
P
os
te
d
on

22
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
88
57
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

3D translational landslide evolution in sensitive soils

Wangcheng Zhang1 and Alexander M. Puzrin1

1ETH Zurich

November 22, 2022

Abstract

Translational landslides in sensitive soils are usually enormous in size but often developed from a minute slip surface. Attention

has previously been paid to quantifying the failure initiation of a translational landslide through two-dimensional (2D) plane

strain slope stability analyses. The findings of failure initiation from the 2D simplifications need to be justified in a realistic

3D scenario, and more importantly, are inconvenient to apply into analysing the subsequent 3D post-failure behaviours. This

study aims to explore 3D translational landslide evolution integrating both the failure initiation and post-failure behaviours by

using an original Lagrangian-Eulerian depth-integrated finite volume scheme. The numerical method is formulated by solving

governing equations in terms of the conservations of mass and momentum considering isotropic and linear strain softening

materials. Ability of this framework to simulate a complete 3D landslide evolution, including the initiation and growth of slip

surface, global slab failure, post-failure behaviours and re-deposition, has been demonstrated for different 3D slope geometries.

The proposed numerical scheme is able to capture diverse post-failure behaviours, such as retrogression and blocky slide mass,

in sensitive soils. The characteristics of the slip surface growth within a favoured layer and the patterns of the global slab

failure in the overlying layer have been thoroughly discussed. For planar slopes, it helps to establish an analytical criterion for

unstable dynamic growth of a planar slip surface, which can optimise the slope stability analysis in sensitive soils.
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3D translational landslide evolution in sensitive soils 26 

ABSTRACT 27 

Translational landslides in sensitive soils are usually enormous in size but often developed from 28 

a minute slip surface. Attention has previously been paid to quantifying the failure initiation of 29 

a translational landslide through two-dimensional (2D) plane strain slope stability analyses. 30 

The findings of failure initiation from the 2D simplifications need to be justified in a realistic 31 

3D scenario, and more importantly, are inconvenient to apply into analysing the subsequent 3D 32 

post-failure behaviours. This study aims to explore 3D translational landslide evolution 33 

integrating both the failure initiation and post-failure behaviours by using an original 34 

Lagrangian-Eulerian depth-integrated finite volume scheme. The numerical method is 35 

formulated by solving governing equations in terms of the conservations of mass and 36 

momentum considering isotropic and linear strain softening materials. Ability of this 37 

framework to simulate a complete 3D landslide evolution, including the initiation and growth 38 

of slip surface, global slab failure, post-failure behaviours and re-deposition, has been 39 

demonstrated for different 3D slope geometries. The proposed numerical scheme is able to 40 

capture diverse post-failure behaviours, such as retrogression and blocky slide mass, in 41 

sensitive soils. The characteristics of the slip surface growth within a favoured layer and the 42 

patterns of the global slab failure in the overlying layer have been thoroughly discussed. For 43 

planar slopes, it helps to establish an analytical criterion for unstable dynamic growth of a 44 

planar slip surface, which can optimise the slope stability analysis in sensitive soils.  45 

 46 

Keywords: translational landslides, sensitive soil, landslide evolution, slip surface growth, 3D 47 

slope geometry 48 
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PLAIN LANGUAGE SUMMARY 50 

Translational landslides in sensitive soils are often huge and catastrophic with considerable 51 

failure extension from a minute initiation region. Our knowledge of why and how the 52 

progressive failure in translational landslides evolves is limited but it likely results from slip 53 

surface growth within a favored weak layer. The mechanisms causing the underneath slip 54 

surface growth and the whole evolution of translational landslides are difficult to assess at the 55 

landscape scale even with the aids of state-of-the-art geophysical and geological investigations. 56 

Advanced numerical modelling is an alternative approach to improve our understanding 57 

towards the three-dimensional (3D) evolution of translational landslides. Here, we propose 58 

such an original numerical method formulated from the fundamental laws of thermodynamics 59 

and soil plasticity theory. We simulated the dynamic slip surface growth from a small pre-60 

failure zone within the weak layer and improved the assessment of its critical size for the 61 

catastrophic slip surface growth. Our criterion shows, upon critical conditions, a slip surface 62 

can grow and become as large as ~100 km2 within minutes. This is followed by global slab 63 

failure in the overlying layer with retrogression upslope and ploughing downslope. Simulated 64 

post-failure behaviours with true 3D slope geometries are slightly affected by the horizontal 65 

slope gradient but significantly depend on the vertical slope gradient. Our findings improve 66 

understanding of how an insignificant pre-failure zone rapidly grows into an enormous slip 67 

surface and eventually evolves into a translational landslide with progressive failure in 68 

sensitive soils. 69 

  70 



INTRODUCTION 71 

Slope stability analysis and assessment of landslide dynamics are important areas of study for 72 

engineering geology professionals and geotechnical engineers. In practice, they are usually 73 

simplified as two-dimensional (2D) plane strain problems (e.g., Morgenstern and Price 1965, 74 

Spencer 1967, Cornforth 2005), which have been considered conservative in the Limit 75 

Equilibrium Method (LEM), as resistances from the out-of-plane direction are ignored. 76 

However, the 2D simplification needs the justification that the linear cross section chosen from 77 

a three-dimensional (3D) ground is the most ‘pessimistic’ (Duncan 1996). This is not an easy 78 

task in realistic complex terrain, where the most pessimistic section, if it can be found, is most 79 

likely nonlinear. To partly avoid such a geometrical uncertainty, slope stability analysis might, 80 

in practice, be conducted for multiple cross sections of a single slope, which could be a huge 81 

workload for risk assessment and mapping of a large area involved in an engineering project 82 

such as the determination of a subsea pipeline route.  83 

Moreover, for slope failure in sensitive soils, shearing failure within a basal slip surface might 84 

lead to the growth of the slip surface, eventually evolving into a translational landslide such as 85 

the well-known enormous Storegga Slide offshore Norway (Kvalstad et al. 2005, Micallef et 86 

al. 2007) or the massive retrogressive landslide in December 2020 at Gjerdrum, Norway, which 87 

caused seven deaths. The slip surface of translational landslides can grow in any direction 88 

within a favoured ‘weak’ layer, which may or may not be parallel to the main travel direction 89 

of the slide mass (Zhang et al. 2020). Such a multi-directional propagation mechanism can 90 

provide additional driving force because of the reduction in strength during slip surface growth, 91 

but this cannot be considered in a 2D case. Hence, the 2D simplification with assumed travel 92 

direction might be nonconservative for the assessment of the progressive failure of translational 93 

landslides in sensitive soils. 94 

Because of greater computational capacity, studies have been able to consider 3D slope stability 95 



analysis in the last several decades (Hungr et al. 1989, Lam and Fredlund 1993, Huang and 96 

Tsai 2000, Cheng and Yip 2007), although most of them have focused on rotational slide 97 

mechanisms using the LEMs. Some more sophisticated 3D models for slope stability problems 98 

have been emerging that use numerical methods such as the Finite Element Method (Griffiths 99 

and Marquez 2007, Lin et al. 2020) and Finite Difference Method (Zhang et al. 2013).  100 

The LEM and most existing numerical methods reach their limits in carrying out satisfactory 101 

stability analyses of slopes with sensitive clays against potential translational landslides, due 102 

to the progressive failure process and large deformation involved (Puzrin et al. 2004, 2016, 103 

Locat et al. 2011, Zhang et al. 2015). Instead, some recent studies have explored simplified 104 

analytical criteria for 3D translational landslide initiation in sensitive clays by interpretation 105 

and quantification of slip surface growth along a weak layer (Zhang et al. 2020, Klein and 106 

Puzrin 2021), based on planar or idealised conical geometry and static conditions. The 107 

applicability of these criteria to realistic dynamic conditions and complex geometry remains 108 

uncertain. Meanwhile, the transition from growth of slip surface to global failure in 3D 109 

situations is still an open issue. 110 

Another important issue in assessing the risk of slope instability is the modelling of landslide 111 

dynamics and its evolution, which can be performed by using large deformation numerical 112 

methods such as the depth-integrated method (Hungr 1995, Liu and Huang 2006, Zhang and 113 

Puzrin 2021), computational fluid dynamics (Biscarini 2010), smoothed particle 114 

hydrodynamics (Zhang et al. 2020) or the material point method (Dong et al. 2017). However, 115 

most of these are 2D in nature and need the input of details of the initial slide mass such as 116 

geometry, volume and initial velocity, which are rarely determined in practice. A correlation 117 

between slope stability analysis (landslide initiation) and evolved debris flow (landslide 118 

dynamics) in 3D is required for fully understanding 3D landslide evolution and hence for 119 

optimised risk assessment.  120 



In this study, the whole evolution of 3D translational landslides in sensitive soils, covering the 121 

failure initiation, slip surface growth, slab failure and post-failure behaviours, is observed and 122 

discussed through an original Lagrangian-Eulerian depth integrated numerical analysis. The 123 

governing equations of the problem are formulated based on conservation of mass and 124 

momentum. The solutions of landslide dynamics are obtained from a finite volume scheme 125 

with a staggered mesh strategy. New criteria for slip surface growth in planar slopes are 126 

proposed and quantifications of slab failure are discussed based on the numerical 127 

investigations, which are expected to facilitate slope stability analysis and risk assessment of 128 

landslides in sensitive clays. Finally, ability of the framework to account for the effects of the 129 

true 3D slope geometry has been demonstrated. 130 

3D NUMERICAL SCHEME FOR MODELLING LANDSLIDE EVOLUTION IN 131 

SENSITIVE CLAYS 132 

Problem description 133 

Translational or spread landslides are common in northern countries, such as Norway and 134 

Canada, and offshore continental slopes where sensitive clays are abundant (Skempton 1985, 135 

L’Heureux et al. 2012, Issler et al. 2015). Figure 1 shows a conceptual evolution of typical 136 

submarine landslides. Although their scales are usually very large (for example, the Storegga 137 

