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Abstract

The first Joint Workshop on Representation Uncertainty in the Earth Sciences was held in March 2021. This brought together
the Earth observation, data assimilation and forecast verification and post-processing communities, alongside metrologists to
discuss the definition and quantification of representation uncertainty within the Earth Sciences. The aim of the workshop was
to facilitate cross-disciplinary discussion, establishing where existing methodologies could be shared and to foster future collab-
oration. A key outcome of the workshop was a working definition of representation uncertainty applicable across all the Earth
Science communities, which is presented in this white paper. The cross-disciplinary discussions at the workshop highlighted the
need for scientists to work with metrologists to establish a common vocabulary for uncertainties, accessible to Earth Science ap-
plications. Further recommendations included regular workshops to discuss progress in defining and quantifying representation

uncertainty and awareness of cross-disciplinary funding opportunities to further address representation uncertainty issues.
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Key Points:

e Representation uncertainty can be defined as occurring at a comparison interface between two quanti-
ties.

e A common definition of representation uncertainty can be applied across the Earth Science community.

e Collaboration between scientists and metrologists is recommended to define an accessible and relevant
vocabulary for uncertainty analysis.

Abstract

The first Joint Workshop on Representation Uncertainty in the Earth Sciences was held in March 2021.
This brought together the Earth observation, data assimilation and forecast verification and post-processing
communities, alongside metrologists to discuss the definition and quantification of representation uncertainty
within the Earth Sciences. The aim of the workshop was to facilitate cross-disciplinary discussion, estab-
lishing where existing methodologies could be shared and to foster future collaboration. A key outcome of
the workshop was a working definition of representation uncertainty applicable across all the Earth Science
communities, which is presented in this white paper. The cross-disciplinary discussions at the workshop



highlighted the need for scientists to work with metrologists to establish a common vocabulary for uncer-
tainties, accessible to Earth Science applications. Further recommendations included regular workshops to
discuss progress in defining and quantifying representation uncertainty and awareness of cross-disciplinary
funding opportunities to further address representation uncertainty issues.

Plain Language Summary

This paper describes a workshop which brought together experts from different Earth science disciplines to
discuss and attempt to define the term “representation uncertainty”. We make observations of the Earth
using satellites, ground based instruments (such as weather stations) and instruments on ocean buoys or
aircraft. These observations are used in their own right, and also by computer models used to generate
weather forecasts. The observations themselves are imperfect and we quantify these imperfections using the
term “uncertainty”. In this paper we discuss the uncertainty that happens when we compare two different
sets of observations, two different models, or observations and models. As well as the uncertainties inherent
in models and observations, there is also an uncertainty due to the fact that the two things being compared
are not representing exactly the same conditions. For example, a satellite observation may represent an
average value over a few hundred metres, while an instrument on the surface measures only at a single point,
and the model represents an area of several kilometres. Understanding those differences is essential to be
able to properly combine different sets of observations, and observations with models.

1 Introduction

The term “representation uncertainty” is used widely in the Earth Sciences, often to describe an uncertainty
that occurs at the comparison interface of two different representations of the same physical quantity, al-
though each subcommunity has its own ways of characterizing and evaluating these quantities. The first
Joint Workshop on Representation Uncertainty in the Earth Sciences was held online from 23'¢ to 25"
March 2021, sponsored by the National Centre for Earth Observation. This discussion-based workshop was
open to scientists working in the fields of Earth observation (EO), data assimilation (DA), forecast verifica-
tion and post-processing (FVPP), and metrology. The workshop was designed to maximize discussion time,
beginning with short presentations on where representation uncertainty might occur within the Earth sci-
ences and introducing the field of metrology, which underpins the science of uncertainty. Discussion groups
were held first within each discipline, and then across the different disciplines, posing the questions ‘Where
are we now?’ and ‘What could we do going forward?’. Science talks and poster contributions were made,
showcasing ongoing research towards quantifying representation uncertainty. The workshop concluded with
a panel discussion summarizing the key outcomes identified within each discipline. The workshop promoted
consistent use of terminology across all disciplines to facilitate discussion.

2 Workshop Outcomes
2.1 Defining representation uncertainty

One of the main challenges of the meeting was to find a definition of representation uncertainty that was
widely applicable across the disciplines represented at the workshop. The ‘working definition’ was regularly
revisited throughout the meeting and during the concluding panel discussion, the following definition was
proposed:

“The uncertainty associated with a comparison of two quantities (that are themselves uncertain). This con-
tribution to the uncertainty only occurs at the comparison interface.”

