Sensitivity of a Coarse-Resolution Global Ocean Model to Spatially Variable Neutral Diffusion

Ryan M Holmes¹, Sjoerd Groeskamp², Kial Douglas Stewart³, and Trevor John McDougall⁴

¹University of Sydney ²Royal Netherlands Institute for Sea Research ³Australian National University ⁴The School of Mathematics and Statistics, University of New South Wales

November 24, 2022

Abstract

Motivated by recent advances in mapping mesoscale eddy tracer mixing in the ocean we evaluate the sensitivity of a coarseresolution global ocean model to a spatially variable neutral diffusion coefficient $\lambda = 1$, we gradually introduce physically-motivated models for the horizontal (mixing length theory) and vertical (surface mode theory) structure of $\lambda = 1$ n along with suppression of mixing by mean flows. Each structural feature influences the ocean's hydrography and circulation to varying extents, with the suppression of mixing by mean flows being the most important factor and the vertical structure being relatively unimportant. When utilizing the full theory (experiment "FULL') the interhemispheric overturning cell is strengthened by \$2\$ Sv at \$26^\circ\$N (a $\lambda = 0$, sim20\% increase), bringing it into better agreement with observations. Zonal mean tracer biases are also reduced in FULL. Neutral diffusion impacts circulation through surface temperature-induced changes in surface buoyancy fluxes and non-linear equation of state effects. Surface buoyancy forcing anomalies are largest in the Southern Ocean where decreased neutral diffusion in FULL leads to surface cooling and enhanced dense-to-light surface watermass transformation, reinforced by reductions in cabbeling and thermobaricity. The increased watermass transformation leads to enhanced mid-latitude stratification and interhemispheric overturning. The spatial structure for $\lambda = 0$ in FULL is important as it enhances the interhemispheric cell without degrading the Antarctic bottom water cell, unlike a spatially-uniform reduction in $\lambda = 0$. These results highlight the sensitivity of modeled circulation to $\lambda = 0$ and motivate the use of physics-based models for its structure.

Sensitivity of a Coarse-Resolution Global Ocean Model to Spatially Variable Neutral Diffusion

R. M. Holmes^{1,2,3,4}, S. Groeskamp⁵, K.D. Stewart^{3,6} and T.J. McDougall⁴

¹School of Geosciences, University of Sydney, Sydney, Australia
 ²Climate Change Research Centre, University of New South Wales, Sydney, Australia
 ³Australian Research Council Centre of Excellence for Climate Extremes, Australia
 ⁴School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
 ⁵NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
 ⁶Research School of Earth Sciences, Australian National University, Canberra, Australia

Key Points:

1

2

3

9

10

11	•	A new spatially-variable parameterization for mesoscale neutral diffusion is tested
12		in a 1-degree ocean model
13	•	Both hydrography and circulation are sensitive to the magnitude and spatial struc-
14		ture of neutral diffusion
15	•	A 2Sv enhancement in interhemispheric overturning stems from suppression of neu-
16		tral diffusion by mean flows

Corresponding author: Ryan Holmes, r.holmes@sydney.edu.au

17 Abstract

Motivated by recent advances in mapping mesoscale eddy tracer mixing in the ocean we 18 evaluate the sensitivity of a coarse-resolution global ocean model to a spatially variable 19 neutral diffusion coefficient $\kappa_n(x, y, z)$. We gradually introduce physically-motivated mod-20 els for the horizontal (mixing length theory) and vertical (surface mode theory) struc-21 ture of κ_n along with suppression of mixing by mean flows. Each structural feature in-22 fluences the ocean's hydrography and circulation to varying extents, with the suppres-23 sion of mixing by mean flows being the most important factor and the vertical structure 24 being relatively unimportant. When utilizing the full theory (experiment "FULL") the 25 interhemispheric overturning cell is strengthened by 2 Sv at 26°N (a $\sim 20\%$ increase), 26 bringing it into better agreement with observations. Zonal mean tracer biases are also 27 reduced in FULL. Neutral diffusion impacts circulation through surface temperature-28 induced changes in surface buoyancy fluxes and non-linear equation of state effects. Sur-29 face buoyancy forcing anomalies are largest in the Southern Ocean where decreased neu-30 tral diffusion in FULL leads to surface cooling and enhanced dense-to-light surface wa-31 termass transformation, reinforced by reductions in cabbeling and thermobaricity. The 32 increased watermass transformation leads to enhanced mid-latitude stratification and 33 interhemispheric overturning. The spatial structure for κ_n in FULL is important as it 34 enhances the interhemispheric cell without degrading the Antarctic bottom water cell, 35 unlike a spatially-uniform reduction in κ_n . These results highlight the sensitivity of mod-36 eled circulation to κ_n and motivate the use of physics-based models for its structure. 37

Plain Language Summary:

38

The diffusion of tracers such as temperature and salinity along surfaces of constant 39 40 density by the action of mesoscale eddy stirring, known as neutral diffusion, is an important transport process in the ocean which impacts heat, carbon and nutrient bud-41 gets as well as climate variability. However, most global ocean circulation models used 42 for climate studies have a horizontal grid resolution that is too coarse to resolve mesoscale 43 eddies. Thus, the effects of eddy-driven neutral diffusion must be parameterized through 44 the inclusion of a neutral diffusivity parameter κ_n . While the strength of neutral diffu-45 sion is known to vary spatially within the ocean, most models still make simple choices 46 for κ_n ; a constant, or scaled according to the grid resolution. In this study, we exam-47 ine the sensitivity of a coarse-resolution global ocean model to the spatial structure of 48 κ_n using a recently developed and physically-motivated three-dimensional mapping of 49 mesoscale mixing. Our results show that the modeled meridional overturning circula-50 tion and tracer structure are sensitive to both the magnitude and the spatial structure 51 of κ_n , suggesting that more attention should be paid to this parameter in future model 52 development. 53

54 1 Introduction

The diffusion of tracers along neutral density surfaces through the action of mesoscale 55 eddy stirring, or "neutral diffusion", is an important transport process in the ocean that 56 influences the heat, salt, carbon and nutrient budgets, ocean ventilation, deep and bot-57 tom water formation and climate variability (e.g. Busecke & Abernathey, 2019; England 58 & Rahmstorf, 1999; Gnanadesikan et al., 2015; Griffies et al., 2015; Jones & Abernathey, 59 2019, 2021; Morrison et al., 2013; Sijp et al., 2006; Sijp & England, 2009; Williams et 60 al., 2007; Wolfe et al., 2008). Mesoscale eddies are poorly represented in the global coarse-61 resolution models used for many climate studies and thus the associated neutral diffu-62 sion must be parameterized through the inclusion of an explicit neutral diffusivity, κ_n . 63 Despite significant advances in theory, the spatial and temporal structure of κ_n is poorly 64 understood and many models still make simple choices for κ_n based on ad-hoc, rather 65 than physical, reasoning (e.g. see Table 1 of Meijers (2014) for a summary of neutral physics 66 choices in CMIP5 models). The choice of κ_n has implications for the model represen-67

tation of a large range of processes of climatic relevance (e.g. Ferreira et al., 2005; Gnanadesikan et al., 2017; Pradal & Gnanadesikan, 2014) and is likely to remain a first-order issue for some time given that higher resolution, eddy-resolving coupled models are still
impractical for many applications. In this study, we take advantage of recent advancements in the mapping of mesoscale mixing in the ocean based on theory and observations (Groeskamp et al., 2020) to revisit this issue using a coarse-resolution global ocean
model.

Since the step-change improvement in non eddy-resolving ocean models associated 75 with the work of Gent and McWilliams (1990) (hereafter GM) and the movement away 76 from simple horizontal diffusive closures (due to the detrimental "Veronis effect", Gough 77 & Lin, 1995; McDougall & Church, 1986; Veronis, 1975) toward rotated along-isopycnal 78 or neutral diffusion (Griffies et al., 1998; McDougall et al., 2014; Redi, 1982; Solomon, 79 1971), how to choose the GM coefficient, κ_{GM} , and the neutral tracer diffusivity, κ_n , has 80 become an important topic of research. A range of theories have been developed, most 81 of which focus primarily on the adiabatic eddy-driven circulation represented by κ_{GM} 82 (e.g. Cessi, 2008; Eden & Greatbatch, 2008; Eden et al., 2009; Jansen et al., 2019, 2015; 83 Jansen & Held, 2014; Marshall & Adcroft, 2010; Pearson et al., 2017; Smith & Vallis, 84 2002; Treguier et al., 1997; Visbeck et al., 1997). Some of these schemes are based on 85 energy conservation and consider the effects of mesoscale eddies in the momentum bud-86 get (e.g. Eden & Greatbatch, 2008; Jansen et al., 2019; Jansen & Held, 2014; Juricke et 87 al., 2020). However, the independent choice of the neutral diffusivity κ_n has received less 88 attention. While some models make the choice $\kappa_n = \kappa_{GM}$, theory and diagnostics from 89 high-resolution models and field experiments suggests that the two may be quite differ-90 ent (e.g. Abernathey et al., 2013, 2010; Smith & Marshall, 2009; Vollmer & Eden, 2013). 91 Experience with model tuning suggests that the choice $\kappa_n = \kappa_{GM}$ can be problematic 92 and thus many models that use sophisticated flow-dependent schemes for κ_{GM} retain 93 simple ad-hoc choices (often constant, or scaled according to the grid spacing) for κ_n not 94 necessarily based on physical reasoning (e.g. Gnanadesikan et al., 2006; Griffies et al., 95 2004; Johns et al., 2006; Jungclaus et al., 2010; Voldoire et al., 2013). 96

Documentation of the independent sensitivity of coarse-resolution climate simu-97 lations to κ_n remains limited, despite the model tuning performed behind the scenes at 98 modeling centers. While κ_{GM} is known to have strong impacts on the ocean's overturn-99 ing circulation and the Antarctic Circumpolar Current (ACC) strength, κ_n may be just 100 as important as κ_{GM} for determining thermocline stratification and abyssal tracer dis-101 tributions (e.g. Danabasoglu & McWilliams, 1995). Danabasoglu and Marshall (2007) 102 showed improvements in upper-ocean temperature biases and heat transport in their coarse-103 resolution simulations when the vertical structure of κ_{GM} was surface-intensified. Intro-104 ducing a similar vertical structure in κ_n showed small additional improvements. Cou-105 pled model studies show that large (~ 600%) changes in a spatially-uniform κ_n can have 106 significant impacts on high-latitude processes, where along-isopycnal temperature and 107 salinity gradients are typically largest, including sea-ice formation, surface fluxes, strat-108 ification and deep convection (Pradal & Gnanadesikan, 2014; Sijp et al., 2006; Sijp & 109 England, 2009). κ_n is also thought to influence tropical climate variability (Gnanade-110 sikan et al., 2017). We also note recent studies recommending that anisotropic effects, 111 that are not addressed here, should be taken into account (Bachman et al., 2020; Stan-112 ley et al., 2020). 113