Slide covered between 2500 and 3500 km2 of sediment (Haflidason et al. 2004)), translational 138 

slides might be initiated at a minute slip surface, as shown in Figure 1a, triggered by external 139 

factors such as earthquakes. An initial slip surface is often concentrated in a favoured soil layer 140 

(the so-called ‘weak layer’) where shear strength relative to the overburden pressure is lower 141 

than adjacent layers. The weak layer provides a locus for progressive growth of the slip surface 142 

with extensive external triggers, as shown in Figure 1b. Once the size of the slip surface reaches 143 

a threshold, the slip surface growth becomes catastrophic and can only be limited by slope 144 



flattening or global slab failure, as shown in Figure 1c. Diverse post-failure behaviours, such 145 

as retrogression upslope and progressive ploughing or debris flow downslope, may present 146 

after the global slab failure (Zhang et al. 2021), as shown in Figure 1d.  147 

Governing equations 148 

In order to analyse slope stability and evolution of landslides in sensitive soils, the domain of 149 

interest is essentially divided into regularised cells, with each cell holding characteristics of the 150 

evolving landslide, as shown in Figure 2. Note that the bathymetry map, showing a submarine 151 

landslide offshore Scotland (after Carter et al. 2020) is just for illustration. The edges of the 152 

cell are parallel to the axes of coordinates x and y, and the x–y plane (z = 0) was set as the 153 

horizontal plane and crossing through a reference point (taken as the slope centre in the study) 154 

at the basal slip surface. Cells are fixed during the landslide process, with materials travelling 155 

through them, forming an Eulerian framework. Conservations of mass and momentum are then 156 

formulated within each cell, and global instability can be modelled by integrating all cells with 157 

consideration of proper inter-cell constitutive models and fluxes. 158 

Key assumptions for establishing governing equations are as follows. 159 

• The thickness of the landslide is small (<1:10) compared to its dimensions, so that the 160 

velocity can be averaged along the depth of each cell. 161 

• Momentum of the slide mass along the z-direction is negligible. 162 

• Trapped water moves together with soils in each cell, and any generated pore pressures 163 

have no time to dissipate, ensuring an undrained (and incompressible) condition. 164 

Based on these assumptions, conservation of mass in each cell can be expressed by 165 

𝜕ℎ

𝜕𝑡
+

𝜕ℎ𝑢

𝜕𝑥
+

𝜕ℎ𝑣

𝜕𝑦
= 0 (1) 

where ℎ is the height of the cell, 𝑢 and 𝑣 are the velocity in the 𝑥- and 𝑦-directions (as shown 166 



in Figure 2), respectively, and 𝑡 is the elapsed time. Conservation of momentum in each cell is 167 

given by 168 

𝜕ℎ𝑢

𝜕𝑡
+

𝜕ℎ𝑢2

𝜕𝑥
+

𝜕ℎ𝜎𝑥

𝜌𝜕𝑥
+

𝜕ℎ𝑢𝑣

𝜕𝑦
−

𝜕ℎ𝜏𝑥𝑦

𝜌𝜕𝑦
−

𝜏𝑤,𝑥 + 𝜏𝑔,𝑥 + 𝜏𝑑𝑟𝑎𝑔,𝑥

𝜌
= 0 (2) 

and 169 

𝜕ℎ𝑣

𝜕𝑡
+

𝜕ℎ𝑣2

𝜕𝑦
+

𝜕ℎ𝜎𝑦

𝜌𝜕𝑦
+

𝜕ℎ𝑢𝑣

𝜕𝑥
−

𝜕ℎ𝜏𝑥𝑦

𝜌𝜕𝑥
−

𝜏𝑤,𝑦 + 𝜏𝑔,𝑦 + 𝜏𝑑𝑟𝑎𝑔,𝑦

𝜌
= 0 (3) 

for the 𝑥 - and 𝑦 -directions, respectively. In the above equations, 𝜎𝑥 , 𝜎𝑦  and 𝜏𝑥𝑦  are stress 170 

components applied at the centre of the cell face, with the face normals parallel to the 𝑥 or 𝑦 171 

axis; 𝜏w,𝑥 and 𝜏w,𝑦 are weak layer (or slip surface) shear stress components; 𝜏g,𝑥 and 𝜏g,𝑦 are 172 

gravity shear stress components at the buried depth of the weak layer; and 𝜏drag,𝑥 and 𝜏drag,𝑦 173 

are drag shear stress components. 174 

Stress components at cell face centre 175 

Usually, the stress tensor (𝝈) describing the stress status at the centre of the cell face can be 176 

decomposed into  177 

𝝈 = 𝒔 + 𝑝 ∙ 𝑰 (4) 

where 𝒔 is the deviatoric stress tensor, 𝑝 the mean stress and 𝑰 the second-order identity tensor. 178 

Note that the vertical normal stress component 𝜎𝑧 can be expressed by 179 

𝜎𝑧 =
1

2
𝛾′ℎ (5) 

where 𝛾′ is the submerged unit weight of soils.  180 

Similarly, the strain tensor (𝜺) can be decomposed into 181 

𝜺 = 𝒆 +
𝜀𝑣

3
∙ 𝑰 (6) 

where 𝒆 is the deviatoric strain tensor and 𝜀v the volumetric strain. It can also be divided into 182 



the elastic and plastic portions, which will be denoted by superscripts ‘e’ and ‘p’, respectively, 183 

in the remainder of the paper. Note that the volumetric strain satisfies 𝜀v = 𝜀v
e = 𝜀v

p
→ 0, as 184 

the undrained condition was maintained and the von Mises yield criterion with an associated 185 

flow rule was used. Hence, one may write 𝜺 ≅ 𝒆 , 𝜺e ≅ 𝒆e , and 𝜺p ≅ 𝒆p . The elasticity of 186 

materials is assumed linear and isotropic, and therefore the deviatoric stress tensor is expressed 187 

by 188 

𝒔 = 2𝐺𝒆𝑒 ≅ 2𝐺𝜺𝑒 (7) 

where 𝐺 is the shear modulus.  189 

A modified von Mises yield criterion was adopted in order to consider isotropic and linear 190 

strain softening, given by 191 

𝑞 = 𝑚𝑎𝑥 (1 −
𝜀𝑠

𝑝

𝜀𝑠,𝑟
𝑝 ,

1

𝑆𝑡
) ∙ 2𝑠𝑢𝑠,𝑝 (8) 

where 𝑞 = √
3

2
‖𝒔‖ is the deviatoric stress, 𝑠us,p the peak undrained shear strength in the sliding 192 

layer which can be measured from a triaxial element test; 𝜀s
p

= ∫ √
2

3
‖𝒆̇p‖𝑑𝑡

𝑡

0
 the accumulated 193 

plastic deviatoric strain; 𝜀s,r
p

 the accumulated deviatoric strain to the residual shear strength; 𝑆t 194 

the soil sensitivity defining the ratio of the peak and residual shear strengths. 𝜀s,r
p

 can be 195 

determined from a triaxial test by 𝜀s,r
p

=
2

3
𝛾r

p
 where 𝛾r

p
 is the plastic shear strain associated to 196 

the residual undrained shear strength.  197 

The softening and associated flow rules used for calculating stress components on the cell faces 198 

are also depicted in Figure 3a. The solid circle represents the current yield surface in the 199 

meridian plane while the dashed circle represents the softening yield surface. With an 200 

incremental deviatoric strain tensor, soils may move from the initial elastic state A to the plastic 201 

state B (see Figure 3a). An intermediate virtual state T outside the yield surfaces was assumed, 202 



in order to calculate the plastic strain. According to equations (7) and (8), one may write 203 

𝑶𝑨 = 2𝐺𝒆𝑒,𝐴; 𝑶𝑩 = 2𝐺𝒆𝑒,𝐵; 𝑨𝑻 = 2𝐺∆𝒆; 𝑩𝑻 = 2𝐺∆𝒆𝑝; 𝑩𝑻′ =
4

3

𝑠𝑢𝑠,𝑝

𝜀𝑠,𝑟
𝑝 ∆𝒆𝑝 (9) 

where 𝑇′ is the intersect of the line 𝐵𝑇 and the current yield surface. As the radius of the current 204 

yield surface (the solid circle) is 𝑅ys = √
2

3
𝑑(𝜀s

p
), the incremental plastic deviatoric strain can 205 

then be calculated based on the geometric relationship, by  206 

𝑅𝑦𝑠 − ‖𝑩𝑻′‖ = ‖𝑶𝑻‖ − ‖𝑩𝑻‖ → √
2

3
𝑑(𝜀𝑠

𝑝) −
4

3

𝑠𝑢𝑠,𝑝

𝜀𝑠,𝑟
𝑝 ‖∆𝒆𝑝‖

= 2𝐺‖𝒆𝑒,𝐴 + ∆𝒆‖ − 2𝐺‖∆𝒆𝑝‖ 

→ ‖∆𝒆𝑝‖ =
2𝐺‖𝒆𝑒,𝐴+∆𝒆‖−√

2

3
𝑑(𝜀𝑠

𝑝
)

2𝐺−
4

3

𝑠𝑢𝑠,𝑝

𝜀𝑠,𝑟
𝑝

  

(10) 

Alternatively, it can be determined by forcing the deviatoric stress at state B (𝑞𝐵) to fall at the 207 

reduced yield surface, by 208 

𝑞𝐵 = 𝑞𝑇 − 3𝐺∆𝜀𝑠
𝑝 = 𝑑(𝜀𝑠

𝑝) −
∆𝜀𝑠

𝑝

𝜀𝑠,𝑟
𝑝 2𝑠𝑢,𝑝 → ∆𝜀𝑠

𝑝 =
𝑞𝑇−𝑑(𝜀𝑠

𝑝
)

