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Abstract

Improving nutrient and water uptake in crops is one of the major challenges to sustain a fast-growing population that faces

increasingly nutrient-limited soils. Root hairs, which are specialized epidermal cells, are important drivers of nutrient and water

uptake from the soil. Microscopy provides a mean to record root hairs as digital images. However, due to their geometry and

complex spatial arrangements quantifying root hairs in microscopy images manually remains a bottleneck. Manual selection of

representative root hairs can result in inaccurate estimations of root hair traits and misrepresentation of root hair functions.

We present a method to quantify phenotypes automatically by measuring all individual root hairs in digital microscopy images.

Our method uses random forests classification to separate root hair from the parent root and the image background. We define

metrics to evaluate segments of root hairs that intersect or form blobs of two or more root hairs. Using simulated annealing

for combinatorial optimization, we reconstruct individual root hairs by resolving intersections in a globally optimal way. As a

result, we measure the root hair length, its distribution, and root hair density in each image. We demonstrate our method on

examples of three maize cultivars under phosphorus, nitrogen, and potassium stress. Results show that our measurements of

root hair traits strongly correlate with manually measured data in mean root hair length (R 2 : 0.72 to 0.85, p<.001), as well

as in root hair density (R 2 : 0.38 to 0.66, p<.001). We show that our method computes reliable estimates of root hair length,

density and their distributions along the root on complex root hair arrangements in maize. We believe that our study paves a

way towards identifying the genetic control of root hair traits and increased agricultural production.
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ABSTRACT

Improving nutrient and water uptake in crops is one of the major challenges to sustain a fast-growing
population that faces increasingly nutrient-limited soils. Root hairs, which are specialized epidermal cells,
are important drivers of nutrient and water uptake from the soil. Microscopy provides a mean to record root
hairs as digital images. However, due to their geometry and complex spatial arrangements quantifying root
hairs in microscopy images manually remains a bottleneck. Manual selection of representative root hairs can
result in inaccurate estimations of root hair traits and misrepresentation of root hair functions. We present
a method to quantify phenotypes automatically by measuring all individual root hairs in digital microscopy
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images. Our method uses random forests classification to separate root hair from the parent root and the
image background. We define metrics to evaluate segments of root hairs that intersect or form blobs of two
or more root hairs. Using simulated annealing for combinatorial optimization, we reconstruct individual root
hairs by resolving intersections in a globally optimal way. As a result, we measure the root hair length, its
distribution, and root hair density in each image. We demonstrate our method on examples of three maize
cultivars under phosphorus, nitrogen, and potassium stress. Results show that our measurements of root
hair traits strongly correlate with manually measured data in mean root hair length (R 2: 0.72 to 0.85,p
<.001), as well as in root hair density (R 2: 0.38 to 0.66, p <.001). We show that our method computes
reliable estimates of root hair length, density and their distributions along the root on complex root hair
arrangements in maize. We believe that our study paves a way towards identifying the genetic control of
root hair traits and increased agricultural production.

Keywords: root hair, abiotic stress, phenotyping, machine learning, simulated annealing, trait distribution

INTRODUCTION

Branching patterns in biology occur at all spatial scales, organismal levels and for many physiological,
protective or reproductive reasons and are most prominent in the plant kingdom [1]. Hair-like structures
with a high length to width ratio are specific objects that branch off and extend from the organism’s surface
and have diverse functions across biology [2]. To study their function it is necessary to quantify their
shape and arrangement accurately, which, despite of their simple shape—in comparison to a multi-level
branching architecture—remains a challenge. Modern imaging tools can capture digital images of these
hair-like structures, but extracting all of them individually from the image is ambiguous if they occlude
each other partially. The occlusion is especially prevalent in root hairs, which are elongated epidermal cells
extending from the root surface of a plant. By increasing the root surface area and extending away from the
root surface into the soil, root hairs can increase water and nutrient uptake from the soil [3].