In this article we isolate the sensitivity of a coarse-resolution ocean model to κ_n , independently of κ_{GM} , using the theory- and observation-based three-dimensional maps of κ_n recently constructed by Groeskamp et al. (2020). As a sensitivity test, we consider only static maps of κ_n , leaving the development of a dynamic parameterization better suited to production use for future studies. We separate the impacts of the various structural ingredients included in Groeskamp et al. (2020)'s κ_n ; the mixing length theory that governs the horizontal structure, the surface mode theory that governs the vertical struc-

Figure 1. (a) The structure of κ_n in the ACCESS-OM2 control simulation (CTRL) indicating the impact of the grid-scaling factor [Eq. (4)]. (b) The two-dimensional time-averaged spatial structure of κ_{GM} from CTRL determined according to the "baroclinic zone" dynamical setting of Griffies (2012); Griffies et al. (2005) and a maximum (minimum) of 600 m² s⁻¹ (50 m² s⁻¹) used for all experiments.

ture (LaCasce, 2017) and the suppression of mixing by mean flows (Ferrari & Nikurashin, 121 2010). The use of an ocean-only model, rather than a coupled climate model, allows a 122 clean attribution of cause and effect, avoiding runaway air-sea feedbacks. In such a sys-123 tem where the wind-forcing is fixed, the impact of variations in κ_n on the interior buoy-124 ancy structure and thus circulation should only arise through changes in surface heat 125 and buoyancy fluxes (e.g. Guilyardi et al., 2001; Hieronymus & Nycander, 2013) or non-126 linear equation of state effects such as cabbeling and thermobaricity (Klocker & McDougall, 127 2010; McDougall, 1987). Our model and experimental design, along with a brief sum-128 mary of the κ_n theory of Groeskamp et al. (2020), is presented in Section 2.1. Section 129 3 presents an analysis of the sensitivity of the meridional overturning circulation (MOC) 130 and tracer distributions to κ_n , along with a discussion of the associated mechanisms. Sec-131 tion 4 summarizes our results and discusses drawbacks and next steps. 132

133 2 Methods

134

2.1 The global ocean sea-ice model

We use the coarse 1° horizontal resolution configuration of the global ocean sea-135 ice model ACCESS-OM2 (Kiss et al., 2020), which couples together the Modular Ocean 136 Model version 5.1 (MOM5, Griffies, 2012) and the Los Alamos Sea Ice Model version 5.1.2 137 (CICE, Hunke et al., 2015). Forcing is taken from the JRA55-do reanalysis (Tsujino et 138 al., 2018) and consists of a repeating cycle of the period May 1990 to April 1991 (Stew-139 art et al., 2019). Simulations are compared after 1000 years of spin-up from World Ocean 140 Atlas 2013 (WOA13, Locarnini et al., 2013; Zweng et al., 2013) initial conditions. More 141 information on ACCESS-OM2 including details on numerical algorithms, parameteri-142 zations and parameter choices is contained elsewhere (e.g. Holmes et al., 2021; Kiss et 143 al., 2020; Stewart et al., 2017). 144

In ACCESS-OM2 the GM eddy transport parameterization is implemented via skewdiffusion (Griffies, 1998). The κ_{GM} structure, not altered in this study, is uniform in the vertical and dynamically dependent on the horizontal buoyancy gradient averaged over the top 2000 m according to the "baroclinic zone" setting (see Griffies, 2012; Griffies et al., 2005, Fig. 1b) with a maximum (minimum) of 600 m² s⁻¹ (50 m² s⁻¹).

In the default version of ACCESS-OM2 the neutral diffusivity κ_n is constant at 600 m² s⁻¹. 150 This is altered for our experiments (see Section 2.3). To avoid unphysically large tracer 151 fluxes the diffusive flux tapering method of Danabasoglu and McWilliams (1995) is used 152 such that the fluxes are tapered where the neutral slope is large. This method avoids the 153 potential for large spurious diapycnal fluxes that comes with alternative slope clipping 154 methods. In ACCESS-OM2 the neutral diffusion operator is reduced to horizontal dif-155 fusion in the top surface layer (of thickness $\sim 2m$) and bottom topography grid cells (Fer-156 rari et al., 2008), meaning that the neutral diffusion parameterization can directly drive 157 some diapycnal flux there, along with interactions with surface boundary layer turbu-158 lence and surface fluxes (de Lavergne, Groeskamp, Zika, & Johnson, 2022). We also note 159 that model implementations of rotated neutral diffusion are affected by various numer-160 ical discretization errors that can create spurious diapycnal fluxes that are non-trivial 161 to quantify and are treated elsewhere (e.g. Beckers et al., 1998, 2000; Griffies et al., 1998; 162 Groeskamp et al., 2019; Lemarié et al., 2012; Shao et al., 2020; Urakawa et al., 2020). 163

164 165

2.2 A physics-based theory for the spatial structure of the neutral diffusivity

We follow Groeskamp et al. (2020) by building up physically-motivated three-dimensional maps of κ_n based on the following elements.

¹⁶⁸ Two-dimensional mixing length theory (MLT)

Mixing-length theory (Prandtl, 1925) provides a two-dimensional structure for surface eddy-driven horizontal diffusion,

$$\kappa_{MLT}(x,y) = \Gamma u_{rms} L_{mix}, \tag{1}$$

where Γ is a mixing efficiency (here taken as 0.35, Klocker & Abernathey, 2013), u_{rms} is an RMS geostrophic velocity taken from altimetry observations and L_{mix} is a mixing length taken here as the deformation radius, L_d , associated with the first "surface mode" (LaCasce, 2017; LaCasce & Groeskamp, 2020), including an equatorial adjustment following Hallberg (2013).

177 Surface mode theory

A three-dimensional map can be obtained by assuming that u_{rms} follows the vertical structure of the first surface mode (LaCasce, 2017),

179 180

188

178

$$u_{rms}(x, y, z) = \phi(x, y, z) \sqrt{2EKE_0(x, y)}, \qquad (2)$$

(3)

where $\phi(x, y, z)$ is obtained by solving the Sturm-Liouville problem dependent on the stratification profile at each horizontal location assuming that the horizontal velocity is zero at the bottom.

184 Mixing suppression by mean flows

We also include a factor that accounts for the suppression of neutral diffusion by mean flows following the theory of Ferrari and Nikurashin (2010). This factor has the form,

 $S(x, y, z) = \frac{1}{1 + k^2 \gamma^{-2} (c_w - U)^2},$

where γ is an eddy time-scale (here a tunable parameter set to $\gamma^{-1} = 1.68$ days following Groeskamp et al. (2020)'s fit to NATRE and DIMES data), k is the zonal eddy wavenumber, c_w is an eddy drift speed and U is the mean velocity. k and c_w are determined according to surface mode theory, while U here comes from the thermal wind relation applied to climatological ocean observations (note that a reference level velocity is not needed, Groeskamp et al., 2020).

Experiment	Description	Volume-mean $\kappa_n \ (m^2 \ s^{-1})$	Surface-mean $\kappa_n \ (m^2 \ s^{-1})$
CTRL	$600 \text{ m}^2 \text{ s}^{-1} \text{ maximum}$	373	385
HIGH	$1200 \text{ m}^2 \text{ s}^{-1} \text{ maximum}$	747	770
LOW	$100 \text{ m}^2 \text{ s}^{-1} \text{ maximum}$	64	62
MLT2D	Mixing-length theory	1808	1693
MLT3D	MLT2D + vertical modes	473	1693
FULL	MLT3D + suppression	222	503

 Table 1.
 List of ACCESS-OM2 experiments

¹⁹⁵ Grid-scaling factor

200

203

As even coarse-resolution models can resolve some eddy activity in the tropics where the associated length scales are larger, we also include a grid-scaling factor, not considered by Groeskamp et al. (2020), that reduces κ_n where eddy-mixing may be resolved following Hallberg (2013),

$$g(x,y) = \frac{\Delta^2}{\Delta^2 + L_d^2},\tag{4}$$

where Δ is a measure of the grid spacing, taken as the harmonic mean of the zonal and meridional grid spacings,

$$\Delta = \frac{2\Delta x \Delta y}{\Delta x + \Delta y},\tag{5}$$

and we take the surface mode deformation radius (LaCasce, 2017) rather than the standard first-baroclinic deformation radius for L_d in Eq. (4). We also set a minimum on κ_n of 20 m² s⁻¹ (following Adcroft et al., 2019).

207 2.3 Experiments

The experiments considered in this study are listed in Table 1. Our control experiment (CTRL) is identical to the ACCESS-OM2 default configuration except that it includes the grid-scaling factor [Eq. (4)] which reduces κ_n near the Equator (Fig. 1a). This grid-scaling reduction near the equator has negligible impact on the simulations relative to the differences between the other experiments described below.

CTRL will be compared to five other experiments. All experiments include the grid-213 scaling factor [Eq. (4)]. HIGH and LOW are scaled versions of CTRL with a maximum 214 coefficient of 1200 $m^2 s^{-1}$ (HIGH) or 100 $m^2 s^{-1}$ (LOW). Experiment MLT2D introduces 215 horizontal variations in κ_n through mixing length theory [Eq. (1)]. MLT2D has a sig-216 nificantly larger κ_n throughout the tropics and mid-latitudes compared to CTRL with 217 decreases only in the very high-latitudes (Fig. 2a). Experiment MLT3D then adds the 218 vertical modal structure [Eq. (2)] which results in a decay of κ_n with depth (Fig. 2b). 219 Finally FULL adds the effects of mixing suppression by mean flows [Eq. (3)]. This fac-220 tor significantly reduces κ_n throughout the domain (compare Figs. 2a,b with 2c,d, the 221 surface mean κ_n is reduced by more than a factor of 3, Table 1). Compared to CTRL, 222 FULL is characterized by higher values in the shallow mid-latitudes and lower values in 223 the high-latitudes and at depth (Fig. 2d). The mean flow suppression factor can also re-224 sult in subsurface maximum's in κ_n , notably in the ACC region (Fig. 2d) where subsur-225 face critical layers form as the mean flow speed decays in the vertical, consistent with 226 theory and diagnostics from high-resolution idealized models (e.g. Abernathey et al., 2013, 227 2010; Ferrari & Nikurashin, 2010; Smith & Marshall, 2009). 228

Figure 2. (a,c) Surface κ_n and (b,d) zonal mean κ_n for experiments (a,b) MLT3D (c,d) FULL. The thick (thin) blue contours indicate the 600 m² s⁻¹ (1200 m² s⁻¹) isosurfaces.

229 3 Results

We begin by describing the temporal behavior of the solutions over the 1000 year spin-up period (Section 3.1) and the observed changes in the ocean's zonal-mean overturning circulation (Section 3.2), meridional heat transport (3.3) and tracer fields (Section 3.4). The mechanisms linking the neutral diffusivity to changes in the interhemispheric overturning cell are then explored in Sections 3.5-3.8. Section 3.9 discusses the Antarctic bottom water cell.