3𝐺−2
𝑠𝑢,𝑝

𝜀𝑠,𝑟
𝑝

  (11) 

where 𝑞𝑇 = 2√
3

2
𝐺‖𝒆𝑨 + ∆𝒆‖ is the deviatoric stress at the virtual state T. The elastic strain 209 

tensor at the new state B is therefore 210 

𝒆𝑒,𝐵 = (𝟏 −
‖∆𝒆𝑝‖

‖𝒆𝑨+∆𝒆‖
) (𝒆𝑒,𝐴 + ∆𝒆)  (12) 

The stress tensors can then be fully solved through equations (4) to (7). 211 

Non-negative value of incremental plastic strain requires 212 

2𝐺 −
4

3

𝑠𝑢𝑠,𝑝

𝜀𝑠,𝑟
𝑝 > 0 → 𝑠𝑢𝑠,𝑝 <

3

2
𝐺𝜀𝑠,𝑟

𝑝  (13) 

The physical meaning of inequality (13) is that the softening rate 
𝑠u,p

𝛾r
p  should be less than the 213 



unloading shear modulus; otherwise, the portion of plastic shear strain transferred from the 214 

initially elastic part (due to softening) may self-drive the softening process. Therefore, if 215 

inequality (13) is not satisfied, the shear strength would be essentially reduced to the residual 216 

even with little plastic deformation.  217 

Shear stress at weak layer 218 

Within the slip surface, the shear stress (𝜏w) is limited to the current shear strength, which is 219 

reduced during shearing, and given by 220 

𝜏𝑤 = 𝑠𝑢𝑤(𝛿𝑝) = 𝑚𝑎𝑥 (1 −
𝛿𝑝

𝛿𝑟
𝑝 ,

1

𝑆𝑡
) ∙ 𝑠𝑢𝑤,𝑝 (14) 

where 𝛿p = ∫ ‖𝜹̇p‖𝑑𝑡
𝑡

0
 is the accumulated plastic shear displacement across the weak layer, 𝛿r

p
 221 

the value of 𝛿p at the residual shear stress, and 𝑠uw,p the peak undrained shear strength in the 222 

weak layer. Ignoring displacement beneath the weak layer (Zhang et al. 2015), the horizontal 223 

slide displacement can be related to the shear displacement across the weak layer by 
𝑢

cos 𝜃
=224 

𝛿 = 𝛿e + 𝛿p where 𝜃 is the slope angle and 𝛿e and 𝛿p the elastic and plastic portion of the 225 

shear displacement, respectively.  226 

Soils surrounding the slip surface are first mobilized elastically before reaching the yield stress 227 

governed by equation (8), and the shear stress is increased to be larger than the initial value 228 

caused by gravity. Considering a linear and isotropic elasticity model, the pre-peak shear stress 229 

can be expressed by 230 

𝝉𝑤 = 𝐾𝜹𝑒 (15) 

where 𝐾 is the shear stiffness.  231 

Figure 3b gives details of the constitutive model for weak layer soils in the 𝜏w,𝑥 − 𝜏w,𝑦 plane, 232 

where the strain softening behaviour is isotropic, i.e., reduction of shear strength in the x-axis 233 



results in the same-magnitude reduction in the y-axis. Similar to equation (10), the incremental 234 

plastic shear displacement can be given by 235 

𝐾‖𝜹𝑒,𝐴 + ∆𝜹‖ − 𝐾‖∆𝜹𝑝‖ = 𝑠𝑢𝑤(𝛿𝑝) −
𝑠𝑢𝑤,𝑝

𝛿𝑟
𝑝 ‖∆𝜹𝑝‖ → ‖∆𝜹𝑝‖

=
𝐾‖𝜹𝑒,𝐴 + ∆𝜹‖ − 𝑠𝑢𝑤(𝛿𝑝)

𝐾 −
𝑠𝑢𝑤,𝑝

𝛿𝑟
𝑝

 

(16) 

Again, a non-negative value of ‖∆𝜹p‖ requires  236 

𝐾 −
𝑠𝑢𝑤,𝑝

𝛿𝑟
𝑝 > 0 → 𝑠𝑢𝑤,𝑝 < 𝐾𝛿𝑟

𝑝 (17) 

Otherwise, the shear strength could be immediately reduced to the residual upon any small 237 

plastic deformation.  238 

The updated elastic shear displacement is therefore 239 

𝜹𝑒,𝐵 = (1 −
‖∆𝜹𝑝‖

‖𝜹𝑒,𝐴 + ∆𝜹‖
) (𝜹𝑒,𝐴 + ∆𝜹) (18) 

and the weak layer stress (vector) can then be updated through equation (15). 240 

Gravity and drag shear stresses 241 

The gravity shear stress is given by 242 

𝜏𝑔 = 𝛾′ℎ 𝑠𝑖𝑛 𝜃 (19) 

where 𝛾′ is the submerged unit weight of soil. 243 

Hydrodynamic pressure drag for a streamlined body like a submarine sliding mass is less 244 

significant than the skin friction drag, and the latter can be approximated by (Norem et al. 1990, 245 

Elverhoi et al. 2005) 246 

𝜏𝑑𝑟𝑎𝑔 =
1

2
𝐶𝑓𝜌𝑤𝑣2;  𝐶𝑓 = (1.89 + 1.62 𝑙𝑜𝑔

𝐿

𝑘
)

−2.5

 (20) 

where 𝐶f is the frictional drag coefficient, 𝜌w is the seawater density, 𝐿  is the sliding mass 247 



length and 𝑘 is the roughness length of the sliding mass surface in the range of 0.01–0.1 m. For 248 

a length of the sliding mass varying between 10 and 1000 m, the friction drag coefficient falls 249 

in the range of 0.005–0.016.  250 

Finite volume scheme 251 

Two layers of fixed meshes with the same mesh size and alignment were taken, as shown in 252 

Figure 4a, with the top layer used for solving mass and momentum conservation equations and 253 

the bottom layer tracking the changes in soil properties in the weak layer during slip surface 254 

growth. A finite volume method with staggered grids, as shown in Figure 4b, was used to 255 

integrate and solve the governing equations (1) to (3).  256 

Let us consider a slope of a rectangular space domain Ω: (0, 𝐿𝑥) × (0, 𝐿𝑦) and a time interval 257 

(0, 𝑇) . Dirichlet boundary conditions, i.e., 𝑢 = 0  and 𝑣 = 0 , are prescribed representing 258 

unaffected remote regions. The space domain is meshed with a grid of 𝑁𝑥 × 𝑁𝑦 cells, and the 259 

cells of dimensions ∆𝑥  and ∆𝑦  are indexed by (𝑖, 𝑗)  where 𝑖 ∈ (0, 𝑁𝑥)  and 𝑖 ∈ (0, 𝑁𝑦) . The 260 

centres of the bottom, top, left, and right edges of the cell (𝑖, 𝑗)  are denoted by (𝑖, 𝑗 −
1

2
) , 261 

(𝑖, 𝑗 +
1

2
) , (𝑖 −

1

2
, 𝑗) , and (𝑖 +

1

2
, 𝑗) , respectively. The mass conservation is integrated and 262 

solved over the cell, with the thickness of the sliding layer, ℎ, and slope angle (topography), 𝜃, 263 

discretised at the cell centre. The velocity in the x-direction is discretised at the centre of the 264 

edges normal to the x-direction, while the velocity in the y-direction is discretised at the centre 265 

of the edges normal to the y-direction. The approximation of ℎ  at cell (𝑖, 𝑗)  and time 𝑡𝑛  is 266 

denoted by ℎ𝑖,𝑗
𝑛 . The approximation of 𝑢 at the edge (𝑖 +

1

2
, 𝑗) and time 𝑡𝑛 is denoted by 𝑢

𝑖+
1

2
,𝑗

𝑛  267 

while the approximation of 𝑣 at the edge (𝑖, 𝑗 +
1

2
) and time 𝑡𝑛 is denoted 𝑣

𝑖,𝑗+
1

2

𝑛 .  268 

At time 𝑡𝑛+1, the mass conservation equation (1) is discretised as 269 



ℎ𝑖,𝑗
𝑛+1 − ℎ𝑖,𝑗

𝑛 =
∆𝑡

∆𝑥
(𝑞𝑥

𝑖−
1
2

,𝑗

𝑛 − 𝑞𝑥
𝑖+

1
2

,𝑗

𝑛 ) +
∆𝑡

∆𝑦
(𝑞𝑦

𝑖−
1
2

,𝑗

𝑛 − 𝑞𝑦
𝑖+

1
2

,𝑗

𝑛 ) (21) 

where  270 

𝑞𝑥
𝑖−

1

2
,𝑗

𝑛 = ℎ̂
𝑖−

1

2
,𝑗

𝑛 𝑢
𝑖−

1

2
,𝑗

𝑛 , ℎ̂
𝑖−

1

2
,𝑗

𝑛 = {

ℎ𝑖,𝑗
𝑛 𝑢

𝑖−
1

2
,𝑗

𝑛 ≤ 0

ℎ𝑖−1,𝑗
𝑛 𝑢

𝑖−
1

2
,𝑗

𝑛 > 0
; 

𝑞𝑦
𝑖,𝑗−

1

2

𝑛 = ℎ̂
𝑖,𝑗−

1

2

𝑛 𝑣
𝑖,𝑗−

1

2

𝑛 , ℎ̂
𝑖,𝑗−

1

2

𝑛 = {

ℎ𝑖,𝑗
𝑛 𝑣

𝑖,𝑗−
1

2

𝑛 ≤ 0

ℎ𝑖,𝑗−1
𝑛 𝑣

𝑖,𝑗−
1

2

𝑛 > 0
 

(22) 

The momentum conservation in the x-direction, i.e., equation (2), is discretised as 271 

