
P
os
te
d
on

21
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
88
42
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

3D phenotyping of peach tree canopy architecture using terrestrial

laser scanning

Jordan Knapp-Wilson1, Rafael Bohn Reckziegel2, Alexander Bucksch1, and Dario J
Chavez1

1University of Georgia
2University of Freiburg

November 21, 2022

Abstract

Throughout history, pomologists have developed various trainings systems for temperate fruit trees to improve light interception,

fruit yield, and fruit quality. To achieve this, these training systems enforce certain branch and canopy morphologies upon

the tree. Quantifying architecture could aid the selection for trees that require less pruning or naturally excel in specific

growing/training system conditions. Tree architecture is also directly associated with resource optimization, funneling what

nutrients the plant absorbs into the most efficient, high-yielding configuration possible. In peaches [Prunus persica (L.) Batsch],

branching indices (BIs) have been developed in attempts to quantify tree architecture. BIs can effectively focus on a particular

area of tree architecture (e.g., an index focused on branching density, or BDi), producing quantitative measurements that can

accurately represent a tree’s unique architecture. However, the required branching data to develop these indices is hard to

collect. Historically, branching data has been collected manually. Often this process is tedious, time-consuming, and prone

to human error. These barriers can be circumnavigated by utilizing 3D remote imaging technology, such as terrestrial LiDAR

scanning (tLiDAR). To test this, young peach trees were scanned with 3D scanners and modeled using TreeQSM. This allowed

us to collect branching data with which to calculate BDi values. Statistical analyses of BDi measurements from the 4 young trees

will create a methodological pipeline with which mature and complex trees architectures may be simulated. These BDi values,

either in young or adult trees, will be used to better phenotype trees’ architecture and to better select trees for further breeding

and selection (i.e. future genomic studies - GWAS and novel QTL identification). Keywords: Plant Breeding, Computational

Biology, Phenomics, Phenotyping, Bioinformatics, 3D modelling, tLiDAR

Hosted file

essoar.10508842.1.docx available at https://authorea.com/users/531418/articles/597639-3d-

phenotyping-of-peach-tree-canopy-architecture-using-terrestrial-laser-scanning

1

https://authorea.com/users/531418/articles/597639-3d-phenotyping-of-peach-tree-canopy-architecture-using-terrestrial-laser-scanning
https://authorea.com/users/531418/articles/597639-3d-phenotyping-of-peach-tree-canopy-architecture-using-terrestrial-laser-scanning


3D phenotyping of peach tree canopy architecture using terrestrial
laser scanning

Jordan Knapp-Wilson1, Rafael Bohn Reckziegel2, Alexander Bucksch3,4,5,
Dario J. Chavez1,6

1University of Georgia, Institute of Plant Breeding, Genetics, Genomics (IP-
BGG), Griffin, GA 30223
2University of Freiburg, Chair of Forest Growth and Dendroecology, Freiburg,
Germany 79098
3University of Georgia, Department of Plant Biology, Athens, GA 30602
4University of Georgia, Warnell School of Forestry and Natural Resources,
Athens, GA 30602
5University of Georgia, Institute of Bioinformatics, Athens, GA 30602
6University of Georgia, Department of Horticulture, Griffin, GA 30223

ABSTRACT

Throughout history, pomologists have developed various trainings systems for
temperate fruit trees to improve light interception, fruit yield, and fruit qual-
ity. To achieve this, these training systems enforce certain branch and canopy
morphologies upon the tree. Quantifying architecture could aid the selection
for trees that require less pruning or naturally excel in specific growing/training
system conditions. Tree architecture is also directly associated with resource
optimization, funneling what nutrients the plant absorbs into the most efficient,
high-yielding configuration possible. In peaches [Prunus persica (L.) Batsch],
branching indices (BIs) have been developed in attempts to quantify tree ar-
chitecture. BIs can effectively focus on a particular area of tree architecture
(e.g., an index focused on branching density, or BDi), producing quantitative
measurements that can accurately represent a tree’s unique architecture. How-
ever, the required branching data to develop these indices is hard to collect.
Historically, branching data has been collected manually. Often this process
is tedious, time-consuming, and prone to human error. These barriers can be
circumnavigated by utilizing 3D remote imaging technology, such as terrestrial
LiDAR scanning (tLiDAR). To test this, young peach trees were scanned with
3D scanners and modeled using TreeQSM. This allowed us to collect branching
data with which to calculate BDi values. Statistical analyses of BDi measure-
ments from the 4 young trees will create a methodological pipeline with which
mature and complex trees architectures may be simulated. These BDi values,
either in young or adult trees, will be used to better phenotype trees’ architec-
ture and to better select trees for further breeding and selection (i.e. future
genomic studies - GWAS and novel QTL identification).

