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Abstract

A proper extraction of internal tidal signals is central to the interpretation of Sea Surface Height (SSH) data, yet challenging

in upcoming satellite missions, where traditional harmonic analysis may break down at finer observed spatial scales known to

contain significant wave-mean interactions. However, the wide swaths featured in such satellite missions render SSH snapshots

that are spatially two-dimensional, which allows us to treat the tidal extraction as an image translation problem. We design and

train a conditional Generative Adversarial Network, which, given a snapshot of raw SSH from an idealized numerical eddying

simulation, generates a snapshot of the embedded tidal component. We test it on synthetic data whose dynamical regimes

are different from the data provided during training. Despite the diversity and complexity of data, it accurately extracts tidal

components in most individual snapshots considered and reproduces physically meaningful statistical properties.
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Abstract15

A proper extraction of internal tidal signals is central to the interpretation of Sea Sur-16

face Height (SSH) data, yet challenging in upcoming satellite missions, where traditional17

harmonic analysis may break down at finer observed spatial scales known to contain sig-18

nificant wave-mean interactions. However, the wide swaths featured in such satellite mis-19

sions render SSH snapshots that are spatially two-dimensional, which allows us to treat20

the tidal extraction as an image translation problem. We design and train a conditional21

Generative Adversarial Network, which, given a snapshot of raw SSH from an idealized22

numerical eddying simulation, generates a snapshot of the embedded tidal component.23

We test it on synthetic data whose dynamical regimes are different from the data pro-24

vided during training. Despite the diversity and complexity of data, it accurately extracts25

tidal components in most individual snapshots considered and reproduces physically mean-26

ingful statistical properties.27

Plain Language Summary28

Wide-swath satellite observations of Sea Surface Height (SSH) data at high spa-29

tial resolutions will be available in abundance thanks to advances of instrumental tech-30

nologies. Embedded in the observed SSH are internal tides, a dynamical component that31

plays a crucial role in ocean circulation. As they are entangled with background currents32

and eddies, such tidal signals are challenging to extract. Methods that worked with previous-33

generation altimeters will break down at the resolutions that the new generation promises.34

On the other hand, the wide satellite swaths provide new opportunities as they allow us35

to regard the observations as spatially two-dimensional. Here we treat the tidal extrac-36

tion solely as an image translation problem. We train a deep neural net so that given37

a snapshot of a raw SSH signal, it produces a “fake” snapshot of the tidal SSH signal38

that is meant to reproduce the original. The data we use in this article is generated by39

idealized numerical simulations. Once adapted to realistic data, the network has the po-40

tential to become a new tidal extraction tool for satellite observations. More broadly,41

successes in our experiments can inspire other applications of generative networks to dis-42

entangle dynamical components in data where classical analysis may fail.43

1 Introduction44

Since the launch of TOPEX/Poseidon, oceanographers have used the geostrophic45

assumption to infer sea surface velocity from SSH. However, while an estimated 90% of46

the ocean’s kinetic energy exists in the form of currents in quasigeostrophic balance (Fer-47

rari & Wunsch, 2009) (hereafter qualified as “balanced”), one still must account for “un-48

balanced” flows, such as barotropic and baroclinic tides (also called internal tides, here-49

after “ITs”), for a refined inference of balanced currents (Fu & Ferrari, 2008). Further-50

more, baroclinic tides play a crucial role in ocean mixing (Lien & Gregg, 2001; Whalen51

et al., 2020), which impacts ocean circulations, and hence the ocean’s role in climate change52

(Jithin & Francis, 2020). Therefore, whether ITs are considered “noise” (e.g., for infer-53

ring balanced flows) or “signal” (e.g., for tidally induced mixing), their proper extrac-54

tion from altimetry data is essential.55

For decades, the IT extraction has been conducted via harmonic analysis (Zaron56

& Rocha, 2018), a method that relies on a close phase relationship (or coherence) be-57

tween ITs and astronomical forcings (departures from this condition is referred to as “in-58

coherence” (Ponte & Klein, 2015)). Current altimetry has a typical spatial resolution59

of O(100) km (Ballarotta et al., 2019), which is sufficient to retrieve mode-1 and some60

of the mode-2 IT wavelengths of semidiurnal tides, along with the dominant turbulent61

balanced motions (hereafter “TBMs”) (Ray & Zaron, 2011). At these scales, the cou-62

pling between ITs and TBMs is usually weak and therefore substantial portions of the63
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ITs are coherent (Egbert & Ray, 2000). Hence, harmonic analysis is in principle suffi-64

cient to retrieve the corresponding IT signal.65

The next generation of satellite altimetry, in particular the Surface Water Ocean66

Topography (SWOT) satellite mission, aims to improve the spatial resolutions of the mea-67

sured data to at least a few tens of km in wavelength (Morrow et al., 2019). A funda-68

mental challenge arises at these smaller scales, namely, the potential inapplicability of69

traditional harmonic analysis. Indeed, ITs become incoherent (Dunphy et al., 2017; Ponte70

& Klein, 2015; Dunphy & Lamb, 2014) due to stronger couplings with the TBMs linked71

to the increased vorticity magnitude (Bühler, 2014). Given the relatively long tempo-72

ral gap between consecutive measurements of SWOT at the same location, the incoher-73

ent signal would be hard to identify using traditional harmonic analysis.74

Future altimeters will gather data along wide swaths (two 50 km-wide swaths, 2075

km apart in the case of SWOT) as opposed to current linear tracks and as a result they76

will produce spatially two-dimensional(2D) images. This has motivated the community77

to regard the extraction of IT signals as an operation on high-resolution 2D snapshots.78

Current methods rely on exploiting distinct spectral signatures of TBMs and internal79

waves (H. Torres et al., 2019), or on data assimilation techniques (Metref et al., 2020;80

Le Guillou et al., 2021).81

In this work, we propose instead to regard the IT extraction solely as an image-82

to-image translation problem, conceiving and tackling the following challenge: can we83

discover an algorithm that extracts the SSH signature induced by IT from a raw, instan-84

taneous SSH map? To answer this challenge, we develop what we call the “Toronto In-85

ternal Tide Emulator” (TITE), a deep convolutional neural network that extracts IT sig-86

nals from individual SSH snapshots. No physical knowledge, statistical properties, or tem-87

poral evolution are imparted prior to the training. In general, we find TITE to perform88

well in most SSH snapshots generated from a set of idealized simulations. We present89

details about the dataset we use and the development of TITE in section 2, our exper-90

iments in section 3, and offer conclusions and discussions in section 4.91

2 Methods92

2.1 Idealized data supporting TITE’s development93

Data to support TITE’s development are snapshots from a set of idealized numer-94

ical simulations, where mode-1 ITs are forced at a fixed tidal period T (12 hours) to prop-95

agate through TBMs created by a baroclinically unstable jet (Ponte & Klein, 2015; Ponte96

et al., 2020). The SSH signatures of TBMs in these simulations are generally larger than97

those induced by ITs, and exhibit a significant overlap in spatial scales at O(100) km98

with ITs. Spatial filtering is thus difficult, an issue that is also faced by satellite altime-99

try in oceanic regions such as the Gulf Stream or Drake Passage, where powerful TBMs100

exist (Rocha et al., 2016; Richman et al., 2012).101

We run the model under five different initial meridional density contrasts. With102

increasing contrast, the baroclinic jet becomes more unstable and creates a more vig-103

orous baroclinic eddy field. The spectra induced by these eddies follow a geostrophic tur-104

bulence law (Ponte & Klein, 2015; Charney, 1971), and are thus identified as TBMs. In105

ascending order of stationary surface kinetic energy levels of TBM (hereafter referred to106

as “turbulence levels”), we label the five simulations as T1 to T5. See Text S1 in Sup-107

porting Information for more details on the numerical setup. IT snapshots are computed108

online via harmonic fits over time series that are 2T long and sampled every 300 seconds,109

or T/144. For simplicity, we only study η
(sim)
cos , the cosine component of ITs from the110
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simulations, defined as111

