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Abstract

The global mean surface temperature (GMST) record exhibits both interannual to multidecadal variability and long-term

warming due to external climate forcing. To explore the predictability of temporary slowdowns in decadal warming, we apply

an artificial neural network (ANN) to climate model data from the Community Earth System Model Version 2 Large Ensemble

Project. Here, an ANN is tasked with whether or not there will be a slowdown in the rate of the GMST trend by using maps of

ocean heat content at the onset. Through a machine learning explainability method, we find the ANN is learning off-equatorial

patterns of anomalous ocean heat content that resemble transitions in the phase of the Interdecadal Pacific Oscillation in order

to make slowdown predictions. Finally, we test our ANN on observed historical data, which further reveals how explainable

neural networks are useful tools for understanding decadal variability in both climate models and observations.
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Key Points:5

• An artificial neural network predicts the onset of slowdowns in decadal warming6

trends of global mean surface temperature7

• Explainable AI reveals the neural network is leveraging tropical patterns of ocean8

heat content anomalies to make its predictions9

• Transitions in the phase of the Interdecadal Pacific Oscillation are frequently as-10

sociated with warming slowdown predictions in CESM2-LE11

Corresponding author: Zachary M. Labe, zmlabe@rams.colostate.edu

–1–



manuscript submitted to Geophysical Research Letters

Abstract12

The global mean surface temperature (GMST) record exhibits both interannual to mul-13

tidecadal variability and a long-term warming trend due to external climate forcing. To14

explore the predictability of temporary slowdowns in decadal warming, we apply an ar-15

tificial neural network (ANN) to climate model data from the Community Earth Sys-16

tem Model Version 2 Large Ensemble. Here, an ANN is tasked with whether or not there17

will be a slowdown in the rate of the GMST trend by using maps of ocean heat content18

at the onset. Through a machine learning explainability method, we find the ANN is learn-19

ing off-equatorial patterns of anomalous ocean heat content that resemble transitions in20

the phase of the Interdecadal Pacific Oscillation in order to make slowdown predictions.21

Finally, we test our ANN on observed historical data, which further reveals how explain-22

able neural networks are useful tools for understanding decadal variability in both cli-23

mate models and observations.24

Plain Language Summary25

Long-term observations reveal that Earth’s average temperature is rising due to26

human-caused climate change. Along with this warming trend are also variations from27

year-to-year and even over multiple decades. This temperature variability is often tied28

to regional patterns of heat in the deep ocean, which can then modulate weather and29

climate extremes over land. In an attempt to better predict temperature variability on30

decadal timescales, we use a machine learning method called artificial neural networks31

and data from a climate model experiment, which was designed to compare climate change32

and variability. Here, our artificial neural network uses maps of ocean heat to predict33

the onset of temporary slowdowns in the rate of global warming in both the climate model34

and in real-world observations. We then use a visualization technique to find which ar-35

eas of ocean heat that the artificial neural network is using to make its correct predic-36

tions, which are found to be mainly across the Pacific Ocean. In agreement with recent37

research, our study finds that new data science methods, like machine learning, can be38

useful tools for predicting variations in global climate.39

1 Introduction40

One of the most recognizable indicators of anthropogenic climate change is the pos-41

itive trend in global mean surface temperature (GMST) (Hansen et al., 2010; Johnson42

–2–



manuscript submitted to Geophysical Research Letters

et al., 2020). GMST also exhibits interannual to multidecadal variability with periods43

of accelerations and slowdowns in the rate of decadal trends (Trenberth et al., 2002; Thomp-44

son et al., 2009; Dai et al., 2015; Maher et al., 2020). A notable example of one of these45

GMST slowdowns occurred in the early 2000s (Flato et al., 2013; Fyfe et al., 2013). This46

temporary warming slowdown ended in the mid-2010s (Mann et al., 2017; Zhang et al.,47

2019), and more recently, 2020 was one of the three warmest years in the observational48

record (Dunn et al., 2021). Although the early 2000s was commonly described as a ‘hia-49

tus’ or ‘pause’ in global warming within scientific studies and popular media (Boykoff,50

2014; Lewandowsky et al., 2016), we will refer to it here as a ‘slowdown in decadal warm-51

ing’ (Fyfe et al., 2016), which is more consistent with our understanding of internal vari-52

ability in the climate system.53

Numerous mechanisms have been proposed to explain the cause of the early 2000s54

slowdown, as reviewed in Medhaug et al. (2017) and Xie and Kosaka (2017), but it was55

likely a combination of factors ranging from uncertainties in the observational data record56

(e.g., Cowtan & Way, 2014; Karl et al., 2015), fluctuations in radiative forcing (Schmidt57

et al., 2014), cooling in the eastern Pacific associated with a negative phase of the In-58

terdecadal Pacific Oscillation (IPO) (Meehl, Hu, et al., 2013; England et al., 2014; Roberts59

et al., 2015), anthropogenic aerosol and volcanic forcing (Santer et al., 2014; Smith et60

al., 2016), changes in deep ocean heat uptake (Watanabe et al., 2013), top-of-atmosphere61

(TOA) energy imbalance (Meehl et al., 2011; Hedemann et al., 2017), and interactions62

between modes of climate variability (W. Liu & Xie, 2018). Motivated by the increas-63

ing body of literature on the causes and impacts of the early 2000s slowdown, we aim64

to investigate the predictability of similar temporary GMST slowdowns occurring in a65

warming climate. While decadal predictability has been explored using other statisti-66

cal methods (e.g., Mann et al., 2016; Sévellec & Drijfhout, 2018), sensitivity experiments67

(e.g. Kosaka & Xie, 2013), and hindcasts with initialized state climate modeling frame-68

works (e.g., Fyfe et al., 2011; Guemas et al., 2013; Meehl et al., 2014; Meehl & Teng, 2014;69

Boer et al., 2016), we explore this problem through the lens of a machine learning pre-70

diction task.71

Deep learning methods, such as neural networks, have the ability to extract and72

leverage nonlinear patterns across data-intensive spatial fields, which make them promis-73

ing tools for revealing new insights and sources of predictability in climate science (Reichstein74

et al., 2019; Barnes, Mayer, et al., 2020; Irrgang et al., 2021; Sonnewald et al., 2021). Re-75
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cent work has demonstrated the utility for neural networks in identifying climate modes,76

teleconnections, and forecasts of opportunity for a wide variety of timescales (e.g., Wu77

& Hsieh, 2004; Ham et al., 2019; Toms et al., 2021; Gibson et al., 2021; Gordon et al.,78

2021; J. Liu et al., 2021; Mayer & Barnes, 2021; Nadiga, 2021; Tang & Duan, 2021). Fur-79

ther, a growing number of explainable artificial intelligence (XAI) methods have been80

adapted for applications in weather and climate science (McGovern et al., 2019; Toms81

et al., 2020), which can retrospectively trace the decisions of neural networks and assist82

scientists in comparing the attribution of input features to known physical mechanisms83

in the Earth system. Besides evaluating trust and credibility to the machine learning pre-84

diction, XAI methods can also be used for physics-guided scientific discovery and hypoth-85

esis testing (Ebert-Uphoff & Hilburn, 2020; Toms et al., 2020; Sonnewald & Lguensat,86

