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Abstract

Canopy imaging is a good phenotyping approach to non-invasively quantify parameters such as canopy size, stress symptoms,

and pigment concentrations. Unlike destructive measurements, canopy imaging is fast and easy. However, analysis of the

images can be time consuming. To facilitate large-scale use of imaging, the cost of imaging systems needs to be reduced and the

analysis needs to be automated. We developed low-cost imaging systems using a Raspberry Pi microcomputer, equipped with a

monochrome camera and filter, at a total hardware cost of ˜$500. The latest version of our imaging system takes images under

blue, green, red, and infra-red light, as well as images of chlorophyll fluorescence. Images taken under red, green, and blue light

can be combined to generate color images. Other colors of light can be easily added, if desired. The imaging system is easily

implemented in controlled environment agriculture and can be adapted for use in field settings. We will demonstrate examples

of simple imaging techniques and automated image analysis using the Python programing language. The multi-spectral imaging

system generates normalized difference vegetative index (NDVI) and anthocyanin content index (ACI) images and histograms,

providing quantitative, spatially-resolved information.

Title of Paper: Development of an automated pigmentation phenotyping and low- cost multi-
spectral imaging system

Reviewer Comments:

There are a couple of minor grammatical issues:

“. . . which utilizes seven colors of light emitting diodes (LED; 450, 521, 593, 625, 660, 730, and 870 nm) for
acquiring multispectral images and a longpass filter (> 665 nm) to create mask image based on chlorophyll
fluorescence.”

. . . to create a mask image . . .

“Differences chlorophyll levels between low and sufficient fertilizer treatments were evident from the average
NDVI value of the plants and easily visualized in false color NDVI images (Figure 1).”

Differences in chlorophyll levels . . .
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In general, I think this short paper is easy to read and understand. The authors present a low-cost system
for multispectral imaging using monochrome cameras and LEDs. They show significant correlations between
their method and other approaches/measurements.

The methods seem to be appropriate for the objective and the imaging system is reasonably well documented.

There is no data or code availability statement, so I am unable to reproduce any results or examine code.

We are planning to write a manuscript with the data used in this proceeding. Therefore, we do not want to
jeopardize our later manuscript by the proceeding.

I think that that introduction could be expanded. I was surprised that the abstract is nearly 100 words
longer than the introduction. I think that the intro could benefit from more of a ”. . . what do we know?
What do we want to know? here we show. . . ” format. I do not have a sense of the state-of-the-art in
stationary multi-spectral phenotyping.

We edited the abstract and introduction to make clear what we want to present.

There is no description of the experiment design for the fertilizer experiment in the methods. In the results,
there is a figure (Fig 1) but very little description of the finds of this experiment.

Again, we do not want to share the detail at this moment for later publication. On the later publication, we
will share all the details including the codes

I might try to reframe the results and discussion as (1) the system, (2) the ”calibration” experiments, (3)
the fertilizer case study.

We changed structure of it as you suggested.

The conclusions did not leave me with a sense of the contribution to the state-of-the-art. It is well-known
that images are sources of data and that R-Pi computers are useful tools. What does this study demonstrate
and why should the readers be interested in this work?

We rewrote the conclusion as you suggested.

The proceeding is well written and presents a cost-effective imaging platform that will be of interest to the
community. Given the focus of the proceeding it would be good to include links to the code that was used.
The proceeding highlights cost-effective technologies that can be used to create accurate imaging and image
analysis pipelines.

In general, we shorten some unnecessary sentences and rephrased points we would like to present, especially
in introduction and conclusion.
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ABSTRACT 

Canopy imaging is a non-invasive phenotyping approach to quantify parameters such as canopy size, 
stress symptoms, and pigment concentrations. Unlike destructive measurements, canopy imaging is fast 
and easy. However, analysis of the images can be time consuming. To facilitate large-scale use of 
imaging, the cost of imaging systems needs to be reduced and the analysis needs to be automated. We 
developed low-cost imaging systems using a Raspberry Pi microcomputer, equipped with a monochrome 
camera and filter, at a total hardware cost of ~$500. The latest version of our imaging system takes 
images under blue, green, red, and infra-red light, as well as images of chlorophyll fluorescence. The 
system uses a Python-based program to collect and analyze images automatically. The multi-spectral 
imaging system separates plant from background using the chlorophyll fluorescence image and generates 
normalized difference vegetation index (NDVI) and anthocyanin content index (ACI) images and 
histograms, providing quantitative, spatially-resolved information. We verified that these indexes 
correlate strongly with leaf chlorophyll and anthocyanin concentration. The low cost of the system can 
make this imaging technology widely available.  
 