ℎ
𝑖+

1
2

,𝑗

𝑛+1 𝑢
𝑖+

1
2

,𝑗

𝑛+1 − ℎ
𝑖+

1
2

,𝑗

𝑛 𝑢
𝑖+

1
2

,𝑗

𝑛

=
∆𝑡

∆𝑥
(𝑞𝑥𝑖,𝑗

𝑛 𝑢̂𝑖,𝑗
𝑛 − 𝑞𝑥𝑖+1,𝑗

𝑛 𝑢̂𝑖+1,𝑗
𝑛 )

+
∆𝑡

∆𝑦
(𝑞𝑦

𝑖+
1
2

,𝑗−
1
2

𝑛 𝑢̂
𝑖+

1
2

,𝑗−
1
2

𝑛 − 𝑞𝑦
𝑖+

1
2

,𝑗+
1
2

𝑛 𝑢̂
𝑖+

1
2

,𝑗+
1
2

𝑛 )

+
∆𝑡

𝜌∆𝑦
(𝜏

𝑥𝑦,𝑖+
1
2

,𝑗+
1
2

𝑛 ℎ
𝑖+

1
2

,𝑗+
1
2

𝑛 − 𝜏
𝑥𝑦,𝑖+

1
2

,𝑗−
1
2

𝑛 ℎ
𝑖+

1
2

,𝑗−
1
2

𝑛 )

+

𝜏
𝑤,𝑖+

1
2

,𝑗

𝑛 + 𝜏
𝑔,𝑖+

1
2

,𝑗

𝑛 + 𝜏
𝑑𝑟𝑎𝑔,𝑖+

1
2

,𝑗

𝑛

𝜌
 

(23) 

where 272 



ℎ
𝑖+

1
2

,𝑗

𝑛 =
ℎ𝑖,𝑗

𝑛 + ℎ𝑖+1,𝑗
𝑛

2
; 

𝑞𝑥𝑖,𝑗
𝑛 =

𝑞𝑥
𝑖−

1
2

,𝑗

𝑛 +𝑞𝑥
𝑖+

1
2

,𝑗

𝑛

2
, 𝑢̂𝑖,𝑗
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𝑢
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1

2
,𝑗

𝑛 𝑞𝑥𝑖,𝑗
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𝑢
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1

2
,𝑗

𝑛 𝑞𝑥𝑖,𝑗
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𝑞𝑦
𝑖+
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,𝑗

𝑛 𝑞𝑦
𝑖+
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,𝑗−
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𝑛 ≤ 0

𝑢
𝑖+
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𝑛 𝑞𝑦
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𝜏
𝑥𝑦,𝑖+

1
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,𝑗+
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𝑛 ℎ
𝑖+

1
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,𝑗+
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𝑛
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𝜏𝑥𝑦,𝑖,𝑗
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𝑛 ℎ𝑖+1,𝑗+1
𝑛
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(24) 

The momentum conservation in the y-direction, i.e., equation (3), can be discretised in a similar 273 

way. 274 

Changes in soil properties during the landslide process are treated differently in the two layers. 275 

The soil properties, such as stress and strength, in the weak layer are updated in the fixed mesh 276 

scheme based on the current values of ℎ, 𝑢 and 𝑣, assuming that the weak layer does not move 277 

with the sliding layer. As the sliding layer moves during the landslide process, its soil properties 278 

are updated at the deformed cell centre (based on current values of 𝑢 and 𝑣) and interpolated 279 

to the original fixed centre after each time increment, in the spirit of the Arbitrary Lagrangian-280 

Eulerian method. To this end, the numerical scheme proposed here is hereafter called the 281 

Lagrangian-Eulerian depth integrated method (LEDIM).  282 

Verification 283 

A series of 2D landslides with 1D slip surface growth along a weak layer, studied in Zhang et 284 

al. (2019), were re-simulated using the proposed numerical scheme to verify its accuracy. The 285 

governing equations are tailored to fit for the 2D problems by ignoring the momentum in the 286 

y-direction (assuming the slide mass travels in the x-direction) and considering only one row 287 



of cells (assuming the problem is of plane strain nature). The numerical results from the 288 

proposed numerical scheme are compared with the observations from the large deformation 289 

finite element (LDFE) modelling by Zhang et al. (2019). 290 

A curvilinear slope model composed of an overlying layer and a weak layer was used, as shown 291 

in Figure 5a. The weak layer is parallel to the slope surface and antisymmetric about the slope 292 

centre, which is set as the origin of the coordinate system. The weak layer geometry is described 293 

by 294 

 𝑧 = {
−𝐻 [1 − 𝑒𝑥𝑝 (

𝑦

𝐻
𝑡𝑎𝑛 𝜃𝑐)] , 𝑦 < 0

𝐻 [1 − 𝑒𝑥𝑝 (−
𝑦

𝐻
𝑡𝑎𝑛 𝜃𝑐)] , 𝑦 ≥ 0

 (25) 

where 𝜃c is the maximum slope angle at the centre, and 𝐻 is the half-height of the slope.  295 

The length of the model was set to 8,000 m so that the slope angles at two ends approach zero. 296 

The soil properties are the same as those in Zhang et al. (2019) and are listed in Table 1. For a 297 

curvilinear slope, plastic deformation is initiated at the steepest point once the maximum 298 

gravity shear stress exceeds the peak undrained shear strength, and may be followed by 299 

catastrophic propagation of the slip surface along the weak layer, which stops only when the 300 

propagating region reaches a flat part of the slope. In the benchmark cases, the peak undrained 301 

shear strength of the weak layer soil is fixed at 𝑠uw,p = 10  kPa, which is small enough to 302 

achieve catastrophic slip surface growth along the weak layer, according to the criterion of 303 

Zhang et al. (2015). The undrained shear strength of the sliding layer, however, varies between 304 

𝑠us,p = 10, 20, 30 and 100 kPa, to simulate different post-failure behaviours.  305 

For 𝑠us,p = 100  kPa, the sliding layer is strong enough to remain stable, with the failure 306 

concentrated within the weak layer only. The evolution of the length of the slip surface is shown 307 

in Figure 5b for both LEDIM and LDFE modelling. The slip surface firstly increases at a rate 308 

up to 70 m/s (almost double the compression wave velocity √𝐸ps 𝜌⁄ = 37 m/s as it propagates 309 



in both upward and downward directions) and stops with a final length of 2,350 m. The results 310 

from the two numerical methods compare well overall, although the growth of the slip surface 311 

is slightly slower and the final slip surface length is about 2% higher in the LDFE analysis. 312 

This validates the accuracy of the proposed method in simulating the slip surface growth in the 313 

weak layer. 314 

For the other three cases with 𝑠us,p = 10, 20  and 30 kPa, active and passive failure are 315 

apparent at the upslope and downslope portion of the slope, respectively, as shown in Figure 6. 316 

Figure 6 also compares the upslope and downslope segments of the slip surface in the weak 317 

layer at the final stage according to the two numerical methods. With 𝑠us,p = 10 kPa, the upper 318 

layer soils are soft and flow downward after the global slab failure, with the layer becoming 319 

thinner upslope and thicker downslope. The relative strong sliding layer with 𝑠us,p = 20 and 320 

30 kPa leads to break-up of the layer and a main scarp somewhere upslope. The proposed 321 

numerical method can generally simulate the same post-failure behaviours as the LDFE method, 322 

which further validates the method in modelling global failure. 323 

The LDFE method is rather inefficient in simulating a 3D landslide process because of current 324 

computational capacity and the difficulty in treating a highly distorted slope surface. The 325 

proposed numerical method has a particular advantage in computational efficiency which 326 

enables it to simulate the evolution of a 3D translational landslide in sensitive soils, as will be 327 

demonstrated in the remainder of the paper. 328 

INITIATION AND STABLE GROWTH OF SLIP SURFACE 329 

Four types of submarine slopes (planar, S-shape, convex, and concave, as shown in Figure 7) 330 

with a sensitive marine sediment are used to study the 3D landslide evolution. All of them 331 

consist of a continental shelf, a continental slope, and a continental rise from nearshore to deep 332 

sea, with an overlying layer, a weak layer, and a base. An initial slip surface was assumed to 333 



occur within the weak layer at the centre of the continental slope. The continental slope is 334 

assumed to have an average inclination of 6° to horizontal, and the continental shelf and 335 

continental rise are horizontal. Investigations of slip surface growth and slab failure initiation 336 

focus on the planar continental slope, which is assumed sufficiently long (8,000 m) and wide 337 

(6,000 m). The complete landslide evolution, including the post-failure behaviours and the 338 

arrest of mass transport deposit, is then simulated with considerations of the full slope model 339 

and different 3D slope geometries. Although the model is tailored to fit submarine conditions, 340 

the results are expected to be robust for similar onshore conditions as well.  341 

A local Cartesian coordinate system x-y-z is used, with the origin set at the slope centre and the 342 

z-axis pointing away from the seabed as shown in Figure 7. The expression of the planar slope 343 

geometry is straightforward with the coordinate z linearly varying from the slope crest to the 344 

toe. To describe the S-shape slope geometry, the exponential function (25), extending through 345 

the x-axis, is used. The convex and concave slope geometries are constructed from a truncated 346 

cone and expressed, in terms of a global Cartesian coordinate system X-Y-Z as shown in Figure 347 

7c and d, by 348 

𝑍 = 2𝐻 (1 −
√𝑋2 + 𝑌2 − 𝑅𝑡

𝑅𝑏 − 𝑅𝑡
) (26) 

and 349 

𝑍 = 2𝐻
√𝑋2 + 𝑌2 − 𝑅𝑏

𝑅𝑡 − 𝑅𝑏
 (27) 

where 𝑅t and 𝑅b are radii of circular cross sections of the truncated cone through the slope 350 

crest and the slope toe, respectively. The local coordinates can then be easily related to the 351 

global coordinates based on the origin shifting as shown in Figure 7c and d. 352 

The planar slope model is used for the in depth investigation of the evolution of the translational 353 

landslide in sensitive soils, which is followed by an initial insight into the 3D slope geometry 354 



effects considering all mentioned slope types.  355 

Initiation of slip surface 356 

Many large-scale landslides might be initiated in a local region (slip surface), followed by 357 

extensive growth of the slip surface and eventually global slab failure. The initial local slip 358 

surface occurs where the permanent or transient driving force exceeds the resistance. It forms 359 

either because of an increase in the driving force, e.g., by seismic events or diapirs, or a 360 

decrease in shear strength, e.g., by soil degradation or accumulation of pore pressures. 361 