236

3.1 Scalar variables and model spin-up

In order to allow for the slow adjustment of the deep ocean all experiments have 237 been spun-up for 1000 years (Fig. 3). The choice of κ_n has a strong impact on the drift 238 in global ocean heat content (compare solid lines in Fig. 3a). The evolution of global ocean 239 heat content is determined by the net air-sea heat flux, which depends through the bulk 240 formula on the sea surface temperature (SST). Indeed, those experiments with gener-241 ally smaller values of κ_n have cooler global-mean SST in the first few 100 years that drives 242 a positive drift in ocean heat content (e.g. experiment LOW, green lines in Fig. 3a,b). 243 In contrast, larger values of κ_n correspond to warmer transient SSTs and net ocean heat 244 loss (e.g. experiment HIGH, orange lines in Fig. 3a,b). However, the structure in κ_n also 245 impacts the SST and ocean heat content trends; SST is warmest in experiments MLT2D 246 and MLT3D which may be because of the strong neutral diffusion in the Western Bound-247 ary Current regions (e.g. Fig. 2a). 248

The choice of κ_n also has an impact on both the interhemispheric (alternatively "deep", "upper", or North Atlantic Deep Water, NADW) and Antarctic bottom water

Figure 3. Time series of (a) global average Conservative Temperature (°C), (b) global average SST (°C), (c) the maximum of the global MOC in potential density (referenced to 2000 dbar, σ_2) at 26°N (Sv), a proxy for the strength of the interhemispheric overturning cell and (d) the minimum of the global σ_2 MOC at 40°S (Sv), a proxy for the strength of the bottom water cell from all experiments. The dashed black line in panel c indicates the observational value of 17.2 Sv from the RAPID array in the Atlantic (McCarthy et al., 2015). A 10-year running mean smoothing has been applied to panels b-d. The blue bar in panel c indicates the averaging period used for most comparative diagnostics in later figures.

cells of the zonally-integrated MOC in potential density coordinates (Fig. 3c,d). The deep cell achieves equilibrium after ~ 600 years, while the bottom water cell is still trending after 1000 years. In the remainder of the article we focus on differences in the circulation and tracer structure averaged over the last 100 years (blue bar in Fig. 3c).

255

3.2 The meridional overturning circulation

Stronger (weaker) neutral diffusion drives a broad weakening (strengthening) of the 256 interhemispheric overturning cell (blue in HIGH, Fig. 4c and red in LOW, Fig. 4e). These 257 changes in the deep cell are dominated by the Atlantic basin (not shown) as part of the 258 Atlantic MOC (AMOC). Accompanying these changes in the magnitude of the overturn-259 ing are shifts in the density of the NADW outflow, which becomes denser when κ_n is in-260 creased in HIGH (red patch below $\sigma_2 = 1036.5 \text{ kg m}^{-3}$ in the Northern Hemisphere 261 in Fig. 4c) and less dense in LOW (Fig. 4e). These changes in NADW density may be 262 a consistent response to the change in the strength of the AMOC, in these quasi-equilibrated 263 simulations where the interior density field has had sufficient time to adjust. A weaker 264 AMOC reduces the input of warm surface water into the North Atlantic (see Section 3.3), 265 leading to SST cooling, reduced surface heat loss, and reduced NADW formation while 266 the NADW that is formed is denser. Likewise, with increased input of warm surface wa-267 ter into the North Atlantic under an enhanced AMOC, there is more surface heat loss 268 leading to more NADW formation but at lighter density classes. The shift in NADW out-269

flow density are also consistent with the entire ocean being denser (lighter) and less (more) stratified in HIGH (LOW), as will be discussed in more detail in Section 3.4.

Change in the bottom water cell mirror those in the interhemispheric cell. The bottom water cell is stronger in HIGH and weaker in LOW (Fig. 4c,e below $\sigma_2 = 1036.9$, also see Fig. 3d). However, these changes are less linear than for the interhemispheric cell; with a strong shut down in LOW compared to a weak strengthening in HIGH. This asymmetry may be partially explained by the overlap in density between the denser NADW outflow in HIGH and the bottom-cell.

Adding spatial structure to κ_n in the MLT2D, MLT3D and FULL experiments has 278 additional impacts. Experiments MLT2D and MLT3D, both corresponding to an increase 279 in the global average κ_n compared to CTRL (see Table 1), show a similar pattern of anoma-280 lous overturning to HIGH, albeit with weaker anomalies (compare Figs. 4g,i with Fig. 281 4c). The weaker MOC anomalies in MLT2D compared to HIGH, despite MLT2D hav-282 ing a larger surface- and volume-mean κ_n (see Table 1), highlights the importance of the 283 horizontal structure of κ_n . In particular, it suggests that the smaller or similar κ_n at high-284 latitudes in MLT2D (compared to CTRL or HIGH) are more important than the much 285 larger values at mid-latitudes (Fig. 2a). MLT2D and MLT3D are similar, suggesting that 286 the vertical structure of κ_n has only a minor impact on the MOC. Compared to CTRL, 287 MLT2D and MLT3D are characterized more by a shift in the peak density of the inter-288 hemispheric cell rather than a change in strength (compare red and purple with blue lines 289 in Figs. 5a,b). 290

The weakening of κ_n through mean-flow suppression introduced in FULL has a sig-291 nificant impact on the MOC, with a similar pattern of MOC anomalies to LOW (Fig. 292 4k). The interhemispheric cell responses in FULL and LOW are both around 2 Sv (a 10-293 20% change from CTRL), although in FULL there is a smaller shift in the density of the 294 maximum overturning (compare green and brown with blue lines in Fig. 5a,b). While 295 the purpose of this study is not to better tune the model, it should be noted that ACCESS-296 OM2 has a weak interhemispheric cell compared to observations (compare solid lines to 297 dashed RAPID estimate in Fig. 3a), a comparison that is improved in FULL and LOW 298 (note that the cell is better represented in the $1/4^{\circ}$ and $1/10^{\circ}$ configurations of ACCESS-299 OM2, Kiss et al., 2020). While this suggests that κ_n may be too large in ACCESS-OM2, 300 the structure in κ_n is also clearly important. While LOW results in a strong, consistent 301 weakening of the likely already too weak bottom water cell (Kiss et al., 2020), FULL has 302 a negligible impact on the bottom water cell (Figs. 4e,k, 3d). Changes in the bottom wa-303 ter cell are discussed further in Section 3.9. 304

305

3.3 Meridional heat transport

The ocean's meridional heat transport (MHT) is influenced by κ_n both directly, 306 from changes in the diffusive component of MHT, and indirectly due to circulation (e.g. 307 MOC) changes. The diffusive component of MHT (dashed lines in Fig. 6) is only sig-308 nificant in CTRL in the Southern Ocean south of ~ 40°S, where its sensitivity to κ_n 309 dominates the changes in total MHT (compare solid and dashed lines in Fig. 6b). The 310 weak change in the advective/circulation component of MHT in the Southern Ocean con-311 312 trasts with results from coupled models where wind changes are permitted and compensation between diffusive and advective heat transport can occur (e.g. Pradal & Gnanade-313 sikan, 2014). North of $\sim 40^{\circ}$ S changes in total MHT are largely driven by the changes 314 in the AMOC discussed above (Fig. 6d). In FULL, the change in the MHT in the At-315 lantic is about 0.05PW, corresponding to 8-17% of the CTRL MHT in the Atlantic. 316 In the HIGH and LOW experiments there are also some small changes in the South Pa-317 cific and Indian Oceans, which are largely absent in FULL (Fig. 6c). This is linked to 318 the lack of change in the bottom water cell in FULL. The bottom water cell anomalies 319

Figure 4. Global MOC in potential density (referenced to 2000 dbar) σ_2 -latitude coordinates for the (a) CTRL, (b) HIGH, (d), LOW, (f) MLT2D, (h) MLT3D and (j) FULL experiments. The σ_2 density bin sizes are 0.125kgm⁻³. Red (green) colors indicate clockwise (anti-clockwise) circulation. The panels on the right show the difference between each run and the CTRL experiment, with red (blue) colors indicating anomalous clockwise (anti-clockwise) circulation. Thus red (blue) colors indicate a strengthening of the interhemispheric (bottom water) cells, labeled in panel a, and vice versa. The red solid line in each panel marks $\sigma_2 = 1036.3125$, the density of the maximum overturning streamfunction in the Southern Ocean in CTRL (panel a). The dashed red lines in panels b,d,f,h and j indicate the equivalent maximum overturning density in each

Figure 5. (a) Anomaly in the maximum transport of the interhemispheric cell, defined as the maximum value of the σ_2 overturning streamfunction at densities denser than 1035.6 kg m⁻³, and (b) the corresponding density as a function of latitude. All curves have been smoothed using a 15-point moving average filter in latitude.

dominate the Indo-Pacific density-space overturning differences between LOW and FULL (compare Fig. 4e,k).

322 3.4 Zonal mean tracer fields

The changes in κ_n have an impact on zonal mean temperature and salinity biases 323 (Fig. 7). CTRL has a warm and salty bias reaching 1.5°C and 0.3 psu in the upper 1000 m 324 north of 60° S and a cold/fresh bias south of 60° S and below 2500 m depth when com-325 pared to observations (Figs. 7e,f). Compared to CTRL, HIGH shows large-scale cool-326 ing of the ocean below the top 500m, a saltier upper ocean and reduced ideal age through-327 out most of the interior (indicating increased ventilation, Fig. 7h-j, England & Rahm-328 storf, 1999; Jones & Abernathey, 2019). The bulk cooling with increased κ_n is consis-329 tent with Danabasoglu and McWilliams (1995) who found similar results when varying 330 κ_n and κ_{GM} in tandem. Changes in LOW are largely opposite to HIGH and are con-331 sistent with an increase in the interhemispheric cell, although the anomalies are some-332 what stronger in LOW than HIGH with warming in the Southern Ocean reaching 1.5°C 333 (Fig. 7l-n). 334

Adding spatial structure to κ_n further alters the hydrography. The surface-intensified 335 increase in κ_n in MLT3D drives cooling and increased ventilation (with some surface-336 intensified salinification) that is focused in the upper ocean compared to HIGH (com-337 pare Figs. 7h,p,i,q,j,k). FULL shows anomalies that are similar to LOW as κ_n is reduced 338 in most locations (Fig. 7s). However, FULL is cooler than LOW (and CTRL) in the up-339 per 1000 m in the mid-latitudes and tropics (Fig. 7t). Encouragingly, the warming/salinification 340 in the deep ocean and high latitudes, and the cooling/freshening above 1000 m, in FULL 341 largely opposes the CTRL WOA13 biases (compare Figs. 7t,k to Figs. 7e,f), meaning 342 that these biases are reduced in FULL. 343

Figure 6. Meridional heat transport (MHT, PW) in (a) CTRL and MHT anomalies for the (b) global ocean, the (c) Indo-Pacific and the (d) Atlantic basins in HIGH, LOW and FULL. The solid lines show the total MHT and the dashed lines show the component due to neutral diffusion.