We demonstrate an algorithm to resolve occlusion in 2D microscopy images of root hairs. Researcher studying
morphological traits of root hairs traditionally use microscopy images and quantify root hair density and
length manually. Not only is this manual trait measurement of root hair traits extremely tedious but the
interpretation of 2D images representing root hairs is also subjective. If measurements are done automatically,
only the total area or a profile of root hair length along the root can be extracted [4, 5]. Other studies used
X-ray computed tomography (CT) to scan roots and root hairs in soil, but still used manual tracing to
segment root hairs from 3D X-ray CT scans [6-8].

The challenge to extract individual root hairs from microscopy images is that all intersections of root hairs
must be resolved in the 2D projection of the image. A single intersection of two root hairs can be instantly
resolved by determining the straightest solution from a small number of possible combinations. By increasing
the number of root hairs and intersections, however, the number of potential combinations increases in real
scenarios to trillions of possible outcomes. We present an approach to strategically resolve intersections and
extract individual root hairs in feasible computational time. As such, our approach allows to measure root
hair traits, like length and density, and their distributions within a root sample at a much finer resolution
than previous 2D approaches.

MATERIAL AND METHODS

2.1 Datasets

To validate our method we selected fifteen microscopy images of rice, maize and common bean roots taken at
different root classes and grown under different treatments. All roots grew in a hydroponic system and were
stained with toluidine blue before image acquisition. For each image, we counted and traced all individual
root hairs to be used as a validation set. To demonstrate the usability of our method we used a dataset of three
Thai inbred maize lines: Tak Fa 1, Tak Fa 2 and Tak Fa 3. For each genotype three to four replicates were
grown in control, reduced nitrogen, reduced phosphorus, and reduced potassium conditions, respectively. For
each replicate, five to seven images were taken along the root; for each image, five representative root hairs
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were traced manually to measure their length and root hair density was measured along a representative
area of the root.

2.2 Image classification

We used the software ilastik [9] to classify all image pixels as either root hair, root or background. The
software provides a user interface to create training sets by manually labelling pixels according to their class
and to look interactively at the results. For the classification, we used a random forest classifier with features
obtained from morphological filters (validation dataset: σ=0.3-10; demonstration dataset: 0.3-50). In the
validation dataset, each image was trained and classified separately, while for the demonstration dataset we
classified each genotype separately using ten to eleven images from the corresponding genotype.

2.3 Root hair extraction

Based on the classified image we extracted the medial axis from pixels, which were classified as root hair.
We then identified all termination points, which have only one neighboring pixel on the medial axis, and
junction points, which have more than two neighboring pixels on the medial axis. We connected all pairs
of these points, if they were within a certain proximity, by traversing paths along the medial axis. This
resulted in a set with paths that either do or do not resemble a segment of a root hair correctly. To smooth
out artifacts of the medial axis and to resemble actual root hairs more accurately we fitted a weighted spline
to each path with weights calculated by Equation 1, wheredMA is the measured diameter of the medial axis
and dRH is an estimate of the expected root hair diameter.

w = 1/max(1.0, dMA − dRH ) (1)

We then used simulated annealing to combinatorically find the set of splines that resolves intersections and
find root hairs in a globally optimal way [10]. At each iteration of the annealing process, either a spline is
removed or a new spline is added to the set. During the annealing process we try to minimize a predefined
cost function, which we calculate as the weighted root mean square of three metrics: (1) The average of the
smallest distances of all root hairs to the root, (2) the residual strain energy, i.e. a metric to reduce the
curvature of splines and (3) the fraction of remaining root hairs based on unresolved medial axis segments.
At each iteration we restore the feasibility of the solution by ensuring that no spline branches of another
spline and all intersections of splines are valid [11]. Two splines overlapping at one end are merged to a
single entity to ensure that longer root hairs can be extracted in their full length. The annealing process
stops once the cost function converges to a minimum and no more changes to the set are accepted.