In this first study, it is sufficient to assume the initiation slip surface is symmetric, and its 362 

boundary can be described by a series of functions: 363 

|
2𝑥

𝑙𝑥
|

𝑛

+ |
2𝑦

𝑙𝑦
|

𝑛

= 1 (28) 

where 𝑛 is a shape parameter, and 𝑙𝑥 and 𝑙𝑦 are dimensions of the slip surface in the x- and y- 364 

directions, respectively. The value of 𝑛 is larger than unity for a convex slip surface. For 𝑛 = 1 365 

and 2, the boundary of the slip surface is a rhombus and an ellipse, respectively. As n increases, 366 

the pre-softened zone extends further and further outward, and as 𝑛  → ∞, the boundary 367 

becomes rectangular. For most cases studied here, the value of 𝑛 was taken as 2. The shear 368 

strength in the initial slip surface might be reduced from the peak to the residual by slip 369 

weakening, time weakening or both, although the process may take a long time. Therefore, it 370 

is sufficient and conservative to assume that the shear strength in the slip surface has been 371 

reduced to the residual.  372 

The force imbalance from the slip surface can be transferred and sustained by surrounding soils, 373 

which may undergo plastic failure and fall into the post-peak strain softening state. Figure 8 374 

shows the contour of shear strength after the formation of a circular slip surface (𝑛 = 2, and 375 

𝑙𝑥 = 𝑙𝑦 = 40 m), as calculated by using the proposed numerical scheme. At the initial state, 376 



the undrained shear strength is reduced to the residual at the slip surface while being maintained 377 

at the peak elsewhere. Other properties of the numerical model and materials are listed in Table 378 

2. After the initiation of the slip surface, force transfer and re-stabilisation is simulated using 379 

the proposed numerical scheme. Within the weak layer, three zones can be identified as shown 380 

in the figure: the intact zone (where soils remain intact), the ‘process zone’ (where soils undergo 381 

strain softening, and shear strength ranges between the peak and the residual) and the slip 382 

surface (where soils reach the residual state). Six cross sections, three in each (x- or y-) direction, 383 

are chosen to further observe the distribution of the shear strength within the three zones, as 384 

given in Figure 8b and c. For the x-I, x-II, y-I and y-II sections which cross all three zones, 385 

discontinuities in the distributions of the shear strength exist, dropping from a post-peak value 386 

to the residual. These distinguish the process zone from the initial slip surface. The x-III and y-387 

III profiles, however, cross the process zone and intact zone only, and the discontinuity in shear 388 

strength distribution is absent. Note that, in this case, the process zone is developed to fully 389 

resist the unbalanced forces from the slip surface, and hence the slope remains stable. This is 390 

defined as stable slip surface growth and will be detailed in the next sub-section. 391 

Stable growth of slip surface 392 

Figure 9 shows under what conditions a process zone might be initiated and developed. For a 393 

relatively large slip surface (i.e., 𝑙𝑥 = 40  m for a circular slip surface), it can disturb and 394 

weaken adjacent soils, leading to the development of a process zone surrounding the slip 395 

surface. However, if the slip surface is sufficiently small (e.g., 𝑙𝑥 = 20 m), the driving force 396 

from the slip surface might be easily sustained by the surrounding soils without the formation 397 

of the process zone, i.e., the soils remain intact as shown in Figure 9. When the diameter of the 398 

slip surface grows to 𝑙𝑥 = 30 m, the process zone appears only at the front and rear of the slip 399 

surface.  400 

The above observation reveals that: 1) for a circular slip surface, the process zone firstly 401 



emerges at the rear and in front of the slip surface; and 2) the larger the slip surface, the more 402 

significant the process zone. Figure 9 also compares the shear stress contours resulting from 403 

different sizes of slip surface. The shear stress remains the gravity value (≈6 kPa for parameters 404 

listed in Table 2) and increases to the peak at the interface between the intact and process zones. 405 

It is limited to the shear strength within the process zone and the slip surface.  406 

Stability can be eventually achieved for the cases of 𝑙𝑥 = 20 , 30 and 40 m despite the 407 

development of the process zone. As defined above, the process of extensive expansion of the 408 

slip surface up to 𝑙𝑥 = 40 m can be termed stable slip surface growth. In contrast, for the case 409 

of 𝑙𝑥 = 50  m, the growth of the slip surface cannot be restricted under existing forces and 410 

hence is termed unstable slip surface growth. Note that Figure 9 shows a transient moment of 411 

this case, and the dynamic expansion of the slip surface during unstable slip surface growth 412 

will be discussed in the next section.  413 

The pattern of stable growth of the slip surface depends on the shape of the initial slip surface. 414 

Figure 10 shows the different patterns of stable slip surface growth for elliptical slip surfaces 415 

with different ratios of major and minor axes, in terms of the shear strength contour. Similar to 416 

Figure 8b and c, Figure 11 presents the distributions of shear strength along the major and 417 

minor axes of the slip surface to visualise the growth pattern of the slip surface. In all cases, 418 

the stable growth of the slip surface together with the development of the process zone is 419 

obvious. As demonstrated above, for a circular slip surface with 𝑙𝑥 𝑙𝑦⁄ = 1, the travel direction 420 

(x-direction) is the favoured direction for slip surface growth. The favoured direction along the 421 

x-direction of growth is enhanced with a larger axis ratio (a wider slip surface), e.g., 𝑙𝑥 𝑙𝑦⁄ =422 

2. For a slender slip surface (of small axis ratio, 𝑙𝑥 𝑙𝑦⁄ = 0.25), however, the slip surface tends 423 

to propagate along the y-direction first, presenting a different growth pattern from wide slip 424 

surfaces. For instance, with 𝑙𝑥 = 20 m and 𝑙𝑦 = 60 m, soil at the two sides of the slip surface 425 



begins to soften while the soil in front and at the rear of the slip surface remains intact. With 426 

the axis ratio 𝑙𝑥 𝑙𝑦⁄ = 0.5, the slip surface seems to grow simultaneously along the periphery 427 

of the slip surface without an obvious favoured direction, which forms the most pessimistic 428 

situation.  429 

Figure 12 briefly illustrates the three modes. The growth of the slip surface along the x-direction 430 

is driven by the compression force downslope and extension force upslope, akin to the in-plane 431 

shear mode of crack propagation in fracture mechanics (i.e., a shear stress acting parallel to the 432 

plane of the slip surface and perpendicular to the slip surface front); while the growth along the 433 

y-direction is driven by the shear force, akin to the out-of-plane shear mode of crack 434 

propagation in the fracture mechanics (i.e., a shear stress acting parallel to the plane of the slip 435 

surface and parallel to the slip surface front). Here, the former is defined as the compression-436 

extension mode and the latter is defined as the shear mode. In reality, a combined mode 437 

including both the compression-extension and shear modes is expected to be more common, 438 

particularly when the slip surface growth is unstable and continuous, as will be discussed in 439 

the next sub-section. It has not been possible to study the shear and combined modes in 440 

previous 2D investigations (e.g., Puzrin et al. 2004, Kvalstad et al. 2005, Zhang et al. 2015).  441 

UNSTABLE GROWTH OF SLIP SURFACE 442 

Unstable slip surface growth mechanism 443 

With an initial slip surface of 𝑙𝑥 = 𝑙𝑦 = 50 m and other properties listed in Table 2, the growth 444 

of the slip surface is unstable and can only be limited by slope flattening or global slab failure. 445 

Figure 13a, b and c, respectively, shows the evolution of the shear strength contour, horizontal 446 

velocity field and vertical velocity field during the unstable growth of the slip surface. To 447 

intensively investigate the slip surface growth without slab failure, the shear strength in the 448 

overlying layer was intentionally set to a high value (1,000 kPa). At 𝑡 = 10 s, the slip surface 449 



grows from a circle to an ellipse with the major axis parallel to the potential travel direction in 450 

the compression-extension mode. Thereafter, the slip surface grows dramatically in the 451 

combined mode and propagates more outward at the four shoulders, forming a distinctive 452 

‘peanut’ shape at 𝑡 = 25  s. The wide shoulders are generated because of larger horizontal 453 

velocity in these areas, whereas along the major (y-) and minor (x-) axes of the slip surface, the 454 

horizontal velocity is close to zero, as shown in Figure 13b. The slip surface is symmetric in 455 

terms of both x- and y-axes before 𝑡 = 50 s. At 𝑡 = 50 s, however, the downslope part of the 456 

slip surface is slightly larger than the upslope, as soil begins to be accumulated more downslope 457 

with downward movement of the slide mass.  458 

Zhang et al. (2020) assumed that the (horizontal) velocity of the slide mass along the x- 459 

direction is negligible compared to the y-direction component, which has been found to be a 460 

robust result during the stable growth of slip surface through LDFE modelling. This generates 461 

a plane strain condition with the compression/extension modulus in the sliding layer calculated 462 

by 463 

𝐸𝑝𝑠 =
𝐸

1 − 𝜈2
=

2𝐺

1 − 𝜈
 (29) 

where 𝐸 is the Young’s modulus and 𝜈 the Poisson’s ratio. This assumption needs to be verified 464 

for the stage of unstable slip surface growth. To achieve this, conservation of momentum in the 465 

x-direction, i.e. governing equation (2), was ignored and the horizontal component of the 466 

velocity was set to zero. Numerical results of such an idealised case in terms of the strength 467 

contours are presented in Figure 13d. For 𝑡 = 5 s and 10 s, the slip surfaces of the idealised 468 

case are almost identical to the case formulated by rigorous governing equations as shown in 469 

