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Abstract

Urban overheating, driven by global climate change and urban development, is a major contemporary challenge which sub-

stantially impacts urban livability and sustainability. Overheating represents a multi-faceted threat to well-being, performance,

and health of individuals as well as the energy efficiency and economy of cities, and it is influenced by complex interactions

between building, city, and global scale climates. In recent decades, extensive discipline-specific research has characterized

urban heat and assessed its implications on human life, including ongoing efforts to bridge neighboring disciplines. The research

horizon now encompasses complex problems involving a wide range of disciplines, and therefore comprehensive and integrated

assessments are needed that address such interdisciplinarity. Here, the objective is to go beyond a review of existing literature

and provide a broad overview and future outlook for integrated assessments of urban overheating, defining holistic pathways for

addressing the impacts on human life. We (i) detail the characterization of heat exposure across different scales and in various

disciplines, (ii) identify individual sensitivities to urban overheating that increase vulnerability and cause adverse impacts in

different populations, (iii) elaborate on adaptive capacities that individuals and cities can adopt, (iv) document the impacts of

urban overheating on health and energy, and (v) discuss frontiers of theoretical and applied urban climatology, built environ-

ment design, and governance toward reduction of heat exposure and vulnerability at various scales. The most critical challenges

in future research and application are identified, targeting both the gaps and the need for greater integration in overheating

assessments.
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Key Points: 29 

● Urban overheating is the exceedance of locally-defined thermal thresholds that lead to 30 

negative impacts on people and urban systems 31 

● Exposure, sensitivity and adaptive capacity of people and infrastructure, and socio-32 

political-economic factors determine overheating impacts 33 

● Research and application should provide integrated solutions to mitigate exposure, reduce 34 

sensitivity, and increase adaptive capacities.   35 

  36 
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Abstract 37 

Urban overheating, driven by global climate change and urban development, is a major 38 

contemporary challenge which substantially impacts urban livability and sustainability. 39 

Overheating represents a multi-faceted threat to well-being, performance, and health of individuals 40 

as well as the energy efficiency and economy of cities, and it is influenced by complex interactions 41 

between building, city, and global scale climates. In recent decades, extensive discipline-specific 42 

research has characterized urban heat and assessed its implications on human life, including 43 

ongoing efforts to bridge neighboring disciplines. The research horizon now encompasses complex 44 

problems involving a wide range of disciplines, and therefore comprehensive and integrated 45 

assessments are needed that address such interdisciplinarity. 46 

Here, the objective is to go beyond a review of existing literature and provide a broad overview 47 

and future outlook for integrated assessments of urban overheating, defining holistic pathways for 48 

addressing the impacts on human life. We (i) detail the characterization of heat exposure across 49 

different scales and in various disciplines, (ii) identify individual sensitivities to urban overheating 50 

that increase vulnerability and cause adverse impacts in different populations, (iii) elaborate on 51 

adaptive capacities that individuals and cities can adopt, (iv) document the impacts of urban 52 

overheating on health and energy, and (v) discuss frontiers of theoretical and applied urban 53 

climatology, built environment design, and governance toward reduction of heat exposure and 54 

vulnerability at various scales. The most critical challenges in future research and application are 55 

identified, targeting both the gaps and the need for greater integration in overheating assessments.  56 

Plain Language Summary 57 

Many major cities are faced with compounding effects of climate change and rapid urbanization. 58 

One of the main challenges that results is urban overheating, which leads to negative impacts on 59 

human life (deteriorating health, productivity, and wellbeing) and urban infrastructure. Heat 60 

exposure in cities, however, is only the trigger and there are other factors that influence impacts. 61 

Urban heat vulnerability exists when sensitive people and infrastructure are exposed to extreme 62 

heat, and negative impacts ensue if there is a lack of capacity to respond and adapt. Accordingly, 63 

to combat overheating challenges, it is critical that multi-disciplinary solutions are integrated to 64 

mitigate exposure, reduce sensitivity, and increase adaptive capacities.  65 

This paper provides a review of urban overheating literature, defining pathways for addressing the 66 

impacts on human life. We review the state-of-the-art methods used to quantify heat exposure, 67 

detail the sensitivity of people and infrastructure to overheating, and elaborate on the adaptive 68 

capacities that individuals and cities can undertake in response. We provide recommendations for 69 

both researchers and policymakers that will minimise overheating impacts. These 70 

recommendations range from modifications to urban and building design to engaging citizens and 71 

informing urban overheating governance. 72 

  73 
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1 Introduction: Current and projected urban overheating in the face of future 74 

urban development and climate change 75 

The 21st century is acknowledged to be an urban century. By 2050, an additional 2.5 billion 76 

people are expected to live in urban areas, with up to 90% of this increase concentrated in the 77 

regions of Asia and Africa, particularly in India, China and Nigeria where 35% of urban growth is 78 

projected to occur (United Nations Department of Economic and Social Affairs, 2019). This urban 79 

growth will entail considerable additions of urban infrastructure, and a larger population of urban 80 

residents vulnerable to crises or stresses such as extreme heat (Pelling & Garschagen, 2019). 81 

The impact of such development leads to direct changes to city-scale climate, most notably 82 

manifested as the urban heat island (UHI). Defined as the increase in air and surface temperatures 83 

in settlements compared to their surroundings, the UHI is caused by physical changes in the surface 84 

energy balance of the pre-urban site upon which the city is built (Oke et al., 2017; Stewart, 2019), 85 

combined with waste heat emissions from anthropogenic sources, e.g. heating/cooling in buildings, 86 

transportation, and biological metabolism (Chow et al., 2014; Sailor, 2011). The land cover and 87 

morphology of cities further lead to substantive intra-urban variations of air and surface 88 

temperatures (Stewart & Oke, 2012). These absolute intra-urban temperatures are more directly 89 

relevant to urban residents compared to simple urban vs. “rural” temperature differences (e.g., UHI 90 

intensity; (Martilli et al., 2020)). 91 

The UHI is driven by separate mechanisms than larger-scale temperature changes linked to 92 

regional and global climate change, which arise, in particular, from global anthropogenic 93 

emissions of greenhouse gases and regional land cover change. Unequivocal increases in both 94 

maximum and minimum air temperatures have been observed since the 1950s across all climate 95 

zones and regions in which settlements are located (Stocker et al., 2013). Since 1980, cities 96 

worldwide have also experienced significant increases in the number of heatwaves and hot days 97 

and nights (Mishra et al., 2015).   98 

The combined result, i.e. the interacting impacts of the local-scale UHI with increased mean and 99 

extreme temperatures from larger-scale climate change, is projected to exacerbate overheating in 100 

cities globally (Argüeso et al., 2014; S. Chapman et al., 2017; Emmanuel & Loconsole, 2015; 101 

Kotharkar & Surawar, 2016; Krayenhoff et al., 2018; Roaf et al., 2013; Santamouris et al., 2015; 102 

Santamouris & Kolokotsa, 2015; Wouters et al., 2017). The initial use of the term “overheating” 103 

focused on building energy consumption, ambient indoor environmental conditions, and the health 104 

of urban residents from an architectural or building design perspective (Santamouris et al., 2015; 105 

Taylor et al., 2014). Here, we define “urban overheating” as the exceedance of locally-defined 106 

thermal thresholds that correspond to negative impacts on people (e.g., health, comfort, 107 

productivity) and associated urban systems. These thermal thresholds depend not only on local 108 

urban climates and associated exposure to heat, but also the sensitivity and adaptive capacity of 109 

people and urban systems exposed to the heat, which in turn depend on socio-political and 110 

economic factors. Figure 1 depicts the integrated framework that describes factors involved in 111 

realizing the negative impact of overheating. Heat exposure in cities is the trigger, but in itself does 112 

not lead to impacts. Urban heat vulnerability exists when sensitive individuals, populations, and 113 

infrastructures are exposed to heat. Should there be a lack of adaptive capacities to respond (both 114 

at the individual and city level), negative overheating impacts ensue. The multi-scale interactions 115 

that relate to urban overheating, from its causes to risks and impacts, represent a multifaceted and 116 

multi-disciplinary challenge.  117 

https://paperpile.com/c/APLuCG/eemMV
https://paperpile.com/c/APLuCG/ruUaP
https://paperpile.com/c/APLuCG/zYHBI+0B1e9
https://paperpile.com/c/APLuCG/V6cOL+tGZ1v
https://paperpile.com/c/APLuCG/JTT8S
https://paperpile.com/c/APLuCG/qZiJE
https://paperpile.com/c/APLuCG/bZE8j
https://paperpile.com/c/APLuCG/B16b4
https://paperpile.com/c/APLuCG/XyEqn+ti8OY+QHP4l+D0MaI+P1Qs5+gFDoO+6XROe+tr4xm+AqxxN
https://paperpile.com/c/APLuCG/XyEqn+ti8OY+QHP4l+D0MaI+P1Qs5+gFDoO+6XROe+tr4xm+AqxxN
https://paperpile.com/c/APLuCG/XyEqn+ti8OY+QHP4l+D0MaI+P1Qs5+gFDoO+6XROe+tr4xm+AqxxN
https://paperpile.com/c/APLuCG/sWYOs+tr4xm
https://paperpile.com/c/APLuCG/sWYOs+tr4xm
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 118 

Figure 1: Holistic framework that describes factors involved in urban overheating impact.  119 

Without local heat mitigation and adaptation, urbanization and climate change are projected to 120 

increase heat exposure. Global projections of future urban temperatures up to the end of the century 121 

indicate substantial geographic variations of added warmth in cities, including maximum air 122 

temperature increases of 0.7–7.6 °C by the end of the century (Figure 2). Urban areas sited in 123 

different geographical contexts will require unique, site-specific adaptation options to reduce 124 

exposure to the additional warmth.  125 

 126 

Figure 2: Projected seasonal urban warming between 2006–2015 and 2091–2100 for the diurnal 127 

maximum temperature (Tmax) under the high-emissions ‘RCP8.5’ warming scenario based on the 26-128 

member CMIP5 earth system model ensemble in combination with an urban emulator. Stippling indicates 129 

substantial change (∆T ≥ 4 K) with high inter-model robustness. Adapted from (Zhao et al., 2021).   130 

https://paperpile.com/c/APLuCG/uJpoz
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Although our understanding of urban overheating has progressed, an integrated outlook and 131 

perspective on this multifaceted challenge are yet to be achieved. Previous research on urban 132 

overheating has largely focused on the UHI or climate change individually (S. Chapman et al., 133 

2017). Moreover, assessments that include both local and global drivers of urban heating have 134 

predominantly focused on North American, European and Chinese cities (S. Chapman et al., 135 

2017), neglecting large fractions of the global urban population, and they have rarely addressed 136 

growing urban populations (Ashley Mark Broadbent et al., 2020) or changing demographics 137 

(Dialesandro et al., 2021; Grineski et al., 2015). Furthermore, assessments rarely integrate outdoor 138 

and indoor exposures, with implications for actual individual levels of heat exposure (Kuras et al., 139 

2017; Nazarian & Lee, 2021) and future vulnerability to urban heat (Sailor et al., 2019). Lastly, 140 

assessments of cooling from urban heat mitigation strategies (e.g., green infrastructure, shade 141 

structures and cool materials) would benefit from better integration across different scales and 142 

exposure variables (Santamouris et al., 2017a). Accordingly, we argue for a broader, multi-143 

disciplinary approach that critically examines the emergent complexities of urban overheating 144 

towards an integrative assessment. These include:  145 

● Quantification of heat exposure arising from urban overheating, accounting for differences in 146 

spatial (e.g. personal- to local- to city-wide) and temporal (e.g. diurnal, seasonal and extreme 147 

heat event) scales.   148 

● Assessment of the impacts of overheating on important components of the urban environment, 149 

including physiological and psychological effects of increased exposure to heat, and impacts 150 

of outdoor overheating on indoor microclimates or building energy use.   151 

● Robust projection of urban climates and associated exposures accounting for regional and 152 

global climate changes, local urban development, demographic changes, exposures of 153 

populations, heat mitigation strategies, and uncertainties in key parameters and projections. 154 

● Provision of recommendations for both researchers and policymakers that account for the 155 

multidisciplinary nature of urban overheating, ranging from modifications to urban and 156 

building design to engaging citizens and informing urban overheating governance, 157 

representing an integrated approach to mitigate exposure, reduce sensitivity, and increase 158 

adaptive capacities.  159 

These topics will be discussed in subsequent sections. To contribute to the theoretical 160 

understanding of overheating, we first provide an overview of how overheating exposure is 161 

characterized across different (human, street, and city) scales and using different observational and 162 

numerical methodologies (Sec. 2). We then focus on the human-scale impacts of overheating, 163 

noting several physiological and psychological contributors to individual sensitivities as well as 164 

adaptive capacities that individuals can afford in response (Sec. 3). At the population level, we 165 

note the integrated impact of exposure with individual sensitivities that lead to vulnerability to 166 

overheating, and set out to document two key impacts, health and urban energy (Sec. 4). Lastly, 167 

we discuss the state-of-the-art methodologies as well as future approaches and solutions in urban 168 

planning and governance that aim to address this multi-faceted challenge and mitigate exposure, 169 

reduce sensitivity, and increase adaptive capacities at the individual and population levels (Sec. 170 

5). Each section will further identify key priorities in research (for better understanding 171 

overheating exposure and impacts) and application (for mitigating or adapting to overheating 172 

challenges). The information generated will be critical in informing holistic and integrated research 173 

https://paperpile.com/c/APLuCG/XyEqn
https://paperpile.com/c/APLuCG/XyEqn
https://paperpile.com/c/APLuCG/XyEqn
https://paperpile.com/c/APLuCG/XyEqn
https://paperpile.com/c/APLuCG/hxcTl
https://paperpile.com/c/APLuCG/XVrhw+t0SFh
https://paperpile.com/c/APLuCG/pk6fY+Yf5Nk
https://paperpile.com/c/APLuCG/pk6fY+Yf5Nk
https://paperpile.com/c/APLuCG/OlNqB
https://paperpile.com/c/APLuCG/xMJkE
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in the field and will provide important discussion points to develop science-based policies for cities 174 

desiring reduction of urban overheating in the future.  175 

2 Characterizing urban overheating exposure at different scales  176 

In this section, we focus on quantifying and documenting the levels of thermal exposure 177 

arising from urban overheating, accounting for differences in spatial (e.g. personal- to local- to 178 

city-wide) scales. By detailing the representation of heat in indoor and outdoor urban climates 179 

(Sec. 2.1), we set out to discuss the key priorities of research in quantifying overheating intensity, 180 

location, and duration in the built environment. We then address emerging methodologies in 181 

sensing - i.e. IoT, crowdsourcing, and ubiquitous monitoring - used for infilling heat sensing 182 

networks in cities and better describing the impact on urban residents (Sec. 2.2). Lastly, we discuss 183 

numerical modeling as a powerful tool at multiple scales for characterizing current and projected 184 

urban overheating exposure in cities as well as evaluating the efficacy of various mitigation and 185 

adaptation solutions proposed to address ensuing impacts. Collectively, these sections provide a 186 

comprehensive outlook on observational and numerical methods, as well as metrics and indicators, 187 

available to characterize and quantify the extent of overheating exposure in cities, while outlining 188 

key priorities in research to better understand this challenge.  189 

2.1 Environmental sensing of heat exposure in indoor and outdoor climates 190 

Outdoor urban heat can be characterized in multiple ways and is often quantified by either 191 

simple temperature metrics (such as air, surface, and radiant temperature) or comprehensive 192 

indices (such as thermal comfort and heat stress indices) that aim to quantify the impact of heat on 193 

the human body. The relevance of these metrics highly depends on the underlying motivation for 194 

monitoring, assessing, or modeling the urban thermal environment, as well as the scale of analysis 195 