Representation uncertainty is recognised as a wider term that includes many different sources of uncertainty,
each of which is often described by a more specific term. This broad definition, examples of which are
shown in Figure 1, should be applicable across all disciplines, as it allows the detail of how representation
uncertainty arises to be different for each comparison, which we acknowledge is often complex.
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Figure 1: Schematic detailing examples of the comparison interface at which representation uncertainty
occurs. At this interface, k is the result of a comparison of observed or modelled quantities, x or .
These quantities are transformed through the functions f (z) and g (y) to bring them to the comparison
interface. The comparison is performed as some function of the difference between the transformed quantities,
producing the resultk = h(f(x) —g(y)). Bothf(x) and g (y) have associated uncertainty and at the
point of comparison, there is also the representation uncertainty, identified with the uncertainty on k at
the comparison interface. The details of the representation uncertainty are specific to a given comparison,
and may arise from a) comparison of an observation to a geophysical model equivalent, b) comparison of an
observation to a coarser resolution data set, ¢) comparison of two realisations of the same physical quantity or
d) a definitional difference (which could be a comparison of a measured or modelled data set to a conceptual,
more complete, data set or the difference between what users would like and what data producers can
provide). The schematics within each box provide just a single example of the possible comparisons.

2.2 Metrology and uncertainty in Earth Science applications

Metrology ensures international consistency and century-long stability of measurements for both science and
trade by providing traceability to the International System of Units, the SI. More recently, metrologists have
also started to apply the principles of metrological traceability to provide confidence in data derived from
modelling. Metrological traceability is built on two core concepts: uncertainty analysis, defined by the Guide
to the Expression of Uncertainty in Measurement (the GUM; JCGM 100:2008), and comparisons, formalized
to validate uncertainty assessments. Metrologists have worked with the EO community for several decades
but have had limited interactions with the DA and FVPP communities.

The Earth sciences often have data value chains, where one community’s output becomes another commu-
nity’s input. Each stage of the chain, whether based on instruments or modelling, can be described by a
measurement model (equation) with terms that include the previous stage’s output, and new terms intro-
duced. Additionally, there will be assumptions inherent in the form of the model which Mittaz et al. (2019)
described as the “plus zero uncertainty”, written by including a+0 into the measurement model. In laboratory
metrology, this+0 includes concepts such as representing an integral with a trapezoidal-rule summation, or
assuming that the instrument does not change its properties when moved into the field.



Thus there are two types of uncertainty associated with a value calculated by a measurement model. First,
the propagated uncertainty comes from the input quantities, through the GUM methods, to an uncertainty
associated with the calculated value. This describes the spread of probable values around the measured value
where the true calculated value is expected to lie. Then there is the uncertainty associated with the extent
to which the true calculated value represents the quantity of interest — the +0 term.

2.3 Current status within each research discipline

In this section we include some examples of where representation uncertainty occurs within the different
disciplines and relate these back to the definition given in Section 2.1, using the shorthand notation (‘a’),
(‘D’), (‘¢’) and (‘d’) to refer to the four types of representation uncertainty as defined in Figure 1.

2.3.1. Earth Observation (remotely sensed and in situ)

Earth observation includes both in situ and remote sensing measurements., There are “plus zero uncertainties”
identified in EO data production that represent a conceptual comparison between the evaluated quantity and
the desired quantity (‘d’), or a definitonal difference between what users want and what data producers can
provide (‘d’). Representation uncertainty can also occur at the comparison interface between two datasets, for
example ground-based and satellite observations (‘b’ and/or ‘c’), where representation uncertainty arises both
from making point-to-area average comparisons, and because in situ data are typically sparse; hence error
statistics from comparisons with satellite data are not necessarily globally representative. Error statistics may
also mask data complexity (‘d’, Povey and Grainger, 2019). Representation uncertainty is also inherent in the
extent to which the measured variable matches the target geophysical quantity, either due to imperfections
in the measurement equation or user requirements (‘d’, Stier, 2016).