Keywords: Multi-spectral imaging, Phenotyping, Automated image analysis, NDVI, ACI, Chlorophyll, 
Anthocyanins 
 

1. INTRODUCTION 
Image-based phenotyping has experienced an increase in interest due to its simplicity and efficacy1, 2. 
Imaging can characterize traits in a non-destructive, rapid, and high-throughput manner3. In addition, 
imaging can eliminate sampling bias and allow a more representative measurement4. Many commercial 
systems exist for making these measurements, with varying degrees of adaptability and quality. However, 
the high cost of most imaging systems makes this technology inaccessible to many plant scientists. In 
addition, many plant scientists do not have the expertise to analyze images in a time efficient manner. Low-
costs systems that automate image collection and analysis can facilitate widespread use of multi-spectral 
imaging. One of the challenges with image analysis is the separation of plant from background, because the 
algorithms to do so may depend on pigmentation and thus be cultivar- or species-specific. CFI provides a 
simple, but effective solution to this problem, since it captures fluorescence emitted by chlorophyll in the 
plant. CFI simply exposes the plant to blue light, while a longpass filter allows only the red/far-red 
chlorophyll fluorescence to reach the image sensor5. This approach is inexpensive and does not require 
complicated algorithms for background separation6. Here, we introduce our imaging analysis program and 
a low-cost phenotyping system that uses CFI and multispectral images using a Raspberry Pi for image 
collection and analysis. Our objectives were (1) to automate image analysis to separate plant from 
background and to quantify canopy pigmentation, (2) to validate results of analyses with independent 
pigment measurements, and (3) to develop a low-cost multi-spectral imaging system that can be customized 
for specific desired outputs, with flexible post-processing. 
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2. Materials and Methods 
2.1   Automated image analysis. For automated multi-spectral image analysis, we wrote a program in 
Python (v. 3.8) using the OpenCV library (v. 4.5.4). In summary, (1) the program reads multispectral images 
in a folder, (2) makes a mask image based on the chlorophyll fluorescence image, (3) executes image math 
calculations using the pixel intensity of the spectral images to calculate index values for each pixel, (4) 
generates a foreground index image and histogram, (5) exports average, standard deviation, and canopy 
size to a csv file, and (6) moves on to next folder and repeats these steps. In the image math calculations, 
equations for normalized difference vegetation index [NDVI; (R870– R660) / (R870 + R660)]7 and anthocyanin 
content index [ACI; (R660 – R521) / (R660 + R521)]7 were used, where R is intensity of the pixel, a measure of 
reflectance, and the subscript indicates the wavelength. 
 
2.2   Pigmentation validation. To evaluate the ability of the system to quantify pigment concentrations, 
indices from imaging, readings from hand-held pigment content meters, and pigment extract were 
compared. For NDVI imaging, red lettuce (Lactuca sativa) ‘Cherokee’, green lettuce ‘Little Gem’, mizuna 
(Brassica rapa var. japonica), and spinach (Spinacia oleracea) ‘Whale F1’ were grown with different 
fertilizer levels, which induced a wide range of chlorophyll concentrations. For anthocyanins, red lettuce 
cultivars ‘Rouxai’, ‘Rex’, and ‘Teodore’ were used. Multispectral images of these leafy vegetables were 
taken periodically with the TopView system (ARIS, Eindhoven, Netherland), which utilizes seven colors 
of light emitting diodes (LED; 450, 521, 593, 625, 660, 730, and 870 nm) and a longpass filter (> 665 nm) 
to create a CFI-based mask image. Chlorophyll and anthocyanin content indices were measured using a 
portable content meter of anthocyanins and chlorophylls (ACM-200plus and CCM-200plus, OPTI-
SCIENCES, Hudson, NH, USA). Concentrations of anthocyanins were measured by following a modified 
protocol of Lee, Durst and Wrolstad [8]. Regression analyses between indices from images, portable meters 
and pigment extractions were done using the R software.  
 
2.3   Low-cost system. A low-cost imaging system prototype, using a Raspberry Pi (Raspberry Pi 4 model 
B, Raspberry Pi Foundation, Cambridge, UK), monochrome camera, blue, green, red, and infra-red LEDs, 
and a movable longpass filter was developed. The ability of this system to collect and analyze multi-spectral 
was evaluated. 
 

3. Results and Discussion 
3.1   Automated image analysis  
Our program accurately separates plant from background, based on chlorophyll fluorescence images9, 
creates false color NDVI and ACI images, summarizes the information in histograms and export summary 
data to a csv file (Figure 1, 2). NDVI and ACI information is based solely on canopy properties and ignores 
background. This differentiation between background and plant material strengthens the correlation 
between average NDVI values and CCI measurements, compared to NDVI measurements that combine 
canopy and background.  
 