Keywords: Plant Breeding, Computational Biology, Phenomics, Phenotyping,
Bioinformatics, 3D modelling, tLiDAR
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1. INTRODUCTION

Nearly all fruit tree breeding programs focus on traditional complex traits, such
as fruit yield, fruit quality, disease resistance, and freezing prevention/chilling
requirements. However, tree architectural traits that could be used to optimize
physiological processes and tree training are less understood [1]. Tree architec-
ture is associated with resource optimization, which will be a critical factor in
developing fruit trees that are resilient to the effects of climate change, especially
in deciduous fruit trees such as peach [Prunus persica (L.) Batsch]. Setting up a
successful training system is laborious and requires the trees to undergo regular
pruning. Due to this, research that prioritizes better understanding tree mor-
phology, branching patterns, and leads to reduced pruning costs is becoming a
priority from an agronomic perspective [2]. Unfortunately, conducting research
into tree morphology and architecture has classically been seen as immensely
challenging due to the physical limits in collecting branching data [3]. However,
new technologies may provide solutions for this area of research.

Algorithms to compute and quantify the necessary branching data to study trees
have been constantly improved over the last decade [4][5]. Recording branch-
ing data (e.g., number of branching orders in a tree, number of branches per
branching order, etc.) via manual methods are prone to human error and are
exceedingly time-consuming. Due to this complication, development of a novel
way to record branching data without the difficulties of manual collection would
lead to potential breakthroughs in fruit tree physiology and breeding. Studies
with access to reliable and readily available branching data could focus on quan-
tifying specific traits associated with architecture and morphology [6]. As such,
a main focus of this study is to evaluate the use of remote sensing technology,
such as tLiDAR, to collect branching data in peaches [7]. This ‘in-silico’ data
collection approach then will be compared to ‘in-situ’ field measurements of
branching data. Utilizing tLiDAR technology will also allow for the generation
of point cloud data from our scanned peach trees. This point cloud data can
then be used in modelling softwares specifically to characterize unique aspects
of tree architecture. For this purpose, TreeQSM v2.4.0 software was used to cre-
ate novel 3D, quantitative structural models (QSMs) from our scans [8]. These
QSMs then can be used to provide biometric information such as branching
data. Such data is vital for utilizing BIs in order to accurately quantify aspects
of canopy architecture; as with BDi values and branching density. As such, BDi
values from in-silico and in-situ sources in juvenile trees will be calculated and
compared. The main goal of this research is to construct QSMs of our young
trees from point cloud data generated via tLiDAR remote scanners, ultimately
allowing us to conceptualize and quantify the intrinsic aspects of tree architec-
ture. This study will also provide tools for future breeding applications as well
as agrobotics/phenotyping research [9].

1. METHODS

2.1 Utilizing tLiDAR scanning equipment to create point cloud data
from peach trees
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This experiment was conducted at UGA Griffin Campus, Research and Ex-
tension Peach orchards at Dempsey Farm, University of Georgia, Griffin, GA.
Both juvenile (one-year-old) and adult (six-year-old) peach trees were scanned
in February 2021 when the peach trees were dormant (defoliated and before
winter pruning). Approximately 50 adult trees, representing 25 different peach
cultivars, were scanned (~2 trees per cultivar). In addition, approx. 46 one-year
old trees were scanned. The young trees are of the same cultivar ‘Julyprince’;
however, the young trees are budded onto two different rootstocks: ‘Guardian’
(GA) and ‘MP29’. The adult trees that were scanned all were grafted on GA
rootstocks.