(Table 1).  196 

At the city level, environmental heat has been traditionally quantified using air temperature 197 

reported by meteorological services. However, weather stations are sparse, stationary, often remote 198 

from human activities, and not representative of the complex and heterogeneous conditions in 199 

urban canyons (Harlan et al., 2006). To overcome these limitations and evaluate the microclimate 200 

variability in the built environment, two methods are often deployed: a) establishing an urban 201 

network of environmental sensors (examples included in Sec. 2.2) and b) field campaigns using 202 

mobile measurements at street level (Häb, Middel, et al., 2015; Oke et al., 2017; Seidel et al., 203 

2016). Mobile measurements provide a finer spatial and temporal resolution of air temperature as 204 

a heat metric, but have often poor temporal resolution and require detailed post-processing for 205 

interpretation (Häb, Ruddell, et al., 2015; Middel & Krayenhoff, 2019). 206 

A well-known metric of ambient temperature measurements to describe heat in cities is the UHI, 207 

dating back to the early 19th century in Urban Climate research (Stewart, 2019). The UHI intensity 208 

describes the temperature difference between urban and rural areas and therefore is less relevant 209 

than the absolute temperature to which people are exposed (Martilli et al., 2020). Moreover, intra-210 

urban distributions of ambient conditions are more relevant here, as formalized in the Local 211 

Climate Zone (LCZ) scheme (Stewart et al., 2014). Inter-LCZ variability of air temperature 212 

(Fenner et al., 2017) represents a critical research direction to assess urban heat vulnerability at the 213 

neighborhood scale (e.g., as a function of urban design and socio-economic status; see Sec. 4.1), 214 

but the local nature of the scheme renders it too coarse for human-centered heat stress analyses at 215 

the street scale. 216 

https://paperpile.com/c/APLuCG/HeKNW
https://paperpile.com/c/APLuCG/GeUlt+zYHBI+9ELqy
https://paperpile.com/c/APLuCG/GeUlt+zYHBI+9ELqy
https://paperpile.com/c/APLuCG/HTbFi+h0XwU
https://paperpile.com/c/APLuCG/0B1e9
https://paperpile.com/c/APLuCG/qZiJE
https://paperpile.com/c/APLuCG/e7Pbm
https://paperpile.com/c/APLuCG/gECa6
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At larger scales, thermal remote sensing platforms (which use non-contact instruments to sense 217 

thermal infrared radiation) provide information on urban heat at large spatial scales. In recent 218 

decades, land surface temperatures (LST) from satellite remotely sensing products such as 219 

Landsat, MODIS, and ASTER have been widely used to assess the surface UHI (SUHI) (Imhoff 220 

et al., 2010; Voogt & Oke, 2003; D. Zhou et al., 2018), analyze the impact of urban form on land 221 

surface temperature (Bechtel et al., 2019; X. Li et al., 2016; Yujia Zhang et al., 2019), and find 222 

urban hot spots (Harlan et al., 2013; Huang et al., 2011). Satellite-based observations represent a 223 

powerful tool for assessing city-scale urban heat, but are limited by clouds and have physical 224 

tradeoffs between temporal and spatial resolution (Bechtel et al., 2012). Remotely-sensed LSTs 225 

are also subject to effective anisotropy, i.e. they vary as a function of sensor view angle due to sun-226 

surface-sensor geometry (Voogt, 2008).  227 

Importantly, while remotely sensed images help illustrate intra-urban surface temperature 228 

distributions, canopy layer air temperature, a key indicator for urban environmental health (Sec. 229 

4.1) and energy (Sec. 4.2), cannot be directly inferred. It is widely acknowledged that the 230 

relationship between the two temperature types is complex (Roth et al., 1989; D. Zhou et al., 2018). 231 

The usability of satellite-based LSTs at human-relevant scales is also limited. First, the remotely 232 

sensed temperatures are based on urban objects visible to the sensor and do not completely 233 

represent canopy walls and ground surfaces (e.g., tree canopy temperature vs. surface temperature 234 

under the tree; (Krayenhoff et al., 2020)). Second, satellite-based LSTs are biased towards 235 

horizontal surfaces, and it is questionable how useful roof temperatures are to assess pedestrian 236 

overheating. Third, LSTs sensed by satellites cannot yet resolve thermal extremes at the sub-meter 237 

touch-scale relevant to human health (Vanos et al., 2016), or at the scale of individual streets 238 

relevant to personal heat exposure.   239 

These findings indicate that at the human scale, neither air temperature nor surface temperature is 240 

sufficient for quantifying overheating in cities. Recently, human biometeorological research has 241 

highlighted the importance of the radiative environment for accurate outdoor human thermal 242 

assessments (Hondula et al., 2017; Johansson et al., 2014; Kántor & Unger, 2011; Middel et al., 243 

2021; Middel & Krayenhoff, 2019). Mean Radiant Temperature (MRT) – a synthetic parameter 244 

that summarizes short and longwave radiation fluxes to quantify the radiant heat load on the human 245 

body – was identified as the main meteorological driver of thermal comfort in the warm season in 246 

hot dry regions and under sunny conditions (Lin et al., 2010; Middel et al., 2018). MRT 247 

observations apply different instruments with varying levels of accuracy and complexity (Höppe, 248 

1992; Thorsson et al., 2007). 249 

Further acknowledging the complex interaction of various environmental parameters with 250 

individual thermal comfort and heat stress response (Sec. 3), the scientific community has 251 

developed indices to better capture individual thermal sensation and provide a single integrated 252 

value that represents a more comprehensive assessment of environmental heat stress than air or 253 

radiant temperature alone (Fiala & Havenith, 2015). Potchter et al. (2018) identified over 165 254 

thermal comfort indices developed over the past 60 years that link human thermal responses and 255 

perceptions to atmospheric conditions. Five thermal indices identified as most widely used (also 256 

see B.3) were the Physiologically Equivalent Temperature (Höppe, 1999; Mayer & Höppe, 1987), 257 

Predicted Mean Vote (Fanger, 1973; Gagge et al., 1986), Universal Thermal Climate Index 258 

(Jendritzky et al., 2012; Jendritzky & Tinz, 2009), Standard Effective Temperature (Gagge et al., 259 

1986; Gonzalez et al., 1974) and its outdoor variant (Pickup et al., 2000), and Wet Bulb Globe 260 

Temperature (Yaglou & Minard, 1957). While these indices account for the radiative environment 261 

https://paperpile.com/c/APLuCG/SIpD+bzXm+sqZv
https://paperpile.com/c/APLuCG/SIpD+bzXm+sqZv
https://paperpile.com/c/APLuCG/BqtzJ+KM3jP+jRgoB
https://paperpile.com/c/APLuCG/TUgUl+rvzlp
https://paperpile.com/c/APLuCG/NkwgY
https://paperpile.com/c/APLuCG/bJotK
https://paperpile.com/c/APLuCG/USIYU+sqZv
https://paperpile.com/c/APLuCG/oFutE
https://paperpile.com/c/APLuCG/cVaB3
https://paperpile.com/c/APLuCG/3FyuP+jNdEi+h0XwU+lAXUn+OG8LG
https://paperpile.com/c/APLuCG/3FyuP+jNdEi+h0XwU+lAXUn+OG8LG
https://paperpile.com/c/APLuCG/FYC98+vKKMm
https://paperpile.com/c/APLuCG/L6THF+L2Oa3
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https://paperpile.com/c/APLuCG/USYwv+kyuLw
https://paperpile.com/c/APLuCG/au0Vj+EzC4E
https://paperpile.com/c/APLuCG/MhAzX+QI5Po
https://paperpile.com/c/APLuCG/b6ne9+EzC4E
https://paperpile.com/c/APLuCG/b6ne9+EzC4E
https://paperpile.com/c/APLuCG/pwbQb
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– as opposed to merely temperature-humidity metrics – they all make assumptions related to 262 

clothing, activity speed, and metabolic rate. Accordingly, the ability to assess human overheating 263 

using these indices is critically limited, particularly for working populations where metabolic rate 264 

during activity is the most critical factor in predicting core temperature (Cramer & Jay, 2015). The 265 

generic assumptions of these models – often, an “average” human male, low activity, and static 266 

conditions – present a critical challenge for accurately predicting heat exposure of different 267 

individuals and populations, as detailed in Secs. 3.1 and 4.1. More efforts are needed to update 268 

these indices to account for the duration of heat exposure as well as varied physical activities (for 269 

instance, for outdoor workers), as detailed in (Bröde et al., 2016). Finally, most thermal indices do 270 

not work equally well in dry and humid conditions since the neutral or “no-stress” range varies 271 

greatly for different climate zones (Heng & Chow, 2019; Potchter et al., 2018). Therefore, indices 272 

need to be calibrated to quantify heat exposure in the context of local thermal adaptation, behavior, 273 

and differences in climatic zones (Sec. 3.2).  274 

Table 1. summarizing the key metrics, motivations, and methods for sensing and representing urban 275 

overheating across different scales.  276 

Scale Relevant Metrics Motives Methods Reviews & 

examples  

City  - Land Surface 

Temperature 

- 2-m air temperature 

- Intra-urban 

temperature 

variability  

❏ Urban energy efficiency 

❏ Urban environmental health 

❏ Urban heat mitigation  

❏ Climate-responsive design  

❏ Urban emission mitigation   

➢ Remote sensing  

➢ Mobile sensing 

➢ Climate modeling (Sec. 

2.3)  

(D. Zhou et al., 

2018) 

 

 

(Voogt & Oke, 

2003) 

Street - Canopy air 

temperature  

- Mean radiant 

temperature 

- Outdoor thermal 

comfort/Heat stress 

indices 

- Outdoor thermal 

comfort autonomy 

maps  

❏ District energy efficiency 

❏ Canopy heat mitigation  

❏ Promoting healthy urban 

lifestyle  

➢ Fixed and mobile 

weather stations  

➢ Net radiometer or globe 

thermometers  

➢ Urban climate 

informatics using data 

sources (such as Google 

street view) for MRT 

monitoring   

➢ Microscale climate 

modeling (Sec. 2.3) 

(Potchter et al., 

2018) 

 

(Middel & 

Krayenhoff, 

2019) 

 

(Nazarian et al., 

2019) 

Building - Indoor air temperature  

- Indoor thermal 

comfort indices  

❏ Building energy efficiency 

❏ Indoor environmental quality  

❏ Work productivity  

❏ Human comfort, health & 

wellbeing  

➢ Smart WiFi thermostat 

➢ Conventional or IoT 

environmental sensor 

network (Sec. 2.2)  

(Rodriguez & 

D’Alessandro, 

2019) 

Human  - Indoor/Outdoor 

thermal comfort/Heat 

stress indices 

- Individually-

experienced 

temperature  

❏ Human comfort, health, and 

wellbeing  

❏ Human performance 

(cognitive and physical)  

➢ Personalized heat 

monitoring devices (Sec. 

3.1) such as wearable 

sensors  

➢ Personal comfort/heat 

stress modeling  

(Kuras et al., 

2017) 

(Nazarian & 

Lee, 2021) 
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Indoor characterization of heat exposure uses similar methods and metrics as those identified 277 

outdoors, such as monitoring microclimate parameters and calculating thermal comfort indices. 278 

However, most studies assume low wind speeds and radiant heat transfer indoors, and therefore, 279 

consider air temperature and humidity as key indicators for indoor thermal environments - a 280 

limiting assumption for naturally-ventilated buildings with large window-to-wall fractions. More 281 

importantly, most studies are focused on office buildings instead of residential heat exposure 282 

(Nazarian & Lee, 2021; Rodriguez & D’Alessandro, 2019), and a fraction of those focused on 283 

vulnerable populations detailed in Sec. 4 (White-Newsome et al., 2012). These factors - in addition 284 

to the complex and heterogeneous human behavior and adaptive capacities indoors - represent a 285 

significant gap in providing a holistic characterization of heat exposure in different cities and 286 

climates, as well as the impact on human health and energy (Sec. 4).   287 

Despite recent advances in the development and application of methods to characterize heat 288 

exposure across different scales, several considerations persist. First, quantification of urban heat 289 

generally does not capture individual duration of thermal exposure and therefore cannot describe 290 

the cumulative effects of heat. Additionally, due to limitations in sensing methods, little is known 291 

about the real-time thermal discomfort and strain people experience as they go about their daily 292 

lives (Kuras et al., 2017; Nazarian & Lee, 2021), limiting the realistic datasets that can inform 293 

dynamic and unsteady index development. These limitations further motivate more investment in 294 

novel sensing methodologies that provide ubiquitous, real-time, and human-centric monitoring of 295 

heat exposure (Sec. 2.2).  296 

2.2 Infilling the climate networks with ubiquitous sensing, IoT, and crowdsourced 297 

monitoring 298 

With recent advancements in low-cost sensor solutions, Internet-of-Things (IoT), and Big 299 

Data, an innovative approach has emerged to comprehensively characterize urban heat exposure. 300 

Over the last decade, ubiquitous sensing (i.e. distributed, real-time, and spatial data collection) and 301 

crowdsourcing (in which a community is leveraging sensing devices to collectively share data) 302 

have presented a paradigm shift in heat exposure assessments (L. Chapman et al., 2017), presenting 303 

several key advantages in characterizing urban heat exposure. First, compared to traditional 304 

sensing units, a network of sensors is able to cover higher spatial and temporal resolutions at a 305 

lower cost and with less centralized effort. This further enables us to a) assess inter- and intra-306 

urban overheating patterns (Fenner et al., 2017; Meier et al., 2017) and b) address local-scale urban 307 

effects and their spatial and temporal variation, which traditional climate station networks overlook 308 

(Oke, 2006). Second, given that sensors are distributed or carried with individuals, ubiquitous 309 

sensing provides unprecedented and dynamic information regarding the population impact of 310 

urban overheating. This advantage permits human-centric assessment of heat exposure (Kuras et 311 

al., 2017; Nazarian & Lee, 2021), in which we combine information regarding the thermal 312 

environment with a) corresponding physiological responses (Buller et al., 2018; Liu et al., 2019; 313 

Nazarian et al., 2021), b) objective and subjective momentary feedback (Jayathissa et al., 2019), 314 

and c) detailed human activity, via portable sensors or smartphones and smartwatch applications. 315 

Consequently, deeper insight into human bioclimatic impact in a real-world experiment can be 316 

obtained. Lastly, real-time and high-resolution data collection provide valuable information for 317 

developing emergency responses in the face of extreme events as well as informing and validating 318 

climate and weather modeling at various scales (Sec. 2.3).  319 

Several successful examples of emerging methods for characterizing heat exposure can be noted. 320 