η(sim)
cos (x, y, t) =

1

T

∫ t

t−2T

η (x, y, t′) cos

(
2π

T
t′
)
dt′, (1)

where x, y are the zonal and meridional coordinates, respectively, and η denotes raw SSH.112

For each snapshot, we cut out three square panels covering three fixed latitudinal bands,113

labeled as “down-jet”, “mid-jet” and “up-jet” bands, as illustrated in Fig. 1. One hun-114

dred snapshots are captured every 4T for each simulation in T1-5, resulting in 1500 pairs115

of
{
η, η

(sim)
cos

}
panels (5 runs, 3 latitudinal bands, and 100 snapshots) altogether.116
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Figure 1. The “down-jet”, “mid-jet” and “up-jet” bands plotted over a snapshot of η (left)

and η
(sim)
cos (right), sampled from T3 at day 2120. The “mid-jet” band is centred around the baro-

clinic jet. ITs are forced to the south of “up-jet” bands, and as the ITs propagates northward

and loses coherence due to interactions with the TBM, the η
(sim)
cos patterns are less reminiscent of

plane waves in the “down-jet” band than in the “up-jet” band.

2.2 Deep-learning algorithm designed to extract tidal signals117

During the design of the TITE runs, we implicitly apply four assumptions: (1) there118

is abundant spatial information, (2) all snapshots are statistically independent from each119

other, (3) a raw SSH functionally determines its IT component, but properties of the func-120

tional dependence are unknown, and (4) there exists abundant data where ITs are al-121

ready extracted from the raw SSH. Discussions about these assumptions are included122

at the end of article.123

TITE is based on a popular conditional Generative Adversarial Network (hereafter124

referred to as “cGAN”) (Isola et al., 2017). As the name implies, a cGAN consists of two125

parts, namely, a conditional generator (hereafter “generator”) that learns how to man-126

ufacture a “fake” image that’s conditioned on an “input image”, and a discriminator that127
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tries to determine if an image is “genuine” (i.e., paired to the input image in the train-128

ing data), or fake (i.e., created by the generator). Either part is on its own a convolu-129

tional neural network, and during training, the two parts compete against each other to130

co-evolve (Mirza & Osindero, 2014; Goodfellow et al., 2014). We denote the cosine IT131

panels generated from TITE as η
(gen)
cos ; following our notations, the input image would132

be η, the genuine image would be η
(sim)
cos , and the fake image would be η

(gen)
cos . As reflected133

in this general workflow, during training, other than the paired panels, no further infor-134

mation is given to TITE.135

The particular cGAN we adapt to TITE is called “pix2pix” (Isola et al., 2017), ap-136

plications of which range from artistic creations (ml4a, 2017) to scientific problems such137

as remote sensing image classifications (Lebedev et al., 2018). Our codes are adapted138

from the code downloaded from TensorFlow Tutorials (Tensorflow, n.d.). We refer to the139

original publication for details of pix2pix (Isola et al., 2017), and to Text S7 in Support-140

ing Information for details on the changes we made to the original codes. Here, we men-141

tion a few relevant traits.142

The generator and the discriminator have around 104 and 2000 convolutional lay-143

ers respectively, each layer containing a 2-by-2 kernel to be learned during training. The144

considerable number of model parameters makes TITE a black box, as in the case of many145

deep learning algorithms.146

Prior to each epoch, training images are randomly reshuffled in time, cropped, flipped,147

and rotated. Here, an epoch means the duration it takes for the cGAN to iterate over148

all data in the training set once. The random cropping, rotation and flipping are intended149

to roughly mimic realistic situations where we don’t have a priori knowledge of the ob-150

server’s orientation/location about IT generation sites and direction of propagation. By151

randomly reshuffling in time, we enforce that every panel pair at every snapshot in the152

simulation be sequentially independent from the others. This means that any temporal153

information in the simulations is unknown to the pix2pix kernel, in line with our assump-154

tion (2) made previously in this section.155

As the fully convolutional U-Net structure inherited from pix2pix (Isola et al., 2017)156

in the generator can be applied to images of arbitrary sizes in principle, when produc-157

ing Movies S1 and S2 in Supporting Information , we directly apply the trained TITE158

onto rectangular input images, even though TITE is trained on square images illustrated159

in Fig. 1. This versatility on the shapes of input images would be useful for along-swath160

satellite products.161

We systematically run our code with TensorFlow 2.3.0 under Python 3.7. One hun-162

dred training epochs with 960 pairs of
{
η, η

(sim)
cos

}
in the training set take about 1.5 hours163

with a NVIDIA GP100 GPU. For all the TITE runs in the article, we choose to present164

the results after 600 training epochs. Details on how we decide on the cut-off epoch are165

provided in Text S4 in Supporting Information.166

2.3 Division of data to training, testing and validation sets167

As a first check on whether TITE could achieve any success at all, we randomly168

select 20% of all 1500 pairs of
{
η, η

(sim)
cos

}
panels from T1-5 to form a so-called valida-169

tion set, and use the rest as the training set. During training, TITE has access to all pairs170

of
{
η, η

(sim)
cos

}
in the training set, but none from the validation set. After 600 epochs, the171

training phase is over, and we apply the trained TITE into snapshots in the validation172

set. The mean correlation between η
(sim)
cos and η

(gen)
cos in the validation set turns out to be173

0.85, which suggests that the generated η
(gen)
cos reasonably resemble the ground truths η

(sim)
cos174

. However, under this division, the training set contains turbulence levels that are sta-175

tistically similar to the validation set on which the trained TITE is applied, and the good176
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Table 1. Mean correlation factors of validation and test sets in the ET1-5 runs†.