3.2 Pigmentation validation 
Differences in chlorophyll levels between low and sufficient fertilizer treatments were evident from the 
average NDVI value of the plants and easily visualized in false color NDVI images (Figure 1). In the lowest 
fertilizer treatment, two peaks were observed due to senescence of an older leaf, which did not occur in 
plants grown with high fertilizer levels. The NDVI values derived from the image analysis showed an 
asymptotic relationship with chlorophyll content index (CCI) (R2 = 0.87, p < 0.0001, n = 193). 
Average values of ACI from the image analysis system and anthocyanin content index, measured using a 
portable meter, were positively correlated (R2 = 0.47, p < 0.0001, n = 108). In a different study, the ACI 
values from image analysis were more strongly correlated with anthocyanin concentrations in leaf extracts 
(R2 = 0.83, p < 0.0001, n = 50).  
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Figure 1. RGB (left) and Normalized difference vegetative index (NDVI) (middle) images of 
Mizuna under different fertilizer treatments and its corresponding histograms (right).  

 
The greatest contrast in the optical properties of leaves due to the presence of anthocyanins is in the green 
part of the spectrum10, but chlorophyll absorbs in the green part of the spectrum as well. Thus, the ACI also 
uses images taken under red light, where chlorophyll does and anthocyanins do not absorb, to normalize 
for the chlorophyll concentration. This approach is similar to NDVI imaging, where images taken under 
red light are indicative of chlorophyll levels, while infra-red images are used for normalization. ACI often 
is non-uniform throughout the canopy (Fig. 2), therefore, spot measurements of ACI may not represent the 
variability and distribution of anthocyanins throughout the canopy. However, the ACI imaging can visualize 
and quantify the heterogeneous anthocyanin distribution in the canopy. 
Some limitations of this image-based phenotyping approach are associated with imaging from above. The 
images largely capture properties of cell layers near the top of the canopy. If anthocyanins are present on 
the abaxial side of leaves, the ACI imaging may not detect them. In addition, the camera can only see one 
layer of leaves and the system thus provides no information regarding lower leaves, if they are obscured by 
upper leaves.   

 
Figure 2. RGB and ACI images of ‘Rouxai’ (A) and ‘Rex’ lettuce (B). False color scale bar next to 
the ACI images corresponds to the ACI values of the canopy. 
 

3.3   A low-cost imaging system using a Raspberry Pi 
Commercially-available multispectral imaging systems are expensive and often do not have easily 
customizable post-processing capability. Given these factors, a low-cost multi-spectral imaging system was 
built using Raspberry Pi microcomputer (Raspberry Pi 4 model B) and utilizes the image analysis program 
we developed previously, which the Raspberry Pi can run natively in conjunction with the automated multi-
spectral image capture (Figure 3 and 4). 
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The imaging station was installed in a light-proof grow tent, which was modified by adding a diffusing 
acrylic shelf near the top. LED strips (blue, red, green and near-infrared) were mounted on top of this shelf, 
pointed upward to create a diffuse light environment. A monochrome camera (UC-599 Rev.B, ArduCam, 
China) (Figure 3 D) was added, with the lens going through the acrylic diffuser. The camera module was 
enclosed in a 3D printed case, which includes a movable long-pass filter (> 665 nm) that can be placed in 
front of the lens. Exposing the plant to blue light induces chlorophyll fluorescence, which passes through 
the filter (Figure 3 C). This is a simple method to generate a mask image to separate plant from background. 
To collect this mask image, the program triggers a servo motor to place the filter in front of the camera. 
The filter is removed to take the other images. The Raspberry Pi uses relays to trigger the different colors 
of LED strips with the collection of monochrome images under each color of LEDs. The image collection 
and analysis can be scheduled using a native bash script and the results can be uploaded to the cloud. 
The cost of the imaging system is ~ $500, including $60 for the Raspberry Pi, $50 for the camera, $50 for 
the LED strips, $240 of miscellaneous items (longpass filter, relays, monitor, keyboard, power supply, 
cases, wires, SD card, etc.), and a $100 growth tent. The software will be freely available. The strength of 
this system is that it can be customized to user needs. For example, facilities in controlled environment 
agriculture can set up this imaging system without the grow tent, in a pre-existing growth chamber. 
 

 
Figure 3. Overview of low-cost multi-spectral imaging system based on Raspberry Pi (A), wiring 
and relay array (B), detailed view of chlorophyll fluorescence filter system and bottom view of the 
camera module (C), and diffusion plate with LED strips and the camera module (D) 

 

 
Figure 4. Schematic of the programing logic in the low-cost multispectral imaging system. 
 

4. Conclusions 
The usability of imaging systems can be improved by automated, customized post-processing. Multispectral 
canopy imaging can extract quantitative information related to anthocyanins and chlorophylls. Chlorophyll 
fluorescence imaging and its integration with a Raspberry Pi allowed for easy separation of plant from 
background, allowing further analysis of pixel that represent plant tissue only. The simplicity, low cost, and 
automated processing can make multi-spectral imaging available to a wide range of researchers and 
growers, who need such technology but cannot afford expensive systems. 
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