Considering in-situ measurements, representation uncertainty often occurs when a continuous data field in
time or space is inferred from discrete measurements. This uncertainty may change temporally as sampling
capacity for global measurements increases (Good, 2016). When gap-filling data to provide spatially complete
data fields, representation uncertainty can be introduced both by the choice of interpolation method (Dodd,
2015) and by the extent to which the available data represent areas that are not observed. Work presented
at the workshop highlighted the challenges in calculating an uncertainty budget where the appropriate
representation uncertainty has a dependence on what the user wants to observe: point measurements, spatial
or temporal averages, anomalies or trends.

In remote sensing data, representation uncertainty can occur as a result of instrument sampling (‘d’), and
gridding data (‘d’ or ‘b’). For some data streams, a sub-sample of the full resolution satellite data is passed
to the ground receiving station introducing sampling uncertainties in the Level 1 data (Belward et al., 1994).
Representation uncertainty is also common at Level 3 when regularly gridding clear-sky only data; these
products will include a sampling uncertainty when compared to all-sky observations (Bulgin et al, 2016).
Further sources of representation uncertainty are associated with Level 4 products involving data composites
from different instruments with different satellite overpass times (‘c’) (Good et al. , 2020).

2.3.2. Data Assimilation

Data assimilation is the process by which observations are combined with model data, weighted by their
respective uncertainties and accounting for physical constraints, in order to provide an optimised estimate
of a geophysical state. Often the observations represent different variables from those modeled, so the model
space must be mapped into observation space using an observation operator. There are two main compa-
rison interfaces where representation uncertainty may arise: comparison of an observation with its model
counterpart (‘a’), and, if a processed form of an observation is assimilated, the comparison of this processed
observation to the conceptual perfectly processed observation (‘d’) (Janjic et al., 2018).

There are two main contributors to representation uncertainty at the observation-model interface. First is
the error due to unresolved scales and processes, which arises when the observations represent different
spatial and temporal scales than those of the assimilating model. Second is the observation operator error
arising when the observation operator is approximated either to reduce computational complexity and cost



or because of unknown parameters and processes. At the interface between the observation and its processed
form, representation uncertainty will arise due to the errors introduced and propagated through the proces-
sing chain, sometimes considered as a measurement uncertainty attributed to the assimilated observation.
Observations may also be subject to quality control procedures; inaccuracy or occasional failure of these can
be an additional source of uncertainty.

Representation uncertainty is most commonly accounted for in DA through including the representation
error covariance matrix, F | along with instrument error statistics, E , in the observation error covariance
matrix, R = E + F . For this reason, methods to estimate the full R matrix, where the measurement error
covariance matrix is known, have been commonly used to isolate representation uncertainty (Desroziers et al
(2005), Hollingsworth and Lonnberg (1986)). Alternatively, individual sources of representation uncertainty
can be estimated from the error statistics of a comparison between two values: e.g. either two representations
of a variable or using two observation operators with differing levels of approximation (Schutgens et al., 2016;
Saunders et al., 2018, Waller et al., 2021). Although it is most common for the representation error to be
included in R , work presented at the workshop showed that other methods exist that account for uncertainties
via updates in small-scale background uncertainties and model uncertainties (e.g. Janjic 2006; Bell et al.,
2020). These approaches highlight the difficulty in separating representation uncertainties from other types
of uncertainty inherent in the DA process.

2.3.3. Forecast verification and post-processing

Forecast post-processing attempts to correct, combine and exploit the information contained within existing
forecasts to produce optimal products for dissemination to the public and other customers. The related
field of forecast verification quantifies the success of a forecast by comparing its predictions to observations
independent of those predictions. Both of these fields rely on the comparison of quantities at different spatial
and temporal scales, and hence will have representation uncertainties associated with various steps in the
processing chain. In addition, post-processing must often provide outputs at different scales depending on
the user requirements (‘d’).

As discussed in the workshop, the representation uncertainty related to the difference between point obser-
vations and grid values (‘a’) is an important topic in FVPP; scale mismatch uncertainties can occur due to
sub-grid variability that is not modelled. A new probabilistic post-processing system incorporating verificati-
on, the Integrated Model post-PROcessing and VERIification (IMPROVER, Met Office, 2019), considers this
representation uncertainty. Roberts et al. (pers. comm.) have demonstrated the importance of accounting for
local topography when producing forecasts. Topography may not be well represented in a relatively coarse
model, but accounting for this in the post-processing step can improve forecast skill. Adjusting the rate of
change of temperature with height can also provide better agreement between point and grid values. Ben
Bouallegue et al. 2020 used a statistical parameterisation to quantify the representation uncertainty related
to the difference between point and grid values. The results can be used in ensemble verification and to
represent sub-grid variability that is not present in the model.