TITE
run

Validation
set, all

Test set,
all

Test set,
down-jet

Test set,
mid-jet

Test set,
up-jet

ET1 0.86 0.91 0.92 0.90 0.92
ET2 0.85 0.89 0.90 0.87 0.90
ET3 0.84 0.83 0.82 0.79 0.88
ET4 0.85 0.80 0.77 0.75 0.87
ET5 0.87 0.70 0.62 0.63 0.84

†The second and third columns present mean correlation factors averaged
over all panels in the validation sets and test sets respectively. The last three
columns present mean correlation factors averaged over down-jet, mid-jet,
and up-jet bands in the test sets respectively.

correlation factors could be caused by overfitting. To address this possibility, we chal-177

lenge TITE to extract η
(sim)
cos signals linked to a different turbulence level as those em-178

ployed for its training.179

Specifically, in what we refer to as the “ET1 run”, we reserve a test set, which con-180

tains all 300 pairs of panels from the simulation T1 and none from T2, T3, T4 or T5.181

Among the remaining panels from T2-5, we randomly select 80% pairs for the training182

set, and reserve the other 20% for the validation set. The validation and test sets are183

both inaccessible to TITE during training, but crucially, in terms of average turbulence184

levels, the training set is similar to the validation set, yet different from the test set. Sim-185

ilarly, we carry out ET2-5 runs, following the same logic, where the test sets are pan-186

els from the simulations T2-5 respectively.187

3 Performance of TITE188

In this section, we evaluate the performance of TITE from several statistical met-189

rics and we discuss the causes of relatively decreased performance when they arise. All190

metrics are computed using standard methods and detailed in Text S6 in Supporting In-191

formation .192

We first investigate how close η
(gen)
cos is to the ground truth η

(sim)
cos by measuring the193

correlation between the two. The mean correlation factors in the test and validation sets194

of the ET1-5 runs are listed in Table 1 (first three columns). The highly correlated pre-195

dictions of TITE in the test set in ET1-4 are especially interesting, as turbulence lev-196

els of the test set are different from that of the training set. There is however a relatively197

sharper drop in the mean correlation from ET4 to ET5.198

The test instances associated with the highest and lowest correlations among ET1-199

5 are presented in Fig. 2. In the test instance with the highest (lowest) correlation that200

belongs to ET1 (ET5), the ratio between the root mean square of
(
η
(sim)
cos − η

(gen)
cos

)
and201

the root mean square of η
(sim)
cos is 0.12 (4.77). In Movie S1 in Supporting Information,202

we re-order all the shuffled test instances of ET1 in time. Considering that the snapshots203

are randomly shuffled and hence the temporal evolution of these images is unknown to204

TITE, this reconstructed temporal continuity is remarkable. Nevertheless, for the strongly205

turbulent flows of T5 that ET5 tests, the evolution of η
(gen)
cos bears little semblance to η

(sim)
cos206

(Movie S2 in Supporting Information). This observation, together with the lower cor-207

relation factors of ET5 (Table 1), suggest a categoric difference between ET5 and ET1-208

ET4.209
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Figure 2. Individual tests with the highest and lowest correlations. For legibility reasons, we

omit spatial axis labels, see fig. 1 for their definitions. The upper row corresponds to the test in-

stance that has the highest correlation among the ET1–ET5 runs. It belongs to the ET1 run and

has a correlation factor of 0.95. The lower row corresponds to the test instance with the lowest

correlation. It belongs to the ET5 run and has a correlation factor of 0.4.

To gain more insight about the relative failures in ET5, we conduct a spectral anal-210

ysis that focuses on comparing ET4 and ET5. The wavenumber spectra for the down-211

jet and up-jet bands are computed separately for η
(sim)
cos and η

(gen)
cos in the test set of ET4212

and ET5, and presented in Fig. 3. The spectra for mid-jet bands are omitted for read-213

ability here and attached in Text S2 in Supporting Information .214

Prominent bumps appear near the wavenumbers corresponding to mode-1 tidal wave-215

lengths (See Text S1 in Supporting Information) in all the spectra of η
(sim)
cos (Solid lines216

in Fig. 3). These bumps are somewhat broad, and their locations are noticeably differ-217

ent between the down-jet and up-jet bands. This is expected, as the density profiles and218

the Coriolis parameter both vary with latitude, which modulates the mode-1 tidal wave-219

length (See Text S1 and Fig. S1 in Supporting Information ). Such variations can be found220

in satellite observations too (Ray & Zaron, 2011). Interestingly, in ET4, the locations221

of spectral bumps in the η
(gen)
cos spectra also vary between the down-jet and up-jet bands,222

in a manner such that they closely overlap with bumps of the η
(sim)
cos spectra at both bands.223

This implies that in the ET4 run, the trained TITE identifies the dominant wavelength224

even as it varies. In other words, TITE can identify patterns at varying spatial scales.225

In the ET5 run, the η
(gen)
cos spectra fail to trace the location of the bumps in the down-226

jet bands, which is qualitatively different from ET4. The performance in up-jet bands227

appears as good as ET4, which may be attributed to the fact that the mode-1 tidal wave-228

lengths to the south of the jets are the same in all five simulations.229
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Up, raw
Up, sim
Up, gen

K [1/km]

102

105

108
ET5, Spectra [m2]

Figure 3. Spectra for the down-jet and up-jet bands in ET4 and ET5 test set. In the legends

“Up”, “Dn” denote the down-jet and up-jet bands respectively. “raw”, “sim”, and “gen” denote

spectra computed from panels of η, η
(sim)
cos , and η

(gen)
cos , respectively. “K” denotes the horizontal

wavenumber magnitude. The vertical dashed lines mark the largest and smallest mode-1 tidal

wavenumbers over the simulation domain at initial time, following Figure S1 in Supporting Infor-

mation. Raw spectra higher than 2 × 108m2 at large scales are omitted. Higher wavenumbers are

omitted.

One might be tempted to think that overfitting is the cause of the good performance230

in ET1-4, and vice-versa when the performance decreases in ET5. Indeed, as listed in231

Table S1 in Supporting Information, the kinetic energy and normalized vorticity (abso-232

lute values of surface vorticities normalized by the local Coriolis frequency) for the TBM233

and IT all increase from T1 to T5, and in terms of these dynamical metrics, the train-234

ing set of ET5 is less diverse compared to, say, the training set of ET4 that spans a wider235

range of these metrics. This explanation based on overfitting is also consistent with the236

fact that the ET5 run has the highest mean correlation in the validation set (second col-237

umn in Table 1).238

However, if overfitting was the only factor, then TITE should perform poorly in239

the ET1 test set too, which is not the case. In fact, the ET1 run produces the best mean240

correlation in the test set among ET1-5; in Text S2 in Supporting Information, we show241

that the ET1 test set also demonstrates excellent spectral behaviours. Moreover, the mean242

correlations in the test sets are higher than in the validation sets in ET1 and ET2 (Ta-243

ble 1). Therefore, we postulate that a more crucial factor at play is the turbulence lev-244

els of the data themselves: higher turbulence levels appear to decrease TITE’s predic-245

tion accuracies. In the ET1 test set, the turbulence levels are lower, and TITE performs246

well despite the possible impacts from overfitting. In the ET1 and ET2 runs, the test247

data are at a lower turbulence level than the validation data, and TITE generates bet-248

ter predictions in the test sets than in the validation sets, even though the training set249