344

3.5 Where do changes in neutral mixing have an impact?

We now turn to the mechanisms that link the circulation and tracer anomalies dis-345 cussed above to the structure of κ_n . While κ_{GM} directly affects the residual overturn-346 ing circulation and isopycnal slopes, particularly in the Southern Ocean and in deep-water 347 formation regions (e.g. Döös & Webb, 1994; England & Rahmstorf, 1999; Gent, 2011), 348 the impact of κ_n on circulation is less obvious as neutral diffusion does not have a di-349 rect impact on the ocean's density field. Instead, κ_n impacts the circulation indirectly 350 by altering the surface buoyancy forcing and through non-linear equation of state effects 351 such as cabbeling (Klocker & McDougall, 2010) as will be discussed in Sections 3.6 and 352 3.7 respectively. These impacts are strongest where along-isopycnal temperature and salin-353 ity gradients strongest; in the Southern Ocean between 40° S and 60° S and in the North 354 Atlantic (Fig. 8a,b, also see Fig. 6a). In both these regions there is a distinct pattern 355 of cold and fresh surface waters and warm and salty interior waters following isopycnals 356 (Fig. 8a, Fig. 7b,c), due to net precipitation and sea ice melt at high-latitudes. Thus, 357 increases in κ_n (e.g. in HIGH) have their largest impacts here, where surface-intensified 358 salinification and depth-intensified cooling (compared to CTRL) reflect a reduction in 359 the along-isopycnal temperature and salinity gradients (Fig. 7h,i). In contrast, decreas-360 ing κ_n in LOW leads to weak surface cooling, strong surface freshening and salinifica-361 tion/warming at depth (Fig. 7,l,m). SST changes are weaker than temperature changes 362 at depth because they are damped by surface flux responses. 363

Figure 7. Zonal-mean (a,g,k,o,s) κ_n and (h,l,p,t) temperature, (i,m,q,u) salinity and (j,n,f,v) ideal age anomalies compared to the CTRL experiment (b,c,d) for experiments (g-j) HIGH, (k-n) LOW, (o-r) MLT3D and (s-v) FULL. MLT2D (not shown) has similar temperature and salinity anomalies to MLT3D. (e) Temperature and (f) salinity biases of CTRL relative to WOA13. The black contours represent σ_2 potential density contours at 0.1 kg m⁻³ spacing. The thin blue contours in panels g-v indicate the 600 m² s⁻¹ κ_n isosurface.

Figure 8. (a) Salinity on the $\sigma_2 = 1036.3125 \text{ kg m}^{-3}$ isopycnal and (b) the magnitude of the vertically-integrated lateral heat flux due to neutral diffusion in CTRL. Along-isopycnal salinity gradients are strongest at high-latitudes. As κ_n is constant outside the equatorial region in CTRL, the heat flux in panel b indicates the presence of strong instantaneous along-isopycnal temperature and salinity gradients throughout the water-column, where changes in κ_n would be expected to have their largest impact.

3.6 The surface flux response to κ_n

364

Changes in SST induced by changes in κ_n impact the surface heat and freshwa-365 ter fluxes through the bulk formula (Large & Yeager, 2004, additional feedbacks would 366 play a role in a coupled model). In the zonal mean, changes in SST are strongest in the 367 Southern Ocean around and just north of 60° S and in the North Atlantic north of 40° N 368 (Fig. 9a). SST changes in the tropics and mid-latitudes are minimal. The surface cool-369 ing in the Southern Ocean when κ_n is reduced (LOW, orange lines in Fig. 9) induces 370 an anomalous heat flux into the ocean at these latitudes through the bulk formula $(Q_H,$ 371 Fig. 9c). North of $\sim 64^{\circ}$ S the cooling also reduces evaporation, resulting in an increase 372 in the net surface volume flux into the ocean (P-E+R+I, Fig. 9d). Thus, changes in both 373 surface heat and volume fluxes in response to the (initially compensated) SST anoma-374 lies lead to an anomalous buoyancy flux into the ocean when SST is cooled (LOW and 375 FULL, orange and green lines in Fig. 9e) and an anomalous buoyancy flux out of the ocean 376 when SST is warmed (HIGH, blue line in Fig. 9e). 377

The above physical interpretation for the changes in buoyancy flux holds outside 378 of the region of permanent influence of sea ice (north of $\sim 65^{\circ}$ S in the Southern Hemi-379 sphere, Fig. 9g). South of 65° S in HIGH there is instead an increase in the surface vol-380 ume flux into the ocean associated with enhanced sea-ice melt driven by the increased 381 upward neutral-diffusive heat flux (blue line in Fig. 9d). However, in these experiments the changes in sea-ice cover are relatively minor (Fig. 9g, being restricted to movements 383 of the seasonal maximum sea-ice edge of a maximum of a few degrees latitude, not shown) 384 and buoyancy flux anomalies in the sea-ice affected region are weaker than further north-385 ward (Fig. 9e). Note that the relatively minor role of sea-ice changes here contrasts with 386 studies performed in coupled models where atmosphere-ocean-sea ice feedbacks can am-387 plify the response to changes in neutral diffusion (e.g. Pradal & Gnanadesikan, 2014). 388

Surface property and flux anomalies are large and variable in the North Atlantic, reflecting the strong direct impact of AMOC changes. Surface heat and buoyancy flux anomalies north of 45°N are as large as the weak CTRL heat and buoyancy fluxes in these regions (not shown). Below we will argue that AMOC changes (and their subsequent impacts on surface flux anomalies in the North Atlantic) are driven by the changes in the Southern Ocean.

Figure 9. Anomalies compared to CTRL in zonal-mean (a) SST, (b) SSS and zonal total (c) surface heat (Q_H) , (d) surface volume (including precipitation, evaporation, river runoff and ice-ocean volume exchanges, P-E+R+I), (e) surface buoyancy (Q_B) and (f) vertically-integrated cabbeling and thermobaricity buoyancy flux convergence anomalies in the HIGH (blue), LOW (orange) and FULL (green dashed) experiments. The fluxes in panels c-f are positive when into the ocean (i.e. a positive Q_b indicates a lightening of surface waters). Each curve has been smoothed using a 5-point latitude smoother for display purposes. (g) The seasonal maximum of the zonal mean sea ice-area fraction.

³⁹⁵ Changes in κ_n also impact the zonal mean sea surface salinity (SSS) which fresh-³⁹⁶ ens (becomes saltier) when κ_n is decreased (increased, Fig. 9b). These SSS anomalies ³⁹⁷ are relatively uniform across the whole globe and reflect the increased export of fresh-³⁹⁸ water northward out of the Southern Ocean when the interhemispheric overturning cell ³⁹⁹ is enhanced.

The buoyancy flux anomalies between $\sim 65^{\circ}$ S and 55° S (Fig. 9e) that result from 400 the SST anomalies, drive a modification in surface flux-driven watermass transforma-401 tion. When κ_n is reduced the resulting positive anomalous buoyancy flux into the ocean 402 (LOW and FULL in Fig. 9e) drives an anomalous cold-to-warm or dense-to-light wa-403 termass transformation. This response, which is at equilibrium, suggests that more up-404 welled water is being converted to lighter waters and moving northward as part of the 405 interhemispheric overturning cell, rather than being converted to denser waters and par-406 ticipating in the bottom water cell. The changes in buoyancy fluxes are therefore con-407 sistent with an enhanced interhemispheric overturning cell. In contrast, when κ_n is in-408 creased the anomalous buoyancy flux is out of the ocean (HIGH in Fig. 9e) and thus surface-409 driven "diapycnal upwelling" is reduced at these latitudes, consistent with a reduced in-410 terhemispheric overturning cell. It is important to note that these are quasi-equilibrium 411 anomalies. The SST anomalies induced by the changes in κ_n are initially compensated. 412 The surface buoyancy flux response to these initial anomalies first acts to change the sur-413 face and interior buoyancy field (as described in Section 3.8) before settling into this new 414 equilibrium. However, these surface buoyancy flux driven watermass transformation changes 415 are also reinforced by changes in watermass transformation associated with cabbeling 416 and thermobaricity. 417

418

3.7 Cabbeling and thermobaricity

⁴¹⁹ Changes in κ_n can also lead directly to changes in the interior buoyancy structure ⁴²⁰ (and thus circulation), though non-linear equation of state effects. Straightforward ma-⁴²¹ nipulation of the neutral diffusion source term on the RHS of the material time deriva-⁴²² tive for locally referenced potential density $D\rho/Dt$ (e.g. see Section 36 of Griffies, 2012) ⁴²³ yields,

423

433

$$-\rho_0 \alpha \nabla \cdot \mathbf{J}^\Theta + \rho_0 \beta \nabla \cdot \mathbf{J}^S = \kappa_n \rho_0 \left(C |\nabla_n \Theta|^2 + T \nabla_n P \cdot \nabla_n \Theta \right), \tag{6}$$

where ρ is locally referenced potential density, Θ is Conservative Temperature (McDougall, 2003; McDougall & Barker, 2011), S is salinity (ACCESS-OM2 ostensibly uses practical salinity as its prognostic salt variable and the Jackett et al., 2006, pre-TEOS10 equation of state), α and β are the thermal expansion and haline contraction coefficients, \mathbf{J}^{Θ} and \mathbf{J}^{S} are the neutral diffusive fluxes of Θ and S, ∇_{n} represents the two-dimensional horizontal gradient operator along neutral directions, P is pressure and,

$$C = \frac{\partial \alpha}{\partial \Theta} + 2\frac{\alpha}{\beta}\frac{\partial \alpha}{\partial S} - \left(\frac{\alpha}{\beta}\right)^2 \frac{\partial \beta}{\partial S},\tag{7}$$

$$T = \frac{\hat{o}}{\hat{o}}$$

$$T = \frac{\partial \alpha}{\partial P} - \frac{\alpha}{\beta} \frac{\partial \beta}{\partial P}.$$
(8)

While the neutral diffusive fluxes \mathbf{J}^{Θ} and \mathbf{J}^{S} are directed along neutral tangent planes 434 by construction, the dependence of α and β on temperature and salinity [*cabbeling*, Eq 435 (7)] and pressure [themobaricity, Eq. (8)] can result in a material source of density and 436 thus a diapycnal volume flux (Groeskamp et al., 2016; Klocker & McDougall, 2010; Mc-437 Dougall, 1987; Nycander et al., 2015). Here we quantify cabbeling and thermobaricity 438 as buoyancy flux convergences using Eq. (6), consistent with the numerical discretiza-439 tion of the neutral fluxes themselves as described in more detail in Chapter 36 of Griffies 440 (2012).441

In CTRL, cabbeling acts as a sink of zonally-integrated buoyancy in the high-latitude regions where along-isopycnal temperature gradients are largest (Fig. 10a). Cabbeling