A further example of representation uncertainty in FVPP relates to differences in the spatial position between
observations of local weather phenomena and the forecast equivalent. This is in distinction to scale mismatch
uncertainties; a meteorological feature could be modelled to extremely high precision but be located in the
incorrect position (‘c’). This is mitigated in FVPP by using neighbourhood methods and forecast ensembles.

2.4 Existing collaborations between disciplines

The Earth sciences are multidisciplinary, with one community’s output often being another community’s
input. While different communities perform their own uncertainty analysis (to differing levels of formality),
uncertainties may not be fully transferred and representation uncertainty generated at a comparison interface,
may not be fully considered. Projects such as GAIA-CLIM have attempted to address these gaps by bringing
the EO, DA and metrology communities together. Some of the residual-based methods commonly used in
DA have begun to be used by the EO community. For example, Merchant et al (2020) applied the diagnostics
of Desroziers et al. (2005), along with additional bias correction, to estimate error covariance parameters for



SST retrievals.

Another example is the combination of several EO products (remote sensing and/or in situ) to quantify
uncertainties in the Earth’s energy and water cycles with inverse modelling methods (L’Ecuyer et al. 2015,
Rodell et al. 2015, Thomas et al. 2020). The outputs of the inverse modelling procedure can potentially be
used to evaluate the accuracy of Global Climate Model products, providing an opportunity to collaborate with
the modelling community. For this evaluation to be effective, the uncertainties, including any representation
uncertainties, must be accurately determined.

3 Future opportunities for collaboration and community requirements

One barrier to effective collaboration on uncertainty in the Earth sciences is communication, particularly
where similar words take different meanings in different groups. Integrating metrologists into this multidis-
ciplinary community can help to bridge this gap, clarifying vocabulary and the distinction between terms
such as “error” and “uncertainty” (Mittaz et al, 2019). Regular communication on the definition, sources,
quantification and mitigation of representation uncertainty will lead to more efficient transfer of information,
better inventory of uncertainty (by considering other perspectives) and more traceability. Ideally the various
communities will formulate a common language that can be used consistently in published papers. We can
draw parallels with the adoption of the notation in Ide et al 1997 by the DA community.

It was identified in the workshop that collaboration between the DA and FVPP communities could be be-
neficial, using statistical methods such as the Deroziers et al (2005) diagnostics to account for temporal
uncertainties in FVPP. These uncertainties are important given the serial correlation present in many at-
mospheric and ocanic phenomena. Furthermore, the acquisition of crowdsourced data to provide a ‘ground
truth’ for forecast verification was discussed. Such data are also of interest to the DA community but in order
to use these data effectively, extensive quality control and validation would be required. Another example is
the use of dynamical-model-dependent propagation of uncertainties for daily satellite products. The ability
to apply different methods to a single scenario would provide multiple estimates of representation uncertainty
and could help provide confidence in those estimates.

The workshop has begun information dissemination between the Earth science disciplines and future work-
shops could benefit from inclusion of model developers/validators, instrument manufacturers, and space
agencies. Model developers understand which scales and processes are poorly represented by models and
may be able to aid quantification of representation uncertainties that are large when data are assimilated.
Instrument manufacturers could also create common methods for documenting instrument calibration and
data-processing procedures to optimise data use, where commercial sensitivities allow.

4 Recommendations

We encourage all the communities represented at the workshop to continue to work towards a mutually
agreed understanding of representation uncertainty, starting with the definition presented in this paper, and
acknowledging in many cases more specialised terms will be used to characterise the individual component
source(s) of uncertainty. Many of the discussions in the workshop highlighted the need to continue this
conversation in a multidisciplinary format, perhaps facilitated by regular workshops, expanded to include
other relevant communities. In continuing this conversation, the development of a consistent vocabulary
on uncertainties that is relevant to the Earth Sciences community is essential. Such a vocabulary would
be supported by metrologists to aid communication and underpin future discussions and collaborations.
A cross-community paper developing the ideas outlined in this white paper could be the first target for
such future collaboration and could define both a formal vocabulary and make specific recommendations
for collaborative research. As funding is often a barrier to inter-disciplinary research, the establishment
of a community awareness of projects where representation uncertainty issues may be addressed would be
beneficial and “sandpit events” (where scientists work together in a focused way to answer a specific challenge)
may also be useful to foster in-depth consideration of inter-disciplinary knowledge transfer on representation
uncertainty.
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o Representation uncertainty can be defined as occurring at a comparison
interface between two quantities.

e A common definition of representation uncertainty can be applied across
the Earth Science community.