Pioneering crowdsourcing studies using Netatmo citizen weather stations (CWS) were able to 321 
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characterize intra-urban air temperature variability in several European cities (Fenner et al., 2017; 322 

Meier et al., 2017; Varentsov et al., 2020; L. de Vos et al., 2020) and Oceania (Potgieter et al., 323 

2021) at a higher resolution than otherwise achieved with traditional sensing. Other work exploited 324 

daily temperature signals from phone battery temperatures (Droste et al., 2020) and further 325 

combined them with Machine Learning algorithms (Trivedi et al., 2021) to predict ambient air 326 

temperature within 2°C accuracy. Wearable weather stations were also proposed and deployed to 327 

predict the impact of heat exposure on heat stress and perceived activity level (Nazarian et al., 328 

2021).  329 

Despite this significant growth, however, it appears that IoT measurements have heavily 330 

emphasized the monitoring of air temperature and humidity as proxies for the thermal 331 

environment, neglecting key environmental and personal factors that holistically link overheating 332 

to the health, wellbeing, and lifestyle (Sec. 3.1-2). This is mainly due to the fact that measurements 333 

of radiation and wind speed, as well as the physiological response of individuals to urban heat, are 334 

harder to achieve through existing low-cost and non-intrusive sensing solutions. Moreover, a 335 

fundamental question raised by (Muller et al., 2013) and (L. Chapman et al., 2017) is still far from 336 

being answered: how can crowdsourced data provide an acceptable level of accuracy, certainty, 337 

and reliability, particularly in dynamic and realistic conditions of our cities? One of the critical 338 

gaps in IoT environmental sensing arguably pertains to the quality of the sensors and the collected 339 

data, as a universally accepted set of procedures, standards, or guidelines for standardization and 340 

quality control is yet to be developed. In general, low-cost sensors tend to be less accurate than 341 

scientific and operational instruments, usually lack proper calibration, and are subject to sensor 342 

drift over time. In addition, they have errors due to inadequate or missing radiation shielding and 343 

sensor ventilation and may be sensitive to changing user context. The latter is particularly the case 344 

for sensors in smartphones and wearable devices, which fluently change between indoor and 345 

outdoor settings, pocket and palm, and are also influenced by the phone’s CPU load or display 346 

intensity (Martilli et al., 2017). Moreover, the sensors usually react slowly and thus integrate over 347 

previous settings and contexts spatially and temporally. In addition to these errors, ubiquitous 348 

sensors exhibit greater variation due to realistic microclimatic effects resulting from differences in 349 

observation height, proximity to buildings, or local ventilation. In summary, there are both 350 

statistical and systematic errors, but also challenges with realistic spatio-temporal 351 

representativeness that can be considered a feature. All types are difficult to detect, distinguish, 352 

and most of all to correct. Nonetheless, more recent studies demonstrate the potential of 353 

crowdsourcing by combining various sensing methods and data layers over a wider range of 354 

meteorological parameters (including rainfall, solar radiation, air pressure, and humidity), which 355 

will pave the way towards assessment of thermal comfort (L. de Vos et al., 2020). 356 

In addition to technological and scientific limitations of state-of-the-art IoT sensing, 357 

crowdsourcing methods face challenges in scientific communities as well as the general public. 358 

There is still a lack of acceptance in scientific communities for adopting commercially available 359 

low-cost sensors for research applications. As a result, many solutions go untested in application, 360 

creating more questions than answers regarding the capability of IoT sensing in addressing urban 361 

heat challenges. Additionally, there are concerns regarding the digital divide across age groups, 362 

income levels, and geographic location. So far, no analysis has been done to understand what 363 

percentage of IoT (or conventional) sensing for urban heat is covering low-income versus affluent 364 

neighborhoods, which can further influence the governance and policy implications of urban 365 

overheating (Sec. 5.3). Finally, justified concerns related to privacy hinder the penetration and 366 

availability of collected data. For instance, useful sensor data from mobile devices always has to 367 
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record the exact position and thus can likewise be used to derive environmental information and 368 

to track individuals over days and months.  369 

Future research should focus on merging crowdsourced and IoT environmental sensing with 370 

behavioral and mobility data, helping us better understand and characterize heat exposure and the 371 

ensuing impacts in cities. The innovations thus need to be technological, scientific, and societal. 372 

Rapid progress has been made in the past years in the development of small and low-cost sensors 373 

(mostly driven by private companies) that can similarly contribute to more comprehensive 374 

monitoring of heat exposure in the future. More importantly, critical and highly innovative 375 

research questions for inter- and trans-disciplinary work are present, which together constitute a 376 

joint agenda for science, citizens, and the public sector for at least a decade: 377 

● Merging crowdsourced thermal environment data with behavioral and mobility data to more 378 

accurately characterize overheating exposure, vulnerability levels, and ensuing impacts. This 379 

further assists future research in quantifying how urban heating impacts people’s interaction 380 

with the built environment (Sec. 3.2). 381 

● Quality assessment to derive useful urban heat exposure information from mass data and 382 

integration of data from various sources and devices into a joint analysis system. This can 383 

include combining air temperature observations with other parameters that influence human 384 

thermal comfort. 385 

● Further research that distinguishes errors in data (bug) from realistic microclimatic variation 386 

(feature). 387 

● More comprehensive characterization of heat exposure both outdoor and indoor (where people 388 

spend most of their time) and better understand the relations of both (Sec. 5.2). 389 

● Use the data for personal recommendation systems in application to enable more adaptive 390 

capacities for individuals, i.e. avoiding the heat by different routes or travel times. 391 

 392 

2.3 Multi-scale urban climate modeling 393 

Process-based numerical models of urban climate are generally more cost-effective and 394 

provide greater spatial and temporal coverage of potential heat exposure relative to measurements. 395 

Critically, they can be applied to evaluate future urban overheating or infrastructure-based heat 396 

adaptation scenarios (Sec. 5.1), and associated uncertainties, informing decision-makers about 397 

potential overheating exposure and adaptive responses well ahead of potential consequences 398 

(Krayenhoff et al., 2018; Martilli, 2014; Wouters et al., 2017; Zhao et al., 2017, 2021). However, 399 

numerical models rely on imperfect abstractions of the urban structure and atmosphere, and they 400 

must be appropriately tested if they are to have such utility (Krayenhoff et al., 2021). Moreover, 401 

models capable of simulating urban climates currently have varying abilities to represent actual 402 

human exposures to urban heat, which depend on multiple environmental variables (Sec. 2.1). 403 

Numerical assessment of urban overheating must focus on the climate in the urban canopy layer 404 

(UCL), the atmosphere below the mean building height, where most of the world population 405 

spends their lives. We classify existing models that aim to capture the range of scales of 406 

phenomena relevant to UCL climates as follows: 407 

a) Microscale models reproduce circulations at the scale of streets and buildings (wakes, flow 408 

blocking, channeling, etc.) and/or the complex patterns of shading and radiation exchange 409 
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resulting from individual buildings. These phenomena influence heat and radiation 410 

exchanges between the atmosphere, buildings, streets, trees, and pedestrians. 411 

b) Mesoscale models are built to represent the state of the atmosphere within and above the 412 

city (i.e., the urban boundary layer), which is characterized by phenomena at scales of tens 413 

to hundreds of kilometers, such as land/sea breezes and mountain/valley winds, directly 414 

simulating regional impacts on neighbourhood-scale climate. 415 

c) Global-scale models simulate larger space and time scales associated with climate change 416 

and provide the context for future meso- and microscale urban climate phenomena, 417 

including overheating. 418 

This diversity of modelling scales arises from current limitations of computational power, which 419 

render impossible the simulation of microscale features relevant to urban heat across numerical 420 

domains large enough to account for mesoscale processes. Similarly, mesoscale processes are 421 

typically not captured by global climate models, although adaptive grid-scale approaches may soon 422 

permit them to do so for selected cities. Microscale models, by virtue of their explicit 423 

representation of buildings and other urban elements, can address human-scale variability of wind 424 

and radiation (e.g., sun/shade) that is critical for personal heat exposure, whereas meso to global 425 

scale models have so far been focused more extensively on air temperature and humidity (to a 426 

lesser extent), whose spatial variation is smoother. 427 

At broad scales, the urban overheating burden is exacerbated by two interacting effects: land cover 428 

and land use changes driven by urbanization, and global-scale climate change and associated 429 

increases to heatwave severity. Numerous meso-global scale modelling studies have quantified the 430 

substantial urban scale overheating risk from unmitigated global climate warming, including 4 K 431 

mean summer temperature increases globally (Zhao et al., 2021) and 10-fold increases in extreme 432 

heat day frequency in select regions (Krayenhoff et al., 2018), accounting for uncertainty related 433 

to greenhouse gas emissions pathways and climate model variability. Urban development includes 434 

both expansion of urban areas, and densification of existing urban areas. Urban construction on 435 

land that was previously cropland or forest, for example, generates large warming locally, 436 

especially at night, and additionally contributes smaller warming to existing urban areas downwind 437 

(Doan & Kusaka, 2018). Numerical evidence suggests that seasonal-scale urban-induced warming 438 

may either be unstable or static as a result of larger scale warming (Doan & Kusaka, 2018; Oleson, 439 

2012); at shorter times scales, observations and modelling suggest that the UHI and heat waves 440 

are synergistic and controlled by multiple factors (Ao et al., 2019; D. Li & Bou-Zeid, 2013), in 441 

particular, the variable responses of non-urban lands to heat waves (P. Wang et al., 2019). 442 

Meso- and global-scale models have also been widely applied to study potential reductions of air 443 

temperature in cities from the widespread implementation of heat mitigation strategies, for 444 

example, green and cool roofs, street trees, and shorter vegetation (Krayenhoff et al., 2021; 445 

Santamouris et al., 2017a), as well as their ability to offset climate change warming (Krayenhoff 446 

et al., 2018). While meso-global scale modelling can help reveal potential overheating risks based 447 

on air temperature changes and the associated cooling efficacy of infrastructure-based heat 448 

adaptation, microscale modelling more often addresses the complete heat exposure of individuals, 449 

including microscale variations of solar and longwave radiation and wind and turbulence. In 450 

particular, models at this scale have been used to assess the impacts of street-neighbourhood scale 451 

design on individual thermal exposure, using metrics that go beyond air temperature and account 452 

for radiation and wind, for example (Aminipouri et al., 2019; H. Lee et al., 2016; Tan et al., 2016); 453 

see Sec. 2.1). Here, detailed configurations of buildings, trees, shade devices, as well as the 454 
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radiative and thermal effects of construction materials, can be considered in terms of their radiative 455 

impacts. Microscale computational fluid dynamics models are additionally used to evaluate wind 456 

flow and associated effects on pedestrian thermal comfort (Chew et al., 2017; Nazarian et al., 457 

2017). However, microscale models require boundary conditions that provide information about 458 

the larger-scale meteorological conditions in which their domain is embedded. Moreover, both 459 

microscale and mesoscale modelling would benefit from better accounting for the actual or optimal 460 

locations of people who may be exposed to urban heat (Middel et al., 2017; Jiachuan Yang et al., 461 

2019). Nevertheless, the need for careful assessment of microscale radiative and flow-based heat 462 

mitigation strategies is emphasized given the aforementioned imbalance between potential climate 463 

change warming and air temperature cooling achievable from the aggressive implementation of 464 

heat mitigation strategies (Krayenhoff et al., 2018). 465 

The long-term goal of performing simulations that can fully resolve both meso-global scale and 466 

microscale phenomena is likely several decades away. In the meantime, paths forward should 467 

involve increasing interaction between these modeling scales, and closer attention to the complete 468 

thermal exposure of individuals within the urban environment. These new developments must be 469 

“fit-for-purpose”, e.g., tailored for assessment and mitigation of the impacts of urban overheating. 470 

In particular, we define the following medium- and short-term objectives. 471 

As medium-term objectives, we should aim to develop high resolution (hundreds of meters) 472 

mesoscale models in which to two-way nest highly parameterized and fast microscale models. The 473 

main challenges for this task will be to 1) develop new multi-scale boundary-layer closures to be 474 

used in mesoscale models, and 2) identify the most relevant phenomena to be introduced in the 475 

highly parameterized microscale models.  476 

As short-term objectives, key priorities for future research are as follows. At the mesoscale, of 477 

paramount importance is improvement in the accuracy of model predictions of environmental 478 

variables relevant to the estimation of indoor and outdoor biometeorological stresses (Secs. 2.1, 479 

C.2, D.1), and building energy consumption (Sec. 4.2). Models of urban canopy processes 480 

embedded in mesoscale models must be improved based on microscale simulations, in particular 481 

representations of radiation and convection fluxes in the canopy. Simplified parameterizations for 482 

evaluation of mean radiant temperature and wind speed, and their spatial variability within urban 483 

grid squares in mesoscale models, are needed. Moreover, better quantification of key parameters 484 

that characterize urban neighbourhoods are crucial requirements to take advantage of improved 485 

model physics (Ching et al., 2018). At the microscale, there is a need for new techniques to 486 

accurately use mesoscale model outputs to force microscale simulations (and in this way account 487 

for boundary-layer scale processes on microscale phenomena in the urban canopy layer). 488 

Moreover, it is critical that we improve surface energy and radiation budgets with detailed flow 489 

prediction. At all scales, future model development should include better representation of indoor-490 

outdoor exchanges and improve the capability of the models to account for climate impacts of 491 

existing and future heat mitigation strategies (vegetation, albedo, high-performance materials, etc; 492 

see Sec. 5.1), with a specific focus on the evaluation of the sub-models introduced to represent 493 

these strategies (Krayenhoff et al., 2021). Accurate assessment of infrastructure-based adaptation 494 

effectiveness is critical for the provision of appropriate guidance to planners and policymakers 495 

tasked with addressing urban overheating. Critically, applied research based on numerical 496 

simulations should make increasing efforts to quantify and communicate uncertainty related to 497 

greenhouse gas emissions and urban development scenarios, global climate model ensemble, and 498 

modelling assumptions, with a specific focus on uncertainties related to the intensity, duration and 499 
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frequency of future extreme heat and the efficacy of urban heat mitigation. Initiatives that enhance 500 

communication between urban climate scientists and municipal decision-makers are crucial to 501 

better integrate scientific knowledge in decision making, and also better target urban climate 502 

modelling to practical needs. Furthermore, linkages between climate and agent-based models can 503 

help determine probable human heat exposure based on individual agency and decision-making in 504 

addition to urban meteorological variability. 505 

The short- and medium-term objectives mentioned above must involve rigorous and standardized 506 

model evaluation procedures that focus more on particular physical processes and less on output 507 

variables that result from multiple physical processes (e.g., air or surface temperature) where 508 

compensating errors obscure issues with model representation of processes. 509 

3 Understanding individual sensitivity and adaptive capacity to urban heat 510 

The following sections discuss some of the most pressing research and applied questions 511 

related to development of an integrated view of thermo-physiology, human behavior, and 512 

psychology in response to heat, such that we better understand the impact of heat exposure on 513 

individuals in the built environment. Here, we aim to extend the discussion of urban heat exposure 514 

(Sec. 2) to detail individual sensitivities that modulate the ensuing impacts of overheating. 515 

Understanding individual sensitivities - caused by physiological stress and strain (Sec. 3.1) as well 516 

as subjective, perceptive, and psychological responses to heat (Sec. 3.2) - is also critical for 517 

understanding available adaptive capacities at an individual scale.  518 

3.1 Biometeorological strain and physiological responses to heat exposure 519 

Heat stress refers to the combination of environmental conditions, metabolic heat 520 

production and clothing characteristics that alter human heat balance and ultimately contribute to 521 

the accumulation of heat energy inside the human body. Heat strain refers to the resultant 522 

physiological responses from heat stress, such as the rise in thermal strain, cardiovascular strain, 523 

and dehydration (Fig. 3) (Sawka et al., 2014). Accurate risk assessment of human heat strain 524 

requires a comprehensive and in-situ representation of all four parameters that define a thermal 525 

environment, namely air temperature, mean radiant temperature, absolute humidity and wind 526 

speed. Often these parameters are integrated into a single thermal comfort or heat stress index (Sec. 527 

2.1). However, environmental determinants alone are insufficient to understand the implications 528 

of urban heat exposure; physiological responses must also be assessed to fully understand the 529 

impact of overheating on individuals and populations. Figure 3 outlines the environmental drivers 530 

of heat exposures across different scales (Sec. 2.1) with human behavioral and physiological 531 

responses that lead to individual sensitivity to heat exposure and ensuing impacts. 532 

 533 
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Figure 3. Physical, physiological, and behavioral mechanisms in response to heat. 