2021).87

In this study, we use an artificial neural network (ANN) to explore the predictabil-88

ity of decadal warming slowdowns due to variability in the upper ocean within a new large89

ensemble experiment and real-world observations. In addition to slowdown predictabil-90

ity, we also use a complimentary XAI method to investigate the oceanic patterns that91

may provide insight to these temporary warming slowdowns.92

2 Data and Methods93

2.1 Climate Model Large Ensemble94

For climate model data, we use a large ensemble experiment conducted by the Com-95

munity Earth System Model Version 2 (CESM2; Danabasoglu et al., 2020) (see Support-96

ing Information for more details). Specifically, we use simulations from the CESM2 Large97

Ensemble Community Project (CESM2-LE; Rodgers et al., 2021), which includes 10098

ensemble members branched from the fully-coupled CESM2 preindustrial control (185099

radiative forcing conditions) using different atmospheric and oceanic initial states. CESM2-100

LE members follow historical Coupled Model Intercomparison Project Phase 6 (CMIP6)101

forcing from 1850 to 2014 and thereafter follow the SSP3-7.0 future radiative forcing (high102

emissions scenario) until 2100 (Eyring et al., 2016; O’Neill et al., 2016). We consider the103

first 50 ensemble members (1-50), which are prescribed with biomass burning emissions104

following CMIP6 protocol (Van Marle et al., 2017). In contrast, the second set of 50 en-105

semble members follow temporally smoothed biomass burning fluxes (51-100). As dis-106
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cussed in Rodgers et al. (2021) and Fasullo et al. (2022), this difference in biomass burn-107

ing forcing has been shown to affect large-scale climate features, including the GMST108

record in present day.109

Due to limited data availability at the time of our analysis, we analyze only 40 en-110

semble members within the first subset of CESM2-LE (1-50). From these 40 members,111

we use monthly outputs of near-surface air temperature (T2M) and sea surface temper-112

ature (SST). We also utilize monthly ocean heat content (OHC), which is derived as the113

vertical heat content integral between three distinct depth layers (0–100 m, OHC100;114

0–300 m, OHC300; 0–700 m, OHC700); although we focus on maps of OHC100 for the115

actual training of our ANN. We then apply a bilinear interpolation to all variables so116

that they share a common (slightly coarser) latitude by longitude grid (1.9◦ x 2.5◦). We117

calculate annual means from the monthly data and use the period from 1990 to 2099 to118

classify slowdowns in decadal warming. To focus on warming slowdowns driven by in-119

ternal variability, we remove the 40-member ensemble mean from each individual ensem-120

ble in every year and grid box for SST and OHC (Phillips et al., 2020; Maher et al., 2021).121

2.2 Observations122

To evaluate our ANN trained on CESM2-LE for predicting the early 2000s warm-123

ing slowdown in the historical record, we use SST and T2M from the European Centre124

for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis (Hersbach et al., 2020)125

and OHC from the Institute of Atmospheric Physics (IAP) ocean gridded product (Cheng126

& Zhu, 2016; Cheng et al., 2017) (both data sets referred to here as “observations”). SSTs127

from ERA5 are an interpolated product between HadISST2 (Titchner & Rayner, 2014)128

from January 1979 to August 2007 and OSTIA (Donlon et al., 2012) from September129

2007 to present. Overall, both regional and global mean time series of SST and T2M are130

consistent with other observational data sets (Hersbach et al., 2020; Bell et al., 2021),131

including decadal trends (Figure S1). Gridded upper OHC from IAP also compares well132

with in situ measurements and is based on temperature data from the World Ocean Database133

(WOD; Boyer et al., 2013), which is then further bias-corrected, interpolated, and qual-134

ity controlled (Li-Jing et al., 2015; Cheng et al., 2017).135

In all observations, we use monthly output and bilinearly interpolate these fields136

onto the same 1.9◦ x 2.5◦ grid as CESM2-LE before calculating annual means. We lin-137
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early detrend each grid point (over 1979 to 2020) for SST and OHC predictors to remove138

long-term warming signals and thus focus on patterns of interannual variability for slow-139

down predictions.140

2.3 Defining Slowdowns in Decadal Warming141

Figure 1 shows an example of how we define warming slowdown events in CESM2-142

LE and observations. While there have been numerous definitions and data sets used for143

identifying warming slowdown (or so-called hiatus/pause) events (e.g., Risbey et al., 2018;144

Wei et al., 2021), they are often classified as a near-zero or negative 10-20 year linear trend145

of the GMST. Recent studies show that the frequency of slowdown events in CMIP5 mod-146

els decreases substantially by the end of the 21st century using a negative 10-year lin-147

ear trend definition (e.g., Maher et al., 2014; Li & Baker, 2016; Sévellec et al., 2016). Their148

frequency could also decrease due to increasing climate sensitivity (Modak & Maurit-149

sen, 2021). Yet, internal variability is still projected to affect regional and global climate150

trends even under higher future emission scenarios (Easterling & Wehner, 2009; Li & Baker,151

2016; Cassou et al., 2018; Maher et al., 2020). Here, we take a GMST slowdown thresh-152

old using decadal (10-year) trends (e.g., Meehl et al., 2011; Maher et al., 2014), which153

is on the shorter end of previously used timescales and focus on the influence of oceanic154

internal variability.155

First, to classify slowdown events in observations, we compute the area-weighted156

GMST and calculate 10-year moving linear trends beginning in 1990. We start our anal-157

ysis in 1990 to avoid any multidecadal slowdown events earlier in the 20th century when158

the influence of the forced climate change signal may not have fully emerged (Delworth159

& Knutson, 2000; Papalexiou et al., 2020; Hawkins et al., 2020). We then calculate the160

mean of all 10-year trends between 1990 and 2020 and take one standard deviation be-161

low this mean as our threshold for slowdown events in observations (equating to about162

+0.01◦C/yr, or 0.44 of the mean observational trends) (black dashed line in Figure 1b).163

We identify four consecutive slowdown events in observations, which begin in 2002. These164

years are consistent with previous studies (Lewandowsky et al., 2018) and are similarly165

classified in other datasets with our definition (Figure S1).166

For CESM2-LE, we first compute the area-weighted GMST for the ensemble mean167

from all 40 members through 2099 (Figure 1a). We then calculate 10-year moving lin-168
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Figure 1. (a) Time series showing annual-mean GMST anomalies for one example (ensem-

ble member) in CESM2-LE relative to a 1981-2010 baseline (blue line). The ensemble spread

in annual-mean GMST anomalies is also shown in gray shading for CESM2-LE. Annual-mean

GMST anomalies from ERA5 reanalysis are indicated with a black line relative to a 1981-2010

baseline. Onset of slowdown events in the example ensemble are highlighted with red dashed

(vertical) lines and their associated linear trends (red lines) over each 10-year period. (b) The

slope of all 10-year moving linear trends are shown for the example ensemble member compared

to the other ensembles (light gray lines) and the ensemble mean (dark gray line). As in (a), red

dashed (vertical) lines are shown for the onset of slowdown events in the highlighted ensemble

member. Slopes of all 10-year moving linear trends are shown for ERA5 reanalysis by the black

solid line. The threshold for slowdown events in CESM2-LE is shown with a red dashed line, and

the threshold for slowdown events in ERA5 is shown with a black dashed line. (c) Histogram

showing the frequency of slowdown events in each ensemble member over the 1990-2039 period