Figure 13a. However, with further unstable growth of the slip surface, the shape of the slip 470 

surface remains an ellipse, which is different from the ‘peanut’ shape of the rigorous case.  471 

Figure 14 compares the two mechanisms at 𝑡 = 50 s. The major and minor axes of the ‘peanut’ 472 



slip surface are the same as those of the ‘ellipse’ slip surface, with the area of the slip surface 473 

larger in the former mechanism. The different mechanisms found in the two cases imply that 474 

the horizontal movement of the slide mass plays an important role and has to be considered 475 

during the unstable growth of the slip surface.  476 

Unstable slip surface growth speed 477 

Once a slip surface falls into the unstable growth stage, the growth speed depends on how the 478 

unbalanced forces are transferred within the overlying layer. For the compression-extension 479 

mode, the growth of the slip surface is driven by the compressional/tensile force, and therefore 480 

the growth speed (of the major axis) can be related to the compression wave velocity 481 

𝑣𝑚𝑎𝑗 = 2√
𝐸′

𝜌
 (30) 

where 𝐸′ is the compression modulus. Note that the number 2 in the expression means that the 482 

growth speed is double the wave velocity, as the slip surface grows in both the upslope and 483 

downslope directions. Similarly, for the shear mode, the growth speed of the minor axis can be 484 

related to the shear wave velocity 485 

𝑣𝑚𝑖𝑛 = 2√
𝐺

𝜌
 (31) 

For plane strain and undrained conditions, the compression modulus, 𝐸′ = 𝐸ps, is four times 486 

the shear modulus (see equation (29)) and therefore, the major axis always doubles the minor 487 

axis of the slip surface. This can be seen in Figure 14, where the major axes of the slip surfaces 488 

are almost 3,000 m while the minor axes are around 1,500 m in both mechanisms.  489 

Figure 15a shows the length (major axis) and width (minor axis) of the slip surface during its 490 

growth for the selected case, compared with the analytical solutions given by equations (30) 491 

and (31). It should be noted that the growth of the slip surface evolves from the stable to 492 



unstable stages with the transition emerging at around 𝑡 = 4 s. During the stable growth stage, 493 

both axes of the slip surface are assumed unchanged. With this idealisation, the growth of the 494 

two axes of the slip surface in the numerical modelling can be well predicted by the analytical 495 

solutions, with the growth speeds being 34 m/s and 68 m/s for the major and minor axes, 496 

respectively. Such fast speeds reveal that unstable growth of the slip surface is catastrophic. 497 

Figure 15b gives the area of the slip surface during its unstable growth for both mechanisms. 498 

For the ‘ellipse’ mechanism, the area can be calculated exactly by 499 

𝐴 =
𝜋

4
𝑙𝑥𝑙𝑦 (32) 

which is shown by the good agreement between the numerical and analytical results in the 500 

figure. The area of the ellipse slip surface is initially 1,962.5 m2 and increases to 3.6 km2 in 50 501 

s. The peanut slip surface (5.3 km2) is about 45% larger than the ellipse slip surface at 𝑡 = 50 s. 502 

The fast growth of the slip surface implies that during an earthquake, even with a short period 503 

of shaking, a large slip surface with a magnitude of ~ km2 might be formed. Such a large slip 504 

surface may further result in global slab failure and debris flow. Therefore, it is key to determine 505 

in what conditions the slip surface can grow unstably, which will be discussed in the next 506 

section.  507 

Criteria for unstable growth of slip surface 508 

For a slip surface described by a series of functions (28), the area of the slip surface can be 509 

calculated by 510 

𝐴 =
𝑙𝑥𝑙𝑦

𝑛
∙

𝛤(1 + 1 𝑛⁄ )𝛤(1 𝑛⁄ )

𝛤(1 + 2 𝑛⁄ )
 (33) 

where 𝛤  is the gamma function. By integrating the normal and shear resistances along the 511 

boundary of the slip surface, one may calculate the total resistance and compare it to the driving 512 

force from the slip surface, whereby the critical area of the slip surface for unstable growth is 513 



given by (Zhang et al. 2020) 514 

𝐴𝑐𝑟𝑖 = 32 (
1 − 𝑟

𝑟
𝑙𝑐)

2

 (34) 

where 𝑟 is the shear stress ratio and 𝑙c is the critical length relevant to the process zone size, 515 

given by 516 

𝑟 =
𝜏𝑔 − 𝑠𝑢𝑤,𝑟

𝑠𝑢𝑤,𝑝 − 𝑠𝑢𝑤,𝑟
, 𝑙𝑐 = √

𝐺ℎ𝛿𝑟
𝑝

𝑠𝑢𝑤,𝑝 − 𝑠𝑢𝑤,𝑟
 (35) 

For static analysis, ignoring any inertia effects, the criterion (34) is conservative compared to 517 

the numerical data from finite element and finite difference modelling (Zhang et al. 2020).  518 

A parametric study was conducted to observe the effects of the shape parameter, 𝑛, and the 519 

dimensions of the slip surface on the critical area for unstable slip surface growth. The gravity 520 

loads and the critical surface areas at critical conditions for all cases are presented in Table 3. 521 

Figure 16a shows a comparison of the numerical results with or without inertia effects and the 522 

analytical results by criterion (34). In dynamic analysis conducted in the current study, the 523 

critical area estimated by (34) is not always conservative, particularly with a large shear stress 524 

ratio. Assuming that the dynamic criterion meets the same series of functions as the static 525 

criterion (34), the best fit of the numerical data from the dynamic analysis gives 526 

𝐴𝑐𝑟𝑖 = 18.4 (
1 − 𝑟

𝑟
𝑙𝑐)

2

 (36) 

which is shown in Figure 16b. This means that the critical area of the slip surface for unstable 527 

slip surface growth under dynamic conditions is on average 42.5% smaller than that ignoring 528 

inertia effects. This echoes the finding that in a 2D plane strain slope, the critical length (major 529 

axis) of slip surface for catastrophic propagation can be up to 50% lower with inertia effects 530 

than without inertia effects (Zhang et al. 2016). Extending this observation to the 3D case, one 531 

may simply assume for the dynamic unstable growth a 50% reduction in the critical area of the 532 



slip surface from the static criterion (36), that is 533 

𝐴𝑐𝑟𝑖 = 16 (
1 − 𝑟

𝑟
𝑙𝑐)

2

 (37) 

Figure 16a shows that the criterion (37) gives estimates of the critical slip surface area well 534 

below the numerical data and is therefore conservative. 535 

SLAB FAILURE AND POST-FAILURE BEHAVIOURS 536 

Slab failure 537 

Growth of the slip surface within the weak layer and slab failure within the overlying layer are 538 

two competing mechanisms leading to large-scale landslides in sensitive soils. The extent of 539 

the slip surface depends on how ‘weak’ the weak layer is. With the growth of the slip surface, 540 

the driving force increases, and so does the deviatoric stress within the overlying layer given 541 

by equations (7) and (8). Therefore, at a certain stage of the unstable slip surface growth, the 542 

overlying soils may reach the maximum allowable deviatoric stress, initiating slab failure. 543 

Figure 17 shows the increase of the maximum deviatoric stress of the overlying soils with the 544 

growth of the slip surface. Note that the at-rest lateral earth pressure coefficient, which is the 545 

horizontal earth pressure over the vertical earth pressure, was set to 𝐾0 = 0.5 for all numerical 546 

cases evolving into slab failure. The peak undrained shear strength of the weak layer soil was 547 

fixed at 𝑠uw,p = 10 kPa, while the strength of the overlying soil, 𝑠us,p, was varied between 10 548 

kPa, 20 kPa, 50 kPa, 100 kPa and 1,000 kPa without strain softening. The other parameters 549 

remain the same as those in Table 2. At the initial state, the deviatoric stress is 26 kPa, which 550 

is essential to make the slip surface grow unstably from an initial area of 2,352 m2 (with 𝑙𝑥 =551 

40 m and 𝑙𝑦 = 80 m). In the case of 𝑠us,p 𝑠uw,p⁄ = 100, the ‘unrealistic’ strong overlying layer 552 

leads to the pure growth of the slip surface over the whole simulation domain (8,000 m × 6,000 553 

m), and the deviatoric stress keeps growing, as shown in the figure. For the other cases, the 554 



deviatoric stress is limited to 2𝑠us,p, which satisfies the generalised nature of the von Mises 555 

failure criterion with respect to the Tresca failure criterion. The stronger the overlying soil, the 556 

larger the slip surface at the initiation of slab failure. For example, the slip surface at the slab 557 

failure initiation is as large as 1.1 km2 in the case of 𝑠us,p 𝑠uw,p⁄ = 10, while it is reduced by 558 

2/3 when the undrained shear strength of the overlying soil is decreased by half. 559 