Human core temperature is tightly regulated at around 37 °C, despite variations in environmental 534 

conditions (Parsons, 2014). The maintenance of thermal homeostasis is achieved through both 535 

physiological and behavioral responses (Flouris, 2019). During heat exposure, increases in deep 536 

and peripheral tissue temperatures are sensed by thermoreceptors and integrated in the 537 

hypothalamus to activate heat loss (mainly cutaneous vasodilation and sweating (Fig. 3). 538 

Behavioral thermoregulation reduces the need for autonomic thermoregulation as humans 539 

consciously engage in actions (e.g., moving to the shade, removing or putting on more clothing) 540 

to maintain thermal equilibrium, based on perceptions of thermal comfort and sensation (Schlader 541 

& Vargas, 2019). (Sec. 3.2). This suggests that our behavioral responses are triggered by sensations 542 

of thermal discomfort (Schlader et al., 2010). 543 

There is robust epidemiological evidence demonstrating the negative health effects of hot weather 544 

and heat extremes (Bi et al., 2011; Kovats & Hajat, 2008; Luber & McGeehin, 2008; Semenza et 545 

al., 1996). These impacts are predominantly concentrated within specific clinical and socio-546 

economic sub-groups (Sec. 4.1). Focusing on individual health, people with cardiovascular or renal 547 

diseases are at an elevated risk of heat-related mortality/morbidity during heat extremes (Hansson 548 

et al., 2020), while people who do not own or cannot afford to operate air-conditioning have a 549 

significantly higher chance of heat-related illness during heatwave (35-times higher risk of heat-550 

related illness reported during the 1999 heatwave in Cincinnati, Ohio (Kaiser et al., 2001)). 551 

Extreme heat is often reported to acutely worsen these diseases, so understanding the specific 552 

physiological pathways for the increased heat sensitivity of people with specific diseases is 553 

essential for identifying the optimal heat mitigation strategy. For example, people with 554 

cardiovascular disease may not be able to tolerate the increased cardiovascular strain associated 555 

with the elevated skin blood flow required for heat dissipation, thus increasing their risk of 556 

cardiovascular collapse (Ebi, Vanos, et al., 2021). In this scenario, an intervention or a drug that 557 

increases skin blood flow to  promote heat loss may be counter-protective as it may inadvertently 558 

exacerbate cardiovascular strain; instead, skin cooling strategies that reduce skin blood flow 559 

requirements may be a more suitable heat mitigation strategy, regardless of its efficacy in reducing 560 

core temperature (Jay et al., 2021). 561 

https://paperpile.com/c/APLuCG/jtHBL
https://paperpile.com/c/APLuCG/cZOQg
https://paperpile.com/c/APLuCG/cZOQg
https://paperpile.com/c/APLuCG/ZNN4X
https://paperpile.com/c/APLuCG/ABBp8+ZW4C5+rvdsg+ZWeTV
https://paperpile.com/c/APLuCG/ABBp8+ZW4C5+rvdsg+ZWeTV
https://paperpile.com/c/APLuCG/lRliS
https://paperpile.com/c/APLuCG/lRliS
https://paperpile.com/c/APLuCG/WVvjH
https://paperpile.com/c/APLuCG/hCjZN
https://paperpile.com/c/APLuCG/svWYn


manuscript submitted to Earth's Future 

 

Besides heat-related illnesses, urban heat stress can also exacerbate underlying health conditions 562 

and adversely impact fertility (Grace, 2017), work productivity (Kjellstrom et al., 2016), work-563 

related accidents (Morabito et al., 2006), and decision-making (C.-H. Chang et al., 2017; 564 

Obradovich et al., 2018). Understanding the biophysical aspects of heat exchange between the 565 

human and surrounding environment is essential for determining the efficacy of various cooling 566 

strategies under different environmental conditions, thus informing evidence-based heat-health 567 

advisories. For example, many public health authorities currently recommend against the use of 568 

electric fans when ambient temperature exceeds 35˚ C (skin temperature), as it would increase 569 

convective heat gain (Hajat, O’Connor, et al., 2010). However, this does not consider humidity 570 

and a person’s ability to sweat, which influence the rate of evaporative heat loss (Jay et al., 2015; 571 

Morris et al., 2021). Research has demonstrated the cooling benefits of electric fan use at ambient 572 

temperatures of 42°C with 50% relative humidity in healthy, young males with intact sweating 573 

responses (Ravanelli et al., 2015). However, fan use under similar ambient conditions may not 574 

benefit individuals with reduced sweating ability (e.g., elderly, people taking anticholinergic 575 

medications) (Gagnon et al., 2017; Morris et al., 2021). Therefore, advice concerning fan use 576 

during heat exposure (particular in indoor spaces as detailed in Sec. 5.2) should be specific to the 577 

population and humidity levels (Jay et al., 2015; Morris et al., 2021). 578 

Furthermore, strategies designed to alleviate physiological strain (mainly by altering core 579 

temperature) associated with exertional heat stress can potentially be adapted to combat urban heat 580 

stress. Individuals performing physical activity (e.g., occupational work, exercise) are at an 581 

increased risk of heat illnesses as heat stress from the environment is compounded by increased 582 

metabolic heat production (J. K. W. Lee et al., 2010). A common behavioral adjustment is the use 583 

of work-rest cycles (alternating periods of work and rest) to prevent excessive body heat storage 584 

(J. K. W. Lee et al., 2013). This strategy is particularly relevant for outdoor workers who are 585 

specifically vulnerable to urban heat challenges but are underrepresented in research (Nazarian & 586 

Lee, 2021). Physiological strategies such as improving aerobic fitness (Alhadad et al., 2019), heat 587 

acclimatisation (J. K. W. Lee et al., 2012), pre-exercise cooling (J. K. W. Lee et al., 2012, 2015) 588 

and fluid ingestion (Luippold et al., 2018) are also often used to optimise work productivity and 589 

performance in the heat (Fig. 4). However, it is important to note that the most appropriate strategy 590 

for combating urban heat stress must be tailored according to context and needs, particularly in 591 

extending their efficacy in vulnerable populations. For example, aside from questions regarding 592 

the sustainability of air conditioning use, being sedentary indoors for prolonged periods will 593 

potentially degrade habitants’ aerobic fitness and heat acclimatisation status, therefore reducing 594 

their heat tolerance. These factors are currently neglected in heat-health advisories and should be 595 

considered to increase the population’s resilience to urban overheating. 596 
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 597 

Figure 4. Overall efficacy of physiological strategies to reduce heat strain and augment work productivity 598 

and performance, based on a meta-analysis of 118 studies (Alhadad et al., 2019). Figure shows the overall 599 

effect sizes (Hedges’ g) of each strategy in altering body core temperature during 600 

exertional heat stress. Values are interpreted as trivial (<0.20), small 601 

(0.21-0.49), moderate (0.50-0.79) and large (≥0.80) effects, respectively. 602 

Diagram adapted from (Alhadad et al., 2019). 603 

To reiterate, heat-health advisories that are solely based on climatic conditions have limited 604 

efficacy. Given the subjectivity of thermal comfort, future research should focus on the 605 

development and implementation of personalized heat mitigation guidelines that are tailored 606 

according to an individual’s health, environment and adaptive capacity. This can be achieved by 607 

coupling climatic data with biophysical inputs and known influencing factors of heat illnesses 608 

(e.g., sex, age, body size, aerobic fitness). With emerging IoT and wearable devices (Sec. 4.2), this 609 

is becoming increasingly feasible. Besides personalization, the physiological capacity of the 610 

population of interest must also be considered, to improve the accuracy of future projections of 611 

work capacity and heat-related health outcomes (Byrne & Lee, 2019). For example, (Cramer & 612 

Jay, 2015) and (Notley et al., 2019; Vanos et al., 2020) noted that several inter- and intra-individual 613 

factors (e.g., age, sex, aerobic fitness, hydration status) that influence a person’s physiological 614 

strain (thus, risk of heat-related illness) for a given level of heat stress are neglected in current heat 615 

exposure limits for exertional settings. Consequently, the current “one size fits all” approach may 616 

induce unnecessary productivity losses for heat-tolerant individuals while under-protecting heat-617 

intolerant workers who may suffer heat injury under moderate heat stress. This further underscores 618 

the importance of developing personalized heat mitigation strategies to optimise human health, 619 

well-being and productivity in the face of urban overheating. However, to do so effectively, further 620 

research is warranted in several areas, including (but not limited to) potential interactions among 621 

the various individual factors on heat strain and the relative importance of each factor in 622 

determining heat illness risk (Notley et al., 2019). 623 

 624 

 625 

3.2 Biometeorological stress and psychological response in the face of urban overheating 626 

In addition to environmental heat exposure and physiological responses, behavioral and 627 

psychological determinants are critical components of urban overheating. From the perceptual 628 

https://paperpile.com/c/APLuCG/aMdUo
https://paperpile.com/c/APLuCG/aMdUo
https://paperpile.com/c/APLuCG/3Oiv9
https://paperpile.com/c/APLuCG/3J84g
https://paperpile.com/c/APLuCG/3J84g
https://paperpile.com/c/APLuCG/Ywale+Y88gn
https://paperpile.com/c/APLuCG/Ywale


manuscript submitted to Earth's Future 

 

point of view, the individual sensitivity to urban overheating is related to the difference between 629 

the thermal environmental conditions at hand, and those normally expected of the city in question. 630 

For example, typical urban meteorological conditions in Shanghai during summer are readily 631 

accepted by the residents of that city who have no difficulty going about their day-to-day routines 632 

under those conditions. But were the same climatic conditions to occur in say, London UK, they 633 

would greatly exceed expectations of Londoners who would rate them ‘off the chart’ and deem 634 

them unacceptable, if not debilitating. This relativity in thermal perception is the phenomenon 635 

known as adaptive thermal comfort in which there are no absolutes, and comfort perceptions are 636 

benchmarked against climatic expectations (Brager & de Dear, 1998). The empirical evidence for 637 

adaptive comfort has largely evolved in indoor settings (De Dear et al., 2020; Nicol & Humphreys, 638 

2002), but the underlying principles are equally relevant at the urban scale and recent field studies 639 

in outdoor settings confirm this generalization in the literature (Jendritzky et al., 2012; Lin et al., 640 

2011). The adaptive model of thermal perception indicates that the psychological response to 641 

thermal exposure as well as the zones of “no heat stress” for thermal comfort indices (Sec. 2.1) 642 

should be explored and calibrated in cities with different climates to reflect local thermal 643 

adaptation strategies, behavioral patterns, and differences in climatic zones (Heng & Chow, 2019; 644 

Potchter et al., 2018). Such adaptive considerations of heat exposure are yet to be quantified and 645 

documented for all climate classes in both northern and southern hemisphere, and in developing 646 

countries susceptible to heat-health impacts (Baker & Standeven, 1996). 647 

Additionally, it is critical to recall that thermal comfort of individuals is defined as “the condition 648 

of mind that expresses satisfaction with the thermal environment and is assessed by subjective 649 

evaluation” (Standard 55, 2017). Various studies have confirmed that approximately 50% of a 650 

person’s thermal sensation can be explained through environmental factors, while the other 50% 651 

are induced by personal, psychological, and physiological characteristics. These components can 652 

only be assessed through mixed methods combining subjective and objective evaluation (Chen & 653 

Ng, 2012; Johansson et al., 2014; Middel et al., 2016; Nikolopoulou et al., 2001) or personalized 654 

assessments that monitor physiological and behavioral responses of individuals, as detailed in 655 

Secs. 2.2 and C.1 (Kuras et al., 2017; Nazarian & Lee, 2021).  656 

Furthermore, people's perceptions of heat and their psychological responses drive their behavior, 657 

which then modulates the indirect and direct impacts of urban overheating (Sec. 4). In the absence 658 

of outdoor adaptation and mitigation strategies for heat exposure, the default behavioral response 659 

to perceived urban heat discomfort is often the minimization of exposure, i.e. reduced time 660 

outdoors and correspondingly increased time indoors and an increasingly sedentary lifestyle 661 

(Nazarian et al., 2021). This further results in over-reliance on air-conditioned indoor comfort and 662 

preference for private vehicles over the active modes of transport, particularly in developed 663 

countries, with life-style-related health impacts ensuing (i.e. cardiovascular, obesity, and diabetes). 664 

This hypothesis of obesogenic cities, and the deleterious impacts of urban overheating on 665 

walkability of the city, raises important multidisciplinary research questions that are yet to be 666 

addressed. Empirical verification of causal links between urban heat and residents’ behavior, their 667 

sedentariness, and heat-health impacts at the individual and population levels are essential 668 

directions for future research such that evidence-based urban planning and policy can be effective 669 

in a warming urban world.  670 

Implementing this knowledge in practice, adaptive opportunities that individuals can afford to 671 

reduce heat exposure require more explicit consideration. Adaptive options for an individual to 672 

control their local environment (Baker & Standeven, 1996) are circumscribed by the built 673 
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environment (Baker 1996). For instance, in the humid tropics, the key urban adaptive opportunities 674 

relate to wind resources available at the pedestrian level to enhance the body’s convective and 675 

evaporative heat losses (Ng & Cheng, 2012), and in the hot-dry climatic setting, pedestrian thermal 676 

comfort relies primarily on solar shade opportunities afforded by the urban geometry, street 677 

furniture, verandas and overhangs, and trees  (Hwang et al., 2011). Additionally, greening of 678 

streetscapes, precincts, and facets of individual buildings - which can also reduce canopy-level 679 

ambient air temperature in hot-dry climates - can create thermally pleasant conditions in adjacent 680 

residential and commercial precincts if implemented at sufficient scale (C.-R. Chang & Li, 2014). 681 