–8–
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includes the turbulence levels in the validation set and excludes the turbulence levels in250

the test set.251

It is not too surprising that higher turbulence levels make the IT extraction more252

challenging. As explained in Text S1 in Supporting Information , stronger scatterings253

of ITs from TBMs induce more longitudinal variations as well as small-scale features in254

the IT components. In addition, the tidal wavelengths vary more latitudinally due to in-255

creased density gradients, which increases the diversity of dominant spatial scales of IT256

signals across the domain and time. Both factors add complexities to the η and η
(sim)
cos257

patterns. In Text S5 in Supporting Information, we show that a generically defined met-258

ric of pattern complexities introduced by Bagrov et al. (2020) generally increases under259

stronger TBMs as we expected.260

The difficulty associated with vigorous turbulence levels is also reflected in the rel-261

atively worse performance of TITE in the mid-jet bands centered around the turbulence.262

In the last three columns of Table 1, the correlations for the down-jet, mid-jet and up-263

jet bands are presented separately for the test sets in ET1-5. Within each of ET1-5, the264

up-jet bands have a higher mean correlation than the mid-jet bands. As the turbulence265

level increases, this difference gets more pronounced. The degraded performance at mid-266

jet bands is also reflected from the “square coherences” in Text S2 in Supporting Infor-267

mation.268

We note that despite the relative lack of prediction accuracy under higher turbu-269

lence levels, in our data, TITE would still outperform simple spatial filtering methods270

that would break down due to the strong TBMs superimposing the ITs around tidal wave-271

lengths (Text S2 in Supporting Information), or harmonic analysis that would not work272

due to the strong incoherence and the temporal interval of 4T .273

4 Conclusions and Discussions274

We designed a novel technique based on a deep neural network algorithm to ex-275

tract internal tides that are entangled with geostrophic turbulence. We trained and val-276

idated TITE using randomly shuffled simulation snapshots that were categorically dif-277

ferent from the dynamic regime of the testing data. The testing data sets are designed278

in a way that classical methods such as harmonic fits or spectral filtering could not ex-279

tract tidal signals accurately, and yet in most test cases, TITE can still 1) extract IT sig-280

nals that agree well with ground truths in a deterministic sense, and 2) capture the dom-281

inant tidal energy in the wavenumber spectra, even when it varies temporally and lat-282

itudinally. When TITE does not perform as well, the main cause seems to be the high283

complexities of the patterns linked to stronger turbulent motions. Overall, we believe284

that this work provides a fresh angle on how to disentangle dynamical components from285

two-dimensional data via a deep learning approach. Some discussions are offered below.286

Although we make no claim about TITE or cGANs in general as being the best287

possible algorithms to specifically achieve our goal, we found it superior to other deep288

learning methods we investigated, which include several types of decision trees regres-289

sors, long short-term memory networks, and U-Net structures without a discriminator.290

We did not attempt to optimize model parameters such as numbers of layers or learn-291

ing rates, among others. More recent variations of pix2pix such as pix2pixHD (Park et292

al., 2019) could also outperform our current implementation. Moreover, as mentioned293

in section 3, the generated images always contain spurious signals outside the dominant294

tidal bump, which remains to be resolved. We leave these as thoughts for future work.295

In this work, TITE only extracts the cosine IT signals. The generalization to the296

sinusoidal IT signals, which are defined by replacing cos (2πt′/T ) in equation (1) with297

sin (2πt′/T ), should be straightforward. With both cosine and sinusoidal IT signals, phase298

information can be retrieved. One may also study the performance of TITE for extrac-299
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tions of signals at higher tidal frequencies that correspond to smaller spatial scales. Pix2pix300

has been observed to be capable of capturing fine features in images (Isola et al., 2017),301

and smaller scales don’t necessarily make the problem more challenging to TITE.302

So far, TITE has only been developed by the idealized simulations T1-T5 with a303

single baroclinic jet and single tidal frequency, simplistic boundary conditions, flat to-304

pography, an absence of air. As an ongoing work, we are investigating the effects of in-305

cluding snapshots from a global ocean GCM.306

With SWOT in mind, we may reassess the four assumptions stated in section 2.2.307

All images used in this work have a 4 km horizontal resolution that resolves the tides308

adequately, addressing assumption (1). In preparation for satellite data that suffer from309

measurement noises and more limited resolutions, we may coarse-grain and augment the310

training data with the type of noises expected in SWOT (Gaultier et al., 2016) and in-311

vestigate the impacts. Assumption (2), motivated by the incoherence of ITs and the rel-312

atively long sampling intervals of SWOT, is satisfied by the design of the TITE archi-313

tecture, and by the frequent random shuffling of snapshots during training. However, com-314

plete statistical independence between ITs and TBMs can be overly strict for several rea-315

sons, ranging from a higher temporal sampling at high latitude, to the possibility of “fill-316

ing in the time gaps” with other sources of data such as those from assimilated models317

or in-situ instruments (d’Ovidio et al., 2019). From the overall satisfactory performance318

of TITE, the assumption (3) appears to be satisfied in our simulation outputs, perhaps319

due to simplistic simulation settings, such as a perfectly harmonic incoming IT signal,320

or simple boundary conditions. Under more realistic configurations, a functional depen-321

dence might not be guaranteed. On the other hand, the assumption (3) can also be overly322

strict, considering recent progress in the theory of IT/TBM interactions (H. S. Torres323

et al., 2018; Savva & Vanneste, 2018; Savva et al., 2021). The assumption (4) relies on324

the premise that there will be pre-processed training data (presumably from highly skilled325

model outputs) that mimic the dynamics to be sampled by SWOT. Productions of such326

data are receiving significant attention within the modelling communities (Zaron & Rocha,327

2018; Rocha et al., 2016; Arbic et al., 2010; Shchepetkin & McWilliams, 2005; Savage328

et al., 2017). Overall, to make TITE eventually applicable to SWOT and other satel-329

lite missions in the future, more work is required, especially in coordination with differ-330

ent communities.331
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Text S1. Numerical simulations to produce snapshots in T1-5 
The T1-5 simulations are based on a beta-plane centred around 45ºN. The mode-1 IT is 

forced to the south of a baroclinically unstable jet centred in the middle section of the 
computational domain, and propagates northwards1,2.  All snapshots used in the development 



  
 

  
 

of TITE are publicly available, per the Data Availability Statement. Here, we summarize the 
relevant features of the simulations.  

The baroclinically unstable jet is simulated in a zonal beta-plane channel centred at 45°N 
based on the primitive equation code CROCO (https://www.croco-ocean.org, v1628). Initial 
density profiles are different at the northern and southern ends of the domain. During a spin-up 
phase, the associated initial meridional density gradient undergoes geostrophic adjustment, 
eventually creating a zonal jet in thermal wind balance. This jet is baroclinically unstable and a 
zonal perturbation triggers this destabilization, resulting in low-frequency TBMs that we can 
reasonably describe as quasi-geostrophic1. Subsequently, relaxation towards unperturbed initial 
conditions maintains the TBMs. Statistical equilibrium is reached after O(100 days). 