Figure 10. Zonal sum of the buoyancy flux convergence due to (a,c,e,g) cabbeling and (b,d,f,h) thermobaricity quantified using Eq. (6) (converted to buoyancy by multiplying by $-g/\rho_0$) in the CTRL, HIGH, LOW and FULL experiments. Note that the thermobaricity color scale is one half that of the cabbeling scale.

has been shown to be important for the formation of Antarctic Intermediate Water (e.g. 444 Nycander et al., 2015). Thermobaricity has a smaller impact as a sink of buoyancy through-445 out the Southern Ocean interior as well as a source in isolated regions near the surface 446 (Fig. 10b, note the color-scale difference between Figs. 10a,b). When κ_n is increased (de-447 creased) in HIGH (LOW/FULL), cabbeling and thermobaricity are increased (decreased) 448 with little change in pattern. Thus, in the LOW and FULL experiments, we expect a 449 decrease in the magnitude of light-to-dense watermass transformation, or an anomalous 450 dense-to-light transformation, due to non-linear equation of state effects in these regions. 451

Vertically integrating the anomalous cabbeling and thermobaricity flux convergences 452 allows the associated transformation to be compared quantitatively to the surface-driven 453 transformation anomalies in a bulk sense (compare Figs. 9e,f). Between 65°S and 50°S 454 where the surface buoyancy flux anomalies are largest, the reduction in cabbeling and 455 thermobaricity in LOW and FULL corresponds to an effective positive buoyancy flux 456 anomaly of 30-50% the size of the surface buoyancy flux anomalies. Furthermore, there 457 is also a significant reduction in cabbeling and thermobaricity in LOW and FULL further 458 north, up to 40° S. In contrast, changes in cabbeling and thermobaricity in the North At-459 lantic are much smaller than the changes in the surface buoyancy flux. The impact of 460 these changes on the density field is examined next. 461

462

3.8 Impacts on interior density and circulation

The additional buoyancy fluxed into the ocean through the surface when κ_n is reduced in LOW is carried northwards in the downwelling arm of the Southern Ocean overturning circulation. Combined with reduced cabbeling and thermobaricity (e.g. Fig. 10e near 40°S), this leads to a broad lightening of the "bowl" of waters in the upper ~ 1000m in the tropics and mid-latitudes (Fig. 11f), a signal in density that is more coherent than in temperature or salinity (compare Figs. 11e,f). This bowl is approximately bound below by the σ_2 isopycnal corresponding to the maximum in the Southern Ocean overturn-

Figure 11. Zonal mean (a,d,g,j) κ_n , (b,c,h,k) temperature anomalies and (c,f,i,l) σ_2 potential density anomalies in (a,b,c) HIGH, (d,e,f) LOW, (g,h,i) MLT3D and (j,k,l) FULL in the Southern Hemisphere. The black contours show σ_2 at 0.1 kg m⁻³ intervals. The solid (dashed) red lines indicate the CTRL (HIGH/LOW/MLT3D/FULL) 1036.3125 kg m⁻³ σ_2 isopycnal, which corresponds to the maximum in the CTRL overturning streamfunction. The dotted red lines indicate the maximum overturning isopycnal in the perturbation experiments (see Fig. 5).

ing streamfunction (red lines in Fig. 11, as quantified from Fig. 5), which outcrops near 470 the latitude of maximum wind stress separating Ekman-driven upwelling to the south 471 from downwelling to the north (Stewart & Hogg, 2019; Stewart et al., 2021). In CTRL 472 the maximum overturning is found on the $\sigma_2 = 1036.3125$ kg m⁻³ isopycnal (red solid 473 lines in all panels of Fig. 11), which shifts either northward (in HIGH and MLT3D, dashed 474 red lines in Figs. 11a,g) or southward (in LOW and FULL, Figs. 11d,j), consistent with 475 the changes in transformation. As the surface winds are fixed in these experiments¹ this 476 results in a shift in the projection of the wind stress onto the outcropping density field 477 (Fig. 12). For example, in LOW the density marking both the zero wind stress curl (com-478 pare green and blue lines in Fig. 12) and the maximum in the Southern Ocean overturn-479 ing streamfunction (compare dashed and dotted lines in Figs. 11d,e,f, or Figs. 4a,d) be-480 comes lighter. 481

⁴⁸² The coherent upper ocean density changes (Fig. 11c,f,i,l) illustrate that experiments ⁴⁸³ with reduced κ_n have a stronger upper ocean stratification and vice versa. Stronger up-⁴⁸⁴ per ocean stratification leads to an enhanced interhemispheric cell overturning through ⁴⁸⁵ thermal wind balance (e.g. Wolfe & Cessi, 2010) and is consistent with the requirement ⁴⁸⁶ that more overturning balances increased surface flux-driven, and decreased cabbeling

 $^{^1}$ note that the impact of changes in surface currents (through relative wind) and SST on the wind stress are less than 1%.

Figure 12. Wind stress curl binned into σ_2 coordinates using the annual mean surface σ_2 and wind stress fields. The isopycnal corresponding to the zero in the wind stress curl shifts toward lighter (denser) densities in the experiments where κ_n is decreased (increased). Note that the isopycnals associated with the zero wind-stress curl and those identified as marking the maximum in the Southern Ocean overturning streamfunction do not correspond exactly due to modification by surface flux- and mixing-driven watermass transformation.

and thermobaricity-driven, dense-to-light watermass transformation. This mechanism
is illustrated in Fig. 13 and summarized in the caption.

The mechanism illustrated in Fig. 13 suggests that changes in the North Atlantic 489 are slave to what happens in the Southern Ocean. Our results appear to be inconsistent 490 with the alternative hypothesis that changes in κ_n in the North Atlantic are the main 491 driver. An increase in κ_n in the North Atlantic would, like in the Southern Ocean, be 492 expected to lead to an initially compensated warming and salinification at the surface. 493 In addition to providing more salty water to the surface, a warmer surface leads to en-494 hanced heat loss and evaporation and enhanced light-to-dense water mass transforma-495 tion at the surface in the North Atlantic. Thus, one would expect an intensification of 496 NADW formation and the interhemispheric overturning cell under an increase in κ_n . This 497 is opposite to the changes we see in the HIGH experiment. However, we note that NADW 498 formation in low-resolution ocean models may be sensitive to other parameters, such as 499 the surface salinity restoring rate ($\sim 40 \text{m}/365$ days in ACCESS-OM2, on the lower end 500 of many of the models participating in the Ocean Model Intercomparison Program, OMIP-501 2, Tsujino et al. (2020)). The contribution of Northern Hemisphere versus Southern Hemi-502 sphere processes to the control of the interhemispheric overturning cell is still under de-503 bate (e.g. Bishop et al., 2016; Delworth & Zeng, 2008; Hogg et al., 2017; Jochum & Eden, 504 2015). The drivers likely depend on the response time-scale (here we examine quasi-equilibrium 505 simulations). 506

507

3.9 The Antarctic bottom water cell

The anomalies in overturning in HIGH and LOW emphasize that changes in the interhemispheric cell are often accompanied by changes in the bottom water cell of the opposite sign. This may arise from a competition between conversion of water upwelled in the Southern Ocean; when more water is converted into lighter mode and interme-

Figure 13. A schematic illustrating how changes in κ_n influence the strength of the interhemispheric overturning cell through a zonal average across the Southern Ocean. In CTRL (top) the maximum overturning occurs along the isopycnal (green line) whose outcrop separates the Ekman suction to the south from Ekman pumping to the north (large gray arrows). Across this isopycnal there is dense-to-light watermass transformation (thick orange arrow) driven by the surface buoyancy flux into the ocean (curly orange arrows). Along this isopycnal, surface waters are cold/fresh (blue region) while deeper waters are warm/salty (red region), with the strength of this gradient influenced by neutral diffusion (green curly arrow). Cabbeling and thermobaricity (cyan lines) drive some light-to-dense transformation along these gradients. The interhemispheric and bottom water overturning cells are illustrated in magenta.

When κ_n is reduced (as in LOW or FULL, bottom) along-isopycnal temperature-salinity contrasts are increased leading to cooling/freshening at the surface and warming/salinification at depth. The surface buoyancy flux into the ocean increases in response to surface cooling, leading to increased dense-to-light watermass transformation (orange arrow). The lighter surface waters are carried into the interior along the downwelling arm of the interhemispheric overturning cell, which combined with reduced cabbeling/thermobaricity leads to a lightening of the upper ocean in the mid-latitudes (illustrated by a southward shift of isopycnals illustrated with green lines). This lightening of the upper mid-latitude oceans results in an increased mid-latitude stratification that strengthens the interhemispheric overturning cell through thermal wind balance (e.g. Wolfe & Cessi, 2010, thick magenta line in bottom panel).

diate waters as part of the interhemispheric cell less is converted into denser waters and 512 enters the bottom water cell, and vice versa. Indeed, when κ_n is increased (HIGH), the 513 surface density is increased around the entire Southern Ocean, resulting in larger areas 514 of deeper mixed-layers and indicating enhanced bottom water formation (Fig. 14b). In 515 LOW the response is largely opposite of that in HIGH (Fig. 14c). However, in FULL 516 the surface density anomalies, while having a similar pattern to those in LOW, are sig-517 nificantly reduced in amplitude (Fig. 14d). Similarly, the shoaling of deep mixed layers 518 is much reduced in FULL. This is linked to the stronger neutral diffusion in FULL com-519 pared to LOW across much of the interior Southern Ocean (compare Figs. 14e,f) which 520 supplies heat to the surface. As a consequence, the FULL experiment largely maintains 521 its formation of Antarctic bottom water in contrast to LOW (e.g. compare Figs. 4e and 522 4k). 523

524 4 Summary and Discussion

In this study, we have examined the impact of varying physics-based choices for the spatial structure of the neutral diffusivity κ_n arising from unresolved mesoscale eddy stirring, based on the theory and observational study of Groeskamp et al. (2020), on a coarse-resolution global ocean sea-ice model (ACCESS-OM2). We show that ACCESS-OM2's overturning circulation and tracer structure are sensitive to both the magnitude and the spatial structure of κ_n . Results can be summarized as follows:

