE to al-784

low for a more direct evaluation against forest inventory data and eddy covariance mea-785

surements, respectively. Finally, a more comprehensive evaluation would require access786

to more model variables for all TRENDY models, including radiation fluxes, sensible heat787

flux, soil respiration, fractional area burnt, CO2 emissions from fires, and snow water equiv-788

alent. Including those variables may help diagnosing the underlying causes of model de-789

ficiencies.790

Our results demonstrate that benchmark scores facilitate the interpretation of model791

scores as they indicate what level of agreement between model output and reference data792

may be expected, and whether low model scores indeed reflect poor model performance793

or observational uncertainty. Our benchmark approach is not limited to TBMs or the794

AMBER or ILAMB statistical framework, but can be applied to any geophysical model795
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that is evaluated against observations. We hope these results will stimulate model de-796

velopment that aims at reducing the uncertainties of processes that drive terrestrial car-797

bon, water, and energy fluxes.798
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TRENDY TBMs

AMBER

Reference Datasets

AMBER

Model 
 Scores

Benchmark 
 Scores

Benchmarking

Figure 1. Conceptual diagram of benchmarking Terrestrial Biosphere Models (TBMs) us-

ing the Automated Model Benchmarking R package (AMBER). Model scores are computed by

comparing model output against reference data. Benchmark scores are computed by comparing

multiple reference datasets against each other. Benchmarking consists of comparing model scores

against benchmark scores.

–18–



manuscript submitted to Global Biogeochemical Cycles

Figure 2. Zonal mean values of annual mean (a) gross primary productivity, (b) net biome

productivity, (c) net biome productivity averaged every 30 degrees latitude (d) vegetation carbon,

(e) soil organic carbon, (f) leaf area index, (g) latent heat flux, and (h) runoff. Red/yellow color

shades denote reference data, and blue/green color shades give the mean values and percentiles

of models (50%, 80%, 100%). The boxplots give the multi-model median, the inter-quartile range

(box), and 80th percentiles (whiskers) of global annual mean values. Triangles give the multi-

model mean, and grey circles indicate results for individual models.
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Figure 3. Climatological mean seasonal cycle of gross primary productivity for TransCom

regions shown in Figure Appendix B1a. Blue/green color shades give the mean values and per-

centiles of models (50%, 80%, 100%).
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Figure 4. Model and benchmark scores, where white boxes present cases where model scores

exceed the multi-model mean values and green circles denote cases where model scores exceed

benchmark scores. Blank spaces indicate missing data.
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Figure 5. Evaluation of annual mean net ecosystem exchange model output against forest

eddy-covariance measurements that were filtered for data quality and disturbance history in units

of gC m−2 day−1.
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Figure 6. Same as Figure 3 but for net biome productivity.
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Figure 7. Same as Figure 3 but for leaf area index.
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Figure 8. Evaluation of leaf area index against site-level measurements with units in m2 m−2.
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Figure 9. Model scores and benchmark scores, where dots present multi-model mean values

and bars give the total range of model scores.
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Table 1. TRENDY (v9) terrestrial biosphere models, their horizontal resolution in terms of de-

grees longitude and latitude, and whether models include representations of processes required for

simulating carbon cycle dynamics related to (i) carbon-nitrogen (C-N) interaction, (ii) wetlands,

(iii) peatlands, and (iv) permafrost.

Model Resolution C-N Wetland Peatland Permafrost Reference

CLASSIC 1◦ × 1◦ no no no no Melton et al. (2020)
CLM5.0 1◦ × 1◦ yes no no yes Lawrence et al. (2019)
DLEM 0.5◦ × 0.5◦ yes yes yes no Tian, Chen, et al. (2015)
IBIS 1◦ × 1◦ no no no no Yuan et al. (2014)
ISAM 0.5◦ × 0.5◦ yes yes no yes Meiyappan et al. (2015)
ISBA-CTRIP 1◦ × 1◦ no no no yes Delire et al. (2020)
JSBACH 1.875◦ × 1.875◦ yes no no no Reick et al. (2021)
LPJ-GUESS 0.5◦ × 0.5◦ yes no no no Smith et al. (2014)
LPX-Bern 0.5◦ × 0.5◦ yes no yes yes Lienert and Joos (2018)
OCN 1◦ × 1◦ yes no no no Zaehle and Friend (2010)
ORCHIDEE 0.5◦ × 0.5◦ no no no no Krinner et al. (2005)
ORCHIDEE-CNP 2◦ × 2◦ yes no no no Goll et al. (2017)
ORCHIDEEv3 2◦ × 2◦ yes no no no Vuichard et al. (2019)
SDGVM 1◦ × 1◦ yes no no no Walker et al. (2017)
VISIT 0.5◦ × 0.5◦ no yes no no Kato et al. (2013)
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Table 2. Observation-based reference data used for model evaluation. Meanings of acronyms are provided in the Methods section.