¢ Collaboration between scientists and metrologists is recommended to de-
fine an accessible and relevant vocabulary for uncertainty analysis.

Abstract

The first Joint Workshop on Representation Uncertainty in the Earth Sciences
was held in March 2021. This brought together the Earth observation, data
assimilation and forecast verification and post-processing communities, along-
side metrologists to discuss the definition and quantification of representation
uncertainty within the Earth Sciences. The aim of the workshop was to fa-
cilitate cross-disciplinary discussion, establishing where existing methodologies
could be shared and to foster future collaboration. A key outcome of the work-
shop was a working definition of representation uncertainty applicable across
all the Earth Science communities, which is presented in this white paper. The
cross-disciplinary discussions at the workshop highlighted the need for scientists
to work with metrologists to establish a common vocabulary for uncertainties,
accessible to Earth Science applications. Further recommendations included reg-
ular workshops to discuss progress in defining and quantifying representation
uncertainty and awareness of cross-disciplinary funding opportunities to further
address representation uncertainty issues.

Plain Language Summary

This paper describes a workshop which brought together experts from different
Earth science disciplines to discuss and attempt to define the term “representa-
tion uncertainty”. We make observations of the Earth using satellites, ground
based instruments (such as weather stations) and instruments on ocean buoys
or aircraft. These observations are used in their own right, and also by com-
puter models used to generate weather forecasts. The observations themselves
are imperfect and we quantify these imperfections using the term “uncertainty”.
In this paper we discuss the uncertainty that happens when we compare two
different sets of observations, two different models, or observations and models.
As well as the uncertainties inherent in models and observations, there is also
an uncertainty due to the fact that the two things being compared are not rep-
resenting exactly the same conditions. For example, a satellite observation may



represent an average value over a few hundred metres, while an instrument on
the surface measures only at a single point, and the model represents an area
of several kilometres. Understanding those differences is essential to be able to
properly combine different sets of observations, and observations with models.

1 Introduction

The term “representation uncertainty” is used widely in the Earth Sciences, of-
ten to describe an uncertainty that occurs at the comparison interface of two
different representations of the same physical quantity, although each subcom-
munity has its own ways of characterizing and evaluating these quantities. The
first Joint Workshop on Representation Uncertainty in the Earth Sciences was
held online from 23'¥ to 25" March 2021, sponsored by the National Centre
for Earth Observation. This discussion-based workshop was open to scientists
working in the fields of Earth observation (EQO), data assimilation (DA), fore-
cast verification and post-processing (FVPP), and metrology. The workshop
was designed to maximize discussion time, beginning with short presentations
on where representation uncertainty might occur within the Earth sciences and
introducing the field of metrology, which underpins the science of uncertainty.
Discussion groups were held first within each discipline, and then across the dif-
ferent disciplines, posing the questions ‘Where are we now?’ and ‘What could
we do going forward?’. Science talks and poster contributions were made, show-
casing ongoing research towards quantifying representation uncertainty. The
workshop concluded with a panel discussion summarizing the key outcomes
identified within each discipline. The workshop promoted consistent use of ter-
minology across all disciplines to facilitate discussion.

2 Workshop Outcomes
2.1 Defining representation uncertainty

One of the main challenges of the meeting was to find a definition of represen-
tation uncertainty that was widely applicable across the disciplines represented
at the workshop. The ‘working definition” was regularly revisited throughout
the meeting and during the concluding panel discussion, the following definition
was proposed:

“The uncertainty associated with a comparison of two quantities (that
are themselves uncertain). This contribution to the uncertainty only
occurs at the comparison interface.”