When the weak layer is not literally ‘weak’, i.e., in the case of 𝑠us,p 𝑠uw,p⁄ = 1, the slab failure 560 

is triggered without unstable growth of the slip surface, as the required deviatoric stress (26 561 

kPa) is essentially higher than the maximum allowable value (2𝑠us,p = 20  kPa). Figure 18 562 

shows the slip surface growth with respect to the contours of the shear strength in the weak 563 

layer, and the slab failure with respect to the contours of the plastic strain and deviatoric stress 564 

in the overlying layer. At 𝑡 = 5 s, slab failure emerges at the rear of the slip surface where soils 565 

are unloaded and the deviatoric stress reaches the maximum 20 kPa; while in front of the slip 566 

surface, soils are loaded and the deviatoric stress decreases from the initial value. At 𝑡 = 10 s, 567 

the soils in front of the slip surface have been loaded to the passive failure state, and, 568 

accordingly, the deviatoric stress also reaches the maximum. Thereafter, the slab failure 569 

propagates mainly at the downslope portion with diffusive plastic strain; at the rear of the slip 570 

surface, the plastic strains are accumulated, and the propagation of the slab failure is not 571 

apparent. Rather than like a fan zone formed in front of the slip surface, the rear boundary of 572 

the slip surface (or the main scarp) is quite straight. For the planar slope studied here, the slip 573 

surface keeps growing along the x-direction, with the side boundaries of the slip surface 574 

continuing to extend further outward.  575 

Figure 19 compares the slip surface and slab failure at 𝑡 = 50 s for cases with different strength 576 

ratios, 𝑠us,p 𝑠uw,p⁄ = 1, 2, 5, 10. For the case of the strongest overlying layer (𝑠us,p 𝑠uw,p⁄ =577 

10), the slab failure initiates only at the rear and the sides of the growing slip surface. With the 578 



decrease of the overlying soil strength, the downslope portion fails together with the upslope 579 

portion. The slip surface pattern of the downslope portion does not alter significantly, although 580 

the accumulated plastic strain in the overlying layer decreases with the increase of the overlying 581 

soil strength. A ‘peanut’ slip surface mechanism remains for 𝑠us,p 𝑠uw,p⁄ = 2, 5, 10 before the 582 

slab failure; while for 𝑠us,p 𝑠uw,p⁄ = 1, only the bottom half of the ‘peanut’ is developed as the 583 

slab failure occurs early and stops the growth of the slip surface upslope. The upper half of the 584 

slip surface, however, becomes flat and propagates less after the slab failure. 585 

Post-failure evolution and arrest of landslide 586 

It has been demonstrated above that, once initiated, the slip surface growth and slab failure 587 

propagation cannot be arrested on a planar slope. Either slope flattening or material 588 

strengthening can restrict slip surface growth and slab failure propagation. To further observe 589 

the arrest of slip surface and post-failure behaviours, the full slope model including a relatively 590 

flat continental shelf and a continental rise, as shown in Figure 7, is used in the remainder of 591 

the study. For the planar slope model, it consists of a continental slope with a slope angle of 6° 592 

and length of 400 m (coordinate 𝑦 from −200 m to 200 m), a flat continental shelf (𝑦 <−200 m) 593 

and a flat continental rise (𝑦 > 200 m). The peak undrained shear strength of the weak layer 594 

soil, the weak layer depth and the submerged soil unit weight were chosen as 𝑠uw,p = 15 kPa, 595 

ℎ = 8  m, and 𝛾′ = 8  kN/m3, respectively. This parameter set generates a strength ratio of 596 

𝑠uw,p 𝛾′ℎ⁄ = 0.234, which is typical for normally consolidated submarine clay sediments. The 597 

overlying layer was assumed slightly over-consolidated with a peak strength of 𝑠us,p = 10 kPa 598 

and strength ratio of 0.31. The soil sensitivities of the weak layer and the overlying layer were 599 

set to 7 and 2, respectively. Again, an elliptical initial slip surface of 𝑙𝑥 = 40 m and 𝑙𝑦 = 80 m 600 

was pre-set. Other parameters are the same as those listed in Table 2. 601 

Figure 20a shows the numerical landslide evolution from the slip surface growth, the slab 602 



failure initiation, post-failure stage and re-deposition with respect to the contours of the shear 603 

strength in the weak layer and the plastic strain in the overlying layer, and the changes in the 604 

overlying layer thickness. Note that the normalised sliding layer thickness is calculated as the 605 

ratio of the current thickness and the initial thickness of the overlying layer. At 𝑡 = 10 s, slab 606 

failure is initiated with a certain amount of slip surface growth. The plastic strain is more 607 

concentrated at the rear of the slip surface, and a curved back scarp is formed at this stage, with 608 

the height of the scarp exceeding 4 m (0.5ℎ ). The main scarp moves backward with the 609 

retrogressive failure at the rear of the slip surface. The retrogression is stopped by the flat 610 

continental shelf, leaving a fairly straight main scarp of 200 m in length and over 4 m in height. 611 

Because of the strain softening, the failed overlying mass is torn apart into blocks, within which 612 

the plastic strain of the sliding layer is insignificant as shown in the second row of Figure 20a. 613 

The blocks are broken into smaller pieces and finally disappear during their downward 614 

movement. The failed and softened slide mass is finally deposited at the continental rise, 615 

forming a compressed fan zone of around 400 m in diameter and over 4 m in heave. The extent 616 

of the slip surface in the weak layer is almost identical to the combined area of the source 617 

region and deposition fan zone. Features such as the main scarp, the blocks seen during 618 

progressive failure, and the deposition fan zone are consistent with site investigations of many 619 

historical submarine landslides, e.g., the Loch Eriboll Slide discovered offshore Scotland 620 

(Carter et al. 2020) and shown in Figure 20b.  621 

Effects of a 3D slope geometry 622 

Three typical 3D slope types, as shown in Figure 7b, c and d, are considered in this section in 623 

order to demonstrate ability of the proposed framework to handle true 3D slope geometries and 624 

in order to gain an initial insight into the slope geometry effects on the translational landslide 625 

evolution. For the S-shape slope, the half-height of the slope in equation (25) was set to be the 626 

same as for the planar slope, i.e., 𝐻 = 21 m, and the maximum slope angle was taken as 𝜃𝑐 =627 



9° such that the average slope angle within the range of −500 m < 𝑦 < 500 m is equal to the 628 

planar slope angle of 6°. For the convex slope, the values of 𝑅𝑡 and 𝑅𝑏 were set to 800 m and 629 

1,200 m, respectively; while for the concave slope, 𝑅𝑏 = 800 m and 𝑅𝑡 = 1,200 m. The slope 630 

angle of the convex and concave slope models is the same with the planar slope model.  631 

Figure 21 compares the final states of the four slope models with respect to the fields of the 632 

shear strength in the weak layer, the shear stress in the weak layer, the plastic strain in the 633 

sliding layer, and the normalised sliding layer thickness. It can be noted that the far field gravity 634 

shear stress fields (second row of Figure 21) strongly depend on the geometry of the problem. 635 

The results of the planar, convex and concave slopes look very similar, with slightly more 636 

horizontal slip surface growth observed in the convex slope and slightly more retrogressive 637 

extension pertained in the concave slope, suggesting that the slope gradient along the x-638 

direction has limited influence on the landslide evolution. In contrast, the final slip surface and 639 

mass transport deposit observed in the S-shape curvilinear slope are significantly different from 640 

the other three models with less extended retrogressive failure and a smaller fan heave zone. 641 

This confirms the conclusions from the previous studies (e.g., Puzrin et al. 2017, Zhang et al. 642 

2021) that the slope gradient along the y-direction has a considerable effect on the landslide 643 

evolution. 644 

The examples shown here mainly aim to verify the capability of the proposed numerical 645 

scheme in simulating 3D post-failure behaviours of landslides in sensitive clays. Detailed 646 

investigation of the effects of the 3D slope geometry on post-failure patterns is beyond the 647 

scope of the present work and will be explored in future studies by using the proposed 648 

numerical tool.  649 

CONCLUSIONS 650 

This study has simulated and discussed the whole evolution of a translational landslide in a 3D 651 



slope of sensitive soils by using an original large deformation numerical tool. A translational 652 

landslide in sensitive soils might be enormous but is often initiated by a localised failure zone 653 

within a weak layer. Much attention has been paid to understanding and quantifying the failure 654 

process of translational landslides with 2D plane strain models. Some 3D simulations of post-655 

failure debris flow have been performed with advanced numerical methods, but few of them 656 

have examined the failure initiation. The complete 3D evolution of translational landslides in 657 

sensitive soils, including the slip surface initiation and growth along a weak layer, slab failure, 658 

post-failure behaviours and re-stabilisation, has been investigated. The numerical scheme has 659 

been established by solving governing equations in terms of the conservations of the mass and 660 

the momentum of sliding mass in discretised Eulerian cells of a simulation domain with a depth 661 

integrated finite volume method. A von Mises yield criterion with isotropic and linear strain 662 

softening has been used with a Lagrangian update of material properties at each cell centre 663 

after each simulation step. Some main findings are as follows. 664 

• A slip surface might be formed and grow stably within a weak layer due to extensive 665 

external triggers such as earthquakes and excess pore pressure accumulation. Strain 666 

softening of sensitive soils during shearing leads to formation of a process zone, where 667 

undrained shear strength reduces from the peak towards the residual, surrounding the 668 

slip surface. For an initially wide slip surface, the process zone first emerges in front 669 

and at the rear of the slip surface, whereas for an initially slender slip surface, it occurs 670 

at the two sides. For an elliptical slip surface, the process zone develops around the 671 

periphery of the slip surface without any favoured direction. 672 

• Once the slip surface reaches a certain size, its growth becomes unstable and 673 

catastrophic, restricted only by slope flattening or slab failure. The critical area of the 674 

slip surface for unstable growth is almost independent of its shape but depends on the 675 

material properties and shear stress ratio over the slip surface. For planar slides, it is 676 



given by 𝐴cri = 16 (
1−𝑟

𝑟
𝑙c)