Source Variables Approach (n sites) Period Reference

In situ measurements
FLUXNET2015 GPP, RECO, NEE, HFLS eddy covariance (204) 1997-2014 Pastorello et al. (2020)
FOS CVEG allometry (274) 1999-2018 Schepaschenko et al. (2019)
Xue CVEG allometry (1974) 1999-2018 Xue et al. (2017)
CEOS LAI transfer function (141) 1999-2017 Garrigues et al. (2008)
GRDC MRRO gauge records (50) 1980-2010 Dai and Trenberth (2002)

Globally gridded datasets
MODIS GPP light use efficiency model 2000-2016 Zhang et al. (2017)
GOSIF GPP statistical model 2000-2017 Li and Xiao (2019)
FluxCom GPP machine learning 1980-2013 Jung et al. (2020)
CT2019 NEE atmospheric inversion 2000-2017 Jacobson et al. (n.d.)
CAMS NBP atmospheric inversion 1979-2019 Agust́ı-Panareda et al. (2019)
CarboScope NBP atmospheric inversion 1999-2019 Rödenbeck et al. (2018)
GEOCARBON CVEG machine learning NA Avitabile et al. (2016),

Santoro et al. (2015)
Zhang CVEG data fusion 2000s Zhang and Liang (2020)
HWSD CSOIL soil inventory NA Wieder (2014)

Todd-Brown et al. (2013)
SG250m CSOIL machine learning NA Hengl et al. (2017)
AVHRR LAI artificial neural network 1982-2010 Claverie et al. (2016)
Copernicus LAI artifial neural network 1999-2019 Verger et al. (2014)
MODIS LAI radiative transfer model 2000-2017 R. B. Myneni et al. (2002)
FluxCom HFLS machine learning 2001-2013 Jung et al. (2019)
CLASSr HFLS, MRRO blended product 2003-2009 Hobeichi et al. (2019)
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Table 3. Global reference (Ref.) and multi-model mean values, with multi-model mean, minimum, and maximum relative biases, and number of models with

positive (Pos.) and negative (Neg.) biases. In the absence of a reference period, model values are averaged over the 1980-2017 period.

Variable Ref.ID Period Unit Reference Multi-model Mean Minimum Maximum Pos. Neg.
Mean Bias (%) Bias (%) Bias (%)

GPP FluxCom 1980-2013 PgC yr−1 108.9 115.0 6 -17 25 11 4
GPP GOSIF 2000-2017 PgC yr−1 123.8 116.0 -6 -27 12 4 11
GPP MODIS 2000-2016 PgC yr−1 115.2 119.3 4 -20 23 11 4
NBP CAMS 1979-2019 PgC yr−1 1.9 1.0 -46 -86 -19 0 13
NBP CarboScope 1999-2019 PgC yr−1 1.3 1.3 -1 -79 50 7 6
NBP CT2019 2000-2017 PgC yr−1 1.3 1.2 -9 -82 37 5 8
CVEG Geocarbon-Mokany YYYYs PgC 264.6 403.3 52 11 109 15 0
CVEG Zhang-Mokany 2000s PgC 482.5 429.2 -11 -35 20 5 10
CVEG Huang2021 NA PgC 310.2 344.6 11 -17 53 9 6
CSOIL HWSD NA PgC 1143.4 1121.1 -3 -57 146 6 9
CSOIL SG250m NA PgC 2708.0 1160.9 -57 -82 9 1 14
LAI AVHRR 1982-2010 m2 m−2 1.4 2.1 58 4 210 15 0
LAI Copernicus 1999-2019 m2 m−2 1.4 2.0 50 -4 187 14 1
LAI MODIS 2000-2017 m2 m−2 1.5 2.5 67 9 220 15 0
HFLS CLASSr 2003-2009 W m−2 32.6 37.0 13 -12 40 14 1
HFLS FluxCom 2001-2013 W m−2 45.2 40.1 -11 -34 10 1 14
MRRO CLASSr 2003-2009 kg m−2 day−1 0.7 0.6 -8 -55 9 8 6
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Appendix A Automated Model Benchmarking R package (AMBER)799