(gray bars) and the 2040-2090 period (red bars). See Section 2.3 for more details.
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ear trends, which begin in 1990 for consistency with observations. The climate model169

threshold for a slowdown (red dashed line in Figure 1b) is defined by multiplying the frac-170

tion of the mean trend from the observations (0.44) times each trend period from the171

ensemble mean (thick gray line in Figure 1b).172

Then, we calculate the GMST for each ensemble member and the associated mov-173

ing 10-year linear trends (thin gray lines in Figure 1b). We define a warming slowdown174

event when these 10-year trends fall below the climate model threshold. That is, we de-175

fine a slowdown event as a fraction of the forced response. However, our definition still176

leads to a reduction in the number of slowdown events after 2040 in CESM2-LE (Fig-177

ure 1c), as shown in several past studies (e.g., Sévellec et al., 2016).178

2.4 Artificial Neural Network179

For this analysis, we adopt a neural network architecture that is designed to receive180

input maps of OHC100 anomalies and output whether the next 10 years will observe a181

decadal warming slowdown. In other words, if we input a map of OHC100 anomalies for182

the year 2000, the ANN will output whether the decade from 2000 to 2009 will be a slow-183

down event or not. A schematic of our ANN can be found in Figure S3, and the archi-184

tecture parameters are outlined in the Supporting Information.185

In addition to seeing if warming slowdown events are predictable, we are also in-186

terested in the sources of predictability in fields of anomalous OHC100. To attempt to187

understand the ANN’s decision-making process, we use a method of XAI called layer-188

wise relevance propagation (LRP; Bach et al., 2015; Montavon et al., 2017, 2018). The189

utility of LRP has been demonstrated in a wide range of weather and climate applica-190

tions (e.g., Barnes, Toms, et al., 2020; Davenport & Diffenbaugh, 2021; Gordon et al.,191

2021; Labe & Barnes, 2021; Sonnewald & Lguensat, 2021), and an overview for the geo-192

sciences can be found in Toms et al. (2020). In short, prior to the softmax, a single pre-193

diction output is propagated backward through the ANN after freezing the model weights194

and biases. LRP then returns a vectorized spatial map, which shows the feature relevance195

for every input sample’s latitude and longitude pixel. Therefore, we have a unique LRP196

heatmap for every input sample of OHC100. Throughout this study, regions of higher197

relevance can be interpreted as more important for the ANN’s prediction. We implement198

the LRPz rule for back propagation, which was found by Mamalakis et al. (2021) to be199
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a well performing XAI method using a benchmark climate data set similar to ours. To200

improve interpretation and reduce the amount of noise in the LRP heatmaps, we only201

focus on positive areas of relevance, which are features that contribute positively to the202

ANN’s prediction output.203

3 Results204

3.1 Predicting Slowdown Trends in a Large Ensemble205

Figure 2a shows the results of our ANN for each CESM2-LE ensemble member in206

the testing data set from 1990 through 2090 (i.e., 2090-2099 is the last complete decade207

of data). Given the large class imbalance, we focus on the F1 score (balancing precision208

and recall), rather than categorical accuracy, to evaluate the performance of our ANN209

for correctly identifying slowdown events. Figure S7 provides a collection of skill met-210

rics for our testing data (Accuracy = 0.87, Precision = 0.39, Recall = 0.41). Overall, the211

network achieves a F1 score of 40% and performs better than random chance (10.4%).212

While our ANN sometimes struggles with correctly classifying slowdown events, espe-213

cially those that occur simultaneously in a row, it generally classifies at least one 10 year214

period during these extended events. This skill suggests that the ANN is learning infor-215

mation from OHC100 anomalies that corresponds to future slowdown periods in CESM2-216

LE.217

We test the robustness of our results by training 100 ANNs with unique random218

initialization seeds and different combinations of ensemble members used for training,219

validation, and testing data. The F1 score of our single seed ANN falls around the ≈ 85th220

percentile of this distribution, and additional metric scores are shown in Figure S8 for221

the 100 ANNs. The spread between this distribution can be attributed to uncertainties222

from random initialization states of the ANNs and different combinations of ensemble223

members. This suggests that differences in the skill of slowdown predictions across the224

ANN distribution could be related to individual realizations of internal variability as sim-225

ulated per each ensemble member. Although we found that there is no relationship be-226

tween the accuracy of testing predications compared to the number of training slowdown227

events each ANN learned for the 100 iterations (Figure S9).228
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3.2 Sources of Predictability for Slowdowns229

To understand the sources of skill for the ANN’s correct slowdown predictions in230

CESM2-LE, we turn to composite maps of LRP. Recall that LRP traces the decision-231

making process of a neural network, where higher relevance corresponds to greater im-232

portance for the ANN to make its final prediction. While we have LRP heatmaps for ev-233

ery input of annual-mean OHC100, we focus on correct predictions by the ANN in the234

testing data set. Figure 2b shows the LRP composite for all correct slowdown predic-235

tions. We find higher relevance in the off-equatorial regions of the eastern Pacific, espe-236

cially in the regions of the North/South Pacific Meridional Modes (Amaya, 2019). There237

are also patches of higher relevance across portions of the Indian Ocean, south Atlantic,238

and south Pacific, which suggests that the ANN is leveraging other regional patterns of239

OHC to make predictions. Notably, there is no relevance for a thin band along the equa-240

tor in the area of the El Niño-Southern Oscillation (ENSO). Figure 2d shows the cor-241

responding LRP composite for no slowdowns in decadal warming, which shows a sim-242

ilar spatial pattern of relevance across the equatorial Pacific as in Figure 2b, but higher243

relevance in other ocean basins. Likewise, we also find comparable LRP composites for244

the incorrect slowdown predictions, although there are notable differences over portions245

of the Southern Ocean, lower Arctic, and near New Zealand (Figure S10b). These XAI246

results are a product of the setup of our binary classification problem, and therefore the247

LRP maps reveal the regions that the ANN is using to make this determination (i.e., yes248

or no slowdown), but these patterns may not always necessarily correspond to an actual249

slowdown events driven by OHC variability.250

We compare these LRP maps to composites of the raw (normalized) OHC anoma-251

lies that were input to the network for correct slowdown predictions (Figure 2c) versus252

correct no slowdown predictions (Figure 2e). Now we find striking differences between253

the two OHC patterns. The composite of OHC100 for the slowdown predictions reveal254

an IPO-like spatial pattern with cold pools in the west-central North Pacific and west-255

central South Pacific and warm anomalies in the Southern Ocean and eastern Pacific.256

We also see the signature of a positive Indian Ocean Dipole (IOD; Saji et al., 1999) and257

a dipole pattern of OHC100 anomalies between the southern Atlantic and north-central258

Atlantic. Some studies have shown that a positive IOD can be a precursor for a rapid259

transition to a cooler equatorial Pacific by modulating the strength of the Walker Cir-260

culation (Izumo et al., 2010; Le et al., 2020; Yoo et al., 2020).261
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Figure 2. (a) Time series showing the results in each ensemble member of the testing data for

the onset of actual slowdown events (gray dots), incorrect slowdown predictions by the ANN (red

dots), and correct slowdown predictions by the ANN (blue dots). (b) LRP composite heatmap

for the correct slowdown predictions by the ANN (testing data). Higher LRP values indicate

greater relevance for the ANN’s prediction. LRP values are normalized by the maximum rele-

vance in the composite for visualization purposes. Blue boxes highlight regions of the Tripole

Index for the IPO (Henley et al. (2015); 25◦N-45◦N and 140◦E-145◦W, 10◦S-10◦N and 170◦E-

90◦W, 50◦S-15◦S and 150◦E-160◦W). (c) Composite of normalized OHC100 for correct slowdown

predictions. Yellow contour lines are overlaid to show relevance from the LRP composite in (b).