Green infrastructure integrated in design further improves the walkability of urban precincts and 682 

increases the likelihood of outdoor spaces being used by residents. Enhanced city walkability and 683 

livability promotes higher levels of outdoor activities that, in turn, facilitate deeper thermal 684 

adaptation and acclimatization through a variety of physiological, psychological, and behavioral 685 

interactions which ultimately reduces heat strain risks in individuals (Sec. 3.1).   686 

Beyond the passive urban design approaches described above are the active engineering solutions, 687 

such as mechanical ventilation to enhance convective and evaporative cooling of pedestrians, 688 

misting to enhance evaporative cooling of air in outdoor urban settings, and even energy-intensive 689 

air-conditioning of semi-outdoor urban spaces. For example, in Qatar where the average outdoor 690 

dry bulb temperature is 34°C, an outdoor air-conditioning system was designed and installed into 691 

the perimeter of a football field. The system projected conditioned air at 14°C into a vast, open 692 

space occupied by about seven thousand attendees at a live-streamed FIFA World Cup match 693 

(Ghani et al., 2021). As effective as these brute-force design strategies for urban thermal comfort 694 

may be, they carry considerable financial and environmental costs that need to be carefully 695 

weighed before being implemented in workplaces (such as construction sites) as well as on 696 

precinct and urban scales. A more parsimonious and environmentally responsible approach to the 697 

design and implementation of active outdoor comfort conditioning may be to think of it as 698 

temporary thermal respite such that outdoor activities are encouraged despite higher heat exposure 699 

projected in cities.  700 

To better utilize outdoor spaces, urban planning solutions (Sec. 5) could also be developed by 701 

incorporating adaptive behaviors  in addition to environmental determinants (such as MRT and 702 

wind speed) responding to urban morphology and local climate (Nazarian et al., 2019; Ng et al., 703 

2011). Further examples of strategies that can promote climatically adaptive comfort behaviors at 704 

the individual scale include pedestrian routing recommendation engines to maximize exposure to 705 

shade resources (Deilami et al., 2020), development of  cool street furniture (high thermal mass, 706 

low surface temperature, with vegetated awnings or shading), and active engagement in water-707 

based recreation. Accordingly, in addition to city-scale urban heat mitigation efforts, localized cool 708 

oases in hot environments, or cool refuges, are needed to tap into adaptive opportunities in the 709 

built environment.  710 

 711 

4 Assessing the impacts of overheating on populations 712 

Understanding the key sensitivities to urban heat at the human scale (Sec. 3.1-2) is 713 

fundamental to characterizing and addressing population-level vulnerability and impacts in the 714 

face of extreme heats. To further clarify the negative impacts of heat, this section details the ways 715 

in which the impacts are realized at the population and city level, particularly with regards to urban 716 

environmental health and energy. Here, we focus on urban dwellers - 55% of the global population 717 
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now and 67% by 2050 (Ritchie & Roser, 2018) - exposed to and often negatively affected by 718 

extreme or chronic urban heat (i.e., urban overheating).  719 

4.1 Urban Environmental Health 720 

Urban Environmental Health & Heat Epidemiology  721 

Urban environmental health focuses on the health of people as it relates to environmental 722 

conditions in cities (e.g., water and air pollution, greenspace, hazards such as flooding or heat). 723 

Recent definitions of “health” focus on a state of complete physical, mental, and social well-being, 724 

and not merely the absence of disease (World Health Organization, 2021). Despite this definition, 725 

extreme heat impacts have generally been studied as either the presence or absence of a heat illness 726 

or heat death as opposed to assessing well-being and liveability. In recent years, worker 727 

productivity and economic losses related to heat exposure have been used to quantify the 728 

intermediate impacts of heat (Lucas et al., 2015; Vanos et al., 2019; Zander et al., 2015), with a 729 

focus on developed countries in the northern hemisphere. Yet globally, reduced  well-being and 730 

death from heat stress are common, and the associated vulnerabilities are often poorly documented 731 

in the research (Ebi, Capon, et al., 2021).  732 

Epidemiology applies various methodologies for quantifying the contribution of extreme heat to 733 

human health outcomes at a population-scale across cities or counties, both directly and indirectly. 734 

At finer scales (e.g., neighborhoods), studies apply vulnerability indices that can explicitly assess 735 

social vulnerability, thus focusing on those demographic and socioeconomic factors that may 736 

increase or attenuate the hazards (such as heat) on a local population (Tierney et al., 2002). 737 

Common country-, city-, or neighborhood-level methods to quantify direct heat-health impacts are 738 

listed in Table 2. The literature strongly demonstrates positive associations between heat and 739 

mortality or morbidity in large cities (Gasparrini et al., 2015; Guo et al., 2017), regardless of 740 

climate zone or country income level (H. Green et al., 2019). Heat vulnerability studies at census 741 

tract or neighborhood scales are better able to ascertain location-specific factors such as income, 742 

poverty, social isolation, education, race/ethnicity, age (elderly) and vegetation as important 743 

predictors of heat death or illness during locally-defined heat events (Harlan et al., 2006; Reid et 744 

al., 2009), resulting in the creation of numerous city-specific heat vulnerability indices (HVIs) 745 

(Harlan et al., 2013; Rey et al., 2009; Wolf & McGregor, 2013).   746 

  747 
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Table 2: Common methods used to quantify the contribution of extreme heat to human health across spatial 748 

and temporal scales, often with historical data.  749 

Methods Description Examples (citations) 

Years of Life 

Lost (YLL) 

A measure of premature mortality, in this case, due 

to heat mortality.  

(Sewe et al., 2018) 

(Yunquan Zhang et al., 2018) 

Heat 

Vulnerability 

Indices 

Summarize the key socioeconomic and physical 

factors that may increase or attenuate the effects of 

heat. The weighting (importance) of different factors 

will differ by location. Often mapped across spatial 

scales, such as zip code or neighborhood.   

(Reid et al., 2009) 

(Harlan et al., 2013) 

(Conlon et al., 2020) 

Time-series 

Epidemiological 

Approaches 

Used to estimate temporal changes in relative risk 

(RR) of short-term mortality associated with 

increased temperatures (e.g., min, mean, max, 

range); account for confounding of effect modifiers; 

assess lagged and/or cumulative effects; often at city- 

or county-scale. Also used to assess change in RR 

over time (years), evaluate heat warning systems, and 

applied in climate projections.  

(Bobb, Obermeyer, et al., 2014) 

(Petkova et al., 2014) 

(Gasparrini et al., 2015) 

(Benmarhnia et al., 2016) 

UHI Attribution  Assess heat-related impacts with and without UHI 

impacts caused by urban development (see Sec. 5.1).  

(Dang et al., 2018) 

(Heaviside et al., 2017) 

Climate Change 

Attribution 

Studies 

Determines whether climate change has contributed 

to observed changes in a given outcome (e.g., the 

number of deaths with or without a change in 

climate)  

(D. Stone et al., 2013) 

(Vicedo-Cabrera et al., 2021) 

(Ebi et al., 2017) 

Heat-related health issues are better understood in high-income countries due to data availability 750 

and more advanced health systems (H. Green et al., 2019), and thus greater challenges to heat 751 

adaptation exist in low- and middle-income countries (LMICs). Within developed countries (e.g., 752 

Australia, Italy, Czech Republic, South Korea, United States, Sweden) heat-related mortality has 753 

been steadily declining in large cities over the last 30+ years (Bobb, Peng, et al., 2014; Coates et 754 

al., 2014; J. Ha & Kim, 2013; Kyselý & Plavcová, 2012; Petkova et al., 2014; Schifano et al., 755 

2012) while the rate of decline varies regionally and across different population groups (Sheridan 756 

et al., 2021). Reasons for the recent decline in developed countries may include increasing adaptive 757 

capacity, such as heat warning systems, air conditioning prevalence, education, and behavioural 758 

modifications. Nonetheless, many heat-related mortality projections for the coming century point 759 

to substantial increases (Hondula et al., 2015). Whether or not declining trends will continue in 760 

high-income countries depends on continuing and advancing these adaptation strategies, 761 

population demographics, migration, urbanization rates (Heaviside et al., 2017), climate change 762 

mitigation, and heat adaptation strategies, all of which must be considered in future pathways to 763 

project heat related mortality (Gosling et al., 2017). However, a recent study shows that 37.0% 764 

(range 20.5–76.3%) of warm-season heat-related deaths across 43 countries (many high-income) 765 

globally from 1991-2018 can be attributed to climate change (Vicedo-Cabrera et al., 2021); hence, 766 

even with adaptive capacity increases, 1/3 of lives lost may not have occurred without climate 767 

change. Such trends, both past, current, and future, are largely unknown for LMICs.  768 
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While population-level epidemiological studies in urban areas are a critical starting point, they can 769 

only provide a broad overview of potential individual-level challenges outlined in C.1 (i.e., thermal 770 

discomfort, physiological strain). There are well-known physiological limits related to heat strain 771 

and sensitivities to heat (discussed in C.1) that can substantially increase vulnerability even at 772 

lower heat exposures and that should be considered in heat projections (Vanos et al., 2020).  773 

Direct and Indirect Health Impacts of Urban Heat on Humans 774 

In addition to the direct physiological impacts of heat exposure (Sec. 3.1), numerous 775 

indirect impacts (e.g., cardiovascular events, respiratory distress, and inhibition of sleep, learning, 776 

mood, and behaviour) are linked to extreme heat (see review by (Jay et al., 2021)).  Each case of 777 

heat illness or death is highly individualized and context specific, based on a person’s activities 778 

and “pathway” to heat exposure, as discussed in Sec. 2.  779 

The patterns of personal heat exposure can vary considerably between individuals and between 780 

urban versus rural locations. Certain advantages may be present within urban versus rural 781 

environments, specifically a greater access and ability to find cooling centers; a higher presence 782 

of shading in some instances (e.g., desert regions); greater access to clean water; more access to 783 

transportation; proximity to hospitals and emergency personal; and closer social ties, among 784 

others, that directly or indirectly affect heat vulnerability. 785 

Vulnerable Sub-Groups within Cities 786 

Population sub-groups that are more physiologically or psychologically vulnerable and 787 

more likely to experience heightened levels of heat include children and infants, athletes, outdoor 788 

workers, warfighters, those with pre-existing illnesses and/or on medication, homeless, and the 789 

elderly (Ebi, Capon, et al., 2021). While many urban amenities (shade, water, cooling) help support 790 

the homeless population, they can be at higher risk because of challenges including barriers to 791 

accessing sufficient healthcare and community cooling centers, or compromised physical and/or 792 

mental health, making them one of the most at-risk populations to heat deaths (Nicolay et al., 793 

2016). 794 

Athletes and outdoor workers are more likely to experience exertional heat stroke (EHS), which 795 

typically strikes active and young athletes and workers when coupled with high metabolic loads 796 

and clothing/equipment that impair heat loss (Hosokawa et al., 2019). Within these groups, those 797 

at the highest risk of exertional heat injury are already compromised by illness, large body type, 798 

recent illness, and/or medication (Hosokawa et al., 2019).  799 

Children’s activity patterns and access to (or use of) heat adaptive strategies within urban 800 

environments are important factors in their personal heat exposure and thus health outcomes. At 801 

the population-level, studies in children point to a higher risk of heat morbidity rather than 802 

mortality (Bartlett, 2008; Knowlton et al., 2009; Kravchenko et al., 2013). Within many 803 

contemporary playgrounds, extreme surface temperatures may cause thermal burns (e.g., from sun-804 

exposed plastic, rubber, metal; (Pfautsch et al., 2020; Vanos et al., 2016)). Infants and children 805 

face the greatest risk to the dangers of pediatric heat stroke (PHS) in overheated vehicles, which 806 

is an ever-present, critical concern: in U.S. cities alone, 888 children died of PHS since 1998 (Null, 807 

2021; Vanos et al., 2016).  808 

Finally, excessive heat exposure to pregnant women during the later stages of pregnancy is 809 

associated with increased risk for still- and premature-births (Chersich et al., 2020; S. Ha et al., 810 
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2017), yet moderate bouts of exercise in the second and third trimester was recently shown to not 811 

pose a greater risk to pregnant women in their second and third trimesters (Smallcombe et al., 812 

2021).   813 

Challenges and recommendations  814 

Studies must also address adaptive capacity, which is strongly associated with heat-related 815 

illness and death, rather than rising temperatures alone, in order to improve the ability to predict 816 

individual or population-level health detriments deriving from overheating in cities. The following 817 

recommendations in research and application are suggested: 818 

● Collect appropriate data (health and weather) to conduct research into heat-health associations 819 

in LMICs and lower SES communities. 820 

● Develop and validate more rigorous approaches to account for adaptive capacity and 821 

demographic change in projecting future heat-health impacts. 822 

● Research indirect effects of heat and include well-being more broadly. 823 

● Create city-specific early warning and response systems for heat extremes that are supported 824 

by heat vulnerability maps and that are more tailored to specific individuals; evaluate all such 825 

systems.  826 

● Develop and implement passive (i.e., sustainable) cooling strategies to support heat mitigation 827 

in cities and in homes (Sec. 5.2), as the cost of AC often leaves the most vulnerable without 828 

power ((Jay et al., 2021), and as detailed in Sec. 4.2).   829 

● Improve resources, policies, public health messaging, and technologies that are needed for the 830 

most vulnerable populations to respond appropriately to heat (e.g., to prevent PHS or isolated 831 

heat deaths in elderly populations), leveraging spaces, tools, and resources already present in 832 

urban areas. 833 

 834 

4.2 Urban Energy 835 

Urban energy systems both impact and are impacted by urban overheating. Urban 836 

overheating results in higher cooling energy needs, while urban energy systems release 837 

anthropogenic sensible heat and moisture into the urban atmosphere, increasing urban temperature. 838 

High urban temperatures further decrease the performance of photovoltaic modules and air 839 

conditioning (AC). Thus, urban energy systems represent a cascade of integrated systems, where 840 

the consequences of design and planning decisions and inefficiencies rapidly propagate, pushing 841 

socio-economically-disadvantaged urban populations into energy poverty. With the term “urban 842 

energy systems”, we refer to the interconnected components of energy generation, distribution, 843 

and end uses in the built environment, together with buildings and human users. Here, we discuss 844 

the challenges in addressing these cascading systems in relation to urban overheating. 845 

In the context of urban overheating, urban energy systems should also be critically assessed when 846 

they fail to provide the indoor thermal comfort they were designed to offer (Sec. 5.2). For 847 

increasing fractions of the urban population, the failure arises from transient or permanent 848 

exclusion from the energy system itself, and thus increased exposure to heat-related health 849 

outcomes. This is the condition faced by the energy poor, who are defined as having energy 850 

expenditures that exceed 10% of their household income (Moore, 2012). 851 
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Urban energy systems often reach a critical state at the occurrence of extreme heat events that act 852 

in synergy with local contributions to overheating, both inland (Zhao et al., 2018) and in coastal 853 

areas (Khan et al., 2020). Under stress conditions, thermally-inefficient buildings are subject to 854 

inadequate indoor conditions, even in developed countries (Thomson et al., 2019). Another 855 

relevant risk comes from food safety, when inadequate temperatures during transport and storage 856 

lead to the biological proliferation of mycotoxins or pathogenic bacteria in food (Miraglia et al., 857 