A FARO Focus3D X 330 laser scanner (Faro Technologies, Lake Mary, FL) was
used to take scans of both the adult and young trees. An exposure time of 11 min-
utes and 29 seconds was kept constant throughout the scanning process, with 8
spherical targets being used when scanning both sets of trees. Of these 8 targets,
4 were moved between scans (advancing forward), while 4 remained stationary,
and thus acted as references between each scan. The recorded raw scans were
processed and registered using a FARO-based software, SCENE v2020.0.1 (Faro
Technologies, Lake Mary, FL). In SCENE, adult and juvenile tree scans were
separated into respective projects and processed. Adult trees were processed us-
ing options to remove stray-points and dark-points within the scans. Processing
was similar in young trees, except for the dark-point processing, which was ex-
cluded. After finishing processing/registering the scans, point cloud data from
individual trees (adult and young) were selected for reconstruction via TreeQSM.
From this MATLAB-based software, QSMs from our point cloud selections were
generated, alongside biometric and branching data (Fig. 1).

2.2 Optimization of 3D cylinder modelling pipeline TreeQSM for use
in peaches

While TreeQSM had previously been shown to work in the modelling of apple
trees, as of yet no work has been done to the same extent in peaches [10]. To
achieve this, TreeQSM first needs to be optimized for peach trees in order to
provide accurate branching data and biometric data. In TreeQSM, there are
several direct input parameters that are used to characterize the 3D cylinder
reconstruction of a QSM. Of the five parameters that can be directly optimized,
PatchDiam1, PatchDiam2Min and PatchDiam2Max are of the most importance.
To quickly summarize, PatchDiam1 is responsible for the initial cover-set fitting
of the 3D model. This initial fitting defines the trunk in addition to the rough
outline of the tree’s branching structure. PatchDiam2Min and Max each can be
optimized by adjusting values to correspond with biometric measurements (e.g.,
diameter at breast height [DBH]). The PatchDiam2 parameters are arguably
the most important when it comes to model creation, as they essentially deter-
mine the second cover fit accuracy and heavily influence primary and higher
branching order structure. All parameters have been adjusted for both young
and adult trees, however only findings from the young trees have been analyzed
and presented in this manuscript.

3



2.3 In-situ and in-silico data collection

Collection of in-situ branching data for the younger trees occurred several weeks
following scanning. It is important to note that the in-situ data collection oc-
curred after scanning, but before the young trees had been pruned going into
the spring season. Thus, the branching structure for the young trees did not
change between the time of scanning and the time of in-situ data collection.
Four trees from the one-year-old trees were selected (trees 19, 20, 28, 29) for
comparison of in-situ and  in-silico data. In-silico data collection first required
the previous optimization of parameters in TreeQSM in order to create reliable
models that, within reason, are true to what would be observed in the field. Af-
terwards, 20 iterations of modelling process are run and branching data values
are collected per tree. The standard deviations (SD) of these values were calcu-
lated until a batch of 20 iterations produced branching data that was within 1
SD of the mean calculated values. These accepted mean values were then used
as representative values for the in-silico data.

2.4 Utilization of branching indices (BIs) to characterize aspects of
peach tree architecture

As discussed previously, branching data can be further adapted via the use
of BIs, which will help quantify specific aspects of tree architecture (such as
branching density). One such BI mentioned earlier (BDi) will be used to quantify
branching density in our young trees. This BDI was developed at the University
of Florida (UF) [2], with its formula listed here as:

𝐵𝐷𝑖 = ∏𝑘
𝑖=1 2(𝑥𝑖+ 𝑛𝑖

100 ).

Carrillo et al. (2010) described the formula as follows “..where x = absence (x
= 0) or presence (x = 1) of first-, second-, third-, or subsequent order branches;
n = number of branches within a branching order; and k = the maximum order
of branching”. BDi measurements from the 4 selected young peach trees will
be calculated and analyzed for differences in values between in-situ and in-silico
data collection methods. Differences in BDi in the young peach trees possessing
different rootstocks will be examined as well for reference.

1. RESULTS & DISCUSSION

3.1 Initial 3D reconstruction and QSM modelling

Following the optimization of parameters in TreeQSM for adult and young peach
trees, varying levels of success were achieved in creating the 3D models during
the first several iterations. Ultimately, younger trees models were chosen be our
first analyzed models. This is due to their lack of complexity when compared
to adult trees, allowing us to run multiple iterations of modelling necessary
to generate quality QSMs. In-situ branching data also proved much easier to
collect from younger trees when compared to adult peach trees, which allowed
us to have more individual tree’s entire architecture and branching structure
measured by hand. However, models from the adult peach trees, even with the
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inherently larger amounts of complexity within the point clouds, objectively had
less fluctuations during the 3D cylinder reconstruction process when compared
to the younger trees.