2

 where the shear stress ratio, 𝑟, and characteristic length, 677 

𝑙c, are expressed by equation (35).  678 

• Regardless of the initial shape, the slip surface transitions from an ellipse to a ‘peanut’ 679 

pattern during the unstable growth stage, with expansion rates equal to compression 680 

wave velocity and shear wave velocity along the major and minor axes of the slip 681 

surface, respectively. Within the sliding layer, the unbalanced force is transferred from 682 

the slip surface to the surrounding soils, leading to unloading upslope and loading 683 

downslope. Deviatoric stress increases with the expansion of the slip surface until it 684 

reaches the maximum value controlled by the undrained shear strength. The global slab 685 

failure usually initiates at the rear of the slip surface if the at-rest earth pressure 686 

coefficient is smaller than unity. The stronger the overlying layer, the larger the slip 687 

surface before the global slab failure. After the slab failure, the growth of the slip 688 

surface is in alignment with the propagation of the slab failure.  689 

• A main scarp forms at the rear of the slip surface after the slab failure, and is followed 690 

by retrogression, which is limited by upslope slope flattening. The failed slide mass 691 

disintegrates into blocks and then turns to fully softened debris flow with downward 692 

movement. The slide mass finally re-deposits at the flat terrain with the mass transport 693 

deposit forming a fan zone. There differences in the landslide failure extension and 694 

mass transport deposit morphology between the planar, the convex, and the concave 695 

slopes of the same and uniform slope angle and parallel layering characteristic of 696 

sediments were found to be insignificant. In contrast, in the curvilinear slope, a 697 

significantly less extended failure upslope and a smaller fan heave zone downslope 698 

have been observed.  699 

The numerical results obtained have allowed us to quantify the unstable growth of the slip 700 

surface and slab failure initiation. Though the diverse post-failure mechanisms are yet to be 701 



fully understood and quantified, the numerical scheme has shown its potential to simulate 3D 702 

post-failure behaviours in 3D slope geometries following different initiation histories. 703 

However, the constitutive model used here is only valid for fine materials under undrained 704 

conditions. The robustness of the numerical scheme with advanced constitutive models is yet 705 

to be verified. Meanwhile, the numerical scheme needs proper adjustment to fit the modelling 706 

of landslides in complex nonlinear terrains.  707 
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Table 1 Parameters for benchmark case 806 

Parameter Value  Unit  

Length of slope 8,000 m 

Maximum slope angle, 𝜃𝑐 6 degrees 

Half slope height, 𝐻 20 m 

Shear modulus, 𝐺 662.25 kPa 

Shear stiffness in the weak layer, 𝐾 1656 kPa/m 

At-rest earth pressure coefficient, 𝐾0 0.75  

Gravity acceleration, 𝑔 9.81 m/s2 

Saturated density, 𝜌 1870 kg/m3 

Peak undrained shear strength in weak layer, 𝑠𝑢𝑤,𝑝 10 kPa 

Peak undrained shear strength in sliding layer, 𝑠𝑢𝑠,𝑝 10, 20, 30, 100 kPa 

Soil sensitivity in weak layer 5  

Soil sensitivity in sliding layer 1  

Residual plastic shear displacement, 𝛿𝑟
𝑝
 0.2 m 

 807 

  808 



Table 2 Base parameters for numerical cases 809 

Parameter Value Unit 

Overall model length, 𝐿 4,000 m 

Overall model width, 𝐵 150 m 

Slope angle, 𝜃 6.0 degrees 

Sliding layer thickness, ℎ 8.0 m 

Shear stiffness in weak layer, 𝐾 1,656 kPa/m 

Shear modulus in sliding layer, 𝐺 500 kPa 

Peak shear strength in weak layer, 𝑠𝑢𝑤,𝑝  10 kPa 

Residual shear strength in weak layer, 𝑠𝑢𝑤,𝑟  2  kPa 

Plastic shear displacement to the residual strength, 𝛿𝑟
𝑝
 0.2 m 

Plastic shear strain to the residual strength, 𝜀𝑠,𝑟
𝑝

 0.2  

At-rest lateral earth pressure coefficient, 𝐾0 0.5  

Characteristic length1, 𝑙𝑐  10 m 

Submerged soil density, 𝜌 740 kg/m3 

1 𝑙c = √
𝐺ℎ𝛿r

p

𝜏p−𝜏r
 810 
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Table 3 Critical conditions for unstable slip surface growth by numerical analysis 813 

Dimension of slip surface Gravity load 

𝒍𝒙 (m) 𝒍𝒚 (m) 𝒏 𝑨 (m2) 𝝆 (kg/m3) 𝒓 

First series: 𝑙𝑦 𝑙𝑥⁄ = 1, 𝑛 = 2 

10 10 2 79 1,170 0.943 

20 20 2 314 1,070 0.841 

40 40 2 1,257 870 0.637 

60 60 2 2,827 730 0.494 

80 80 2 5,027 640 0.403 

100 100 2 7,854 580 0.341 

120 120 2 11,310 540 0.301 

140 140 2 15,394 500 0.260 

160 160 2 20,106 470 0.229 

180 180 2 25,447 450 0.209 

200 200 2 31,416 430 0.189 

Second series: 𝑙𝑦 𝑙𝑥⁄ = 2, 𝑛 = 2 

10 20 2 157 1,130 0.902 

20 40 2 628 980 0.749 

40 80 2 2,513 750 0.515 

60 120 2 5,655 630 0.392 

80 160 2 10,053 550 0.311 

100 200 2 15,708 500 0.260 

120 240 2 22,619 460 0.219 

140 280 2 30,788 430 0.189 

Third series: 𝑙𝑦 𝑙𝑥⁄ = 3, 𝑛 = 2 

10 30 2 236 1,090 0.862 

20 60 2 942 910 0.678 

40 120 2 3,770 680 0.443 

60 180 2 8,482 570 0.331 

80 240 2 15,080 500 0.260 

100 300 2 23,562 460 0.219 

120 360 2 33,929 430 0.189 

Fourth series: 𝑙𝑦 𝑙𝑥⁄ = 0.5, 𝑛 = 2 

20 10 2 157 1,130 0.902 

40 20 2 628 990 0.760 

80 40 2 2,513 770 0.535 

120 60 2 5,655 640 0.403 

160 80 2 10,053 560 0.321 

200 100 2 15,708 510 0.270 

240 120 2 22,619 470 0.229 

280 140 2 30,788 450 0.209 

Fifth series: 𝑙𝑦 𝑙𝑥⁄ = 2, 𝑛 = 1 

20 40 1 400 1,040 0.811 

40 80 1 1,600 830 0.596 

60 120 1 3,600 700 0.464 

80 160 1 6,400 610 0.372 

100 200 1 10,000 550 0.311 

120 240 1 14,400 510 0.270 

Sixth series: 𝑙𝑦 𝑙𝑥⁄ = 2, 𝑛 = 10 

20 40 10 789 950 0.719 

40 80 10 3,154 720 0.484 

60 120 10 7,097 590 0.352 

80 160 10 12,617 520 0.280 

100 200 10 19,715 470 0.229 

120 240 10 28,389 440 0.199 
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Figure 2 Discretisation and velocity and stress components of numerical model (bathymetry image shows the main scar of the Loch Eriboll 864 

Slide, after Carter et al. 2020)  865 
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Figure 4 (a) Schematics of depth integrated model; (b) staggered mesh scheme; (c) update of properties for the fixed weak layer; and (d) update 870 
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Figure 5 (a) Model used for verification case: 2D slope with 1D slip surface growth; (b) comparison of slip surface length obtained by large 876 

deformation finite element (LDFE) modelling and by the proposed depth integrated numerical scheme  877 

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80

Sl
ip

 s
u

rf
ac

e
le

n
gt

h
(m

)

Time (s)

LEDIM

LDFE



 878 

Figure 6 A comparison of two-dimensional post-failure configuration by large deformation finite element (LDFE) modelling and proposed depth 879 

integrated numerical scheme  880 
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Figure 7 Conceptual 3D submarine slope models used in the study: (a) planar; (b) S-shape; (c) convex; and (d) concave  883 
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Figure 8 A typical case with stable growth of slip surface: (a) shear strength contour; (b) distributions of shear strength along cross sections 886 

parallel to x-axis; and (c) distributions of shear strength along cross sections parallel to y-axis  887 
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Figure 9 Evolution of shear strength (top row) and shear stress (bottom row) contours during stable growth of slip surface for a typical case 889 
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Figure 10 Stable growth of slip surface with different sizes and shapes of initiation zone 891 
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Figure 11 Distributions of shear strength along the x- and y-axes during stable growth of slip 894 

surface with different sizes and shapes 895 
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(c) 902 

Figure 12 Three slip surface growth modes: (a) compression-extension mode; (b) shear mode; 903 

and (c) combined mode 904 
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 906 

Figure 13 (a) Shear strength contours, (b) horizontal velocity contours and (c) vertical 907 

velocity contours for the case of free movement in x direction (perpendicular to the travel 908 

direction); and (d) shear strength contours for the case of restricted movement in x direction 909 
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 912 

Figure 14 Two mechanisms for unstable growth of slip surface 913 
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Figure 15 Speed of slip surface growth in terms of (a) major and minor axis lengths and (b) 920 

area of slip surface 921 
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(a) 924 

 925 

(b) 926 

Figure 16 (a) Critical area of slip surface for unstable growth by numerical and analytical 927 

analyses; and (b) best fitting of numerical data 928 
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Figure 17 Maximum deviatoric stress in the sliding layer during unstable growth of slip 931 

surface 932 
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Figure 18 Contours of shear strength in weak layer and plastic shear strain in sliding layer for 935 

the case with 𝑠us,p 𝑠uw,p⁄ = 1 and 𝐾0 = 0.5 936 
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Figure 19 Contours of shear strength in weak layer and plastic shear strain in sliding layer for cases with different strength ratios 𝑠us,p 𝑠uw,p⁄  940 
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(b) 944 

Figure 20 (a) Post-failure evolution of submarine landslides in terms of contours of shear strength in weak layer, plastic shear strain in sliding 945 

layer and normalised sliding layer thickness; (b) similar submarine landslide morphology discovered in the Loch Eriboll Slide (Carter et al. 946 

2020)947 

Loch Eriboll Slide, Scotland
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Figure 21 3D slope geometry effect on the ultimate slip surface growth and morphology of 949 

the mass transport deposit in translational landslides 950 
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