- 1. In general, stronger (weaker) neutral diffusion leads to a weakening (strengthen-531 ing) in the interhemispheric overturning cell through changes in SST and surface 532 heat, freshwater and buoyancy flux-driven watermass transformation, along with 533 changes in cabbeling and thermobaricity, in the Southern Ocean (as summarized 534 in the schematic in Fig. 13). Changes of $\pm 2Sv$ (or up to 20%) were found in the 535 interhemispheric cell across our suite of experiments (Figs. 3c, 4). As the surface 536 winds are fixed in these experiments, these changes highlight not only the impor-537 tance of neutral diffusion, but also of buoyancy forcing for the modeled overturn-538 ing circulation. 539
- 2. Our results suggest that the vertical structure based on surface-mode theory (La-540 Casce, 2017) in κ_n has only a modest impact on circulation and tracer fields (com-541 pare MLT2D and MLT3D in Figs. 4,7). In general, κ_n variations at high-latitudes 542 had stronger impacts than at low-latitudes. Most importantly, the effects of mix-543 ing suppression by mean-flows (Ferrari & Nikurashin, 2010) were first-order. Mean-544 flow suppression reduced κ_n throughout much of the ocean (particularly near the 545 surface, compare Figs. 2b,d) and strongly impacted the circulation and tracer struc-546 ture (compared to simulations utilizing mixing length theory only). 547
- 3. The spatial structure for κ_n based on the "best guess" configuration from Groeskamp 548 et al. (2020) in experiment FULL showed the best overall match to observations 549 taking into account the magnitudes of the 1) interhemispheric cell, 2) bottom wa-550 ter cell and 3) zonal mean tracer biases. In particular, the FULL experiment achieved 551 a stronger interhemispheric cell without reducing the bottom water cell, unlike in 552 the spatially-uniform reduction experiment LOW. The use of the FULL spatial 553 structure for κ_n leads to better agreement between the coarse-resolution ACCESS-554 OM2 overturning circulation and meridional heat transport with the high-resolution 555 ACCESS-OM2-025 and ACCESS-OM2-01 configurations (Kiss et al., 2020), where 556 the spatial structure of mesoscale eddy-driven stirring is better resolved. 557

⁵⁵⁸ While drawing strong conclusions from a single-model study must be treated with ⁵⁵⁹ caution given the potential for error compensation, the sensitivity of circulation and hy-⁵⁶⁰ drography to κ_n motivates further investigation of the use of the Groeskamp et al. (2020) ⁵⁶¹ scheme as a parameterization. However, before use for production purposes further work ⁵⁶² is needed. For example, the model stratification and flow fields should be used for the

Figure 14. Annual-mean surface density (σ_0 , kg m⁻³) plots south of 40°S for (a) CTRL and anomalies from CTRL for the (b) HIGH, (c) LOW and (d) FULL experiments. The annualmean mixed layer depth is contoured at 500 m intervals in black. The red contours indicates the monthly-maximum 50% sea-ice extent (CTRL with dashed contours, HIGH, LOW and FULL with solid contours). Surface values of the neutral diffusivity in (e) LOW and (f) FULL.

calculation of modes, the deformation radius and the mean-flow suppression factor. The
theory could also be combined with a 2D dynamical model for the EKE field (e.g. Adcroft et al., 2019; Jansen et al., 2015). We also note that while the use of an ocean-only
model here helped with the attribution of cause and effect, a similar study performed
in a coupled atmosphere-ocean model is needed to evaluate the impact of additional wind,
buoyancy and sea-ice feedbacks (e.g. Pradal & Gnanadesikan, 2014) that may complicate the response.

We have focused on the neutral diffusivity κ_n in this article and have not discussed 570 similar changes in κ_{GM} . Preliminary experiments indicate that, while spatially-uniform 571 changes in κ_{GM} equivalent to HIGH and LOW have a larger impact on circulation than 572 κ_n , more subtle changes in its structure (e.g. equivalent to FULL vs. CTRL with $\kappa_{GM} =$ 573 κ_n) induce circulation and zonal mean tracer anomalies no larger than those associated 574 with κ_n only. While further work is required, and more sophisticated theories for κ_{GM} 575 and the inclusion of eddy effects on momentum and energy already exist, these results 576 suggest that κ_n deserves more attention in coarse-resolution model sensitivity studies. 577

578 Acknowledgments

We thank J. Zika for helpful comments. We thank the Consortium for Ocean and Sea-579 Ice Modelling in Australia (COSIMA) community for their valuable contributions to ACCESS-580 OM2 development. Modeling and analysis were undertaken using facilities at the Na-581 tional Computational Infrastructure (NCI), which is supported by the Australian Gov-582 ernment. R Holmes and T. McDougall gratefully acknowledge Australian Research Coun-583 cil (ARC) support through grant FL150100090. R Holmes acknowledges support from 584 ARC award DE21010004. Upon acceptance, the data required to reproduce the results 585 in this article will be published online at Zenodo and the digital object identifier (doi) 586 will be quoted here. 587

588 References

- Abernathey, R., Ferreira, D., & Klocker, A. (2013). Diagnostics of isopycnal mix ing in a circumpolar channel. Ocean Model., 72, 1 16. doi: 10.1016/j.ocemod
 .2013.07.004
- Abernathey, R., Marshall, J., Mazloff, M., & Shuckburgh, E. (2010). Enhancement
 of mesoscale eddy stirring at steering levels in the southern ocean. J. Phys.
 Oceanogr., 40, 170-184.
- Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M., Dufour, C. O., ...
 Zhang, R. (2019). The GFDL Global Ocean and Sea Ice Model OM4.0: Model
 description and simulation features. J. Adv. Model. Earth Syst., 11, 3167-3211.
 doi: 10.1029/2019MS001726
- Bachman, S. D., Fox-Kemper, B., & Bryan, F. O. (2020). A diagnosis of
 anisotropic eddy diffusion from a high-resolution global ocean model. Journal of Advances in Modeling Earth Systems, 12(2), e2019MS001904. doi:
 10.1029/2019MS001904
- Beckers, J. M., Burchard, H., Campin, J. M., Deleersnijder, E., & Mathieu, P. P.
 (1998). Another reason why simple discretizations of rotated diffusion operators cause problems in ocean models: Comments on "isoneutral diffusion in a z-coordinate ocean model". J. Phys. Oceanogr., 28(7), 1552 - 1559. doi: 10.1175/1520-0485(1998)028(1552:ARWSDO)2.0.CO;2
- Beckers, J.-M., Burchard, H., Deleersnijder, E., & Mathieu, P. P. (2000). Numerical discretization of rotated diffusion operators in ocean models. *Mon. Wea. Rev.*, 128(8), 2711 - 2733. doi: 10.1175/1520-0493(2000)128(2711:NDORDO)2.0.CO; 2
- Bishop, S. P., Gent, P. R., Bryan, F. O., Thompson, A. F., Long, M. C., & Aber-
- nathey, R. (2016). Southern ocean overturning compensation in an eddy-

614	resolving climate simulation. J. Phys. Oceanogr., 46(5), 1575-1592. doi:
615	10.1175/JPO-D-15-0177.1
616	Busecke, J. J., & Abernathey, R. P. (2019). Ocean mesoscale mixing linked
617	to climate variability. Science advances, $5(1)$, eaav5014. doi: 10.1126/
618	sciadv.aav5014
619	Cessi, P. (2008). An energy-constrained parameterization of eddy buoyancy flux. J.
620	<i>Phys. Oceanogr.</i> , 38(8), 1807 - 1819. doi: 10.1175/2007JPO3812.1
621	Danabasoglu, G., & Marshall, J. (2007). Effects of vertical variations of thickness
622	diffusivity in an ocean general circulation model. Ocean Model., 18(2), 122 -
623	141. doi: 10.1016/j.ocemod.2007.03.006
624	Danabasoglu, G., & McWilliams, J. C. (1995). Sensitivity of the global ocean circu-
625	lation to parameterizations of mesoscale tracer transports. J. Climate, 8(12),
626	2967 - 2987. doi: 10.1175/1520-0442(1995)008(2967:SOTGOC)2.0.CO;2
627	de Lavergne, C., Groeskamp, S., Zika, J., & Johnson, H. L. (2022). Chapter 3
628	- the role of mixing in the large-scale ocean circulation. In M. Meredith
629	& A. Naveira Garabato (Eds.), <i>Ocean mixing</i> (p. 35-63). Elsevier. doi: 10.1016 /P070 0.10 001510 0.00010 4
630	10.1016/B978-0-12-821512-8.00010-4
631	Delworth, I. L., & Zeng, F. (2008). Simulated impact of altered Southern Hemi-
632	sphere winds on the Atlantic Meridional Overturning Circulation. Geophys. B_{00} Lett. 25(20) doi: 10.1020/2008CI.025166
633	Res. Lett., 35(20). doi: 10.1029/2008GL055100
634	boos, K., & Webb, D. J. (1994). The Deacon Central of the Content Methodolar Central of the Southern Ocean I Phys. Ocean car $\ell/(2)$ 420 442, doi: 10.1175/1520
635	of the Southern Ocean. J. Thys. Oceanogr., $24(2)$, $429-442$. doi: 10.1110/1520 0485(1004)024/0420. TDCATO(2.0.CO.2
636	-0405(1994)024(0423,1)O(A10)/2.0.00,2 Edon C & Croathatch B I (2008) Towards a moscoscale oddy closure Ocean
637	Eden, C., & Greatbatch, R. J. (2006). Towards a mesoscale eddy closure. Ocean Model $20(3)$ 223 230 doi: 10.1016/j.ocomod.2007.00.002
638	Eden C. Jochum M. & Danabasorlu C. (2000) Effects of different closures for
639	thickness diffusivity Ocean Model 26(1) 47-59 doi: 10.1016/i.ocemod.2008
640	08 004
642	England M H & Bahmstorf S (1999) Sensitivity of ventilation rates and ra-
643	diocarbon uptake to subgrid-scale mixing in ocean models. J. Phys. Oceanoar.
644	29(11), 2802 - 2828. doi: 10.1175/1520-0485(1999)029(2802:SOVRAR)2.0.CO:
645	2
646	Ferrari, R., McWilliams, J. C., Canuto, V. M., & Dubovikov, M. (2008). Parameter-
647	ization of eddy fluxes near oceanic boundaries. J. Climate, 21(12), 2770-2789.
648	doi: 10.1175/2007JCLI1510.1
649	Ferrari, R., & Nikurashin, M. (2010, 07). Suppression of Eddy Diffusivity across Jets
650	in the Southern Ocean. J. Phys. Oceanogr., 40(7), 1501-1519. doi: 10.1175/
651	2010JPO4278.1
652	Ferreira, D., Marshall, J., & Heimbach, P. (2005). Estimating eddy stresses
653	by fitting dynamics to observations using a residual-mean ocean circula-
654	tion model and its adjoint. J. Phys. Oceanogr., $35(10)$, 1891 - 1910. doi:
655	10.1175/JPO2785.1
656	Gent, P. R. (2011). The Gent-McWilliams parameterization: 20/20 hindsight. Ocean
657	Model., 39(1?2), 2 - 9. (Modelling and Understanding the Ocean Mesoscale
658	and Submesoscale) doi: 10.1016/j.ocemod.2010.08.002
659	Gent, P. R., & McWilliams, J. C. (1990). Isopycnal mixing in ocean circulation
660	models. J. Phys. Oceanogr., $20(1)$, 150–155. doi: $10.1175/1520-0485(1990)$
661	020(0150:IMIOCM)2.0.CO;2
662	Gnanadesikan, A., Dixon, K. W., Griffies, S. M., Balaji, V., Barreiro, M., Beesley,
663	J. A., Dunne, J. P. (2006). GFDL's CM2 Global Coupled Climate Models.
664	Part II: The Baseline Ocean Simulation. J. Climate, $19(5)$, $675 - 697$. doi: 10.1175 (ICI 1969) 1
665	10.1175/JCL13630.1
666	Gianadesikan, A., Pradai, MA., & Abernatney, K. (2015). Isopycnal mixing by
667	mesoscale equies significantly impacts oceanic anthropogenic carbon uptake.
668	Geophys. Res. Lett., 42(11), 4249-4255. doi: 10.1002/2015GL004100