2009), while exposure to hotter temperatures reduces food safety inspections (Obradovich et al., 858 

2018). This risk is especially increased during heatwaves for the energy poor, whose dwellings 859 

show high indoor air temperatures, impacting the performance of refrigerators, even in the absence 860 

of black or brownouts. Chillers and condensing units of air conditioners see their performance 861 

decrease with increasing temperature and humidity (Kabeel et al., 2017), and the same dynamic 862 

applies to photovoltaic solar panels (Skoplaki & Palyvos, 2009). Therefore, building-integrated 863 

PV may decrease the electricity output during heatwaves, thus resulting in increased demand from 864 

the power grid. As less solar radiation is converted into electricity, more is dissipated as heat, thus 865 

worsening the contribution of photovoltaic panels to urban overheating, as documented at utility 866 

scale (Ashley M. Broadbent et al., 2019). 867 

The last of these highly non-linear dynamics relates to anthropogenic sensible heat and moisture, 868 

which is released into the built environment contributing to increases of the ambient air 869 

temperature and humidity (Sailor, 2011). Mesoscale climate modelling coupled to building models 870 

estimate an increase of the ambient temperature by 1-2 °C in peak conditions in most cities driven 871 

by exhaust heat from condensing units (Sailor, 2011; Salamanca et al., 2014). Instead, evaporative 872 

cooling towers can decrease urban temperatures, even by 1.5 °C in the evening, although with a 873 

substantial increase in specific humidity, which then may worsen thermal comfort and increase the 874 

energy needs for dehumidification (Y. Wang et al., 2018). During heatwaves, the release of 875 

anthropogenic heat from buildings may increase by more than 20%, of which more than 85% is 876 

contributed by air-conditioners (Luo et al., 2020), due to reduced efficiency and increased demand. 877 

Also, during heatwaves, air conditioners fail to provide comfort conditions or may not operate 878 

because of blackouts (B. Stone et al., 2021).  879 

To design and manage building stocks for resiliency in the context of worsening urban overheating, 880 

it is necessary to manage them as connected systems rather than individual buildings. This vision, 881 

among other technological advancements, requires granular energy utility data to better understand 882 

and quantify interconnected impacts of urban energy systems. However, often utility datasets are 883 

neither easily accessible nor include appropriate and consistent contextualized metadata in non-884 

smart grids (Nagasawa et al., 2013; Yu et al., 2015). Consequently, the development of district-885 

scale electricity demand models capable of high-resolution assessments in different boundary 886 

conditions is complicated. Moreover, the uncertainty in the definition of the population in small 887 

areas is an intrinsic issue (Tayman, 2011), which prevents a detailed understanding of the semi-888 

hourly demand, area by area (Bhattarai et al., 2019), without a widespread implementation of smart 889 

metering. 890 

Realistic representation of the complex meteorological boundary conditions for building 891 

simulation has been addressed with increasingly convergent efforts by the building simulation and  892 

urban climatology communities (Ferrando et al., 2020). Still, practitioners consider shadowing by 893 

nearby buildings at most, with a deterministic input in response to a probabilistic problem, and use 894 

typical weather data from airports that exclude climate anomalies. Further, while heating energy 895 

needs can be robustly estimated with typical weather years, cooling energy needs are strongly 896 
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affected by heatwaves, therefore resulting in a significant bias (Paolini et al., 2017). Practitioners 897 

also model individual buildings, despite the growing opportunities for urban energy modelling 898 

(Hong, Chen, et al., 2020). The availability of reliable 3-D stock models, now limited to a few 899 

cities (Evans et al., 2017), may overcome the limitations of archetypes (i.e., typical buildings) to 900 

represent the whole building stock (Ferrando et al., 2020). Additionally, urban energy codes could 901 

offer a pathway towards collaborative energy design of buildings, no longer treating buildings as 902 

stand-alone entities. 903 

Perhaps the most significant gaps in model assessment of urban overheating impacts on urban 904 

energy (and vice versa) concern the interconnections of urban energy systems, especially at the 905 

neighbourhood scale.  First, disentangling the connections between the layers of urban energy 906 

systems entails addressing a problem affected by high uncertainty, and focusing on the links 907 

between the different parts (Pappaccogli et al., 2020). Notably, the quantification of anthropogenic 908 

heat and moisture emissions is one of the terms in the urban energy balance showing the greatest 909 

variability depending on the model and assumption (Sailor, 2011; Y. Wang et al., 2018). 910 

Specifically, even very detailed bottom-up models (Hong, Ferrando, et al., 2020)  do not take into 911 

consideration the thermal dissipation from different components of the electrical grids (e.g., 912 

transformers), which requires attention in the future.   913 

On the other hand, the synergies between urban overheating and heatwaves have been investigated 914 

(Zhao et al., 2018), but the current framework does not support the quantification of the chain of 915 

effects involving the electrical grid, buildings, and air conditioning, which can lead to reduced 916 

energy performance and energy poverty. In fact, only a limited number of studies have addressed 917 

this frontier (Luo et al., 2020) despite its critical impact on health outcomes of overheating. 918 

The second cluster of gaps relates to the fragmentation of the study of energy transformation and 919 

uses, social inequality, and spatial differentiation (Bouzarovski & Thomson, 2018). High cooling 920 

energy consumption in wealthy areas drives demand and energy prices, harshening energy poverty 921 

in less affluent and denser suburbs (Simshauser et al., 2011), where the vulnerable population is 922 

confined to thermally unsafe and inefficient buildings. Further, to achieve net-zero energy cities, 923 

net-zero energy users and constant metering are needed (Yan Zhang et al., 2018), motivating 924 

further research on citizen engagement together with technological advancements. Furthermore, 925 

climate extremes, and consequent blackout and brownout models need to inform the design 926 

process of urban energy systems, with a balanced approach to energy curtailment, and enforcement 927 

of maximum cooling set points during extreme heat events. Other possible solutions include 928 

heatwave shelters and energy sharing during non-extreme conditions, which can mitigate 929 

inequalities (Salvia & Morello, 2020), with people’s affiliation networks driving remarkable 930 

energy savings at building scale (Xu et al., 2012), especially in plug loads.   931 

In conclusion, the urban energy problem should be reframed to support human health, in addition 932 

to reduction of energy use. Otherwise, there is a risk of further polarisation and increasing energy 933 

poverty (Santamouris, 2020), with only the wealthy dwelling in net-zero energy buildings 934 

equipped with on-site renewables. Cities should be designed and managed as complex systems, 935 

and while the single components have been developed, the response of the integrated model is not 936 

known. Therefore, to develop new knowledge, first, a new integrated energy space has to be 937 

developed so that new applied research can find novel opportunities and solutions to the energy 938 

problem. 939 
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5 Multidisciplinary solutions to address urban overheating 940 

This section discusses the state-of-the-art methodologies and solutions for mitigating heat 941 

exposure, reducing sensitivity, and increasing adaptive capacities at the individual and city levels. 942 

We focus on cooling strategies that can be implemented in urban design (Sec. 5.1) or indoor 943 

spaces (Sec. 5.2) as well as urban heat governance (Sec. 5.3) needed to mitigate or adapt to this 944 

multi-faceted challenge.   945 

5.1 Heat mitigation strategies integrated in urban design 946 

Urban design and architecture have traditionally been developed to enhance immediate 947 

thermal environments of individuals, a design process that has since been obscured due to the 948 

prevalent use of air-conditioning and cheap fuel (Pearlmutter, 2007), exacerbating urban heat 949 

challenges in cities (Sec. 4.2). Inspired by traditional interventions and novel technologies, various 950 

heat mitigation methodologies have been developed over the last three or more decades (Akbari 951 

& Kolokotsa, 2016; Rosenfeld et al., 1995), aiming to decrease the local ambient temperature using 952 

solar control, reflective and green roofs (D. Li et al., 2014; Santamouris, 2014), urban greenery 953 

(Santamouris et al., 2018), water and irrigation (Coutts et al., 2013) and the use of light color 954 

materials for urban facades and pavements (Santamouris, 2013). Apart from these traditional 955 

methods, several new and efficient mitigation technologies presenting a high cooling capacity are 956 

developed and used in large scale urban projects. Most of the newly presented technologies deal 957 

with the development of advanced materials for the urban fabric and building envelope, as well as 958 

with scientific developments to enhance the cooling potential of urban greenery (Akbari et al., 959 

2015). In parallel, significant new knowledge has been generated on the optimum use of water and 960 

evaporation systems in cities (Gao & Santamouris, 2019). 961 

A combination of advanced and traditional mitigation technologies and systems can be considered 962 

in urban design, selected based on the urban morphology, local climate class, water availability, 963 

and seasonal climate variability. On average, it is feasible to decrease the peak air temperature of 964 

cities up to 2.5-3 °C (Feng et al., 2021; Santamouris et al., 2017a, 2020). Addition of green 965 

infrastructure often represents a re-integration of landscape elements better able to store 966 

precipitation and fuel evapotranspiration and reduce temperatures during hot spells. Examples 967 

include green roofs and green building facades, trees, and ground-level vegetation such as parks, 968 

lawns, and gardens (Bowler et al., 2010). Street trees not only evapotranspire, but provide shade 969 

to pedestrians, buildings, and heat-absorbing ground-level infrastructure, dramatically reducing 970 

radiation and consequently overall daytime heat exposure and nighttime heat release (Coutts et al., 971 

2016; Oke, 1989). However, trees can warm temperatures at night (Gillner et al., 2015; Krayenhoff 972 

et al., 2020) and slow winds and prevent dispersion of pollutants emitted at ground level (Santiago 973 

et al., 2017; P. E. J. Vos et al., 2013), such as those from vehicle tailpipes, and interfere with 974 

subsurface infrastructure. Surface and air temperature cooling from green roofs and low 975 

vegetation, and to a lesser extent, trees, is critically dependent on adequate soil moisture, either 976 

from precipitation or irrigation (Heusinger et al., 2018; Krayenhoff et al., 2021). Nevertheless, to 977 

date there is evidence that urban trees are most effective for pedestrian-level cooling, followed by 978 

ground level vegetation, and finally by green roofs (Krayenhoff et al., 2021; Santamouris et al., 979 

2017b; Shashua-Bar et al., 2009); however, green roofs can have greater impacts on building 980 

energy and/or internal thermal environments (Sailor et al., 2012). Reviews of vegetation cooling 981 

effectiveness suggest about 0.1-0.3°C of cooling per 0.1 plan area increase in vegetation area 982 

(Bowler et al., 2010; Krayenhoff et al., 2021). Recent observational results suggest that trees may 983 

reduce air temperature much more effectively as total canopy cover increases (Ziter et al., 2019). 984 
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Critically, each urban vegetation strategy has copious non-climatic benefits and, in some cases, 985 

select drawbacks, related to aesthetics, function, hydrology, health, historical context, etc, that will 986 

differ with local context (Krayenhoff et al., 2021; Santamouris et al., 2018). There is opportunity 987 

to better optimize urban vegetation combinations and arrangements accounting for all impacts, 988 

including adaptation to urban overheating. 989 

However, the intensity of contemporary and especially projected urban overheating exceeds the 990 

potential of existing heat mitigation technologies, especially at night when the canopy urban heat 991 

island is maximized, and when heat mitigation approaches that rely on solar radiation (e.g., 992 

increased albedo or evapotranspiration) are less effective (Krayenhoff et al., 2018). This requires 993 

that we consider more efficient mitigation technologies with a considerably higher cooling 994 

capability. Therefore, achievements in the field of heat mitigating materials are the focus of the 995 

remaining discussion in this section. 996 

Materials used in the urban fabric and building envelope absorb solar radiation, absorb and emit 997 

infrared radiation, store and release heat via conduction, and exchange heat with the air through 998 

convective processes. Materials that exhibit high radiation absorptivity have a high surface 999 

temperature during daytime, heating the ambient air, emitting large amounts of longwave 1000 

radiation, and deteriorating thermal comfort. To decrease the materials’ surface temperatures 1001 

several principles are used separately or in a combined way: 1002 

● Increase the reflectivity of the materials in the visible, infrared or both parts of the solar 1003 

radiation spectrum, 1004 

● Increase the thermal inertia of the materials (however, doing so warms evening and 1005 

nighttime periods), 1006 

● Exploit fluorescent materials to enhance their thermal losses, 1007 

● Exploit chromic materials to adjust their reflectivity according to the climatic conditions, 1008 

● Increase the emissivity of the materials in the whole infrared spectrum, or 1009 

● Increase the emissivity of the materials in the so-called atmospheric window. 1010 

White artificial materials of extremely high reflectivity in the visible solar spectrum may present 1011 

up to 6°C lower surface temperature than white natural materials like marble (Synnefa et al., 2006). 1012 

However, reflectivity decreases considerably over time because of the deposition of dust and other 1013 

atmospheric constituents and the effects of UV radiation. Near-infrared reflective colored 1014 

materials present a much higher broadband solar reflectivity than conventional materials of the 1015 

same color, increasing broadband reflectivity by up to four times (Levinson et al., 2005), and 1016 

lowering surface (air) temperature by as much as 10°C (1.5°C) compared to conventional surfaces 1017 

of the same color (Santamouris, 2016; Synnefa et al., 2007). Ageing and deposition of dust are 1018 

issues that can potentially be mitigated by self-cleaning IR reflecting coatings (Kyriakodis & 1019 

Santamouris, 2018). 1020 

The addition of phase change materials (PCM) in the mass of reflecting coatings, which store latent 1021 

heat, can increase material thermal storage and consequently decrease the release of sensible and 1022 

longwave heat, and reduce material surface temperature by up to 2.5°C (Karlessi et al., 2011). Use 1023 

of thermochromic materials, which change color and reflectivity as a function of surface 1024 

temperature, may be an excellent mitigation solution for temperate climates. Leuko dye-based 1025 

thermochromic materials (Ma et al., 2001) are found to yield surface temperatures up to 22°C 1026 
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lower than conventional surfaces of the same color (Karlessi et al., 2009), however the use of 1027 

optical filters is required to protect them when exposed to the sun (Karlessi & Santamouris, 2015). 1028 

Modern chromic materials  appear to provide a high potential for efficient deployment for cooling 1029 

in cities (Garshasbi & Santamouris, 2019). Fluorescent materials absorb solar radiation and re-1030 

emit photons at longer wavelengths, enhancing thermal losses. Materials based on ruby fluorescent 1031 

crystals, for example, showed surface temperature about 6.5°C lower than conventional samples 1032 