2.4 Root hair traits

As a result, of the root hair extraction, we were able to compute traits based on the shape and distribution
of individual root hairs as shown in Figure 1. As such, we calculated the length of each individual root hair
and the density of root hairs on both sides of the root as the number of root hairs per root edge length. Root
hairs that were too short, too far from the root or that emerged from a secondary root were not included
into the calculations. We excluded images where the algorithm failed to identify the root edge correctly.

3
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Figure 1: Extracted root hair and edges of root are shown as colored lines. Root hair on main root are
shown in random colors, other root hairs in red. The root’s top edge (green), bottom edge (blue), and edges
of secondary roots and noise (red) are classified.

RESULTS

3.1 Validation

To validate our method we extracted root hairs in all fifteen images of the validation data set and compared
the results to the manual measurements. As illustrated in Figure 2, the distributions of root hair length
obtained with the automatic approach matches the distributions of manually extracted root hair in all fifteen
images. The analysis of the results showed a strong correlation between automatic and manual results in
mean root hair length (R 2=0.93,p <.001), maximum root hair length (R 2=0.90, p <.001) and number of
root hairs (R 2=0.63,p <.001).

Figure 2: The distribution of root hair length extracted with our approach in comparison to manual mea-
surements for 15 images. Automatic measurements are shown in blue and manual in orange.
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3.2 Root hair traits in maize

We further computed the root hair length and density for Tak Fa 1, Tak Fa 2 and Tak Fa 3 under all four
treatments (Figure 3, columns a,b,c). In each replicate, which had more than one image, we calculated the
mean root hair length as the mean of all root hairs from all images and the density as the total number of
root hairs from all images divided by the total length of the root edge from all images. Despite root hairs in
the Tak Fa 3 control group being on average 384.1μm long and thus, 73.7μm and 58.0μm longer than Tak
Fa 1 control and Tak Fa 2 control, respectively, the difference was not statistically different. We further did
not observe significant differences in density between all three genotypes, despite Tak Fa 2 being 69% and
Tak Fa 3 44% denser than Tak Fa 1. We did not observe any significant differences in density between all
treatments to the control group in Tak Fa 1 and Tak Fa 3. Only in Tak Fa 2 we observed a decrease in root
hair length by 112.0μm under reduced nitrogen with weak significance (p =0.057).

To show how our results compare to standard manual root hair measurements, for each image we correlated
the mean root hair lengths of all automatically extracted root hairs to the mean of the five representative
root hairs (Figure 3, column d). For all three genotypes we obtained high correlations (Tak Fa 1:R 2=0.78, p
<.001; Tak Fa 2:R 2=0.85, p <.001; Tak Fa 3:R 2=0.72, p <.001). Similarly, we correlated root hair density
from the automatic method to manual measurement and obtained strong correlations as shown in Figure 3,
column e (Tak Fa 1: R 2=0.66,p <.001; Tak Fa 2: R 2=0.46,p <.001; Tak Fa 3: R 2=0.38,p <.001).

Figure 3: Overview of results. Results for Tak Fa 1, Tak Fa 2 and Tak Fa 3 are shown in rows 1), 2)
and 3). Column a) shows mean root hair length by treatment; column b) shows distribution of root hair
length by replicate and treatment; column c) shows root hair density by treatment; columns d) and e) show
correlations between automatic and manual measurements of root hair length and density, respectively.