(d) As in (b), but for correct predictions of no slowdowns in decadal warming. (e) As in (c), but

for correct predictions of no slowdowns in decadal warming.
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Figure S11 shows maps of OHC anomalies at other vertical depth levels for the slow-262

down predictions compared to 5-10 years after the start of the slowdown decade. We find263

a similar spatial pattern of SSTs (Figure S11a), but a stronger cold pool at deeper depths,264

which appears to be propagating eastward in the equatorial Pacific (Figure S11c-d). In265

contrast, we find a negative IPO-like pattern for the composites at the end of the slow-266

down decade (Figure S11e-h). This finding is in agreement with earlier studies that showed267

slowdowns in decadal warming often correspond to trends toward a negative phase of268

the IPO within CMIP5 models (e.g., Maher et al., 2014). Given this evolution of events269

and the patterns of LRP relevance, it is feasible that the ANN is learning OHC anoma-270

lies associated with transitions in the state of the IPO.271

To directly assess the IPO in the maps of OHC100, we compute the unfiltered IPO272

Tripole Index (normalized) following Henley et al. (2015) using annual-mean SSTs from273

CESM2-LE (Figure S12). As expected from the composite analysis in Figure 2, we find274

that correct predictions of slowdowns generally correspond to highly positive phases of275

the IPO index. To demonstrate this point, we select one ensemble member and compare276

its annual IPO index to the frequency of the slowdowns classifications in the distribu-277

tion of 100 unique ANNs (Figure S13). We find slowdown predictions often correspond278

to a positive IPO index in this ensemble member, but also importantly, not every pos-279

itive IPO results in the prediction of a slowdown event.280

To further confirm that the ANN is learning additional spatial information beyond281

a simple reflection of the IPO-like pattern of OHC anomalies, we set up a logistic regres-282

sion problem by inputting only the value of the IPO index in CESM2-LE to predict whether283

a slowdown event will occur over the next 10 years (Accuracy = 0.75, Precision = 0.2,284

Recall = 0.46, F1 score = 0.28). Thus, we find that using global maps of OHC100 as in-285

puts to the fully-connected ANN provides more skillful predictions of warming slowdown286

events.287

3.3 Predicting Slowdown Trends in Observations288

Lastly, we test the utility of our neural network for capturing the observed early289

2000s slowdown by inputting maps of OHC100 from observations, which are first linearly290

detrended and then normalized by their own mean and standard deviation at every grid291

point. Figure 3a shows the slowdown prediction from our ANN for each input map of292
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annual-mean OHC100 using observations. During the overlapping period with the ac-293

tual early 2000s slowdown, the decades from 2003 to 2012 and 2004 to 2013 are classi-294

fied as warming slowdowns. The range in observational predictions across the distribu-295

tion of 100 ANNs is also shown in Figure S14.296

To understand the patterns of anomalous OHC100 that the ANN is using to make297

its prediction for observations, we evaluate a LRP composite map from the single seed298

ANN (which correctly predicted two slowdown events in the early 2000s) in Figure S15a.299

Similar to the LRP composites using CESM2-LE (Figure 2), we find areas of higher rel-300

evance in the equatorial western Pacific, south-central Atlantic, and patches in the In-301

dian Ocean. The ANN also predicts the onset of slowdown events mainly during pos-302

itive phases of the IPO (Figure 3b). Although this correlation is not always the case (e.g.,303

during the positive IPO event in the early 1990s), which again suggests that our ANN304

is leveraging additional spatial information than simply the IPO pattern to make pre-305

dictions. This is also supported by our interpretation of the LRP maps, which show higher306

relevance regions across the western Pacific and not necessarily the canonical IPO/PDO307

patterns (Parker et al., 2007; Newman et al., 2016) (Figure S15a).308

At the time of our analysis, the last complete decade of GMST observations cov-309

ers the decade of 2011 to 2020 (Figure 1a). However, since we only need OHC prior to310

predicting the future 10 years, we can also explore warming slowdown events extending311

beyond 2020 (Figure 3a). For these future predictions, 2016 to 2025 and 2017 to 2026312

are classified as warming slowdown events by the ANN. 2016 was characterized by the313

dissipation of an extreme El Niño event into a weak La Niña state (Santoso et al., 2017),314

and the GMST also set a new record high for that respective year (Aaron-Morrison et315

al., 2017). Similarly, the IPO index also shows a transition from a highly positive phase316

in 2015 to a neutral or negative phase in the following years through 2020 (Figure 3b).317

Composites of normalized SST and OHC for 2016 and 2017 show anomalously warm sub-318

surface waters just off the equator in the eastern Pacific and cold pools in the tropical319

Indo-Pacific and north-central Pacific (Figure S16). Comparing the LRP composite map320

over 2016 and 2017 with the raw OHC100 anomalies (Figure S15b and Figure S16b), we321

find higher relevance outlining the warm anomalies in the eastern Pacific and patches322

of relevance in the Indian Ocean and southern Pacific. The LRP composite for the fu-323

ture slowdown prediction in Figure S15b is more similar to those outlined in CESM2-324
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Figure 3. (a) Time series showing the slowdown onset predictions by the ANN (dashed red

line). Green bars show the onset of actual slowdown events in observations. Gray shading indi-

cates 10-year trend periods that extend into the future (e.g., 2012-2021). (b) Time series of the

unfiltered Tripole IPO Index (normalized) for each year in observations (red/blue bars). Green

bars show the onset of actual slowdown events in observations.
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LE (e.g., Figure 2b), which may provide insight for why the ANN more confidently pre-325

dicts a slowdown compared to the earlier 2000s event.326

4 Summary and Conclusions327

Due to an increasing need from decision makers and other community stakehold-328

ers for near-term climate predictions, there has been a coordinated effort to increase the329

availability of decadal outlooks from initialized climate models and other operational fore-330

cast systems (e.g. Graham et al., 2011; Meehl, Goddard, et al., 2013; Boer et al., 2016;331

Smith et al., 2019; Kushnir et al., 2019; Merryfield et al., 2020; Hewitt et al., 2021; Meehl332

et al., 2021). However, these simulations can be computationally expensive to run. Al-333

ternatively, recent progress in machine learning has shown promising results for decadal334

climate applications, especially when combined with explainability methods (e.g., Gor-335

don et al., 2021; G. Liu et al., 2021; Toms et al., 2021). Motivated by this new line of336

research, we explore the utility of a relatively shallow ANN for predicting temporary decadal337

warming slowdowns of GMST using upper OHC variability. Although our ANN is trained338

on climate model data from CESM2-LE, we find that it also produces skillful predictions339

of the early 2000s warming slowdown in observational data. We further compliment our340

ANN with a machine learning explainability method (LRP) to attempt to understand341

what information the ANN is using to make its correct predictions. The LRP maps re-342

veal that the ANN is mainly using off-equatorial anomalies of OHC100 to predict the343

onset of a decadal warming slowdown. These patterns suggest that the ANN may be learn-344

ing precursors for transitions to a negative phase of the IPO, although this topic remains345

an active area of research (Cai et al., 2019; Power et al., 2021).346

Finally, we note a few important considerations when interpreting these results. First,347

the causal mechanisms related to the early 2000s slowdown event remain uncertain (Hedemann348

et al., 2017; von Känel et al., 2017; Medhaug et al., 2017), and we note that we have only349

considered one potential predictor for warming slowdowns (i.e., upper OHC). Slowdowns350

can also occur due to external forcing (e.g., aerosols) or other modes of climate variabil-351

ity (Medhaug et al., 2017). Further, there are a number of different definitions for slowdown-352

like events (Risbey et al., 2018). Future work could explore the predictability of slow-353

downs using ANNs with other climate predictors, such as considering a TOA energy im-354

balance approach (Hedemann et al., 2017), or taking into account longer duration events.355