The Automated Model Benchmarking R package (AMBER; version 1.1.0) quan-800

tifies model performance using five scores that assess the model’s bias (Sbias), root-mean-801

square-error (Srmse), seasonality (Sphase), inter-annual variability (Siav), and spatial dis-802

tribution (Sdist). All scores are dimensionless and range from zero to one, where increas-803

ing values imply better performance. The exact definition of each skill score is provided804

below.805

A01 Bias score (Sbias)806

The bias is defined as the difference between the time-mean values of model and807

reference data:808

bias(λ, φ) = vmod(λ, φ)− vref (λ, φ), (A1)

where vmod(λ, φ) and vmod(λ, φ) are the mean values in time (t) of a variable v as a func-809

tion of longitude λ and latitude φ for model and reference data, respectively. Nondimen-810

sionalization is achieved by dividing the bias by the standard deviation of the reference811

data (σref ):812

εbias(λ, φ) = |bias(λ, φ)|/σref (λ, φ). (A2)

Note that εbias is always positive, as it uses the absolute value of the bias. For evalu-813

ations against stream flow measurements the bias is divided by the annual mean rather814

than the standard deviation of the reference data. This is because we assess streamflow815

on an annual rather than monthly basis, implying that the corresponding standard de-816

viation is small. The same approach is applied to soil carbon and biomass, whose ref-817

erence data provide a static snap shot in time. In both of these cases, εbias(λ, φ) becomes:818

εbias(λ, φ) = |bias(λ, φ)|/vref (λ, φ). (A3)

A bias score that scales from zero to one is calculated next:819

sbias(λ, φ) = e−εbias(λ,φ). (A4)

While small relative errors yield score values close to one, large relative errors cause score820

values to approach zero. Taking the mean of sbias across all latitudes and longitudes, de-821

noted by a double bar over a variable, leads to the scalar score:822

Sbias = sbias(λ, φ). (A5)

A02 Root-mean-square-error score (Srmse)823

While the bias assesses the difference between time-mean values, the root-mean-824

square-error (rmse) is concerned with the residuals of the modeled and observed time825

series:826

rmse(λ, φ) =

√
1

tf − t0

∫ tf

t0

(vmod(t, λ, φ)− vref (t, λ, φ))2dt, (A6)

where t0 and tf are the initial and final time step, respectively. A similar metric is the827

centralized rmse (crmse), which is based on the residuals of the anomalies:828

crmse(λ, φ) =

√
1

tf − t0

∫ tf

t0

[(vmod(t, λ, φ)− vmod(λ, φ))− (vref (t, λ, φ)− vref (λ, φ))]2dt.

(A7)
The crmse, therefore, assesses residuals that have been bias-corrected. Since we already829

assessed the model’s bias through Sbias, it is convenient to assess the residuals using crmse830

rather than rmse. In a similar fashion to the bias, we then compute a relative error:831

εrmse(λ, φ) = crmse(λ, φ)/σref (λ, φ), (A8)
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scale this error onto a unit interval:832

srmse(λ, φ) = e−εrmse(λ,φ), (A9)

and compute the spatial mean:833

Srmse = srmse. (A10)

A03 Phase score (Sphase)834

The skill score Sphase assesses how well the model reproduces the seasonality of a835

variable by computing the time difference (θ(λ, φ)) between modeled and observed max-836

ima of the climatological mean cycle:837

θ(λ, φ) = max(cmod(t, λ, φ))−max(cref (t, λ, φ)), (A11)

where cmod and cref are the climatological mean cycle of the model and reference data,838

respectively. This time difference is then scaled from zero to one based on the consid-839

eration that the maximum possible time difference is six months:840

sphase(λ, φ) =
1

2

[
1 + cos

(
2πθ(λ, φ)