CONCLUSIONS

We demonstrated an algorithm to resolve and extract occluded hair-like structures on the example of root
hairs captured in 2D microscopy images. The high correspondence of our measurements to the validation
data shows that we are able to accurately determine the length and density of root hairs in microscopy
images. We observed that correlations between automatic and manual measurement are lower in the demon-
stration dataset with maize images than in our validation dataset. Higher correlations in our validation set
suggests that improving our classification step could result in overall enhanced performance and that manual
measurements of root hairs are potentially not representative. We further observed that manually measured
root hair length resulted in longer root hairs compared to automatically measured root hairs, which suggests
that selecting root hairs manually is biased towards longer root hairs. We tested for difference between groups
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in root hair density and mean root hair length per replicate (i.e. per plant). While we could not determine
significant differences between genotypes and treatments in this dataset, we believe that our method paves
the way towards better identifying the genetic control of root hair traits and an improvement in breeding
programs for these traits. We anticipate that incorporation of the measured trait distributions (Figure 3,
column b) into future statistical analysis will provide more insight into root hair response to abiotic stresses.
Further development of our algorithm will allow to resolve intersections in branching architectures with
several orders of branching hierarchy to accurately determine traits at larger organismal levels in the future.
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https://github.com/Computational-Plant-Science/DIRTmu.
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ABSTRACT 
Improving nutrient and water uptake in crops is one of the major challenges to sustain a fast-growing 
population that faces increasingly nutrient-limited soils. Root hairs, which are specialized epidermal cells, 
are important drivers of nutrient and water uptake from the soil. Microscopy provides a mean to record root 
hairs as digital images. However, due to their geometry and complex spatial arrangements quantifying root 
hairs in microscopy images manually remains a bottleneck. Manual selection of representative root hairs 
can result in inaccurate estimations of root hair traits and misrepresentation of root hair functions. We 
present a method to quantify phenotypes automatically by measuring all individual root hairs in digital 
microscopy images. Our method uses random forests classification to separate root hair from the parent 
root and the image background. We define metrics to evaluate segments of root hairs that intersect or form 
blobs of two or more root hairs. Using simulated annealing for combinatorial optimization, we reconstruct 
individual root hairs by resolving intersections in a globally optimal way. As a result, we measure the root 
hair length, its distribution, and root hair density in each image. We demonstrate our method on examples 
of three maize cultivars under phosphorus, nitrogen, and potassium stress. Results show that our 
measurements of root hair traits strongly correlate with manually measured data in mean root hair length 
(R2: 0.72 to 0.85, p<.001), as well as in root hair density (R2: 0.38 to 0.66, p<.001). We show that our 
method computes reliable estimates of root hair length, density and their distributions along the root on 
complex root hair arrangements in maize. We believe that our study paves a way towards identifying the 
genetic control of root hair traits and increased agricultural production.  
 
Keywords: root hair, abiotic stress, phenotyping, machine learning, simulated annealing, trait distribution 

 
 

1. INTRODUCTION 
Branching patterns in biology occur at all spatial scales, organismal levels and for many physiological, 
protective or reproductive reasons and are most prominent in the plant kingdom [1]. Hair-like structures 
with a high length to width ratio are specific objects that branch off and extend from the organism’s surface 
and have diverse functions across biology [2]. To study their function it is necessary to quantify their shape 
and arrangement accurately, which, despite of their simple shape—in comparison to a multi-level branching 
architecture—remains a challenge. Modern imaging tools can capture digital images of these hair-like 
structures, but extracting all of them individually from the image is ambiguous if they occlude each other 
partially. The occlusion is especially prevalent in root hairs, which are elongated epidermal cells extending 
from the root surface of a plant. By increasing the root surface area and extending away from the root 
surface into the soil, root hairs can increase water and nutrient uptake from the soil [3]. 
 
We demonstrate an algorithm to resolve occlusion in 2D microscopy images of root hairs. Researcher 
studying morphological traits of root hairs traditionally use microscopy images and quantify root hair 
density and length manually. Not only is this manual trait measurement of root hair traits extremely tedious 
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but the interpretation of 2D images representing root hairs is also subjective. If measurements are done 
automatically, only the total area or a profile of root hair length along the root can be extracted [4, 5]. Other 
studies used X-ray computed tomography (CT) to scan roots and root hairs in soil, but still used manual 
tracing to segment root hairs from 3D X-ray CT scans [6-8].  
 
The challenge to extract individual root hairs from microscopy images is that all intersections of root hairs 
must be resolved in the 2D projection of the image. A single intersection of two root hairs can be instantly 
resolved by determining the straightest solution from a small number of possible combinations. By 
increasing the number of root hairs and intersections, however, the number of potential combinations 
increases in real scenarios to trillions of possible outcomes. We present an approach to strategically resolve 
intersections and extract individual root hairs in feasible computational time. As such, our approach allows 
to measure root hair traits, like length and density, and their distributions within a root sample at a much 
finer resolution than previous 2D approaches.   