Starting at day 2000, a zonally uniform mode-1 internal tide of 12-hour period is forced 
within a narrow area south of the jet.  Outgoing internal tides are damped in regions extending 
by 300 km from the southern and northern boundaries to prevent reflections back into the 
domain. Zonally, periodic conditions are enforced. All snapshots included in T1-5 are captured 
starting at day 2100. The latitudes covered by the three panels shown in Figure 1 in the main 
text are sufficiently away from the IT-radiating and damping regions at the southern and 
northern ends of the domain. 

To create different levels of turbulent energy in T1 to T5, the meridional initial density 
gradient is modulated by changing the northern profile2. The TBM components are extracted 
online via a sliding average, replacing cos 𝑡  in equation (1) in the main text with a constant 

factor of  .  
We compute the normalized vorticity and horizontal surface kinetic energy for the TBM 

components, as presented in the first three columns in Supporting Information(SI) Table S1. The 
TBM normalized vorticity and kinetic energy increase significantly from T1 to T5, with the 
normalized vorticity well bounded by 0.2. 

Even though the wave amplitudes forced to the south of the turbulent jet are the same in 
T1-5, the IT energetics are different between simulations, due to different strengths of scattering 
from interactions with the TBMs. We extract the cosine IT components of surface velocities by 
replacing 𝜂 with surface velocity components in equation (1) and compute the corresponding 
normalized vorticity and horizontal kinetic energy, as listed in the last two columns in SI Table 
S1. From T1 to T4, the kinetic energy increases. However, the kinetic energy stays about the 
same from T4 to T5 while getting more concentrated at smaller scales, as suggested by the 
increase in their respective normalized vorticities. 

Moreover, the scattering from jets also makes the signals less coherent, as inspected closely 
by Ponte and Klein3. In SI Movie S3, we present snapshots of normalized vorticities of the TBMs 
along with the 𝜂( )components in T1-5. There, we can see that as the TBMs become 
increasingly energetic from T1 to T5, the IT signals are scattered more around or to the north of 
the jet. As a result, the 𝜂( ) patterns are less like plane waves and contain more small-scale 
features. This factor adds to the complexity of the patterns of 𝜂 and 𝜂( ).  

In T1-5, the ITs are much weaker than the TBM in kinetic energy or normalized vorticity, 
which enables the linearized analysis conducted in past publications2.  As a result, the internal 
tides are dominated by tidal wavelengths consistent with the dispersion relationship of the 
modal equations and the eigenvalue corresponding to the first vertical mode in the Sturm-



  
 

  
 

Liouville problem for surface fields1,4. The variations of density profiles in T1-5 result in variations 
of the tidal wavelength profiles. In the northern half of the domain, the wavelengths at higher-
turbulence simulations are generally smaller than lower-turbulence simulations, as reflected in SI 
Fig.S1. The meridional and temporal variations of density profiles also lead to variations of the 
tidal wavelengths in latitude (SI Fig.S1) and time within each simulation.  As density gradients 
are stronger in simulations at higher turbulence levels, the variation of tidal wavelengths, and 
hence the dominant length scales of tidal patterns, are also larger, which is another cause of the 
higher complexity of  𝜂 and 𝜂( ) patterns. 

As mid-jet panels are centered around the baroclinic jet, the density gradients and TBMs 
there are on average stronger than those in the up-jet and down-jet panels. Hence, within each 
simulation, in the mid-jet panels, the two effects described above (scatterings of ITs and 
variations of tidal wavelengths) are stronger.  

To sum up, the simulations correspond to a regime where TBMs, whose relative vorticities 
are well bounded by 1, are stronger than the ITs. The TBMs and ITs overlap significantly in 
spatial scales. The density profile is varied between different simulations. As a result, the TBMs 
and ITs become more energetic as reflected by the dynamical metrics listed in SI Table S1, and 
the IT wavelength profiles shift towards smaller scales, as demonstrated in Extended Data Figure 
1. Enhanced scattering of ITs from TBMs causes IT incoherence, and IT patterns lose 
resemblance to plane waves. The density profile is varied within each simulation temporally and 
latitudinally, which result in corresponding variations of the IT wavelength profile. Stronger 
TBMs are accompanied by shaper density gradients, leading to more variations of the IT 
wavelengths.  
 



  
 

  
 

 

Supporting Information Fig.S1. Mode-1 wavelengths at day 1 as a function of meridional 
profiles. As the TBM develops, the wavelength jumps observed in the central part of the domain 
become smoother. 

 
 
 
 
 
 
 
 
 



  
 

  
 

Supporting Information Table S1. Dynamical metrics of T1-T5. KE denotes “kinetic energy”. 
The TBM normalized vorticity and KE are averaged over time, longitude, and jet width, which we 
define as 800 km around 45ºN. The Cosine IT Normalized vorticity and KE are averaged over 
time and the entire simulation domain.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Text S2. Detailed spectral behaviors in ET1-5 test sets 
We attach in SI Fig.S2-6 the spectra and squared coherence of up-jet, mid-jet and down-jet 

bands in ET1-5 test sets. The squared coherence (i.e., normalized cross spectra) reflects how 
linearly related  𝜂( ) and 𝜂( ) are at different scales. It is computed based on the  𝜂( ) and 
𝜂

( )spectra following its definition listed in previous works2. Like the spectra, the squared 
coherences are computed for the up-jet, mid-jet, and down-jet bands separately in this section.  

The ET1 run displays excellent spectral behaviors. In SI Fig.S2, the  𝜂( )
 spectra capture the 

magnitude and locations of spectral bumps of the 𝜂( ) well, and the peaks of the squared 
coherence are no less than 0.8 in the up-jet, mid-jet, and down-jet bands.  

In a relatively worse run (ET5) at a worse band (mid-jet band), the TITE would still 
outperform a simple spatial filter. This can be seen by comparing the dotted and solid yellow 
lines in SI Fig.S6, which correspond to the spectra of 𝜂 and 𝜂( ) signals respectively. In the 𝜂 
spectra, due to the strong TBMs that co-exist with ITs around the tidal wavenumbers, there is no 
noticeable tidal bump around the tidal wavenumber. Thus, unless one makes strong 
assumptions or utilizes a-priori physical knowledge, no information about the tidal wavenumber 
or the magnitude of tidal motions could be gained from any spatial filters applied onto 𝜂. 
However, TITE is still able to capture the magnitude of the spectral bumps of ITs, and the 
shifting between the tidal bumps of  𝜂( ) and 𝜂( )spectra is well less than a decade.  

 TBM 

normalized 

vorticity 

TBM KE 

(m /s ) 

Cosine IT 

normalized 

vorticity) 

Cosine IT KE  

(m /s ) 

Simulation      

T1 0.06 0.04 2.3 × 10  2.0 × 10  

T2 0.09 0.08 2.8 × 10  2.3 × 10  

T3 0.12 0.12 1.6 × 10  2.5 × 10  

T4 0.13 0.15 2.0 × 10  2.6 × 10  

T5 0.14 0.20 2.2 × 10  2.6 × 10  



  
 

  
 

In all the three latitudinal bands, the squared coherences in ET1-4 decay quickly outside the 
tidal bumps. This is consistent with the fact that outside of the bumps, the 𝜂( )spectra 
significantly mismatch the 𝜂( ) spectra. Spurious signals in 𝜂( )

 drown out the mode-2 tidal 
bumps present in  𝜂( )

  and are especially prominent at large scales, sometimes causing 
differences between 𝜂( ) and 𝜂( )

 by a factor of 10. As the ground truth spectra 𝜂( )  are 
orders of magnitudes lower outside the tidal bumps, this decreased performance outside the 
bumps is not our major concern in this project. To alleviate it, we could incorporate spectral 
forcing in the architecture design of TITE, which is left for future work.  