It may also be valuable to combine maps of OHC at different lead times, which was re-356
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cently demonstrated by Gordon et al. (2021) for predicting transitions in the phase of357

the PDO. Lastly, we train our ANN on a large ensemble from only one climate model.358

Thus, our results may be influenced CESM2’s inherent model biases and prescribed ex-359

ternal forcing, including the SSP3-7.0 emissions scenario and the protocol for biomass360

burning (Rodgers et al., 2021). The value of using multi-model large ensembles and adding361

more complexity to the neural network, such as designing a convolutional neural network362

to evaluate regional OHC patterns, will be left for future exploration. Importantly, even363

our simple ANN demonstrates that temporary warming slowdowns may have some pre-364

dictability from Pacific climate variability and demonstrates a new application of ma-365

chine learning for climate science.366
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J., . . . Thépaut, J.-N. (2020, may). The ERA5 Global Reanalysis.566

Quarterly Journal of the Royal Meteorological Society . Retrieved from567

https://onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803 doi:568

10.1002/qj.3803569

Hewitt, C. D., Guglielmo, F., Joussaume, S., Bessembinder, J., Christel, I., Doblas-570

Reyes, F. J., . . . Clair, A. L. S. (2021, mar). Recommendations for Fu-571

ture Research Priorities for Climate Modeling and Climate Services. Bul-572

letin of the American Meteorological Society , 102 (3), E578–E588. Re-573

trieved from https://journals.ametsoc.org/view/journals/bams/102/574

3/BAMS-D-20-0103.1.xml doi: 10.1175/BAMS-D-20-0103.1575

Irrgang, C., Boers, N., Sonnewald, M., Barnes, E. A., Kadow, C., Staneva, J., &576

Saynisch-Wagner, J. (2021, aug). Towards neural Earth system modelling577

by integrating artificial intelligence in Earth system science. Nature Ma-578

chine Intelligence, 3 (8), 667–674. Retrieved from https://www.nature.com/579

articles/s42256-021-00374-3 doi: 10.1038/s42256-021-00374-3580

Izumo, T., Vialard, J., Lengaigne, M., De Boyer Montegut, C., Behera, S. K., Luo,581

J. J., . . . Yamagata, T. (2010, feb). Influence of the state of the Indian582

Ocean Dipole on the following year’s El Niño. Nature Geoscience, 3 (3), 168–583

–22–



manuscript submitted to Geophysical Research Letters

172. Retrieved from https://www.nature.com/articles/ngeo760 doi:584

10.1038/ngeo760585

Johnson, N. C., Amaya, D. J., Ding, Q., Kosaka, Y., Tokinaga, H., & Xie, S. P.586

(2020, may). Multidecadal modulations of key metrics of global cli-587

mate change. Global and Planetary Change, 188 , 103149. doi: 10.1016/588

J.GLOPLACHA.2020.103149589

Karl, T. R., Arguez, A., Huang, B., Lawrimore, J. H., McMahon, J. R., Menne,590

M. J., . . . Zhang, H.-M. (2015, jun). Possible artifacts of data biases in the re-591

cent global surface warming hiatus. Science, 348 (6242), 1469–1472. Retrieved592

from https://www.science.org/doi/abs/10.1126/science.aaa5632 doi:593

10.1126/SCIENCE.AAA5632594

Kosaka, Y., & Xie, S.-P. (2013, aug). Recent global-warming hiatus tied to595

equatorial Pacific surface cooling. Nature, 501 (7467), 403–407. Re-596

trieved from https://www.nature.com/articles/nature12534 doi:597

10.1038/nature12534598

Kushnir, Y., Scaife, A. A., Arritt, R., Balsamo, G., Boer, G., Doblas-Reyes, F.,599

. . . Wu, B. (2019, jan). Towards operational predictions of the near-600

term climate. Nature Climate Change, 9 (2), 94–101. Retrieved from601

https://www.nature.com/articles/s41558-018-0359-7 doi: 10.1038/602

s41558-018-0359-7603

Labe, Z. M., & Barnes, E. A. (2021). Detecting climate signals using explainable604

AI with single-forcing large ensembles. Journal of Advances in Modeling Earth605

Systems, 13 (6), 1–18. Retrieved from https://agupubs.onlinelibrary606

.wiley.com/doi/10.1029/2021MS002464 doi: 10.1029/2021MS002464607

Le, T., Ha, K. J., Bae, D. H., & Kim, S. H. (2020, oct). Causal effects of Indian608

Ocean Dipole on El Niño–Southern Oscillation during 1950–2014 based on609

high-resolution models and reanalysis data. Environmental Research Letters,610

15 (10), 1040b6. Retrieved from https://iopscience.iop.org/article/611

10.1088/1748-9326/abb96d/meta doi: 10.1088/1748-9326/ABB96D612

Lewandowsky, S., Cowtan, K., Risbey, J. S., Mann, M. E., Steinman, B. A., Oreskes,613

N., & Rahmstorf, S. (2018, dec). The ‘pause’ in global warming in historical614

context: (II). Comparing models to observations. Environmental Research Let-615

ters, 13 (12), 123007. Retrieved from https://iopscience.iop.org/article/616

–23–



manuscript submitted to Geophysical Research Letters

10.1088/1748-9326/aaf372/meta doi: 10.1088/1748-9326/AAF372617

Lewandowsky, S., Risbey, J. S., & Oreskes, N. (2016, may). The “Pause” in618

Global Warming: Turning a Routine Fluctuation into a Problem for Sci-619

ence. Bulletin of the American Meteorological Society , 97 (5), 723–733. Re-620

trieved from https://journals.ametsoc.org/view/journals/bams/97/5/621

bams-d-14-00106.1.xml doi: 10.1175/BAMS-D-14-00106.1622

Li, T. W., & Baker, N. C. (2016, jul). Detecting Warming Hiatus Periods in CMIP5623