The increased amount of perturbation found when modelling the younger trees
could be the result of a number of different factors. The main factors however
that resulted in these difficulties are the conditions under which the young
tree scans were taken, as well as the nature of how the TreeQSM modelling
process works. While scanning the young trees, low-light conditions were largely
present. During the initial processing/registration of the young tree scans, the
inclusion of dark-point filtering led to the SCENE software having difficulties
accurately identifying the targets in the respective scans. This caused issues
with registration, and lower overall quality of point clouds that were generated
as a result. This ultimately led to the decision to not include the dark-point
processing filter, which improved overall point cloud configuration. However,
this also led to more noise within the models than if the filter was used, resulting
in a wider breadth of configurations during modelling.

This
was further compounded by the specifics of how modelling is done in TreeQSM.
The resulting issues were difficulties assigning the correct branching order
to the appropriate cylinder segments during the segmentation process. This
initial step occurs after a general cover set is used to roughly define the
structure and general branching order of the model. However, since TreeQSM
was initially designed with arboreal settings and trees as the intended model
subjects, adaptations have been made to co-opt this modelling software for use
in peaches. Specifically, the peach trees used in this study (adult and young)
have been grown using an open-base training system. This system is used to
create 3-5 (mostly 4) primary branches, or ‘scaffolds’ per tree, instead of a
single strong, apical meristem. This produced some trouble when modelling the
younger trees in TreeQSM, as the software wants to assign an apical meristem
to the tree, and thus has difficulties assigning the smaller, less robust scaffolds
to the primary branching order, instead seeing them as continuations of the
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trunk. Workarounds however were implemented to fix this issue. The resulting
models for the four young trees (19, 20, 28, 29) were found to have averaged
SD of branches equal to 0.77, 1.05, 0.92, and 1.05 respectively. These branch
SD scores were averaged from the SD values from each branching order from
each respective tree. The aggregate branching SD from amongst all the young
trees was 0.95. As a result, point cloud data from both adult and young trees
have proved successful in generating 3D models that also could be used to
provide branching and biometric data by utilizing remote sensing methods such
as tLiDAR technology as seen in Fig. 1.

Figure 1. 3D reconstruction models of an adult (right) and young
(left) peach tree from our orchards via TreeQSM. The key on the right
provides correspondence of branching order to color of limbs. Notice
the difference in complexity between the two, one of the reasons the
younger trees were selected first selected to analyze our modelling
process.

3.2 Comparing in-situ branching data/BDi values to in-silico Tree-
QSM data

After successfully generating models for the young trees and optimizing param-
eters, results from the preliminary in-silico data collection could be compared
to in-situ data. A two-way ANOVA test was done to compare branching data
collected for the different branching orders (1-4) amongst in-situ and in-silico
sources. Results from this test showed the interrelationship of the two variables
(branching data and data source) were not different in a statistically significant
factor (F-value = 0.200, p-value = 0.895).

1. CONCLUSION

Our study has assessed the feasibility of creating 3D reconstructed models of
young peach trees, as well as the validity of the quantitative data collected from
these QSM 3D models. Findings from these QSM models were deemed in-silico
data, and compared alongside previously collected in-situ data from the field.
Statistical analyses show that there was no significant difference (p-value < 0.05)
between the two sets of data between branching orders. In addition, when the
respective sets of data were used to create BDi indices for the young trees, the
results of which were likewise found to have no significant difference in value.

As such, results from comparing the branching data in younger trees’ in-situ and
in-silico have been statistically analyzed and were found to have no statistically
significant difference between the two sets of data. This provides supportive
cause to move forwards with focus now shifting to modelling of adult trees, as
analyses from the young tree 3D models give interesting insight to the appli-
cability and fidelity of utilizing TreeQSM in modelling peach trees, especially
with regards to adult and more developed juvenile trees. Successful model cre-
ation, in addition to comparison to in-situ branching data, proved significant in
advancing our efforts to use these remote sensing techniques for the upcoming
defoliate season This would provide not only important branching data, but
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3D QSM models as well. Branching data could be useful in designing future
branching indices, as well as calculating BDi values. These values can then be
used in selection trials, or in phenomic/genomic studies as a trait of interest.
Furthermore, the QSM models being generated have strong implications for use
in agrobotics and AI learning algorithms, advancing areas of research such as
automated pruning and fruit harvesting.
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