The squared coherences for the mid-jet band at ET5 are lower than 0.5 at all wavenumbers, 
suggesting the relatively poor performance of TITE in ET5 amidst the jet. Similarly, in ET2-4, the 
squared coherences for the mid-jet bands also peak lower than the down-jet or up-jets. An 
explanation of such decreased behavior around mid-jet bands is described in the main text. 

The tidal bumps in the up-jet and down-jet bands are farther apart in higher turbulence 
runs. In ET1, the tidal bumps in the up-jet and down-jet bands almost completely overlap, while 
in ET5 the two bumps are shifted apart quite conspicuously. This is consistent with SI Fig.S1, 
which shows that the tidal wavenumbers vary more in higher turbulence runs. As discussed in 
the main text, the stronger variations of tidal wavelengths may be part of why the higher 
turbulence runs are intrinsically more challenging to TITE. 

 
 
 
 
 
 



  
 

  
 

 

Supporting Information Fig.S2. Spectra and Coherence for the up-jet, mid-jet and 
down-jet bands in ET1 test set.  Compared to Fig.3 in the main article, this figure 
presents the ET1 test set only, but adds the spectra computed for mid-jet bands 
(denoted by legend “Md” and coloured yellow) and the squared coherence for the three 
bands (lower row).    

 

 

 



  
 

  
 

 

Supporting Information Fig.S3. Similar to SI Fig.S2, but for the ET2 test set. 



  
 

  
 

 

Supporting Information Fig.S4. Similar to SI Fig.S2, but for the ET3 test set. 



  
 

  
 

 

Supporting Information Fig.S5. Similar to SI Fig.S2, but for the ET4 test set. 

 



  
 

  
 

 

Supporting Information Fig.S6. Similar to SI Fig.S2, but for the ET5 test set. 

 

 

 

 

 

 

 

 



  
 

  
 

Text S3. Statistics of correlation factors 

The mean correlation values averaged over different subsets of test/validation instances are 

listed in SI Table S2. The histograms of the correlations in the test sets are presented in SI Fig.S7. 

From either the table or the histogram, the general trend of correlation to deteriorate as 

turbulence level gets higher, and the sharper drop from ET4 to ET5 can be observed, which are 

mentioned in the main text.  Computations of the correlation factors are detailed in SI Text S6.  

Supporting Information Table S2.   Mean correlation factors of validation and test sets in 

the ES1-5 runs. The second and third columns present mean correlation factors averaged over 

all panels in the validation sets and test sets respectively. The last three columns present mean 

correlation factors averaged over down-jet, mid-jet, and up-jet bands in the test sets 

respectively. 

 

 Validation set, 

all 

Test set, 

all 

Test set, 

down-jet 

Test set, 

mid-jet 

Test set, 

up-jet 

TITE run      

ET1 0.86 0.91 0.92 0.90 0.92 

ET2 0.85 0.89 0.90 0.87 0.90 

ET3 0.84 0.83 0.82 0.79 0.88 

ET4 0.85 0.80 0.77 0.75 0.87 

ET5 0.87 0.70 0.62 0.63 0.84 



  
 

  
 

 

 

Supporting Information Fig.S7. Histogram and mean (denoted by the vertical dashed lines) 
of correlation factors in the test cases of ET1-5, presented for down-jet, up-jet, and mid-jet 
panels separately. The three panels are denoted by the colors marked in the legends, where 
“Dn”,”Up” and “Md” denote the down-jet, up-jet and mid-jet panels respectively.  The mean 
correlations of the validation sets (averaged over all available panels) are presented in the 
dashed gray vertical lines for reference. When histogram is plotted, each group is divided into 
10 bins. Vertical axis group denote number counts in each bin, with axis limits fixed at 0 and 30. 

 

Text S4. Monitoring the training and deciding the stopping epoch 
The stopping criteria during a GAN training is a delicate issue, as the convergence of GAN 

is hard to identify due to its fleeting nature5. In this work, the analysis of ET1-5 in the main 
article are all conducted right after 600 epochs. We do not claim that it is the optimal stopping 
epoch for these runs but observe that there is no definite sign of model collapse around the 
600th epoch. 

We monitor the training behaviors from two kinds of metrics. First, we monitor the 
discriminator, the generator, the L1, and the total loss functions respectively as defined in the 
original publication6. Second, we monitor metrics such as correlation factor and relative error 



  
 

  
 

between 𝜂( ) and 𝜂( )  in the validation set. In SI Fig.S8, we present the evolution of 
discriminator loss and the correlation factor in the validation set up to the 700th epoch for the 
ET1-5 runs.  

From the definition of discriminator loss in pix2pix6, when the discriminator is effectively 
tossing coins at every judgement, it would have a discriminator loss of 2log(2), which is marked 
by the horizontal dashed line in SI Fig.S8.  Observing the discriminator loss, we find that in the 
ET1-4 runs, the race between the discriminator and the generator appears healthily close, as the 
discriminator loss frequently surges above the coin-tossing line, which are then recovered back 
below the line in a few dozen epochs. This suggests that the discriminator and the generator are 
likely indeed co-evolving. Observing the correlation in the validation set of ET1-4, we see that 
the correlation generally stabilizes after 300th epoch with a slight tendency to increase 
afterwards.  

The evolution of discriminator loss of the ET5 run appears less ideal. Up to the 500th epoch, 
the discriminator loss is always well below the coin-tossing line. In principle, this indicates a 
potential GAN collapse: the generator can almost never cheat the discriminator and may not be 
able to learn due to vanishing gradients. Between the 500th and the 700th epoch, the 
discriminator loss starts to surge occasionally above the coin-tossing line, which indicates that 
the generator may have somehow still evolved well enough to cheat the discriminator. Hence, 
we decide to stop at the 600th epoch, by which time the generator starts to sometimes prevail, 
to stay safely away from the potential collapse in earlier epochs. We note that even though the 
discriminator evolution is less ideal in ET5, the evolution of the correlation factor in the 
validation set appears to show similar behaviors as ET1-4 (bottom row, right column of SI 
Fig.S8), in that it stabilizes after around 300 epochs.  As there are no signs of model collapsing 
from the evolution of the correlation, it is likely that the GAN did not collapse after all; perhaps 
the small bumps of the discriminator loss in the first 500 epochs in the ET5 run are sufficient to 
prevent vanishing gradients for the generator. 

Left as future work, we can try to pace the improvement of the discriminator’s performance 
by adding noise5, or to use a different architecture such as the Wasserstein GAN7 to address 
potentially vanishing gradients.    