Climate Model Projections. International Journal of Atmospheric Sciences, 1–624

7. doi: 10.1155/2016/9657659625

Li-Jing, C., Jiang, Z., & Abraham, J. (2015, jan). Global Upper Ocean Heat626

Content Estimation: Recent Progress and the Remaining Challenges. Atmo-627

spheric and Oceanic Science Letters, 8 (6), 333–338. Retrieved from https://628

www.tandfonline.com/action/journalInformation?journalCode=taos20629

doi: 10.3878/AOSL20150031630

Liu, G., Wang, P., Beveridge, M., & Kwon, Y.-O. (2021). Predicting Atlantic631

Multidecadal Variability. NeurIPS 2021 Workshop on Tackling Climate632

Change with Machine Learning , 1–7. Retrieved from https://arxiv.org/633

abs/2111.00124634

Liu, J., Tang, Y., Wu, Y., Li, T., Wang, Q., & Chen, D. (2021, oct). Forecast-635

ing the Indian Ocean Dipole With Deep Learning Techniques. Geophysi-636

cal Research Letters, 48 (20), e2021GL094407. Retrieved from https://637

agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL094407 doi:638

10.1029/2021GL094407639

Liu, W., & Xie, S. P. (2018, jun). An ocean view of the global surface warming hia-640

tus. Oceanography , 31 (2 Special Issue), 72–79. doi: 10.5670/OCEANOG.2018641

.217642

Maher, N., Gupta, A. S., & England, M. H. (2014). Drivers of decadal hiatus643

periods in the 20th and 21st centuries (Vol. 41) (No. 16). doi: 10.1002/644

2014GL060527645

Maher, N., Lehner, F., & Marotzke, J. (2020, may). Quantifying the role of in-646

ternal variability in the temperature we expect to observe in the coming647

decades. Environmental Research Letters, 15 (5), 054014. Retrieved from648

https://iopscience.iop.org/article/10.1088/1748-9326/ab7d02/meta649

–24–



manuscript submitted to Geophysical Research Letters

doi: 10.1088/1748-9326/AB7D02650

Maher, N., Milinski, S., & Ludwig, R. (2021, apr). Large ensemble climate model651

simulations: introduction, overview, and future prospects for utilising multi-652

ple types of large ensemble. Earth System Dynamics, 12 (2), 401–418. Re-653

trieved from https://esd.copernicus.org/articles/12/401/2021/ doi:654

10.5194/esd-12-401-2021655

Mamalakis, A., Ebert-Uphoff, I., & Barnes, E. A. (2021, mar). Neural Network At-656

tribution Methods for Problems in Geoscience: A Novel Synthetic Benchmark657

Dataset. arXiv . Retrieved from http://arxiv.org/abs/2103.10005658

Mann, M. E., Miller, S. K., Rahmstorf, S., Steinman, B. A., & Tingley, M. (2017,659

aug). Record temperature streak bears anthropogenic fingerprint. Geo-660

physical Research Letters, 44 (15), 7936–7944. Retrieved from https://661

agupubs.onlinelibrary.wiley.com/doi/10.1002/2017GL074056 doi:662

10.1002/2017GL074056663

Mann, M. E., Steinman, B. A., Miller, S. K., Frankcombe, L. M., England, M. H.,664

& Cheung, A. H. (2016, apr). Predictability of the recent slowdown and665

subsequent recovery of large-scale surface warming using statistical meth-666

ods. Geophysical Research Letters, 43 (7), 3459–3467. Retrieved from667

https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2016GL068159668

doi: 10.1002/2016GL068159669

Mayer, K. J., & Barnes, E. A. (2021, may). Subseasonal Forecasts of Opportu-670

nity Identified by an Explainable Neural Network. Geophysical Research Let-671

ters, 48 (10), e2020GL092092. Retrieved from https://onlinelibrary.wiley672

.com/doi/10.1029/2020GL092092 doi: 10.1029/2020GL092092673

McGovern, A., Lagerquist, R., Gagne, D. J., Jergensen, G. E., Elmore, K. L., Home-674

yer, C. R., & Smith, T. (2019, nov). Making the black box more transparent:675

Understanding the physical implications of machine learning. Bulletin of676

the American Meteorological Society , 100 (11), 2175–2199. Retrieved from677

http://journals.ametsoc.org/bams/article-pdf/100/11/2175/4876688/678

bams-d-18-0195{\ }1.pdf doi: 10.1175/BAMS-D-18-0195.1679

Medhaug, I., Stolpe, M. B., Fischer, E. M., & Knutti, R. (2017, may). Reconciling680

controversies about the ‘global warming hiatus’. Nature, 545 (7652), 41–47. Re-681

trieved from https://www.nature.com/articles/nature22315 doi: 10.1038/682

–25–



manuscript submitted to Geophysical Research Letters

nature22315683

Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A., & Trenberth, K. E. (2011,684

sep). Model-based evidence of deep-ocean heat uptake during surface-685

temperature hiatus periods. Nature Climate Change, 1 (7), 360–364. Re-686

trieved from https://www.nature.com/articles/nclimate1229 doi:687

10.1038/nclimate1229688

Meehl, G. A., Goddard, L., Boer, G., Burgman, R., Branstator, G., Cassou, C.,689

. . . Yeager, S. (2013). Decadal Climate Prediction: An Update from690

the Trenches. Bulletin of the American Meteorological Society . Re-691

trieved from http://dx.doi.org/10.1175/BAMS-D-12-00241.1 doi:692

10.1175/BAMS-D-12-00241.1693

Meehl, G. A., Hu, A., Arblaster, J. M., Fasullo, J., & Trenberth, K. E. (2013, sep).694

Externally Forced and Internally Generated Decadal Climate Variability Asso-695

ciated with the Interdecadal Pacific Oscillation. Journal of Climate, 26 (18),696

7298–7310. Retrieved from https://journals.ametsoc.org/view/journals/697

clim/26/18/jcli-d-12-00548.1.xml doi: 10.1175/JCLI-D-12-00548.1698

Meehl, G. A., Richter, J. H., Teng, H., Capotondi, A., Cobb, K., Doblas-Reyes, F.,699

. . . Xie, S.-P. (2021, apr). Initialized Earth System prediction from subseasonal700

to decadal timescales. Nature Reviews Earth & Environment , 2 (5), 340–357.701

Retrieved from https://www.nature.com/articles/s43017-021-00155-x702

doi: 10.1038/s43017-021-00155-x703

Meehl, G. A., & Teng, H. (2014, mar). CMIP5 multi-model hindcasts for the704

mid-1970s shift and early 2000s hiatus and predictions for 2016–2035. Geo-705

physical Research Letters, 41 (5), 1711–1716. Retrieved from https://706

agupubs.onlinelibrary.wiley.com/doi/10.1002/2014GL059256 doi:707

10.1002/2014GL059256708

Meehl, G. A., Teng, H., & Arblaster, J. M. (2014, sep). Climate model simula-709

tions of the observed early-2000s hiatus of global warming. Nature Climate710

Change, 4 (10), 898–902. Retrieved from https://www.nature.com/articles/711

nclimate2357 doi: 10.1038/nclimate2357712
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Text S1: Community Earth System Model Version 2 (CESM2)
CESM2 uses a nominal 1◦ horizontal resolution and includes 32 vertical levels with a model top at 2.26 hPa.
Components for CESM2 include an atmosphere model from Community Atmosphere Model version 6 (CAM6;
Danabasoglu et al., 2020) and an ocean model from Parallel Ocean Program Version 2 (POP2; Smith et al., 2010;
Danabasoglu et al., 2012), which are further coupled to interactive ice, land, and ocean biogeochemistry models.
Additional details on model development can be found in Danabasoglu et al. (2020). Overall, CESM2 scores well
in comparison to other Coupled Model Intercomparison Project Phase 6 (CMIP6) models (e.g., Fasullo, 2020)
and includes numerous improvements to cloud microphysics, the ocean surface boundary layer, and land processes
over the previous model generation (CESM1; Hurrell et al., 2013; Kay et al., 2015). Future projections of global
mean surface temperature (GMST) in CESM2 generally fall in the upper range of CMIP6 models, which is likely
due to a higher equilibrium climate sensitivity (Gettelman et al., 2019; Meehl et al., 2020). Representation of the
El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) in CESM2 compare fairly well to
observations, but there are still some large differences in simulated amplitude and spatial patterns (Capotondi et
al., 2020; Chen et al., 2021).