 
2. MATERIAL AND METHODS 

2.1 Datasets 
To validate our method we selected fifteen microscopy images of rice, maize and common bean roots taken 
at different root classes and grown under different treatments. All roots grew in a hydroponic system and 
were stained with toluidine blue before image acquisition. For each image, we counted and traced all 
individual root hairs to be used as a validation set. To demonstrate the usability of our method we used a 
dataset of three Thai inbred maize lines: Tak Fa 1, Tak Fa 2 and Tak Fa 3. For each genotype three to four 
replicates were grown in control, reduced nitrogen, reduced phosphorus, and reduced potassium conditions, 
respectively. For each replicate, five to seven images were taken along the root; for each image, five 
representative root hairs were traced manually to measure their length and root hair density was measured 
along a representative area of the root.  
 
2.2 Image classification 
We used the software ilastik [9] to classify all image pixels as either root hair, root or background. The 
software provides a user interface to create training sets by manually labelling pixels according to their 
class and to look interactively at the results. For the classification, we used a random forest classifier with 
features obtained from morphological filters (validation dataset: σ=0.3-10; demonstration dataset: 0.3-50). 
In the validation dataset, each image was trained and classified separately, while for the demonstration 
dataset we classified each genotype separately using ten to eleven images from the corresponding genotype.   
 
2.3 Root hair extraction 
Based on the classified image we extracted the medial axis from pixels, which were classified as root hair. 
We then identified all termination points, which have only one neighboring pixel on the medial axis, and 
junction points, which have more than two neighboring pixels on the medial axis. We connected all pairs 
of these points, if they were within a certain proximity, by traversing paths along the medial axis. This 
resulted in a set with paths that either do or do not resemble a segment of a root hair correctly. To smooth 
out artifacts of the medial axis and to resemble actual root hairs more accurately we fitted a weighted spline 
to each path with weights calculated by Equation 1, where dMA is the measured diameter of the medial axis 
and dRH is an estimate of the expected root hair diameter.  
 

𝑤𝑤 = 1/max (1.0,𝑑𝑑𝑀𝑀𝑀𝑀 − 𝑑𝑑𝑅𝑅𝑅𝑅 )   (1) 
 
We then used simulated annealing to combinatorically find the set of splines that resolves intersections and 
find root hairs in a globally optimal way [10]. At each iteration of the annealing process, either a spline is 
removed or a new spline is added to the set. During the annealing process we try to minimize a predefined 
cost function, which we calculate as the weighted root mean square of three metrics: (1) The average of the 
smallest distances of all root hairs to the root, (2) the residual strain energy, i.e. a metric to reduce the 
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curvature of splines and (3) the fraction of remaining root hairs based on unresolved medial axis segments. 
At each iteration we restore the feasibility of the solution by ensuring that no spline branches of another 
spline and all intersections of splines are valid [11]. Two splines overlapping at one end are merged to a 
single entity to ensure that longer root hairs can be extracted in their full length. The annealing process 
stops once the cost function converges to a minimum and no more changes to the set are accepted.  
 
2.4 Root hair traits 
As a result, of the root hair extraction, we were able to compute traits based on the shape and distribution 
of individual root hairs as shown in Figure 1. As such, we calculated the length of each individual root hair 
and the density of root hairs on both sides of the root as the number of root hairs per root edge length. Root 
hairs that were too short, too far from the root or that emerged from a secondary root were not included into 
the calculations. We excluded images where the algorithm failed to identify the root edge correctly. 
 

 
Figure 1: Extracted root hair and edges of root are shown as colored lines. Root hair on main root 
are shown in random colors, other root hairs in red. The root’s top edge (green), bottom edge (blue), 
and edges of secondary roots and noise (red) are classified. 