  
 

  
 

 

Supporting Information Fig.S8. Evolution of discriminator loss and correlation 
factor in validation set during the training of ET1-5.  The loss and the correlation are 
recorded every 10 epochs, starting at the 10th epoch, and ending at the 700th epoch. 
Gray vertical lines mark the 600th epoch, which is the stopping epoch for the analysis in 
the main article. The dashed horizontal line in the left columns denote the level at which 
the discriminator is tossing coins. Correlation factors shown in the right columns are 
computed between 𝜂

( ) and 𝜂( )  in the validation set. The line plots present the 
mean correlation factor of all validation instances, with error bars marking one standard 
deviation. 



  
 

  
 

Text S5. Multi-scale structural complexity of simulation snapshots  
Recently, a generic metric for complexity of image patterns called “multi-scale structural 

complexity” is proposed in Bagrov et al8. Briefly speaking, this metric measures on how much 
variation is induced every time one coarse-grains the image at interest. Here, we present that 
this metric computed over the 𝜂 or 𝜂( ) panels captured from simulations T1-5 agrees with our 
physical understandings about the impacts of stronger TBMs.  

We follow the notations in Bagrov et al.8 throughout this section. After an image is coarse-
grained by 𝑘 times, the quantity 𝒞  is intended to measure how much variation is induced if one 
further coarse grain the image by one step. We coarse-grain the images under the same discrete 
decimation scheme as in Bagrov et al.8 At each coarse-graining step, we set the filter parameter  
Λ=2. We refer to Bagrov et al.8 for details on the related definitions.  

Each square panel of  𝜂 or 𝜂( ) used by TITE is originally 258-by-258 pixels. For simplicity, 
we delete the first and last rows and columns of each panel, resulting in panels at 256-by-256 
pixels. The new width(length) of the panels (i.e., 256) is a power of 2, which makes the 
computations quicker without significantly sacrificing original information.  

The images are then coarse-grained by 6 times, and 𝒞  at each step are recorded. For our 
purpose, the complexity 𝒞  at each 𝑘 individually is more informative than the summation of 𝒞  
over 𝑘, denoted in Bagrov et al. as 𝒞. One can prove that the equ ation 4 in Bagrov et al. can be 
simplified as 𝒞 = 0.5(𝑂 , − 𝑂 , )9, which smudges out contributions from the intermediate 
coarse-graining steps, while here we are more interested in the complexities related to different 
individual spatial scales.  

We divide all the panels of 𝜂 or 𝜂( ) into 15 groups (5 turbulence levels and 3 latitudinal 
bands). Each group contains 100 pairs of 𝜂, 𝜂

( )  panels. The computations of 𝒞  for 𝜂 and 

𝜂
( ) are conducted separately. For presentation purpose, we average and normalize 𝒞 . 

Specifically, in each group and at each 𝑘, we compute the mean of 𝒞  over all the 100 panels of 
𝜂 or 𝜂( ), resulting in 30 different values of averaged 𝒞  (15 groups each for 𝜂 and 𝜂( )) at 
each 𝑘. Then, we divide 𝒞  by the maximum value of 𝒞  among the 15 groups of 𝜂 or 𝜂( ) 
separately. The averaged and normalized 𝒞  is denoted as 𝒞 , which ranges from 0 to 1.  

In the upper row of SI Fig.S9, 𝒞  increases consistently from T1 to T5, and the mid-jet bands 
always contain higher 𝒞  within each simulation. This agrees with our expectation: vigorous 
TBMs would make the TBM components in the raw 𝜂 patterns more complicated.  

Moreover, stronger TBMs are linked to increased complexities of IT patterns due to two 
mechanisms explained in SI Text S1: 1. increased scatterings, which lead to more longitudinal 
variations as well as small-scale features, and 2. increased density gradients, which lead to more 
variations of dominant tidal wavelengths. In the lower row of SI Fig.S9, we see that at 𝑘 = 1,2,3,4 
(first four vertical lines plotted in each group), 𝒞  increase from T1 to T5 and are highest at mid-
jet panels within each simulation, in agreement with the stronger TBMs. At 𝑘 = 5,6 (last two 
vertical lines in each group), the tendency of 𝒞  appears quite random. Noting that the 
resolution of the 𝜂( ) panels are 4 km, the metric 𝒞  for 𝜂( )

 reflects how much the 𝜂
( ) 

panels change when coarse-grained from a 4 km resolution to an 8 km resolution. Similarly, 
𝒞  reflects how much change occurs when coarse graining is done from a 128 km resolution to a 
256 km resolution. As the dominant tidal wavelengths are between 135 km and 230 km (see SI 
Fig.S1), at 𝑘 = 6, the images are coarse-grained across the dominant spatial scale of the 



  
 

  
 

patterns, and large-scale (>256 km) features left afterwards are not affected by the two 
mechanisms mentioned before. Therefore, 𝒞  is expected to be insensitive to the strength of 
TBMs. As for the erratic tendency of 𝒞  , we cannot find a physical explanation, but note that this 
does not contradict with our conjecture that the 𝜂( ) patterns are more complex under higher 
TBMs in general, given the consistent tendencies at 𝑘 = 1,2,3,4.  

We don’t claim that 𝒞  from Bagrov et al. is the most reflective metric on image complexity 
in our case. A metric defined on a more refined coarse-graining process could be more 
meaningful for the 𝜂( ) panels. For example, one could modify how the coarse-graining is 
conducted, so that a new metric captures how much the image changes from resolutions at 128 
km to 256 km more incrementally (say, coarse-graining by 4km at each step). Such a more 
refined metric may be able to detect the impacts of the variations of tidal wavelengths. This is 
left for future explorations.  
 

 

Supporting Information Fig.S9. Multi-scale structural complexity of panels used in 
T1-5. The up-jet, mid-jet, and down-jet bands (denoted as “Up”, “Md” and “Dn” in 
legends) for 𝜂 (upper row) and  𝜂( )(lower row) are presented for simulations T1-5 
(horizontal axis) separately. For each latitudinal band at each simulation, six vertical line 
markers are presented, which sequentially correspond to 𝒞  at 𝑘=1,2,3,4,5,6. For 
example, in the group of six yellow vertical markers at the upper right corner in the 
upper row, the first vertical marker denotes the mean of 𝒞   computed from mid-jet 
bands of 𝜂 in T5.  
 



  
 

  
 

Text S6. Statistical metrics 
The correlation factors and 1D spectra are computed from standard approaches. 

Specifically, for one panel of 𝜂( ) and the corresponding 𝜂( )
, similar to other studies10, we 

compute the correlation factor between the two arrays flattened from the two images. The mean 
correlation factors are averaged over all correlation factors in the data sets at interest. Take the 
fourth column (titled as “test set, down-jet”) in Table 2 as an example. In each of the ET1-5 runs, 
we single out the 100 test instances belonging to down-jet panels, compute the Pearson 
correlation between 𝜂( ) and 𝜂( )  in each instance, and then average the 100 correlation 
factors to get the mean correlation.  The maximum, minimum and standard deviation of 
correlation factors are computed similarly and recorded in SI 2.  

