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Abstract

To accelerate plant breeding genetic gain, spatial heterogeneity must be considered. Previously, design randomizations and

spatial corrections have increased understanding of genotypic, spatial, and residual effects in field experiments. This study

proposes a two-stage approach for improving agronomic trait genomic prediction (GP) using high-throughput phenotyping

(HTP) via unoccupied aerial vehicle (UAV) imagery. The normalized difference vegetation index (NDVI) is measured using a

multi-spectral MicaSense camera and ImageBreed. The first stage separates additive genetic effects from local environmental

effects (LEE) present in the NDVI throughout the growing season. Considered NDVI LEE (NLEE) are spatial effects from

univariate/multivariate two-dimensional splines (2DSpl) and separable autoregressive (AR1) models, as well as permanent

environment (PE) effects from random regression models (RR). The second stage leverages the NLEE within genomic best

linear unbiased prediction (GBLUP) in two distinct implementations, either modelling an empirical plot-to-plot covariance

(L) for random effects or modelling fixed effects (FE). Testing on Genomes-to-Fields (G2F) hybrid maize (Zea mays) field

experiments in 2017, 2019, and 2020 for grain yield (GY), grain moisture (GM), and ear height (EH) improves heritability and

model fit equally-or-greater than spatial corrections; however, genotypic effect estimation across replicates is not significantly

improved. Electrical conductance (EC), elevation, and curvature from a 2019 soil survey significantly improve GP model fit,

but less than NLEE. Soil EC and curvature are most correlated to univariate 2DSpl NLEE. Defining L significantly improves

genomic heritability and model fit more than setting FE, and RR NLEE can most significantly improve GP for GY and GM.
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ABSTRACT
To accelerate plant breeding genetic gain, spatial heterogeneity must be considered. Previously,

design randomizations and spatial corrections have increased understanding of genotypic, spatial,  and
residual effects in field experiments. This study proposes a two-stage approach for improving agronomic
trait genomic prediction (GP) using high-throughput phenotyping (HTP) via unoccupied aerial vehicle
(UAV) imagery. The normalized difference vegetation index (NDVI) is measured using a multi-spectral
MicaSense  camera  and  ImageBreed.  The  first  stage  separates  additive  genetic  effects  from  local
environmental effects (LEE) present in the NDVI throughout the growing season. Considered NDVI LEE
(NLEE) are spatial effects from univariate/multivariate two-dimensional splines (2DSpl) and separable
autoregressive (AR1) models, as well as permanent environment (PE) effects from random regression
models  (RR).  The second stage  leverages  the  NLEE within  genomic  best  linear  unbiased prediction
(GBLUP) in two distinct implementations, either modelling an empirical plot-to-plot covariance (L) for
random effects or modelling fixed effects (FE). Testing on Genomes-to-Fields (G2F) hybrid maize (Zea
mays) field experiments in 2017, 2019, and 2020 for grain yield (GY), grain moisture (GM), and ear
height  (EH)  improves heritability  and model  fit  equally-or-greater  than spatial  corrections;  however,
genotypic effect estimation across replicates is not significantly improved. Electrical conductance (EC),
elevation, and curvature from a 2019 soil survey significantly improve GP model fit, but less than NLEE.
Soil EC and curvature are most correlated to univariate 2DSpl NLEE. Defining L significantly improves
genomic heritability and model fit more than setting FE, and RR NLEE can most significantly improve
GP for GY and GM.

Keywords: High-throughput  phenotyping  (HTP),  multi-spectral  imagery,  genomic  prediction  (GP),
spatial corrections, random regression model, soil electrical conductance (EC), soil curvature

1. INTRODUCTION
The importance of controlling for environmental heterogeneity in agricultural field experiments is well
known1,2,3,4.  In  plant  breeding where soil  composition,  elevation,  slope,  curvature,  water  content,  and
management can vary within field experiments, the genotypic effects driving important agronomic traits
become confounded with the local environment. Design randomization can help control spatial variation
to a large degree5,6; however, advanced statistical approaches, such as the separable autoregressive and
two-dimensional  spline  models,  can  capture  local  dependence  effects  between experimental  plots7,8,9.
Aerial imaging can reliably measure high-throughput phenotypes (HTP) across the growing season for all
experiment plots in the field, using unoccupied aerial vehicles (UAV) and other systems 10,11,12,13. A widely
studied class of HTP are vegetation indices (VI), particularly the normalized difference vegetation index
(NDVI)14,15. VI HTP have successfully measured chlorophyll content, canopy extent, biomass, and water
use efficiency among other applications16,17,18,19. Though alternative HTP from images exist, this study will
focus on NDVI as a means to understand local environmental effects (LEE) in the field20,21,22.