Representation uncertainty is recognised as a wider term that includes many
different sources of uncertainty, each of which is often described by a more
specific term. This broad definition, examples of which are shown in Figure
1, should be applicable across all disciplines, as it allows the detail of how
representation uncertainty arises to be different for each comparison, which we
acknowledge is often complex.
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Figure 1: Schematic detailing examples of the comparison interface at which rep-
resentation uncertainty occurs. At this interface, k is the result of a comparison
of observed or modelled quantities, x or y. These quantities are transformed
through the functions f(z) and g(y) to bring them to the comparison interface.
The comparison is performed as some function of the difference between the
transformed quantities, producing the result k = h (f(z) — g(y)). Both f(x)
and g(y) have associated uncertainty and at the point of comparison, there is
also the representation uncertainty, identified with the uncertainty on k at the
comparison interface. The details of the representation uncertainty are specific
to a given comparison, and may arise from a) comparison of an observation to
a geophysical model equivalent, b) comparison of an observation to a coarser
resolution data set, ¢) comparison of two realisations of the same physical quan-
tity or d) a definitional difference (which could be a comparison of a measured
or modelled data set to a conceptual, more complete, data set or the difference
between what users would like and what data producers can provide). The



schematics within each box provide just a single example of the possible com-
parisons.

2.2 Metrology and uncertainty in Earth Science applications

Metrology ensures international consistency and century-long stability of mea-
surements for both science and trade by providing traceability to the Interna-
tional System of Units, the SI. More recently, metrologists have also started to
apply the principles of metrological traceability to provide confidence in data
derived from modelling. Metrological traceability is built on two core concepts:
uncertainty analysis, defined by the Guide to the Expression of Uncertainty
in Measurement (the GUM; JCGM 100:2008), and comparisons, formalized to
validate uncertainty assessments. Metrologists have worked with the EO com-
munity for several decades but have had limited interactions with the DA and
FVPP communities.

The Earth sciences often have data value chains, where one community’s output
becomes another community’s input. Each stage of the chain, whether based on
instruments or modelling, can be described by a measurement model (equation)
with terms that include the previous stage’s output, and new terms introduced.
Additionally, there will be assumptions inherent in the form of the model which
Mittaz et al. (2019) described as the “plus zero uncertainty”, written by includ-
ing a +0 into the measurement model. In laboratory metrology, this +0 includes
concepts such as representing an integral with a trapezoidal-rule summation, or
assuming that the instrument does not change its properties when moved into
the field.

Thus there are two types of uncertainty associated with a value calculated by
a measurement model. First, the propagated uncertainty comes from the input
quantities, through the GUM methods, to an uncertainty associated with the
calculated value. This describes the spread of probable values around the mea-
sured value where the true calculated value is expected to lie. Then there is
the uncertainty associated with the extent to which the true calculated value
represents the quantity of interest — the +0 term.

2.3 Current status within each research discipline

In this section we include some examples of where representation uncertainty
occurs within the different disciplines and relate these back to the definition
given in Section 2.1, using the shorthand notation (‘a’), (‘b’), (‘¢’) and (‘d’) to
refer to the four types of representation uncertainty as defined in Figure 1.

2.3.1. Earth Observation (remotely sensed and in situ)

Earth observation includes both in situ and remote sensing measurements.,
There are “plus zero uncertainties” identified in EO data production that rep-
resent a conceptual comparison between the evaluated quantity and the desired
quantity (‘d’), or a definitonal difference between what users want and what
data producers can provide (‘d’). Representation uncertainty can also occur at
the comparison interface between two datasets, for example ground-based and



satellite observations (‘b’ and/or ‘c’), where representation uncertainty arises
both from making point-to-area average comparisons, and because in situ data
are typically sparse; hence error statistics from comparisons with satellite data
are not necessarily globally representative. Error statistics may also mask data
complexity (‘d’, Povey and Grainger, 2019). Representation uncertainty is also
inherent in the extent to which the measured variable matches the target geo-
physical quantity, either due to imperfections in the measurement equation or
user requirements (‘d’, Stier, 2016).

Considering in-situ measurements, representation uncertainty often occurs when
a continuous data field in time or space is inferred from discrete measurements.
This uncertainty may change temporally as sampling capacity for global mea-
surements increases (Good, 2016). When gap-filling data to provide spatially
complete data fields, representation uncertainty can be introduced both by the
choice of interpolation method (Dodd, 2015) and by the extent to which the
available data represent areas that are not observed. Work presented at the
workshop highlighted the challenges in calculating an uncertainty budget where
the appropriate representation uncertainty has a dependence on what the user
wants to observe: point measurements, spatial or temporal averages, anomalies
or trends.