Text S2: Artificial Neural Network Architecture
Artificial neural networks (ANNs) have become an increasingly popular method in the Earth sciences for their
ability to capture nonlinear behavior in data-intensive problems and applications (Boukabara et al., 2021). In
this work, we are not only interested in the skill of an ANN to predict warming slowdown events, but also the
the opportunity to learn how the ANN is making correct predictions through a relatively new machine learning
explainability method.

We provide an overview of the artificial neural network (ANN) used in our analysis in Figure S3. Our input layer
receives vectorized maps of annual-mean ocean heat content in the 0-100 m depth (OHC100) from the CESM2
Large Ensemble Community Project (CESM2-LE), where each unit represents one grid box (13248 units per map
from 92 latitudes by 144 longitudes). The input vector is then fed into two hidden layers with 30 nodes each, and
our output layer contains two nodes (yes or no for a decadal warming slowdown). In this fully-connected neural
network, each node receives a value from the previous layer. For example, each node of the first hidden layer is
connected to every node in the second hidden layer. The value of a single node is calculated by weighting the
sum of the inputs and an added bias term,

zj =
∑
i

wijxi + b (1)

where i is the node from the previous layer and j is the node for the value in the current layer (equation 1). In
equation 1, wij denotes the weight between nodes i and j, xi is the value of node i, and b is the added bias.
The weights and biases are iteratively updated until the training is complete (i.e., minimized loss function). To
include nonlinear transformations, we apply the rectified linear unit (ReLU; equation 2; Agarap, 2018) to our
hidden nodes (zj) and include a softmax operator in the output layer (equation 3). In equation 3, xi represents the
pre-softmax (raw) output for node i, and then ỹi is the final predicted output. The softmax function remaps the
output values so that they sum to one and can then be interpreted as the ANN’s confidence for each prediction
output. For example, the winning predicted category (i.e., yes or no slowdown) will have a confidence value
greater than 0.5.

f(zj) = max(0, zj) (2)

ỹi =
exp (xi)∑
j=1 exp (xj)

(3)

Our ANN uses a categorical cross-entropy loss function, where M is the number of classes, yk is the true probability
distribution, and ŷk is the predicted probability distribution as denoted in equation 4. Due to the logarithmic
transformation, this loss function penalizes larger errors more than smaller errors.

Loss = −
M∑
k=1

yk · log (ŷk) (4)

Before training our ANN, we standardize our maps of OHC100 by subtracting the mean and dividing by the
standard deviation separately at every grid point and across all years for the training ensemble members (13248
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units). Specifically, we train our ANN using 70% of the climate model data (28 ensemble members), validate on
15% (6 ensemble members), and test on the remaining 15% (6 ensemble members). We find that using at least
20 ensemble members for training corresponds to a better balance of recall and precision score metrics (Figure
S2). Note that this is also larger than the minimum number of ensemble members needed for capturing global
ENSO teleconnections as found in Lee et al. (2021).

During training, we use the stochastic gradient descent optimizer and turn on the Nesterov momentum param-
eter (set to 0.9) (Nesterov, 1983; Ruder, 2016). Our learning rate is set to 0.001, and the batch size is 128. Batch
size refers to a subset of the training data, where the weights and biases are updated after each batch iteration.
Thus, one epoch is completed after iterating through all of the training data. During this entire process, the
ANN is attempting to minimize the loss function (i.e., reduce the error). While we set the ANN to train using
500 epochs, we apply early stopping on the validation loss to prevent overfitting. In the other words, the ANN
is finished training if the validation loss does not improve for 10 epochs in a row. Using this approach, our ANN
generally reaches no more than 35 epochs and is restored to the iteration with the best model weights.

To further account for overfitting, we apply L2 ridge regularization (Friedman, 2012) to the weights of the first
hidden layer. Our L2 parameter is set to 0.5 after exploring several different combinations of ANN architectures,
hyperparameters, and random initialization seeds (Figures S2-S3). Ridge regularization ensures the ANN is not
sensitive to outlier weights, which helps to consider any spatial autocorrelation in the input fields of OHC100.
Finally, we assign class weights in the loss function, since there is a large class imbalance with only 16 or fewer
slowdown events per individual ensemble member (Figure 1c). This parameters tells the model to pay more
attention to the underrepresented class during the training process. Figure S6 shows the results of ANNs using a
range of class weights compared to the original class imbalance (approximately 8.8 to 1). For the main figures and
analysis presented here, we selected a smaller fraction to be applied to the balanced class weights (approximately
4.4 to 1).

Given the large class imbalance (i.e., fewer number of slowdown training samples compared to non-slowdowns), we
evaluate the results of our ANN using the F1 score (Johnson & Khoshgoftaar, 2019). The F1 score is a harmonic
mean of the ANN’s precision and recall (equation 5). Here, precision is a measure of how many predicted
slowdowns are actually slowdown events (equation 6), and recall is a measure of how many actual slowdowns
are correctly predicted as slowdowns (equation 7). We find an ANN architecture of this complexity achieves a
reasonable F1 score (Figures S2-S3), which is higher than random chance (Section 3.1). Note that we present
the results of our ANN used in the main analysis of the paper in Figure S7 using a confusion matrix for a binary
classification problem (Shultz & Fahlman, 2017).

F1 = 2 × Precision ∗ Recall

Precision + Recall
(5)

Precision =
True Positive

True Positive + False Positive
(6)

Recall =
True Positive

True Positive + False Negative
(7)

In summary, this general approach and set of score metrics are commonly used for many neural network clas-
sification problems (Goodfellow et al., 2016). More resources on neural networks can be found in e.g., Lecun,
Bengio, and Hinton (2015); Goodfellow et al. (2016); Neapolitan and Jiang (2018); A.Géron (2019).