669	Gnanadesikan, A., Russell, A., Pradal, MA., & Abernathey, R. (2017). Impact
670	of lateral mixing in the ocean on El Nino in a suite of fully coupled climate
671	models. J. Adv. Model. Earth Syst., 9. doi: 10.1002/2017MS000917
672	Gough, W., & Lin, C. (1995). Isopycnal mixing and the Veronis effect in an ocean
673	general circulation model. Journal of Marine Research, 53, 189-199. doi: 10
674	.1357/0022240953213223
675	Griffies, S. M. (1998). The Gent-McWilliams skew flux. J. Phys. Oceanogr., 28(5),
676	831-841. doi: 10.1175/1520-0485(1998)028 (0831:TGMSF>2.0.CO;2
677	Griffies, S. M. (2012). Elements of the modular ocean model (MOM). GFDL Ocean
678	Group Tech. Rep, 7, 620.
679	Griffies, S. M., Gnanadesikan, A., Dixon, K. W., Dunne, J. P., Gerdes, R., Harrison,
680	M. J., Zhang, R. (2005, Sep). Formulation of an ocean model for global
681	climate simulations. Ocean Science, $I(1)$, 45-79.
682	Griffies, S. M., Gnanadesikan, A., Pacanowski, R. C., Larichev, V., Dukowicz, J. K.,
683	& Smith, R. D. (1998). Isoneutral diffusion in a z-coordinate ocean model. L Diverse 0.005 200 L^{-1} 10 1175 (1520 0405 (1008)029 (0205)
684	J. Phys. Oceanogr., 28, 805–850. doi: $10.1175/1520-0485(1998)028(0805)$: IDIAZC\2.0 CO-2
685	Griffies S M Harrison M I Pacanowski B C & Rosati A (2004) A technical
687	guide to MOM4 GFDL Ocean Group Tech Ben 5 371
688	Griffies, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L., Dufour.
689	C. O Zhang, R. (2015). Impacts on ocean heat from transient mesoscale
690	eddies in a hierarchy of climate models. J. Climate, 28(3), 952-977. doi:
691	10.1175/JCLI-D-14-00353.1
692	Groeskamp, S., Abernathey, R. P., & Klocker, A. (2016). Water mass transformation
693	by cabbeling and thermobaricity. Geophys. Res. Lett., 43. (2016GL070860)
694	doi: 10.1002/2016GL070860
695	Groeskamp, S., Barker, P. M., McDougall, T. J., Abernathey, R. P., & Griffies,
696	S. M. (2019). VENM: An algorithm to accurately calculate neutral
697	slopes and gradients. J. Adv. Model. Earth Syst., $11(7)$, 1917-1939. doi:
698	10.1029/2019MS001613
699	Groeskamp, S., LaCasce, J. H., McDougall, T. J., & Rogè, M. (2020). Full-depth
700	global estimates of ocean mesoscale eddy mixing from observations and theory.
701	<i>Geophys. Res. Lett.</i> , 47(18), e2020GL089425. doi: 10.1029/2020GL089425
702	Guilyardi, E., Madec, G., & Terray, L. (2001). The role of lateral ocean physics
703	in the upper ocean thermal balance of a coupled ocean-atmosphere GCM. Cli-
704	<i>mate Dynamics</i> , 17(8), 589–599. doi: 10.1007/PL00007930 Hallborg P (2012) Using a resolution function to regulate parameterizations of
705	namberg, R. (2013). Using a resolution function to regulate parameterizations of
706	oceand 2013 08 007
707	Hieronymus M & Nycander J (2013) The budgets of heat and salinity in NEMO
709	Ocean Model., 67, 28 - 38, doi: 10.1016/i.ocemod.2013.03.006
710	Hogg, A. M., Spence, P., Saenko, O. A., & Downes, S. M. (2017). The Energetics of
711	Southern Ocean Upwelling. J. Phys. Oceanogr., 47(1), 135-153. doi: 10.1175/
712	JPO-D-16-0176.1
713	Holmes, R. M., Zika, J. D., Griffies, S. M., Hogg, A. M., Kiss, A. E., & England,
714	M. H. (2021). The geography of numerical mixing in a suite of global
715	ocean models. J. Adv. Model. Earth Syst., 13(7), e2020MS002333. doi:
716	10.1029/2020 MS002333
717	Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., & Elliott, S. (2015).
718	CICE: The Los Alamos Sea Ice Model Documentation and Software User's
719	Manual Version 5.1. Tech. Rep. LA-CC-06-012, Los Alamos National Labora-
720	tory.
721	Jackett, D. R., McDougall, T. J., Feistel, R., Wright, D. G., & Griffies, S. M. (2006).
722	Algorithms for density, potential temperature, conservative temperature, and
723	the freezing temperature of seawater. J. Atmos. Ocean Technol., 23(12), 1709 -

70.4	1798 doi: 10.1175/JTECH1046.1
724	Iansen M F Adcroft A Khani S & Kong H (2010) Toward an energetically
725	consistent resolution aware parameterization of ocean mesoscale eddies
727	Adv. Model. Earth Syst., 11(8), 2844-2860, doi: 10.1029/2019MS001750
728	Jansen, M. F., Adcroft, A. J., Hallberg, R., & Held, I. M. (2015). Parameterization
729	of eddy fluxes based on a mesoscale energy budget. Ocean Model., 92, 28 - 41.
730	doi: 10.1016/i.ocemod.2015.05.007
731	Jansen, M. F., & Held, I. M. (2014). Parameterizing subgrid-scale eddy effects us-
732	ing energetically consistent backscatter. Ocean Model. 80, 36-48, doi: 10.1016/
733	i.ocemod.2014.06.002
734	Jochum, M., & Eden, C. (2015, sep). The connection between Southern Ocean
735	winds, the Atlantic meridional overturning circulation, and Indo-Pacific up-
736	welling. J. Climate, 28(23), 9250–9257. doi: 10.1175/JCLI-D-15-0263.1
737	Johns, T. C., Durman, C. F., Banks, H. T., Roberts, M. J., McLaren, A. J., Ri-
738	dley, J. K., Searl, Y. (2006). The New Hadley Centre Climate Model
739	(HadGEM1): Evaluation of Coupled Simulations. J. Climate, 19(7), 1327 -
740	1353. doi: 10.1175/JCLI3712.1
741	Jones, C. S., & Abernathey, R. P. (2019). Isopycnal mixing controls deep ocean
742	ventilation. Geophys. Res. Lett., 46(22), 13144-13151. doi: 10.1029/
743	2019GL085208
744	Jones, C. S., & Abernathey, R. P. (2021). Modeling water-mass distributions in the
745	modern and lgm ocean: circulation change, isopycnal and diapycnal mixing. J .
746	Phys. Oceanogr doi: 10.1175/JPO-D-20-0204.1
747	Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V., Six, K.,
748	Marotzke, J. (2010). Climate and carbon-cycle variability over the last
749	millennium. Climate of the Past, $6(5)$, 723–737. doi: 10.5194/cp-6-723-2010
750	Juricke, S., Danilov, S., Koldunov, N., Oliver, M., Sein, D. V., Sidorenko, D., &
751	Wang, Q. (2020). A kinematic kinetic energy backscatter parametrization:
752	From implementation to global ocean simulations. J. Adv. Model. Earth Syst.,
753	12(12), e2020MS002175. doi: 10.1029/2020MS002175
754	Kiss, A. E., Hogg, A. M., Hannah, N., Boeira Dias, F., Brassington, G. B., Cham-
755	berlain, M. A., Zhang, X. (2020). ACCESS-OM2 v1.0: A global ocean-sea
756	ice model at three resolutions. Geosci. Model Dev., $13(2)$, $401-442$. doi:
757	10.5194/gmd-13-401-2020
758	Klocker, A., & Abernathey, R. (2013). Global patterns of mesoscale eddy properties
759	and diffusivities. J. Phys. Oceanogr., $44(3)$, $1030-1046$.
760	Klocker, A., & McDougall, I. J. (2010). Influence of the nonlinear equation of state
761	on global estimates of dianeutral advection and diffusion. J. Phys. Oceanogr., $(0/8)$ 1600, 1700, doi: 10.1175/2010.IDO/2022.1
762	40(0), 1090-1709. doi: 10.1175/2010JF 04505.1
763	// 11007 11105 (2017CL 075430) doi: 10 1002/2017CL 075430
764	44, 11051-11105. (2017GL079450) (doi: 10.1002/2017GL079450) LaCasco I H & Crooskamp S (2020, 08) Baroclinic modes over rough
705	bathymetry and the surface deformation radius I Phys Oceanogr 1-40
700	doi: 10.1175/JPO-D-20-0055.1
769	Large W & Yeager S (2004) Diviral to decadal alobal forcing for ocean and
769	seq-ice models: the data sets and flux climatologies National Center for Atmo-
770	spheric Research.
771	Lemarié, F., Debreu, L., Shchepetkin, A., & McWilliams, J. (2012). On the stability
772	and accuracy of the harmonic and biharmonic isoneutral mixing operators in
773	ocean models. Ocean Model., 52-53, 9-35. doi: 10.1016/i.ocemod.2012.04.007
774	Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Bover, T. P., Garcia, H. E., Bara-
775	nova, O. K., Seidov, D. (2013). World Ocean Atlas 2013. Volume 1:
776	Temperature. NOAA Atlas NESDIS, 73, 40. (S. Levitus, Ed., A. Mishonov
777	Technical Ed.)
778	Marshall, D. P., & Adcroft, A. J. (2010). Parameterization of ocean eddies: Po-

