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Abstract

Olivine is the main constituent of the upper mantle, and its phase transformation affects the rheology of the subduction zone.

It is crucial to reveal the kinetics of olivine (α)-spinel (γ) phase transformation under differential stress. To investigate the effect

of microstructural properties on phase transformations such as grain boundary energy and plastic strain, we conducted a phase-

field simulation using germanate olivine, an analog of silicate olivine. We conducted the simulations under various confining

pressures of 1-5 GPa, temperatures of 1000 and 1200 K, with/without plastic strain, and various grain boundary energy. Under

static conditions, the volume fraction of the γ phase increases as the overpressure increases because the chemical-free energy

promoting grain growth dominates over the elastic strain energy, inhibiting grain growth. Under differential stress, at a slight

overpressure, the volume fraction of the γ phase increases proportion to the chemical-free energy’s magnitude. Meanwhile, at

a significant overpressure, the γ phase’s volume fraction decreases due to the sizeable elastic strain energy. Furthermore, the

volume fraction of the γ phase under differential stress is more significant than under static conditions due to the considerable

shear plastic strain. The grains of the γ phase under differential stress at low confining pressure are lens-shaped with a strong

preferred orientation normal to the maximum compression direction because of the shear plastic strain. Meanwhile, the grains

of the γ phase at a high confining pressure are ultra-thin because of the considerable elastic strain energy.
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Abstract12

Olivine is the main constituent of the upper mantle, and its phase transformation13

affects the rheology of the subduction zone. It is crucial to reveal the kinetics of olivine14

(α)-spinel (γ) phase transformation under differential stress. To investigate the effect of15

microstructural properties on phase transformations such as grain boundary energy and16

plastic strain, we conducted a phase-field simulation using germanate olivine, an ana-17

log of silicate olivine. We conducted the simulations under various confining pressures18

of 1-5 GPa, temperatures of 1000 and 1200 K, with/without plastic strain, and various19

grain boundary energy. Under static conditions, the volume fraction of the γ phase in-20

creases as the overpressure increases because the chemical-free energy promoting grain21

growth dominates over the elastic strain energy, inhibiting grain growth. Under differ-22

ential stress, at a slight overpressure, the volume fraction of the γ phase increases pro-23

portion to the chemical-free energy’s magnitude. Meanwhile, at a significant overpres-24

sure, the γ phase’s volume fraction decreases due to the sizeable elastic strain energy.25

Furthermore, the volume fraction of the γ phase under differential stress is more signif-26

icant than under static conditions due to the considerable shear plastic strain. The grains27

of the γ phase under differential stress at low confining pressure are lens-shaped with a28

strong preferred orientation normal to the maximum compression direction because of29

the shear plastic strain. Meanwhile, the grains of the γ phase at a high confining pres-30

sure are ultra-thin because of the considerable elastic strain energy.31

Plain Language Summary32

Olivine is the most abundant mineral in the upper mantle and undergoes phase trans-33

formation to wadsleyite (β phase) and ringwoodite (γ phase). This phase transforma-34

tion under differential stress is essential as one of the causes of deep-focus earthquakes35

and slab bending. However, the effect of microstructural properties, such as plastic strain,36

on the transformation under differential stress has not yet been revealed. Therefore, we37

conducted a phase-field simulation to simulate microstructure evolution and set microstruc-38

tural properties. We used germanate olivine, an analog of silicate olivine, to compare our39

results with a previous study using germanate olivine, and modeled the grain growth of40

the germanate γ phase. As a result, plastic strain promotes grain growth in the γ phase.41

At low confining pressure, the evolution of shear plastic strain is substantial, and the γ42

grains are lens-shaped normal to the maximum compression direction, similar to ”an-43
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ticracks” reported by the previous deformation experiment. At a high confining pres-44

sure, the elastic strain energy inhibiting the grain growth, the γ grains are ultra-thin,45

similar to the nano-shear bands composed of nanocrystalline γ grains reported by the46

previous deformation experiment.47

1 Introduction48

Olivine, the main constituent of the upper mantle, undergoes phase transforma-49

tion to wadsleyite at 410 km depth and ringwoodite at about 520 km (Akaogi et al., 1989).50

Its phase transformation affects mantle rheology, especially inside slabs, because its rhe-51

ology is influenced by the physicochemical properties of the mineral phases (Rubie, 1984;52

Karato et al., 2001; Yamazaki et al., 2005; Kubo et al., 2009; Tajima et al., 2015; Ishii53

& Ohtani, 2021). The viscosity of mantle minerals in the cold slab can be reduced by54

grain size reduction associated with the olivine-wadsleyite/ringwoodite (spinel) phase55

transformation, leading to the domination of diffusion creep (Vaughan & Coe, 1981; Karato56

et al., 2001). Furthermore, the phase transformation is presumed to be one of the mech-57

anisms responsible for deep-focus earthquakes (e.g., Green et al., 1990; Burnley et al.,58