(Berdahl et al., 2016). Preliminary testing of mitigation materials based on quantum dots, another 1033 

chromic material, showed spectacular cooling effectiveness, however several problems with their 1034 

ageing are yet to be solved (Garshasbi & Santamouris, 2019).  1035 

Daytime radiative cooling materials presenting an extremely high reflectivity to solar radiation and 1036 

a very high emissivity in the atmospheric window can reach sub-ambient surface temperatures 1037 

while sunlit (Zhai et al., 2017). Metamaterials, photonic, and plasmonic materials, when used to 1038 

form active or passive daytime radiative cooling coatings and components, may present surface 1039 

temperatures up to 17°C below ambient (Santamouris & Feng, 2018). Overcooling of surfaces 1040 

during the winter period and reduced performance in humid climates seem to be the main 1041 

limitations of this technology. The use of variable emissivity materials like PCMs to control the 1042 

temporal variation of the emissivity of radiative coolers (Ono et al., 2018) may be an efficient way 1043 

to overcome these problems.  1044 

Future Research Priorities 1045 

The emerging energy and environmental problems in cities that arise from regional and 1046 

global climate change require optimal application of existing climate moderation strategies such 1047 

as urban vegetation, combined with development and implementation of advanced technologies 1048 

able to further enhance urban cooling. 1049 

Development of innovative mitigation technologies. Current mitigation technologies may decrease 1050 

the peak ambient air temperature by up to 2.5 – 3.0°C  Given the projected magnitude of urban 1051 

overheating, research efforts should concentrate towards the development of more efficient 1052 

mitigation technologies able to decrease peak ambient temperatures by up to 5°C.  The main 1053 

research priorities and developments should target the following areas: 1054 

● Development of sub-ambient temperature materials. Photonic and plasmonic technologies 1055 

used for daytime radiative cooling exhibit large potential for functional improvement and 1056 

technology simplification. Passive radiative cooling technologies in the form of paints, 1057 

sprays or simple coatings may decrease the surface temperature of roofs and pavements up 1058 

to 10°C below the ambient temperature. In parallel, the development of photonic shading 1059 

devices can reduce surface temperatures (and associated mean radiant temperature; see Sec. 1060 

2.1) in open spaces, reduce the ambient temperature, and improve outdoor thermal comfort. 1061 

● Further development of fluorescent materials combined with thermochromic or photonic 1062 

substrates may yield high cooling potential. 1063 

● Development of alternatives to leuco dyes thermochromic materials may be a high research 1064 

priority. Recent research demonstrated that thermochromic quantum dots, plasmonics, 1065 

photonic crystals, conjugated polymers, Schiff bases and liquid crystals offer fascinating 1066 

and impressive mitigation characteristics and potential.  1067 
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● More integrated analyses of plant ecology together with urban climate measurements and 1068 

modeling, such that we understand the desired traits and locations of green infrastructures 1069 

for relevant city climate and resources (such as access to water).  1070 

● Continued re-integration of vegetation into urban landscapes, including tree planting, green 1071 

roofs, and added ground-level vegetation, particularly when it provides co-benefits (e.g., 1072 

recreational greenspace, urban agriculture, etc). 1073 

● Continued research into effective methods for cooling cities during evening and nighttime. 1074 

Large scale urban projects demonstrating the use of efficient technologies may further enhance 1075 

our knowledge and understanding of the best way to implement these new technologies for 1076 

improved heat resilience. Additionally, the specific impact and the potential improvements 1077 

achieved through the implementation of efficient mitigation technologies have to be assessed 1078 

through well defined evaluation protocols to better understand their impact. 1079 

5.2 Indoor thermal environment and innovative cooling strategies 1080 

In addition to mitigating overheating outdoors, it is important to quantify and address 1081 

indoor thermal exposure to minimize the negative impacts on humans. In the United States, for 1082 

example, people spend 90% of their time indoors, on average (US Environmental Protection 1083 

Agency, 1989). Even in moderate heat periods, people may experience elevated indoor 1084 

temperatures in both workplace and residential buildings (Kjellstrom & Crowe, 2011; Uejio et al., 1085 

2016; White-Newsome et al., 2012), which could lead to significant impacts on people's health, 1086 

safety, finances, and well-being (Sec. 4). 1087 

Raising outdoor air temperature increases the indoor air temperature and/or the energy demand for 1088 

cooling. The relationship between outdoor and indoor temperatures is influenced by many factors, 1089 

such as building design and operation (e.g., full glass building vs well insulated building with 1090 

external shading device) and cooling strategy (e.g., air-conditioned vs naturally ventilated 1091 

buildings). The ASHRAE Global Thermal Comfort Database II (Földváry Ličina et al., 2018) is 1092 

largest thermal comfort field survey database that can provide insight on how the outdoor air 1093 

temperature (To) is related to the indoor air temperature (Ta) in both air conditioned and naturally 1094 

ventilated buildings (Fig. 5). From simple weighted linear regressions, we find an increment of 0.1 1095 

°C and 0.4 °C, respectively for air conditioned and naturally ventilated buildings, for every degree 1096 

Celsius increment in outdoor temperature. It is clear that indoor temperature can be regulated 1097 

through heating and cooling in air-conditioned buildings regardless of the outdoor environments; 1098 

but a slope of ~0.4 in naturally ventilated buildings suggests that the indoor temperature does not 1099 

follow exactly the outdoor conditions. We observe with concern that in some naturally ventilated 1100 

buildings (above the yellow dotted line in Fig. 5), the indoor temperature is higher than the outdoor 1101 

temperature, which itself is elevated. This indicates that outdoor temperature may in some cases 1102 

underestimate the overheating exposure and that there exist other heat sources that are yet to be 1103 

characterized. 1104 

Indoor temperature is increased by heat gains via conduction from the building envelope, 1105 

convection from outdoor hot air, direct or indirect solar radiation through windows and openings, 1106 

and heat released from occupants and equipment within the space. Indoor overheating challenges, 1107 

particularly for vulnerable and socio-economically-disadvantaged urban populations, are more 1108 

likely to occur in thermally-inefficient buildings (Sect 4.1). Thermal exposure perceived by 1109 

humans, however, does not only link to air temperature, it also relates to mean radiant temperature, 1110 
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relative humidity, airspeed, and occupant’s clothing insulation and activity level (Fanger, 1970; 1111 

Standard 55, 2017). Moreover, as noted in Sec. 4.2, it is important to assess the ability of a building 1112 

to provide passive survivability during extended power outages in peak summer conditions (LEED 1113 

BD+C, 2021). 1114 

 1115 
Figure 5. Indoor and outdoor air temperature relationships in air conditioned and naturally ventilated buildings 1116 

obtained from the ASHRAE Global Thermal Comfort Database II (Földváry Ličina et al., 2018). The yellow dotted 1117 

line indicates the hypothetical line where To=Ta. n indicates the number of measurements. 1118 

Indoor heat exposure can be minimized by two major strategies: Reduce heat gains and actively 1119 

remove indoor thermal load. Heat gains can be reduced by building design and effective operation 1120 

with established strategies, for example: avoid direct solar heat by altering building orientation 1121 

(Axaopoulos et al., 2014), block solar radiation by installing outside shading (Cheung et al., 2005; 1122 

Chua & Chou, 2010), reduce heat gain by applying insulation in the building façade (Fang et al., 1123 

2014; Schiavoni et al., 2016) and install cool roofs or green roofs (Junjing Yang et al., 2018), use 1124 

high performance glazing (Karlsson & Roos, 2001), and maximize natural ventilation to remove 1125 

indoor heat by advanced building design and control (Etheridge, 2011). There are also more 1126 

innovative solutions not yet ready for implementation, such as terrestrial radiative cooling (X. Yin 1127 

et al., 2020; M. Zhou et al., 2021) and cooling textiles (Hsu et al., 2017; Zeng et al., 2021). 1128 

Air conditioning is most effective in removing indoor heat load and regulating the indoor 1129 

environment, but its applicability is limited by financial and resource constraints, especially for 1130 

mid- and low-income communities, and by the possibility of power outages during heat waves. 1131 

Moreover, air conditioning has a high negative environmental impact. It is energy intensive, and 1132 

it releases heat to the outdoors, increasing temperature at different scales (Sect 4.2). It also 1133 

increases pollution from refrigerants, and if the space is not ventilated, it leads to high indoor CO2 1134 

levels if people close windows to save energy (Dahl, 2013; Gall et al., 2016). 1135 

In practice, there are several energy efficient strategies that can reduce cooling loads and relieve 1136 

occupants’ thermal discomfort in buildings, for example: thermal mass and storage (Faraj et al., 1137 

2020; Yau & Rismanchi, 2012), evaporative cooling (Y. Yang et al., 2019), free cooling at night 1138 
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(Solgi et al., 2018), and water- / air-side economizers (Habibi Khalaj & Halgamuge, 2017; Ham 1139 

et al., 2015). Among all potential strategies, an affordable, effective, scalable and market-ready 1140 

solution is to increase air movement in built environments with fans in both indoor and outdoor 1141 

areas (Jay et al., 2019). Subjective thermal discomfort under a high temperature environment can 1142 

be offset by an elevated air speed due to the fan-generated cooling effect (Arens et al., 1998; 1143 

Schiavon & Melikov, 2009; Tanabe et al., 1993). The increased air movement is perceived as 1144 

pleasant and is aligned with the physiological principle of alliesthesia (Cabanac, 1971; Parkinson 1145 

& de Dear, 2015). The main advantage of this solution is that the energy used to increase air speed 1146 

is much lower than the energy used to lower the temperature while maintaining an equivalent 1147 

thermal comfort condition (Hoyt et al., 2015; Rim et al., 2015; Schiavon & Melikov, 2008). It may 1148 

also potentially provide better air quality (Pantelic et al., 2020). In addition, this solution can be 1149 

easily adapted to different ventilation types (i.e., air-conditioning, natural ventilation or mixed 1150 

mode) in both new and existing buildings. Evidence from the literature suggested occupants were 1151 

thermally more satisfied in a condition of higher indoor air temperature (e.g. 26 °C) with fans than 1152 

a condition of lower air temperature (e.g. 23 °C) without fan, in both a climatic chamber 1153 

experiment (Schiavon et al., 2017) and a field study (Lipczynska et al., 2018). 1154 

Despite the energy saving benefits and increased occupant satisfaction, we find that the 1155 

implementation of this higher temperature cooling with elevated air movement strategy is not 1156 

common in commercial buildings, while it is in residential buildings. Possible barriers could relate 1157 

to  air-conditioning being perceived to be of a higher quality than fans (Chappells & Shove, 2005; 1158 

Lorch & Cole, 2003), the aesthetic concerns related to having an object spinning in the space, the 1159 

reduced effectiveness of convection for occupants with formal office dress (e.g. long sleeve and 1160 

trousers) (Holmér et al., 1999) the lack of open source guidelines to inform adequate elevated 1161 

airspeed system design, and operation and maintenance concerns (noise, dust and wobbling) 1162 

(Present et al., 2019). To address the benefit of fan usage, more research regarding elevated 1163 

airspeed cooling strategies in different building types and climate zones are needed to demonstrate 1164 

their efficacy with respect to energy efficiency and indoor thermal comfort improvement. In 1165 

addition, practical guidelines should be developed to encourage system deployment in actual 1166 

buildings and facilitate building practitioners’ needs.  1167 

5.3 Addressing sensitivity and adaptive capacity: Governance, policy, and citizen 1168 

engagement 1169 

The wide suite of impacts of overheating on urban systems, as well as the array of tools 1170 

and solutions for understanding and reducing adverse impacts, raises important questions related 1171 

to governance and community engagement. Among them: Which actors and institutions are 1172 

responsible for the governance of urban overheating? How do they interact with each other, and 1173 

with the public at large? What is the contemporary state of urban overheating governance, and 1174 

what may be in store for the future?  1175 

Conceptually, governance of urban overheating can be framed as an extension of—or perhaps even 1176 

an explicit component of—climate change governance more broadly defined (Fröhlich & 1177 

Knieling, 2013).  In the case of urban overheating, the drivers and impacts of climate change occur 1178 

at local and regional scales, rather than global, which alters the magnitude of collective action 1179 

challenges posed for global climate change mitigation and adaptation (Georgescu, 2015; 1180 

Georgescu et al., 2014; Jay et al., 2021). However, many other governance challenges for urban 1181 

overheating closely parallel those framed for global climate change, including those related to 1182 

geographic scale and boundaries, participation and needs of a wide range of sectors and 1183 
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stakeholders, time horizons for decision-making, and uncertainty (Fröhlich & Knieling, 2013). 1184 

Urban overheating governance can also be framed as an aspect of climate adaptation, for which a 1185 

rich suite of definitions, conceptual models, and theories have been proposed (Keith et al., 2021; 1186 

Moser & Ekstrom, 2010).  1187 

Within climate adaptation literature, scholars are increasingly examining barriers to effective 1188 

adaptation. Among the barriers particularly relevant to urban heating are those related to authority, 1189 

responsibility, agreement, resources, and path dependency (following (Moser & Ekstrom, 2010)). 1190 

While public sector leaders are in many cases detecting problems related to urban overheating, and 1191 

indicating that those problems are crossing thresholds for concern and response needs, tackling 1192 

urban overheating remains a relatively new challenge for traditional governance actors. As such, 1193 

ambiguity regarding responsibility and accountability structures, access to financial, human, and 1194 

regulatory resources, and a legacy of institutional non-attention to problems associated with urban 1195 

overheating, are hindrances to successful implementation that many actors have yet to overcome 1196 

(Keith et al., 2019). While preferred models for urban overheating governance have not yet been 1197 

clearly articulated, it is clear that any contemporary models are relatively immature compared with 1198 

those established for other chronic environmental hazards, including air pollution (e.g., strong 1199 

national to local regulatory structures, financial incentives, and explicitly named responsible 1200 

governance institutions) (Keith et al., 2021), and noise (e.g., local regulatory structures, workplace 1201 

protections).     1202 

Contemporary examples of urban overheating governance reflect attention to two key impact 1203 

domains —health and energy. At the international scale, the World Health Organization and World 1204 

Meteorological Organization have collaboratively authored guidance for implementation of heat-1205 

health warning systems, which aim to lessen the public health burden of heat events even beyond 1206 

the urban context (McGregor et al., 2015). There is widespread evidence of local implementation 1207 

of such systems (Casanueva et al., 2019; Hajat, Sheridan, et al., 2010; Hess & Ebi, 2016). National 1208 

governments and non-governmental organizations have also offered a wide range of guidance 1209 

documents and technical assistance related to management of various aspects of urban overheating, 1210 

including implementation of urban heat countermeasures and health-protective resources (as 1211 

detailed in several use cases compiled by (Global Heat Health Information Network, 2020)). At 1212 

the local scale, some jurisdictions have produced different types of planning documents and 1213 

strategies for tackling aspects of urban overheating, and in some cases these documents are 1214 

approved by a local commission or council, with varying degrees of regulatory authority (e.g., 1215 

(Ahmedabad Heat Action Plan, 2016; The Nature Conservancy, n.d.). In other cases, regulations 1216 

and ordinances related to urban overheating appear in a more ad hoc nature in local policy, and 1217 

elsewhere, measures related to urban overheating are included as components of broader plans, 1218 

including general plans, sustainability plans, and/or resilience plans (Gabbe et al., 2021). Yet it is 1219 

also clear in examination of local efforts to govern urban overheating that tensions and barriers 1220 

arise that are consistent with those identified in the climate change governance and adaptation 1221 

literature.  Among them, (Mees et al., 2015) and (Guyer et al., 2019) report disagreement and 1222 

ambiguity in practitioners’ understanding of their roles and responsibilities with respect to urban 1223 

climate governance. (Mahlkow et al., 2016) suggest challenges with respect to authority of urban 1224 

development in the context of urban overheating and the ability of governance actors to influence 1225 

those processes. (Birkmann et al., 2010) further posit that these tensions and barriers may be 1226 

particularly impactful in the context of developing countries, where rapid population and 1227 

infrastructure growth create even greater challenges for coordinated and comprehensive 1228 

governance. 1229 
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While literature continues to accumulate related to how urban overheating governance is 1230 

functioning today, there are many examples of historical analyses, modeling studies, and visioning 1231 

and scenario exercises from which recommendations can be drawn regarding how urban 1232 

overheating governance could evolve in the future.  There is now relatively widespread 1233 

acknowledgement that urban overheating is another lens by which inequities in urban systems are 1234 

revealed. Governance actors must recognize that contemporary conditions are products of legacies 1235 

of planning and investment that did not sufficiently prepare cities for challenges they currently 1236 

face with respect to urban overheating, especially for historically marginalized communities 1237 