779	tential vorticity mixing, energetics and arnold's first stability theorem. Ocean
780	Model., 32(3), 188-204. doi: 10.1016/j.ocemod.2010.02.001
781	McCarthy, G. D., Smeed, D. A., Johns, W. E., Frajka-Williams, E., Moat, B. I.,
782	Rayner, D., Bryden, H. L. (2015). Measuring the Atlantic Merid-
783	ional Overturning Circulation at 26N. Prog. Oceanogr., 130, 91–111. doi:
784	10.1016/j.pocean.2014.10.006
785	McDougall, T. (1987). Thermobaricity, cabbeling, and water-mass conversion. J.
786	Geophys. Res. Oceans, 92(C5), 5448-5464. doi: 10.1029/JC092iC05p05448
787	McDougall, T. J. (2003). Potential enthalpy: A conservative oceanic variable for
788	evaluating heat content and heat fluxes. J. Phys. Oceanogr., 33(5), 945-963.
789	doi: 10.1175/1520-0485(2003)033(0945:PEACOV)2.0.CO:2
790	McDougall, T. J., & Barker, P. M. (2011). Getting started TEOS-10 and the Gibbs
791	Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG, 127, 1–28.
792	McDougall, T. J., & Church, J. A. (1986). Pitfalls with the numerical representa-
793	tion of isopycnal diapycnal mixing. J. Phys. Oceanogr., 16(1), 196 - 199. doi:
794	10.1175/1520-0485(1986)016(0196:PWTNRO)2.0.CO;2
795	McDougall, T. J., Groeskamp, S., & Griffies, S. M. (2014). On geometrical aspects of
796	interior ocean mixing. J. Phys. Oceanogr., 44(8), 2164-2175. doi: 10.1175/JPO
797	-D-13-0270.1
798	Meijers, A. J. S. (2014). The Southern Ocean in the Coupled Model Intercomparison
799	Project phase 5. Philosophical Transactions of the Royal Society A: Mathemat-
800	ical, Physical and Engineering Sciences, 372 (2019), 20130296. doi: 10.1098/
801	rsta.2013.0296
802	Morrison, A. K., Saenko, O. A., Hogg, A. M., & Spence, P. (2013). The role of verti-
803	cal eddy flux in southern ocean heat uptake. Geophys. Res. Lett., 40(20), 5445-
804	5450. doi: 10.1002/2013GL057706
805	Nycander, J., Hieronymus, M., & Roquet, F. (2015). The nonlinear equation of state
806	of sea water and the global water mass distribution. Geophysical Research Let-
807	ters, $42(18)$, 7714-7721. doi: 10.1002/2015GL065525
808	Pearson, B., Fox-Kemper, B., Bachman, S., & Bryan, F. (2017). Evaluation of
809	scale-aware subgrid mesoscale eddy models in a global eddy-rich model. Ocean
810	Model., 115, 42-58. doi: 10.1016/j.ocemod.2017.05.007
811	Pradal, MA., & Gnanadesikan, A. (2014). How does the redi parameter for
812	mesoscale mixing impact global climate in an earth system model? $J. A dv.$
813	Model. Earth Syst., 6(3), 586-601. doi: 10.1002/2013MS000273
814	Prandtl, L. (1925). Report on investigation of developed turbulence. NACA Report
815	TM-1231.
816	Redi, M. H. (1982). Oceanic isopycnal mixing by coordinate rotation. J. Phys.
817	Oceanogr., 12(10), 1154-1158. doi: $10.1175/1520-0485(1982)012(1154:$
818	$OIMBCR \rangle 2.0.CO;2$
819	Shao, A. E., Adcroft, A., Hallberg, R., & Griffies, S. M. (2020). A general-
820	coordinate, nonlocal neutral diffusion operator. J. Adv. Model. Earth Syst.,
821	12(12), e2019MS001992. doi: 10.1029/2019MS001992
822	Sijp, W. P., Bates, M., & England, M. H. (2006). Can isopycnal mixing control the
823	stability of the thermohaline circulation in ocean climate models? J. Climate,
824	19(21), 5637 - 5651. doi: $10.1175/$ JCLI3890.1
825	Sijp, W. P., & England, M. H. (2009). The control of polar haloclines by along-
826	isopycnal diffusion in climate models. J. Climate, $22(3)$, 486 - 498. doi: 10
827	.1175/2008 JCLI 2513.1
828	Smith, K. S., & Marshall, J. (2009). Evidence for Enhanced Eddy Mixing at Mid-
829	depth in the Southern Ocean. J. Phys. Oceanogr., $39(1)$, 50-69. doi: 10.1175/
830	2008JPO3880.1
831	Smith, K. S., & Vallis, G. K. (2002). The scales and equilibration of midocean ed-
832	dies: Forced?dissipative flow. J. Phys. Oceanogr., 32(6), 1699 - 1720. doi: 10
833	.1175/1520-0485(2002)032(1699:TSAEOM)2.0.CO;2

834	Solomon, H. (1971, 07). On the Representation of Isentropic Mixing in Ocean
835	Circulation Models. J. Phys. Oceanogr., 1(3), 233-234. doi: 10.1175/
836	1520-0485(1971)001(0233:OTROIM)2.0.CO;2
837	Stanley, Z., Bachman, S., & Grooms, I. (2020). Vertical structure of ocean mesoscale
838	eddies with implications for parameterizations of tracer transport. J. Adv.
839	Model. Earth Syst., e2020MS002151.
840	Stewart, K., & Hogg, A. (2019). Southern ocean heat and momentum uptake are
841	sensitive to the vertical resolution at the ocean surface. Ocean Model., 143,
842	101456. doi: 10.1016/j.ocemod.2019.101456
843	Stewart, K., Hogg, A., England, M., Waugh, D., & Kiss, A. (2021). The Ekman
844	streamfunction and the Eulerian and residual overturning circulations of the
845	Southern Ocean. Geophys. Res. Lett., 48, e2021GL093438. (e2021GL093438
846	2021GL093438) doi: 10.1029/2021GL093438
847	Stewart, K., Hogg, A., Griffies, S., Heerdegen, A., Ward, M., Spence, P., & England,
848	M. (2017). Vertical resolution of baroclinic modes in global ocean models.
849	<i>Ocean Model.</i> , 113, 50 - 65, doi: 10.1016/i.ocemod.2017.03.012
850	Stewart, K., Kim, W., Urakawa, S., Hogg, A., Yeager, S., Tsujino, H., Dan-
851	abasoglu, G. (2019). JRA55-do-based repeat year forcing datasets for
852	driving ocean-sea-ice models. Ocean Model., 101557. doi: 10.1016/
853	i.ocemod.2019.101557
854	Treguier, A. M., Held, I. M., & Larichev, V. D. (1997). Parameterization of quasi-
855	geostrophic eddies in primitive equation ocean models. J. Phys. Oceanoor.
856	27(4), 567 - 580, doi: 10.1175/1520-0485(1997)027(0567:POQEIP)2.0.CO:2
857	Tsuiino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Adcroft, A. J., Ama-
858	ral, A. E Yu. Z. (2020). Evaluation of global ocean sea-ice model simula-
850	tions based on the experimental protocols of the Ocean Model Intercomparison
860	Project phase 2 (OMIP-2) Geoscientific Model Development Discussions
861	2020 1–86 doi: 10.5194/gmd-2019-363
862	Tsuiino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G.,
863	others (2018), JRA-55 based surface dataset for driving ocean-sea-ice models
864	(JRA55-do). Ocean Model., 130, 79–139, doi: 10.1016/i.ocemod.2018.07.002
865	Urakawa, L. S., Tsujino, H., Nakano, H., Sakamoto, K., Yamanaka, G., & Tovoda,
866	T. (2020). The sensitivity of a depth-coordinate model to diapychal mixing
867	induced by practical implementations of the isopycnal tracer diffusion scheme.
868	Ocean Model., 101693, doi: 10.1016/j.ocemod.2020.101693
869	Veronis, G. (1975). The role of models in tracer studies, numerical models of the
870	ocean circulation. Natl. Acad. Sci., 133?146.
871	Visbeck, M., Marshall, J., Haine, T., & Spall, M. (1997). Specification of
872	eddy transfer coefficients in coarse-resolution ocean circulation models. J.
873	<i>Phys. Oceanoar.</i> , 27(3), 381 - 402. doi: 10.1175/1520-0485(1997)027(0381:
874	SOETCI>2.0.CO:2
875	Voldoire, A., Sanchez-Gomez, E., v Mélia, D. S., Decharme, B., Cassou, C., Sénési,
876	S others (2013). The CNRM-CM5.1 global climate model: descrip-
877	tion and basic evaluation. Climate dynamics, $40(9)$, $2091-2121$. doi:
878	10.1007/s00382-011-1259-v
879	Vollmer, L., & Eden, C. (2013). A global map of meso-scale eddy diffusivities based
880	on linear stability analysis. Ocean Model., 72, 198 - 209, doi: 10.1016/j.ocemod
881	.2013.09.006
882	Williams, P. D., Guilvardi, E., Sutton, R., Gregory, J., & Madec, G. (2007). A new
883	feedback on climate change from the hydrological cycle. <i>Geophus. Res. Lett.</i>
884	34(8). doi: 10.1029/2007GL029275
885	Wolfe, C. L., & Cessi, P. (2010). What sets the strength of the middenth stratifica-
886	tion and overturning circulation in eddving ocean models? J. Phys. Oceanoar.
887	40(7), 1520 - 1538. doi: 10.1175/2010JPO4393.1

Wolfe, C. L., Cessi, P., McClean, J. L., & Maltrud, M. E. (2008). Vertical heat

- transport in eddying ocean models. Geophys. Res. Lett., 35(23). (L23605) doi: 889 10.1029/2008GL036138 890
- Zweng, M., Reagan, J., Antonov, J., Locarnini, R., Mishonov, A., Boyer, T., ... Bid-891 dle, M. (2013). World Ocean Atlas 2013, Volume 2: Salinity. NOAA Atlas 892 893
 - NESDIS, 74, 39. (S. Levitus, Ed., A. Mishonov Technical Ed.)

Figure 1.

CTRL surface κ_n

Figure 2.

Figure 3.

	— CTRI	
	— HIGH	I
	— LOW	
	— MLT	2D
	— MLT	3D
	— FULI	
M	the statement	~~~~
www.	ACCORD AND	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	winner	~~~
1	Ι	———————————————————————————————————————
		~~~
munder	man	
not (	Maran	
manutal .	man man	Sacre
for the state of t	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~
		www
mont		
	· · · · · · · · · · · · · · · · · · ·	m
And the second s		
(00	000	
600	800	1000

Year

Figure 4.



Figure 5.



Figure 6.





Figure 7.





Latitude (°N)

Figure 8.

![](_page_45_Figure_0.jpeg)

Figure 9.

![](_page_47_Figure_0.jpeg)

Latitude (°N)

Figure 10.

![](_page_49_Figure_0.jpeg)

![](_page_49_Figure_1.jpeg)

Figure 11.

![](_page_51_Figure_0.jpeg)

![](_page_51_Figure_3.jpeg)

Figure 12.

![](_page_53_Figure_0.jpeg)

Figure 13.

![](_page_55_Figure_0.jpeg)

Figure 14.

![](_page_57_Picture_0.jpeg)

![](_page_57_Figure_1.jpeg)

![](_page_57_Figure_2.jpeg)

1027.8

1027.6

1027.4

1027.2

- 1027.0 (سالم المح 1026.8 يا 1026.9 -

1026.6

1026.4

1026.2

1026.0

![](_page_57_Figure_3.jpeg)

(d) FULL

![](_page_57_Figure_5.jpeg)

![](_page_57_Picture_6.jpeg)

![](_page_57_Figure_7.jpeg)

![](_page_57_Picture_8.jpeg)