365

)]
. (A12)

The spatial mean of sphase then leads to the scalar score:841

Sphase = sphase. (A13)

A04 Inter-annual variability score (Siav)842

The skill score Siav quantifies how well the model reproduces patterns of inter-annual843

variability. This score is based on data where the seasonal cycle (cmod and cref ) has been844

removed:845

iavmod(λ, φ) =

√
1

tf − t0

∫ tf

t0

(vmod(t, λ, φ)− cmod(t, λ, φ))2dt, (A14)

846

iavref (λ, φ) =

√
1

tf − t0

∫ tf

t0

(vref (t, λ, φ)− cref (t, λ, φ))2dt. (A15)

The relative error, nondimensionalization, and spatial mean are computed next:847

εiav = |(iavmod(λ, φ)− iavref (λ, φ))|/iavref (λ, φ), (A16)

848

siav(λ, φ) = e−εiav(λ,φ), (A17)
849

Siav = siav. (A18)

A05 Spatial distribution score (Sdist)850

The spatial distribution score Sdist assesses how well the model reproduces the spa-851

tial pattern of a variable. The score considers the correlation coefficient R and the rel-852

ative standard deviation σ between vmod(λ, φ) and vref (λ, φ). The score Sdist increases853

from zero to one, the closer R and σ approach a value of one. No spatial integration is854

required as this calculation yields a single value:855

Sdist = 2(1 +R)

(
σ +

1

σ

)−2

, (A19)

where σ is the ratio between the standard deviation of the model and reference data:856

σ = σvmod
/σvref . (A20)
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A06 Overall score (Soverall)857

As a final step, scores are averaged to obtain an overall score:858

Soverall =
Sbias + 2Srmse + Sphase + Siav + Sdist

1 + 2 + 1 + 1 + 1
. (A21)

Note that Srmse is weighted by a factor of two, which emphasizes its importance.859

Appendix B Supportive Figures860

Figure B1. (a) Location of FLUXNET sites and TransCom regions (1 = North American

Boreal, 2 = North American Temperate, 3 = South American Tropical, 4 = South American

Temperate, 5 = Northern Africa, 6 = Southern Africa, 7 = Eurasia Boreal, 8 = Eurasia Tem-

perate, 9 = Tropical Asia, 10 = Australia, 11 = Europe) (Gurney et al., 2004), (b) site-level

measurements of leaf area index, (c) forest inventory sites, and (d) river basins with location of

streamflow measurements.

–32–



manuscript submitted to Global Biogeochemical Cycles

Figure B2. Evaluation of gross primary productivity against eddy covariance measurements

in units of gC m−2 day−1.
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Figure B3. Evaluation of ecosystem respiration against eddy covariance measurements in

units of gC m−2 day−1.
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Figure B4. Evaluation of annual mean net ecosystem exchange model output against eddy-

covariance measurements in units of gC m−2 day−1.
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Figure B5. Evaluation of vegetation carbon against site-level measurements in units of kgC

m−2.
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Figure B6. Same as Figure 3 but for latent heat flux.
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Figure B7. Evaluation of latent heat flux against eddy covariance measurements in units of

W m−2.
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Figure B8. Same as Figure 3 but for runoff.
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Figure B9. Evaluation of annually streamflow against gauge records in units of kg m−2

day−1.
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Table B1. Globally summed mean values and corresponding biases