Text S3: Open Software/Tools
Preprocessing and regridding were completed using NCL v6.2.2 (NCAR, 2019), NCO v4.9.3 (Zender, 2008), and
CDO v1.9.8 (Schulzweida, 2019). Figures and main analysis were completed using open source Python v3.7.6,
Numpy v1.19 (Harris et al., 2020), SciPy v1.4.1 (Virtanen et al., 2020), Matplotlib v3.2.2 (Hunter, 2007), and
colormaps provided by cmocean v2.0 (Thyng et al., 2016), Palettable’s cubehelix v3.3.0 (Green, 2011), and
Scientific v7.0.0 (Crameri, 2018; Crameri et al., 2020). Additional Python packages used for development of
the ANN and LRP visualizations include TensorFlow v2.4.0/v1.15.0 (Abadi et al., 2016), Scikit-learn v0.24.2
(Pedregosa et al., 2011), and iNNvestigate v1.0.8 (Alber et al., 2019). References for the data sets are provided
throughout the study. Lastly, we would like to thank all the scientists, software engineers, and administrators
who contributed to the development of CESM2.
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Figure S1. The slope of linear trends are calculated
for each decade of global mean (near-) surface tempera-
tures from 1990 to 1999 and ending in 2011 to 2020 using
European Centre for Medium-Range Weather Forecasts
ERA5 (dashed black line) reanalysis (Hersbach et al.,
2020), Berkeley Earth Land/Ocean Temperature Record
(BEST; solid purple line) (Rohde & Hausfather, 2020),
Goddard Institute for Space Studies Surface Tempera-
ture product version 4 (GISTEMPv4; solid blue line)
(Hansen et al., 2010; Lenssen et al., 2019), Hadley Cen-
tre/Climatic Research Unit Temperature version 5.0.1.0
(HadCRUT5; solid green line) dataset (Morice et al.,
2021), and National Centers for Environmental Predic-
tion–Department of Energy Reanalysis II (NCEP2; solid
orange line) (Kanamitsu et al., 2002). Gray shading
shows the onset of actual slowdown events in ERA5 re-
analysis (as in Figure 3’s green bars). Horizontal solid
lines indicate the threshold for slowdown events in each
observational data set respectively. The thicker horizon-
tal gray line denotes a trend of 0◦C/yr.
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Figure S2. Points showing the accuracy (blue) and F1
score (red) for testing data. Results are shown for ANNs
using a different number of training ensemble members
from CESM2-LE (2, 7, 12, 17, 22, 27, 32, and 37 ensem-
bles), but the same architecture as used in the paper (see
Text S2 and Figure S3). For these different ANNs, 2 en-
semble members are always used for testing data, and 1
ensemble member is always used for validation data. The
points for each ANN experiment are comprised of 10 it-
erations (different combinations of training, testing, and
validation data and random initialization seeds), and the
median score is shown for each set of points with a bold
horizontal line respectively. Note that the ANN used in
the main analysis uses 28 ensembles for training data.
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Figure S3. Schematic of the artificial neural network
(ANN) used in this study for predicting the onset of a
slowdown in decadal warming trend (output layer) from
a global map of annual mean ocean heat content in the
0-100 m depth (input layer). The ANN consists of two
hidden layers that both contain 30 hidden nodes. The
output layer includes a softmax activation function. An
example heatmap using layer-wise relevance propagation
(LRP; Bach et al., 2015; Montavon et al., 2018) is also
illustrated here. LRP highlights the regions of greater rel-
evance for the ANN to decide whether a slowdown event
will occur for the next 10 years.
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Figure S4. Points showing the precision (blue) and re-
call (red) scores for validation data. Results are shown
for ANN architectures using (a) 1 hidden layers of 10
nodes, (b) 1 hidden layers of 30 nodes, (c) 2 hidden layers
of 10 nodes each, (d) 2 hidden layers of 30 nodes each,
(e) 3 hidden layers of 10 nodes each, (f) and 3 hidden
layers of 30 nodes each (f). Each architecture also com-
pares scores for different L2 regularization values (0.01,
0.1, 0.5, 1). The points for each ANN are comprised of
5 iterations (different combinations of training, testing,
and validation data and random initialization seeds), and
the median score is shown for each set of points with a
bold horizontal line respectively. The architecture used
in the main analysis is labeled in bold for 2 hidden layers
of 30 nodes each (subplot d).
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Figure S5. Points showing the F1 score for validation
data. Results are shown for ANN architectures using (a)
1 hidden layers of 10 nodes, (b) 1 hidden layers of 30
nodes, (c) 2 hidden layers of 10 nodes each, (d) 2 hidden
layers of 30 nodes each, (e) 3 hidden layers of 10 nodes
each, (f) and 3 hidden layers of 30 nodes each (f). Each
architecture also compares scores for different L2 regu-
larization values (0.01, 0.1, 0.5, 1). The points for each
ANN are comprised of 5 iterations (different combina-
tions of training, testing, and validation data and random
initialization seeds), and the median score is shown for
each set of points with a bold horizontal line respectively.
The architecture used in the main analysis is labeled in
bold for 2 hidden layers of 30 nodes each (subplot d).
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Figure S6. (a) Accuracy, (b) precision, (c) recall, (d)
and F1 scores for validation data in the ANN architec-
ture used throughout the paper, but with different class
weights on slowdown events. The class weight used in the
main analysis is shown with a marker for the F1 score.
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Figure S7. Confusion matrix of testing data for all
predictions. The shading and large red values inside each
box represents the sample size (n) for each classification
category bin.
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Figure S8. Box-and-whisker plots showing the accu-
racy, precision, recall, and F1 scores for the ANN archi-
tecture used throughout the paper after considering 100
different combinations of training, testing, and validation
data and random initialization seeds.
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Figure S9. Scatter plot showing the number of slow-
down events in training data compared to the F1 score
for testing data in 100 ANNs using different combinations
of training, testing, and validation data and random ini-
tialization seeds.
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Figure S10. (a) LRP composite heatmap for the incor-
rect no slowdown predictions by the ANN (testing data
using CESM2-LE). Higher LRP values indicate greater
relevance for the ANN’s prediction. LRP values are nor-
malized by the maximum relevance in the composite for
visualization purposes. The upper left-hand value shows
the number of cases for each wrong prediction (see Fig-
ure S7). (b) As in (a), but for incorrect predictions of
slowdowns in decadal warming.
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Figure S11. (a) Composite of normalized sea surface
temperature (SST) for correct slowdown predictions by
the ANN. (b) As in (a), but for ocean heat content in
the 0-100 m layer (OHC100). Yellow contour lines are
overlaid to show relevance from the LRP composite in
main Figure 2b. (c) As in (a), but for ocean heat content
in the 0-300 m layer (OHC300). (d) As in (a), but for
ocean heat content in the 0-700 m layer (OHC700). (e-h)
As in (a-d), but for composites of 5-10 years after the
correct slowdown predictions.
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Figure S12. Unfiltered Tripole IPO Index (normalized)
for each year of the six ensemble members in the test-
ing data. Correct predictions by the ANN for the onset
of slowdown events are highlighted with a yellow ‘S’ in
each ensemble member, wrong slowdown predictions by
the ANN are highlighted with a gray ‘S’ in each ensem-
ble member, and all other actual slowdown events are
indicated with a black ‘S’ in each ensemble member.
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Figure S13. (a) Time series showing the frequency of
slowdown onset predictions for one ensemble member re-
alization (in testing data) using 13 ANNs constructed
from different combinations of training, testing, and val-
idation data (dashed dark red line). Light red bars show
the onset of actual slowdown events in the ensemble mem-
ber. (b) Time series of the unfiltered Tripole IPO Index
(normalized) for each year in the same ensemble member
(red/blue bars).
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Figure S14. Time series showing the frequency of slow-
down onset predictions after inputting observations into
100 ANNs constructed from different combinations of
training, testing, and validation data. Green bars show
the onset of actual slowdown events in observations. Gray
shading indicates 10-year trend periods that extend into
the future (e.g., 2012-2021).
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Figure S15. (a) LRP composite heatmap for the correct
slowdown predictions by the ANN in observations. (b)
As in (a), but for the ANN slowdown predictions during
the future 10-year trend periods. Higher LRP values in-
dicate greater relevance for the ANN’s prediction. LRP
values are normalized by the maximum relevance in the
composite for visualization purposes. Blue boxes high-
light regions of the Tripole Index for the IPO (Henley et
al. (2015); 25◦N-45◦N and 140◦E-145◦W, 10◦S-10◦N and
170◦E-90◦W, 50◦S-15◦S and 150◦E-160◦W).
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Figure S16. (a) Composite of normalized sea sur-
face temperature (SST) for the future slowdown predic-
tions after testing observations with the ANN. (b) As
in (a), but for ocean heat content in the 0-100 m layer
(OHC100). Yellow contour lines are overlaid to show rel-
evance from the LRP composite in Figure S15b. (c) As
in (a), but for ocean heat content in the 0-300 m layer
(OHC300). (d) As in (a), but for ocean heat content in
the 0-700 m layer (OHC700).
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