In remote sensing data, representation uncertainty can occur as a result of
instrument sampling (‘d’), and gridding data (‘d’ or ‘b’). For some data streams,
a sub-sample of the full resolution satellite data is passed to the ground receiving
station introducing sampling uncertainties in the Level 1 data (Belward et al.,
1994). Representation uncertainty is also common at Level 3 when regularly
gridding clear-sky only data; these products will include a sampling uncertainty
when compared to all-sky observations (Bulgin et al, 2016). Further sources of
representation uncertainty are associated with Level 4 products involving data
composites from different instruments with different satellite overpass times (‘c’)
(Good et al., 2020).

2.3.2. Data Assimilation

Data assimilation is the process by which observations are combined with model
data, weighted by their respective uncertainties and accounting for physical con-
straints, in order to provide an optimised estimate of a geophysical state. Often
the observations represent different variables from those modeled, so the model
space must be mapped into observation space using an observation operator.
There are two main comparison interfaces where representation uncertainty may
arise: comparison of an observation with its model counterpart (‘a’), and, if a
processed form of an observation is assimilated, the comparison of this processed
observation to the conceptual perfectly processed observation (‘d’) (Janjic et al.,
2018).

There are two main contributors to representation uncertainty at the
observation-model interface. First is the error due to unresolved scales and
processes, which arises when the observations represent different spatial and



temporal scales than those of the assimilating model. Second is the observation
operator error arising when the observation operator is approximated either to
reduce computational complexity and cost or because of unknown parameters
and processes. At the interface between the observation and its processed form,
representation uncertainty will arise due to the errors introduced and propa-
gated through the processing chain, sometimes considered as a measurement
uncertainty attributed to the assimilated observation. Observations may also
be subject to quality control procedures; inaccuracy or occasional failure of
these can be an additional source of uncertainty.

Representation uncertainty is most commonly accounted for in DA through in-
cluding the representation error covariance matrix, F, along with instrument
error statistics, E, in the observation error covariance matrix, R = E + F.
For this reason, methods to estimate the full R matrix, where the measurement
error covariance matrix is known, have been commonly used to isolate represen-
tation uncertainty (Desroziers et al (2005), Hollingsworth and Lénnberg (1986)).
Alternatively, individual sources of representation uncertainty can be estimated
from the error statistics of a comparison between two values: e.g. either two rep-
resentations of a variable or using two observation operators with differing levels
of approximation (Schutgens et al., 2016; Saunders et al., 2018, Waller et al.,
2021). Although it is most common for the representation error to be included
in R, work presented at the workshop showed that other methods exist that ac-
count for uncertainties via updates in small-scale background uncertainties and
model uncertainties (e.g. Janjic 2006; Bell et al., 2020). These approaches high-
light the difficulty in separating representation uncertainties from other types
of uncertainty inherent in the DA process.

2.3.3. Forecast verification and post-processing

Forecast post-processing attempts to correct, combine and exploit the informa-
tion contained within existing forecasts to produce optimal products for dis-
semination to the public and other customers. The related field of forecast
verification quantifies the success of a forecast by comparing its predictions to
observations independent of those predictions. Both of these fields rely on the
comparison of quantities at different spatial and temporal scales, and hence will
have representation uncertainties associated with various steps in the process-
ing chain. In addition, post-processing must often provide outputs at different
scales depending on the user requirements (‘d’).

As discussed in the workshop, the representation uncertainty related to the dif-
ference between point observations and grid values (‘a’) is an important topic in
FVPP; scale mismatch uncertainties can occur due to sub-grid variability that
is not modelled. A new probabilistic post-processing system incorporating verifi-
cation, the Integrated Model post-PROcessing and VERification (IMPROVER,
Met Office, 2019), considers this representation uncertainty. Roberts et al.
(pers. comm.) have demonstrated the importance of accounting for local to-
pography when producing forecasts. Topography may not be well represented
in a relatively coarse model, but accounting for this in the post-processing step



can improve forecast skill. Adjusting the rate of change of temperature with
height can also provide better agreement between point and grid values. Ben
Bouallegue et al. 2020 used a statistical parameterisation to quantify the rep-
resentation uncertainty related to the difference between point and grid values.
The results can be used in ensemble verification and to represent sub-grid vari-
ability that is not present in the model.