 
3. RESULTS 

3.1 Validation 
To validate our method we extracted root hairs in all fifteen images of the validation data set and compared 
the results to the manual measurements. As illustrated in Figure 2, the distributions of root hair length 
obtained with the automatic approach matches the distributions of manually extracted root hair in all fifteen 
images. The analysis of the results showed a strong correlation between automatic and manual results in 
mean root hair length (R2=0.93, p<.001), maximum root hair length (R2=0.90, p<.001) and number of root 
hairs (R2=0.63, p<.001).  
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Figure 2: The distribution of root hair length extracted with our approach in comparison to manual 
measurements for 15 images. Automatic measurements are shown in blue and manual in orange.  

 
3.2 Root hair traits in maize 
We further computed the root hair length and density for Tak Fa 1, Tak Fa 2 and Tak Fa 3 under all four 
treatments (Figure 3, columns a,b,c). In each replicate, which had more than one image, we calculated the 
mean root hair length as the mean of all root hairs from all images and the density as the total number of 
root hairs from all images divided by the total length of the root edge from all images. Despite root hairs in 
the Tak Fa 3 control group being on average 384.1μm long and thus, 73.7μm and 58.0μm longer than Tak 
Fa 1 control and Tak Fa 2 control, respectively, the difference was not statistically different. We further did 
not observe significant differences in density between all three genotypes, despite Tak Fa 2 being 69% and 
Tak Fa 3 44% denser than Tak Fa 1. We did not observe any significant differences in density between all 
treatments to the control group in Tak Fa 1 and Tak Fa 3. Only in Tak Fa 2 we observed a decrease in root 
hair length by 112.0μm under reduced nitrogen with weak significance (p=0.057). 
 
To show how our results compare to standard manual root hair measurements, for each image we correlated 
the mean root hair lengths of all automatically extracted root hairs to the mean of the five representative 
root hairs (Figure 3, column d). For all three genotypes we obtained high correlations (Tak Fa 1: R2=0.78, 
p<.001; Tak Fa 2: R2=0.85, p<.001; Tak Fa 3: R2=0.72, p<.001). Similarly, we correlated root hair density 
from the automatic method to manual measurement and obtained strong correlations as shown in Figure 3, 
column e (Tak Fa 1: R2=0.66, p<.001; Tak Fa 2: R2=0.46, p<.001; Tak Fa 3: R2=0.38, p<.001). 
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Figure 3: Overview of results. Results for Tak Fa 1, Tak Fa 2 and Tak Fa 3 are shown in rows 1), 
2) and 3). Column a) shows mean root hair length by treatment; column b) shows distribution of 
root hair length by replicate and treatment; column c) shows root hair density by treatment; columns 
d) and e) show correlations between automatic and manual measurements of root hair length and 
density, respectively.  

 
4. CONCLUSIONS 

We demonstrated an algorithm to resolve and extract occluded hair-like structures on the example of root 
hairs captured in 2D microscopy images. The high correspondence of our measurements to the validation 
data shows that we are able to accurately determine the length and density of root hairs in microscopy 
images. We observed that correlations between automatic and manual measurement are lower in the 
demonstration dataset with maize images than in our validation dataset. Higher correlations in our 
validation set suggests that improving our classification step could result in overall enhanced performance 
and that manual measurements of root hairs are potentially not representative. We further observed that 
manually measured root hair length resulted in longer root hairs compared to automatically measured root 
hairs, which suggests that selecting root hairs manually is biased towards longer root hairs. We tested for 
difference between groups in root hair density and mean root hair length per replicate (i.e. per plant). While 
we could not determine significant differences between genotypes and treatments in this dataset, we believe 
that our method paves the way towards better identifying the genetic control of root hair traits and an 
improvement in breeding programs for these traits. We anticipate that incorporation of the measured trait 
distributions (Figure 3, column b) into future statistical analysis will provide more insight into root hair 
response to abiotic stresses. Further development of our algorithm will allow to resolve intersections in 
branching architectures with several orders of branching hierarchy to accurately determine traits at larger 
organismal levels in the future. 
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