Applying whole-genome marker  data  for  genomic prediction (GP) enables  shorter  breeding  cycles23.
Genomic best  linear unbiased prediction (GBLUP) can predict traits in animals and plants,  including
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maize  and  wheat24,25.  Furthermore,  HTP  VI  can  improve  GP  through  multivariate  approaches  by
leveraging genetic correlations as demonstrated for grain yield in  wheat  and biomass in soybean 26,27.
Recent studies have successfully proposed two-stage approaches and frameworks for incorporating HTP,
such as detecting spatial effects using the SpATS package in the first stage and then creating P-spline
hierarchical growth models in the second stage28,29. Building on previous work, this study proposes a two-
stage approach for improving GP. The first stage separates NDVI LEE (NLEE) from additive genetic
effects temporally, using either spatial corrections or random regressions. The second stage summarizes
the NLEE within GBLUP using two distinct implementations, either modelling an empirical plot-to-plot
covariance of random effects (L) or modelling fixed effects (FE).

2. MATERIALS AND METHODS
As part of the Genomes to Fields (G2F) program, inbred and hybrid maize field evaluations were planted
at the Musgrave Research Station (MRS) in Aurora, NY30. Of importance to this study are the hybrid
maize  experiments  planted  in  2017,  2019,  and  2020,  named  2017_NYH2,  2019_NYH2,  and
2020_NYH2, respectively. In all field experiments, the following agronomic traits were measured: grain
yield (GY) (bu/acre), grain moisture (GM) (%), and ear height (EH) (cm). Genotyping-by-sequencing
(GBS) resulted in 945,574 single nucleotide polymorphisms (SNPs) across the genome for 1577 samples
representing a total of 1325 unique maize inbred lines31. Genotypes were filtered for SNPs with minor
allele  frequency  <5%  or  with  >40%  missing  data,  and  for  samples  containing  >20% missing  data.
Genomic  relationship  matrices  (GRMs)  were  computed  with  missing  data  imputed  as  the  mean
genotype32,33. GRMs among the inbred pollen parents and seed parents were computed independently, and
the hybrid GRM was then found as an average among the parental relationships.

In 2019 at MRS, an EM-38 MK2 surveyed Field N before 2019_NYH2 was planted. The georeferenced
elevation (Alt) and electrical conductance (EC) data were interpolated over the entire field using ordinary
Kriging34. To approximate soil curvature, first and second two-dimensional numerical derivatives were
computed on the plot-level  soil  EC and Alt  measurements,  denoted as dEC, d2EC, dAlt,  and d2Alt,
respectively. Numerical derivatives were computed by averaging differences between nearby plots.

A  MicaSense  RedEdge  5-channel  multi-spectral  camera  mounted  onto  an  unoccupied  aerial  vehicle
(UAV) captured images in the blue, green, red, near infrared, and red-edge spectra. At least 80% overlap
along both image axes was ensured in the collected images. Flights were scheduled approximately once
every week. Collected images were then processed into calibrated reflectance orthophotomosaics using
Pix4dMapper  software.  The resulting reflectance orthophoto images were uploaded into ImageBreed,
which  enabled  plot-polygon  templates  to  be  assigned  to  the  field  experiment  design35.  ImageBreed
extracted NDVI into the database for each experimental plot and for each time point of image acquisition.

3. RESULTS
The first  stage of the proposed approach used linear mixed models to partition NLEE from additive
genetic  effects  using  either  random  spatial  or  permanent  environment  (PE)  effects.  Spatial  effects
leverage information from the rows and columns of experimental plots in the field. Both two-dimensional
spline (2DSpl) and separable autoregressive (AR1) models were considered, either independently across
time  or  in  multi-trait  models,  namely  univariate  and  multivariate  models  (2DSplUni,  AR1Uni,
2DSplMulti, AR1Multi), respectively7,8. As an example illustration in Figure 1, 2019_NYH2 2DSplUni
NLEE were correlated with GY and soil data. 2DSplUni NLEE correlated up to 0.7 with GY 2DSpl at
110 days after planting (DAP) and correlated up to 0.5 and 0.3 with EC and d2Alt,  respectively. In
contrast  to  spatial  effects,  PE  were  computed  using  random  regression  models  (RR).  RR  have
computational benefits over multi-trait models and have been applied in maize36,37. Six RR PE covariance
structures were tested: identity matrix (RRID), Euclidean distance matrix (RREuc), correlation matrix of
AR1 spatial effects (RRAR1), correlation matrix of 2DSpl spatial effects (RR2DSpl), correlation of soil
EC and derivatives (RRSoilEC), and correlation of soil Alt and derivatives (RRSoilAlt).
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Figure 1. Representative plot of 2019_NYH2 2DSplUni NLEE over 6 time points correlated with
GY and 2DSpl spatial effects of GY. Corresponding heatmaps show values over the rows and
columns of all  plots in the field. (1) Correlations of 0.1 to 0.7 between GY 2DSpl and 2DSplUni
NLEE are found over the season with a high of 0.7 at 110 DAP. Soil EC, Alt, and the derivatives,
are included with (2) correlations up to 0.5 for EC and (3) correlations up to 0.3 for d2Alt.