A further example of representation uncertainty in FVPP relates to differences
in the spatial position between observations of local weather phenomena and
the forecast equivalent. This is in distinction to scale mismatch uncertainties;
a meteorological feature could be modelled to extremely high precision but be
located in the incorrect position (‘c’). This is mitigated in FVPP by using
neighbourhood methods and forecast ensembles.

2.4 Existing collaborations between disciplines

The Earth sciences are multidisciplinary, with one community’s output often
being another community’s input. While different communities perform their
own uncertainty analysis (to differing levels of formality), uncertainties may
not be fully transferred and representation uncertainty generated at a compari-
son interface, may not be fully considered. Projects such as GAIA-CLIM have
attempted to address these gaps by bringing the EO, DA and metrology com-
munities together. Some of the residual-based methods commonly used in DA
have begun to be used by the EO community. For example, Merchant et al
(2020) applied the diagnostics of Desroziers et al. (2005), along with additional
bias correction, to estimate error covariance parameters for SST retrievals.

Another example is the combination of several EO products (remote sensing
and/or in situ) to quantify uncertainties in the Earth’s energy and water cycles
with inverse modelling methods (L’Ecuyer et al. 2015, Rodell et al. 2015,
Thomas et al. 2020). The outputs of the inverse modelling procedure can
potentially be used to evaluate the accuracy of Global Climate Model products,
providing an opportunity to collaborate with the modelling community. For
this evaluation to be effective, the uncertainties, including any representation
uncertainties, must be accurately determined.

3 Future opportunities for collaboration and community requirements

One barrier to effective collaboration on uncertainty in the Earth sciences is
communication, particularly where similar words take different meanings in dif-
ferent groups. Integrating metrologists into this multidisciplinary community
can help to bridge this gap, clarifying vocabulary and the distinction between
terms such as “error” and “uncertainty” (Mittaz et al, 2019). Regular communi-
cation on the definition, sources, quantification and mitigation of representation
uncertainty will lead to more efficient transfer of information, better inventory
of uncertainty (by considering other perspectives) and more traceability. Ideally
the various communities will formulate a common language that can be used
consistently in published papers. We can draw parallels with the adoption of
the notation in Ide et al 1997 by the DA community.



It was identified in the workshop that collaboration between the DA and FVPP
communities could be beneficial, using statistical methods such as the Deroziers
et al (2005) diagnostics to account for temporal uncertainties in FVPP. These
uncertainties are important given the serial correlation present in many atmo-
spheric and ocanic phenomena. Furthermore, the acquisition of crowdsourced
data to provide a ‘ground truth’ for forecast verification was discussed. Such
data are also of interest to the DA community but in order to use these data
effectively, extensive quality control and validation would be required. Another
example is the use of dynamical-model-dependent propagation of uncertainties
for daily satellite products. The ability to apply different methods to a sin-
gle scenario would provide multiple estimates of representation uncertainty and
could help provide confidence in those estimates.

The workshop has begun information dissemination between the Earth science
disciplines and future workshops could benefit from inclusion of model devel-
opers/validators, instrument manufacturers, and space agencies. Model devel-
opers understand which scales and processes are poorly represented by models
and may be able to aid quantification of representation uncertainties that are
large when data are assimilated. Instrument manufacturers could also create
common methods for documenting instrument calibration and data-processing
procedures to optimise data use, where commercial sensitivities allow.

4 Recommendations

We encourage all the communities represented at the workshop to continue to
work towards a mutually agreed understanding of representation uncertainty,
starting with the definition presented in this paper, and acknowledging in many
cases more specialised terms will be used to characterise the individual compo-
nent source(s) of uncertainty. Many of the discussions in the workshop high-
lighted the need to continue this conversation in a multidisciplinary format,
perhaps facilitated by regular workshops, expanded to include other relevant
communities. In continuing this conversation, the development of a consistent
vocabulary on uncertainties that is relevant to the Earth Sciences community is
essential. Such a vocabulary would be supported by metrologists to aid commu-
nication and underpin future discussions and collaborations. A cross-community
paper developing the ideas outlined in this white paper could be the first target
for such future collaboration and could define both a formal vocabulary and
make specific recommendations for collaborative research. As funding is often a
barrier to inter-disciplinary research, the establishment of a community aware-
ness of projects where representation uncertainty issues may be addressed would
be beneficial and “sandpit events” (where scientists work together in a focused
way to answer a specific challenge) may also be useful to foster in-depth consid-
eration of inter-disciplinary knowledge transfer on representation uncertainty.
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