Our 1D spectra are computed from 2D spectra via a numerical azimuthal averaging used in 
other studies 11,12. The 2D spectra are computed over collective statistics of the down-jet, mid-
jet, or up-jet panels in the test set separately. For example, in the ET5 run, the 2D spectra for the 
generated down-jet panels are computed from the 100 𝜂( ) instances from the down-jet 
panels in the test set. A Hanning window in the latitudinal direction is applied at each panel 
prior to conducting the 2D fast Fourier transforms.  

In addition, we have also computed relative error of 𝜂( ) against 𝜂( )
 for each test 

instance.  The relative error turns out to be larger than 0.3 for each test instance in the five runs. 
This non-negligible relative error is consistent with the spurious large-scale signals discussed in 
the main article.  
 

Text S7. Changes to the Tensorflow Tutorial code 

TITE is modified from the Tensorflow Tutorial codes13 (hereafter “tutorial codes”). Here, we 
detail the changes made to the tutorial codes for reproducibility. Some familiarity with the 
original pix2pix paper6 from readers is assumed in the narrations to follow.  

 
First, the 𝜂( ) fields (ground truth) are weaker in amplitude than 𝜂 (inputs) due to our 

simulation configurations. By trial and error, we find that this imbalance of magnitudes between 
inputs and outputs often destabilizes the training. To alleviate this issue, we multiply the 𝜂( ) 
signals by a uniform factor of 20, after which the max value of |𝜂( )

| is around 78% of the max 
value of |𝜂| among all simulation snapshots we use. The other modifications we make are not 
essential for the training to succeed, and are rather finer improvements of training behaviours, 
to simplify the algorithm, or are inspired by challenges to be faced in future satellite altimetric 
data.  

As explained in Isola et al.6, the objective function during the training can be expressed as: 
arg  min max ℒ (𝐺, 𝐷) + λ ℒ (𝐺), 

where ℒ (𝐺, 𝐷) is the classic minmax cGAN loss, and ℒ (𝐺) is the L1 loss, which 
controls the impact of overall L1 error of generated images6. We change the parameter λ  from 
102 to 103, which improves the mean correlation in the validation set by around 0.09 in all the 
ES1-5 runs and appears to stabilize the training. Increasing λ to 104 or 105 does not significantly 
change the outcomes. 



  
 

  
 

As the inputs and outputs in our application are both scalar fields, we store all the panels as 
single-precision 2D numerical arrays rather than image-formatted files. We modified the input 
pipeline in the tutorial code accordingly, and the number of input and output channels is 
reduced from 3 (for RGB) to 1. Hence, we save some computational costs.  This scalar approach 
is equivalent to using int32 grayscale images, and for convenience we still refer to the scalar 
arrays as “images” in the article.  All image panels plotted in this paper are contours of the scalar 
fields, and the colormaps in plots are picked only for readability or aesthetic purposes. 
Occasionally, colours saturate in plots as an artifact from the way we define the colormaps (e.g., 
input fields in Fig.2), though not in our data.  For normalization, we find the maximum value 
among all pixels in the 𝜂 snapshots and divide {𝜂, 20 𝜂

( )
} by this maximum value, so that all 

data is bounded by 1.  
Prior to each epoch, training images are randomly reshuffled in time, cropped, flipped, and 

rotated. The random reshuffles, crops and horizontal flips are inherited from the tutorial code, 
whereas the random rotations and vertical flips are added by us. For random rotation, we 
randomly rotate each panel by 90º in either clockwise or counterclockwise directions. “Random 
cropping” means that we interpolate the images from a 258-by-258 to a 286-by-286 pixels grid, 
and within it, randomly crop a square panel of 256-by-256 pixels. All these manipulations are 
synchronized between the inputs 𝜂 and outputs 𝜂( ).  

During random cropping, the pixel number choices of 286-by-286 and 256-by-256 are 
inherited from Isola et al.6 We keep these choices for the following reasons. First, having the 
pixel number to be powers of 2 after cropping simplifies the downsampling steps in the 
generators’ architecture as it helps avoid zero-paddings.    Second, cropping from a 286-by-286 
image to a 256-by-256 image deletes about 20% of all pixels, which is an appropriate cropping 
rate.  The cropped images would still span over a few tidal wavelengths and thus retain the IT 
patterns, and yet, as the cropping causes the images to lose about 10% of the pixels in the 
longitudinal direction, the exact zonal periodic condition would be excluded during TITE’s 
training, which corresponds to challenges in realistic situations  

Other data augmentations (random rotations and flipping) of the training images also 
introduce to TITE challenges motivated by realistic situations. For example, in the simulations, ITs 
are forced at the southern boundary of the domain, and propagate northward. If all snapshots 
are upright, then during training, TITE might learn that the ITs always propagate northward, and 
use that knowledge during testing. But after random rotations and flipping are introduced, such 
information would be unavailable to TITE, which corresponds to realistic situations where one 
doesn't necessarily know the IT generation sites a-priori when extracting IT signals.  We also 
experimented on TITE runs where random rotations and flipping are suppressed, and did not see 
any qualitative changes in TITE's performance. 

Following the original nomenclature6, our discriminator architecture can be expressed as 
C64-C128-C256-C512-C512-C512. The main difference between this and the architecture 
recommended in the original paper6 is that at one step, our discriminator treats a whole image 
at once, while the original code applies a “patchGAN”, which divides the image into different 
patches regarded independent from each other and treats each patch separately.  While the 
patchGAN contains less convolutional layers and are less costly, one must decide on the size of 
the individual patches prior to the training. We haven’t investigated how to pick the patch size in 
our problem yet. Thus, for design simplicity, we make the patch size equal to the image size of 



  
 

  
 

 𝜂
( )

. To investigate the impacts of this change, we have also tried using the patchGAN with 
the 70-by-70 patch size adopted in the tutorial code, and the mean correlation and spectral 
properties of 𝜂( ) stay similar.  
 
Additional Supporting Information 
 
Caption for Movie S1: Performance of TITE on T1 data after trained on data from T2, T3, T4 and 
T5.  All snapshots are re-arranged in order of time. “Input” column plots 𝜂, “Truth” column plots 
 𝜂

( ), “Generated” column plots 𝜂( ), and “Difference” column plots ( 𝜂
( )

−  𝜂
( )

). 
 
Caption for Movie S2: Similar to Movie S1, but for the performance of TITE on T2 data after 
trained on data from T2,T3, T4 and T5. 
 
Caption for Movie S3: Similar to Movie S1, but for the performance of TITE on T3 data after 
trained on data from T1,T2, T4 and T5. 
 
Caption for Movie S4: Similar to Movie S1, but for the performance of TITE on T4 data after 
trained on data from T1,T2, T3 and T5. 
 
Caption for Movie S5: Similar to Movie S1, but for the performance of TITE on T5 data after 
trained on data from T1,T2, T3 and T4. 
 
Caption for Movie S6: Illustration of simulations T1-5. Five columns correspond to five 
simulations respectively. The upper row plots local Rossby number, defined as relative vorticities 
divided by Coriolis parameter. Lower row plots  𝜂

( ). The entire simulation domain is included. 
Snapshots are ordered by time and separated by 4T. 
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