To compare the NLEE from the first stage to spatial effects affecting the agronomic traits, 2DSpl
effects were computed independently for GY, EH, and GM, as illustrated in Figure 2. Within each of
the 2017_NYH2, 2019_NYH2, and 2020_NYH2 field experiments, similar spatial trends emerged.

Figure 2. 2DSpl spatial random effects found independently in GY, GM, EH in the 2017_NYH2,
2019_NYH2, and 2020_NYH2 field experiments. 

The second stage builds on GBLUP, y=X β+Zu+e where var (u )=σu
2G and G is the GRM, using

two distinct implementations: 1) defining L in  y=X β+Zu+Z p up+e where  var (u p )=σ p
2 L or 2)

setting FE as y=X β+H βH +Zu+e. When using FE, two definitions were used: either an average of
the NLEE were used (Havg) or the NLEE were divided into three groups of time points, representing
the reproductive phases  in  terms of  growing degree days (GDD) of  early (0-1225 GDD),  active
(1226-1800 GDD), and late (1801-2500 GDD), and then averaged within each group (H3) 38. Figure 3
illustrates genomic heritability, model fit, and genotypic effect estimation for GY, GM, and EH when
defining L and FE, in (A) and (B), respectively. Baseline GBLUP and spatially corrected models of
G,  G+AR1,  and  G+2DSpl  were  compared  to  the  best  two-stage  L  models  of  G+L_AR1Uni,
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G+L_2DSplUni, G+L_RRAR1, and G+L_RR2DSpl in (A), while the best two-stage FE models of
G+Havg_AR1Uni,   G+Havg_2DSplUni,  G+H3_RRAR1,  and G+H3_RR2DSpl  are  shown in (B).
Significance (* < 0.05, + < 0.1) is compared with G using a t-test.

Figure  3.  Genomic  heritability  (h2),  model  fit  (cor( ŷ,y)),  and  genotypic  effect  estimation
(cor(g1,g2))  for  GY,  GM,  and EH,  with  NLEE implemented  as  L or  as  FE,  in  (A)  and (B),
respectively. The models G, G+2DSpl, and G+AR1 were baseline GBLUP and spatially corrected
models, respectively. Models have L and FE defined using NLEE of corresponding name.

The second stage can use soil data rather than NLEE from the first stage. Figure 4 illustrates GP when
defining L using empirical correlations (RRSoilEC, RRSoilAlt) and when defining FE as the soil 
values directly (Havg_SoilAlt, Havg_SoilEC, etc.). Model fit was improved, but may be overfitting.

Figure  4.  Genomic  heritability  (h2),  model  fit  (cor( ŷ,y)),  and  genotypic  effect  estimation
(cor(g1,g2)) for GY, GM, and EH, with NLEE implemented as L or as FE, using soil data.

4. Conclusion
The proposed two-stage approach significantly improves GP heritability and model fit for GY as well as
model  fit  for  GM and EH when compared  to  GBLUP;  however,  genotypic  effect  estimation  across
replicates is not significantly improved. Defining an empirical covariance (L) for random effects using
NLEE from AR1Uni, 2DSplUni, RRAR1, and RR2DSpl models improves GP heritability for GY and
model fit for GM most significantly. Defining H3 FE using AR1Uni NLEE improves GP model fit for all
traits significantly. Soil EC, Alt, and the derivatives can significantly improve GP model fit by defining L
or FE, but using NLEE improves GP more significantly. Soil EC and d2Alt are most correlated with
2DSplUni NLEE; however, defining L using RRAR1 and RR2DSpl NLEE increases GP heritability and
model fit for GY and GM greater than 2DSplUni NLEE or any of the other tested models.
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