Variable Ref. ID Model ID Ref. Model Bias Bias (%) Unit Period

NBP CAMS CLASSIC 1.86 0.82 -1.04 -55.91 PgC yr−1 1979-2017
NBP CAMS CLM5.0 1.90 0.68 -1.22 -64.21 PgC yr−1 1979-2019
NBP CAMS IBIS 1.60 0.74 -0.86 -53.75 PgC yr−1 1979-2019
NBP CAMS ISAM 1.88 0.94 -0.94 -50.00 PgC yr−1 1979-2019
NBP CAMS ISBA-CTRIP 1.89 1.19 -0.70 -37.04 PgC yr−1 1979-2019
NBP CAMS JSBACH 1.80 1.01 -0.79 -43.89 PgC yr−1 1979-2019
NBP CAMS LPX-Bern 1.90 0.40 -1.50 -78.95 PgC yr−1 1979-2019
NBP CAMS OCN 1.86 1.51 -0.35 -18.82 PgC yr−1 1979-2019
NBP CAMS ORCHIDEE 1.90 1.46 -0.44 -23.16 PgC yr−1 1979-2019
NBP CAMS ORCHIDEE-CNP 1.91 0.26 -1.65 -86.39 PgC yr−1 1979-2019
NBP CAMS ORCHIDEEv3 1.91 1.34 -0.57 -29.84 PgC yr−1 1979-2019
NBP CAMS SDGVM 1.87 1.30 -0.57 -30.48 PgC yr−1 1979-2019
NBP CAMS VISIT 1.85 1.26 -0.59 -31.89 PgC yr−1 1979-2019
NBP CT2019 CLASSIC 1.33 1.17 -0.16 -12.03 PgC yr−1 2000-2017
NBP CT2019 CLM5.0 1.33 0.80 -0.53 -39.85 PgC yr−1 2000-2018
NBP CT2019 IBIS 1.17 0.97 -0.20 -17.09 PgC yr−1 2000-2018
NBP CT2019 ISAM 1.31 0.91 -0.40 -30.53 PgC yr−1 2000-2018
NBP CT2019 ISBA-CTRIP 1.32 1.24 -0.08 -6.06 PgC yr−1 2000-2018
NBP CT2019 JSBACH 1.32 1.23 -0.09 -6.82 PgC yr−1 2000-2018
NBP CT2019 LPX-Bern 1.32 0.62 -0.70 -53.03 PgC yr−1 2000-2018
NBP CT2019 OCN 1.34 1.83 0.49 36.57 PgC yr−1 2000-2018
NBP CT2019 ORCHIDEE 1.33 1.74 0.41 30.83 PgC yr−1 2000-2018
NBP CT2019 ORCHIDEE-CNP 1.33 0.24 -1.09 -81.95 PgC yr−1 2000-2018
NBP CT2019 ORCHIDEEv3 1.33 1.44 0.11 8.27 PgC yr−1 2000-2018
NBP CT2019 SDGVM 1.33 1.67 0.34 25.56 PgC yr−1 2000-2018
NBP CT2019 VISIT 1.32 1.79 0.47 35.61 PgC yr−1 2000-2018
NBP CarboScope CLASSIC 1.46 1.40 -0.06 -4.11 PgC yr−1 1999-2017
NBP CarboScope CLM5.0 1.38 0.90 -0.48 -34.78 PgC yr−1 1999-2019
NBP CarboScope IBIS 1.18 1.07 -0.11 -9.32 PgC yr−1 1999-2019
NBP CarboScope ISAM 1.29 0.94 -0.35 -27.13 PgC yr−1 1999-2019
NBP CarboScope ISBA-CTRIP 1.40 1.41 0.01 0.71 PgC yr−1 1999-2019
NBP CarboScope JSBACH 1.14 1.33 0.19 16.67 PgC yr−1 1999-2019
NBP CarboScope LPX-Bern 1.36 0.65 -0.71 -52.21 PgC yr−1 1999-2019
NBP CarboScope OCN 1.25 1.88 0.63 50.40 PgC yr−1 1999-2019
NBP CarboScope ORCHIDEE 1.37 1.83 0.46 33.58 PgC yr−1 1999-2019
NBP CarboScope ORCHIDEE-CNP 1.46 0.30 -1.16 -79.45 PgC yr−1 1999-2019
NBP CarboScope ORCHIDEEv3 1.46 1.54 0.08 5.48 PgC yr−1 1999-2019
NBP CarboScope SDGVM 1.30 1.73 0.43 33.08 PgC yr−1 1999-2019
NBP CarboScope VISIT 1.27 1.88 0.61 48.03 PgC yr−1 1999-2019
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