(Grineski et al., 2015; Harlan et al., 2007; Wilson, 2020). In some cases, actors working today to 1238 

reduce the challenges of urban overheating must reverse the legacy effects of intentional practices 1239 

that placed certain populations at greater risk of harm from heat and other environmental hazards 1240 

(Harlan et al., 2019; Wilson, 2020). Beyond acknowledging and reducing the total and inequitable 1241 

distribution of harms associated with urban overheating, public leaders are also challenged to 1242 

improve engagement strategies in the pursuit of participatory justice (Baldwin, 2020; Chu & 1243 

Cannon, 2021). Residents who have been excluded from decision-making processes in the past 1244 

can and should meaningfully contribute to the planning and implementation of urban overheating 1245 

solutions moving forward, bringing critical domain expertise from their lived experience 1246 

(Guardaro et al., 2020; Marschütz et al., 2020). Scenario planning and visioning workshops have 1247 

shown promise as a tool for both engagement and shaping governance strategies related to the 1248 

future of urban climates (Iwaniec et al., 2020). Participation of the private sector and private 1249 

landowners in the implementation of urban overheating countermeasures will be critical, owing to 1250 

the relatively limited spatial extent of land owned by governmental agencies in many urban 1251 

settings. Public-private partnerships, financing and incentive mechanisms, and other tools that 1252 

accelerate collaboration may all accelerate the timeline for realizing solutions to urban 1253 

overheating. The role of technology, specifically concerning ubiquitous sensing and Internet-of-1254 

Things connectivity will need to be carefully balanced (Sec. 2.3). Governance actors can benefit 1255 

from access to increasingly precise data about urban climates and urban systems that influence and 1256 

are influenced by the urban climate (Hamstead et al., 2020; Hondula et al., 2015; Y. Yin et al., 1257 

2020), but widespread sensing raises potential social and legal challenges concerning privacy and 1258 

security, institutionalization of bias, and more. Given the complexities and interrelationships of 1259 

the challenges associated with urban overheating, adaptive governance may be the most promising 1260 

model for localities to adopt as they move forward. Adaptive governance embraces principles of 1261 

iteration, flexibility, and learning, and has been advocated as an appropriate model in the context 1262 

of urban heat  (Hess et al., 2012) and other urban environmental domains including ecology (O. 1263 

Green et al., 2016) and water (Bettini et al., 2013; Larson et al., 2015). Finally, as jurisdictions 1264 

continue to evolve their approaches to governing urban overheating, we encourage attention to the 1265 

“five Ws” for urban resilience posed by (Meerow & Newell, 2019). Efforts to address urban 1266 

overheating cannot be detached from the underlying socio-political structures and processes that 1267 

shape cities. As such, all involved in efforts to address urban overheating must consider for whom, 1268 

what, when, where, and why those efforts are being directed.  1269 

6 Conclusions and key ways forward 1270 

We provide the first integrated outlook for characterizing, evaluating, and addressing 1271 

overheating in existing and future cities. We discuss how overheating exposure is characterized 1272 

using different observational and numerical methodologies across different scales (ranging from 1273 

human to street and city scales). At the human scale, we then detail several physiological and 1274 

psychological pathways that lead to individual sensitivities to overheating, as well as adaptive 1275 
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capacities that can be promoted to reduce sensitivity or exposure. At the population level, the key 1276 

impacts of overheating on health and urban energy are documented for vulnerable groups. Lastly, 1277 

we discuss state-of-the-art methodologies as well as future approaches and solutions in urban 1278 

planning and governance that aim to address this multi-faceted challenge by mitigating exposure, 1279 

reducing sensitivity, and increasing adaptive capacities at the individual and city levels.  1280 

Key priorities to better assess overheating impacts as well as potential solutions can be condensed 1281 

into seven multidisciplinary research directions:  1282 

1. Develop a new paradigm for heat exposure characterization: More comprehensive 1283 

characterization of heat exposure in cities is an ongoing focus in research. While both 1284 

measurements and modeling practices need to quantify overheating at higher spatial and 1285 

temporal resolutions, it is critical that exposure is better characterized focused on where people 1286 

are located, encompassing more diverse and targeted indoor and outdoor spaces. Additionally, 1287 

metrics and indicators that fully characterize heat exposure (including relevant meteorological 1288 

factors such as wind and radiation, as well as duration and intensity of exposure) should be 1289 

integrated into sensing and modeling of thermal environments based on fit-for-purpose 1290 

evaluations.  1291 

2. Determine adaptive capacities at the individual level to reduce exposure and sensitivity: 1292 

Future research should provide a more expansive and inclusive knowledge of the physiological 1293 

and psychological/behavioral pathways that lead to increased sensitivity and exposure of 1294 

individuals and populations. This knowledge can then inform the evaluation of adaptive 1295 

capacities that can be afforded at the individual level to reduce either sensitivity or exposure. 1296 

Inclusive evaluations include consideration of different clusters of personal or professional 1297 

profiles (covering different professions, health conditions, and socioeconomic status) that may 1298 

be more vulnerable to heat exposure.   1299 

3. Prioritize personal heat exposure assessment over one-size-fits-all approaches: More 1300 

human-centric assessment of heat exposure, i.e. personal heat exposure, is a key priority in 1301 

several subfields. A ‘receptor-oriented’ approach to heat is suggested, in contrast with existing 1302 

‘source-oriented’ assessments, to quantify the heat exposure in the immediate environment of 1303 

humans as well as the impacts on human comfort, performance, well-being, and health. Future 1304 

research in personal heat exposure requires not only targeted spatial coverage in data collection 1305 

and modeling, but also better integration of knowledge and datasets that detail behavioral 1306 

patterns and individual sensitivities in response to heat.  1307 

4. Quantify the indirect health and wellbeing outcomes of overheating: More human-centric 1308 

assessment of heat exposure permits quantification of the links between heat exposure and 1309 

indirect health and wellbeing outcomes. Empirical verification of causal links between urban 1310 

heat and residents’ behavior, their sedentariness, and heat-health impacts at the level of the 1311 

individual and the urban population at large are essential directions for future research, such 1312 

that evidence-based urban planning and policy can be more broadly effective at maintaining 1313 

and enhancing well-being in a warming urban world. 1314 

5. Develop equitable urban energy systems for human health and wellbeing: For a more 1315 

integrated assessment of overheating and urban energy, future research should consider the 1316 

non-linear interactions between overheating and urban energy systems - involving electrical 1317 

grids, buildings, equipment, energy production (e.g., photovoltaics), and air conditioning - that 1318 

lead to reduced energy performance and energy poverty with adverse effects on heat exposure 1319 
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indoors. In other words, urban energy research should be framed to better support human 1320 

health, particularly in vulnerable populations, moving beyond the focus on building-level 1321 

energy computation or city-level CO2 emissions.  1322 

6. Develop guidelines for heat mitigation and adaptation strategies: In addition to the 1323 

continued development of novel materials and strategies with greater cooling potential, future 1324 

research should focus on the development of regionally- and climatically-adaptive guidelines 1325 

that optimally combine infrastructure-based heat mitigation strategies (e.g., green 1326 

infrastructure, cool materials) and heat adaptation strategies (e.g., cooling centers), 1327 

considering multi-faceted impacts of urban canopy air temperature, wind, humidity, and 1328 

radiation on buildings, pedestrians and air quality. The efficacy of these guidelines should be 1329 

evaluated in the context of contemporary and future extreme heat, and additionally with 1330 

respect to their performance in cooler seasons. Further development of infrastructure-based 1331 

approaches for evening and nighttime cooling are also important. 1332 

7. Expand time and space horizons in overheating analyses: In many research directions 1333 

noted above, there is a need to consider global assessments of municipal-level temperatures 1334 

and extreme heat levels (beyond air temperature) under different global climate change and 1335 

urban development scenarios during the period 2030-2080. Furthermore, future research 1336 

should focus on areas with high (current and projected) urbanization in developing countries 1337 

as well as informal settlements that have traditionally been neglected in the urban climate 1338 

literature. An estimated 25% of the world’s urban population live in informal settlements and 1339 

slums (UN-Habitat, 2013) with distinct urban climate characteristics, design, and sensitivity 1340 

profiles to heat that have not been documented before. This calls for urgent attention in future 1341 

research, further contributing to global environmental justice with regards to heat. 1342 

Additionally, further advancements in research tools and methods are needed to achieve the 1343 

emerging research directions, including:   1344 

I. Evaluate and advance smart technologies for heat exposure assessments: The emerging 1345 

IoT/ubiquitous sensing field can overcome the limitations of conventional methods to provide 1346 

real-time and high-resolution/personalized heat exposure data, but still requires more focus on 1347 

combining different sources of data (particularly on human behavior, activity, response) to 1348 

holistically quantify exposure and health outcomes. To do this, we need technological, 1349 

scientific, and societal advancements as well as open-access datasets, algorithms,and analytics 1350 

that ensure not only data quality and completeness, but also digital inclusion and privacy.   1351 

II. Develop high fidelity climate models suitable for integrated system analyses: Overall, 1352 

climate models should focus more on the multidisciplinarity of heat exposure, integrating 1353 

existing knowledge from urban climatology, plant ecology, energy system analyses, and 1354 

behavioral modeling to better uncover synergies, co-benefits and tradeoffs in drivers of 1355 

overheating and associated adaptive responses. Furthermore, better numerical representation 1356 

of infrastructure-based heat mitigation strategies is needed to inform urban and building design 1357 

in practice. Finally, simulation studies should make increased efforts to quantify uncertainties 1358 

in projected overheating and heat mitigation effectiveness.  1359 

Furthermore, we summarize existing priorities for policymakers, planners, and government 1360 

managers, such that we address, mitigate, or adapt to overheating challenges in current and future 1361 

cities: 1362 
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a. Implement strategies for climate change mitigation: It is critical that we continue to reduce 1363 

greenhouse gas emissions (from transportation, building, and other sectors), plant trees, and 1364 

undertake related climate mitigation strategies locally and abroad, to help reduce long-term 1365 

global climate warming and the intensity, frequency, and duration of future extreme heat 1366 

events. 1367 

b. Implement strategies to cool the built environment: In addition to large-scale climate 1368 

change mitigation strategies, implementing street- to city-scale cooling strategies (including 1369 

green and blue infrastructure and advanced materials) in harmony with local climate and 1370 

resources are critical for mitigating the intensity of urban overheating, particularly in ways 1371 

that target heat where vulnerable populations reside and work and that are developed 1372 

collaboratively with local residents.   1373 

c. Provide behavioral options for reducing exposure: Adaptive opportunities should be 1374 

considered in urban design such that individuals can reduce their heat exposure as they go 1375 

about their lives in the city. In this context, strategies should focus on changing the 1376 

environment to provide behavioral options for reducing heat exposure in addition to 1377 

cooling the built environment. These options range from local design elements such as cool 1378 

furniture or green and blue infrastructures to building cool refuges for reducing the duration 1379 

of heat exposure. These strategies should be implemented in collaboration with local residents 1380 

and initially focus on neighborhoods with the highest densities of heat-vulnerable individuals. 1381 

d. Provide evidence-based personalized heat-health advisories: Building on personal heat 1382 

exposure assessments, evidence-based heat-health advisories can be developed that are 1383 

suitable for identifying optimal personalized heat risk mitigation strategies for sensitive 1384 

individuals, as opposed to taking a one-size-fits-all approach. This can further lead to city-1385 

specific early-warning and response systems for heat extremes that are supported by heat 1386 

vulnerability maps and more tailored to specific individuals. 1387 

e. Provide personal recommendation systems to reduce heat exposure: Human-centric data 1388 

collection in the built environment can further promote personalized recommendation systems 1389 

to enable more adaptive capacities for individuals, i.e. avoiding the heat by different routes or 1390 

adjusting activity level to overheating intensity. 1391 

f. Promote and incentivize the use of sustainable heat adaptation solutions: While 1392 

promoting cooling strategies in cities, it is also critical to overcome the barriers related to the 1393 

use of more energy-efficient and sustainable adaptation solutions, such as fans for indoor 1394 

cooling or shading for outdoor cooling. These barriers may relate to various aspects ranging 1395 

from perceived effectiveness to aesthetic concerns that can be overcome through more public 1396 

engagement and education.  1397 

g. Future directions for policy and governance: Developing urban overheating governance, 1398 

in combination with climate change governance and policy across different scales, is one of 1399 

the most critical pathways for reducing negative impacts of overheating on human life. These 1400 

governance frameworks should embrace principles of iteration, flexibility, and learning, i.e., 1401 

adaptive governance, and integrate engagement strategies in the pursuit of participatory 1402 

justice, allowing residents to bring critical domain expertise from their lived experience. 1403 

Moreover, legacy effects of practices that placed certain populations at greater risk of harm 1404 

from heat and other environmental hazards must be identified and rectified. 1405 
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The present work describes a multidisciplinary outlook on urban overheating research and 1406 

application, while detailing several existing gaps that are yet to be addressed. In addition to 1407 

knowledge gaps detailed here, it’s critical to note that economic assessments of urban overheating 1408 

(covering a holistic calculation of economic burden of impacts as well as cost-benefit analyses of 1409 

various overheating countermeasures) are yet to be fully determined and have not been addressed 1410 

here.  1411 

Furthermore, the primary focus of this contribution has been on understanding and responding to 1412 

overheating challenges, depicting cities as the epicentre of the developing situation. While this 1413 

view accurately reflects contemporary and projected urban climates in the context of ongoing 1414 

climate change and urbanization, alternative perspectives should not be overlooked. Responding 1415 

to increasing temperatures, cities can potentially be envisioned as places of refuge from 1416 

overheating and extreme events, where more thermally acceptable conditions can be achieved 1417 

through climate-sensitive design and planning. Cities have the opportunity to cool built 1418 

environments more than surrounding rural areas especially during afternoon periods when 1419 

potential heat exposure is maximum (for instance, taking advantage of urban shading and 1420 

ventilation that have long been embedded in traditional architecture), and in doing so, can influence 1421 

a larger number of inhabitants due to higher population densities. Urban areas may also provide 1422 

opportunities to host outdoor workers (for instance, in urban agriculture) that can benefit from 1423 

cooling mitigation and adaptation strategies otherwise not afforded in non-urban areas. 1424 

Accordingly, further research and implementation measures are needed to assess the opportunities 1425 

embedded in cities to expose fewer people to projected overheating and climate extremes.  1426 
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