1991; Tingle et al., 1993; Schubnel et al., 2013; Wang et al., 2017; Zhan, 2017). In ad-59

dition, shear instability can occur at the fine-grained spinel phase nucleated by the phase60

transformation of metastable olivine in the subducting slab (Ogawa, 1987; Hobbs & Ord,61

1988; Karato et al., 2001; Meng et al., 2014; Zhan et al., 2014; Zhan, 2017). Therefore,62

it is important to reveal the kinetics of the olivine-spinel phase transformation under dif-63

ferential stress to understand better its role in the rheology of the subduction zone.64

Two mechanisms of olivine-wadsleyite/ringwoodite (α→ β/γ) phase transforma-65

tion have been proposed: intracrystalline nucleation and nucleation at the grain bound-66

ary (e.g., Vaughan et al., 1982; Boland & Liu, 1983; Kerschhofer et al., 1996, 1998, 1998;67

Dupas-Bruzek et al., 1998). The intracrystalline nucleation has the following four stages:68

(1) (100)α stacking faults form in olivine crystals, (2) thin ringwoodite platelets nucle-69

ate on these stacking faults coherently; (3) the platelets grow semi-coherently; and (4)70

ringwoodite/wadsleyite nucleate at the platelet interfaces incoherently (Kerschhofer et71

al., 2000). Nucleation at the grain boundary is an incommensurate transformation and72

has two cases: (1) the nucleation rate is fast relative to the growth rate, and (2) the nu-73

cleation rate is slow relative to the growth rate (Brearley et al., 1992). Burnley (1995)74

suggested that the growth rate of the transformed grains at the grain boundary were in-75
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sensitive to pressure, whereas the intracrystalline nucleation affected the rate of the trans-76

formation at high pressure because intracrystalline nucleation tended to occur at high77

pressure. However, previous studies have not referred to the effect of microstructural prop-78

erties on the grain growth rate of the phase transformation, such as the grain bound-79

ary energy and plastic strain derived from the transformation and deformation. To re-80

veal the effect, it is useful to conduct numerical experiments capable of controlling and81

evaluating various parameters freely.82

We adopted the phase-field method (PFM) to simulate the phase transformation83

using a diffuse phase model (Fix, 1983). In the PFM, we set the order parameter that84

describes the continuous distribution of two phases, and the phase boundary is described85

as a field where the order parameter continuously changes between two phases (e.g., Chen86

& Khachaturyan, 1991; Steinbach & Pezzolla, 1999). Therefore, PFM is a powerful tool87

for the simulation of microstructural evolution with complex morphological features such88

as dendrites (Wheeler et al., 1993; Shimokawabe et al., 2011; Yang et al., 2021), marten-89

site microstructure after phase transformation (Yamanaka et al., 2008, 2010; Yeddu et90

al., 2012), dynamic and static recrystallization (Takaki et al., 2008; Takaki & Tomita,91

2010), and crack propagation (Miehe et al., 2015; Schneider et al., 2016; Evans et al., 2020).92

Although experiments must be conducted under relevant conditions for the olivine-93

spinel phase boundary within the subducting slab, many previous experiments have been94

conducted using germanate olivine (Mg2GeO4) (e.g., Vaughan & Coe, 1981; Weidner &95

Hamaya, 1983; Green et al., 1990; Burnley et al., 1991; Dupas-Bruzek et al., 1998; Schub-96

nel et al., 2013; Wang et al., 2017; Sawa, Muto, et al., 2021; Sawa, Miyajima, et al., 2021).97

This is because it is challenging to conduct deformation experiments on silicate olivine98

under such extreme conditions. Germanate olivine has only α and γ phases, and no β99

phase, unlike silicate olivine. However, it can undergo phase transformation at a much100

lower pressure than that of silicate olivine, and the physical and mineralogical proper-101

ties are similar (Weidner & Hamaya, 1983). Burnley et al. (1991) conducted deforma-102

tion experiments of germanate olivine using a Griggs-type deformation apparatus at a103

low confining pressure of 1-2 GPa and proposed that faulting occurred along lens-shaped104

grains of germanate γ phase (”anticracks”) with a strong preferred orientation normal105

to the maximum compression. Anticracks are filled with nanocrystalline aggregates of106

germanate olivine (Burnley et al., 1991; Green, 2007). Meanwhile, Schubnel et al. (2013)107

and Wang et al. (2017) also conducted deformation experiments on germanate olivine108
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using a D-DIA apparatus at a higher confining pressure of 2-5 GPa than that in Burnley109

et al. (1991). They proposed that transformational faulting occurred on nano shear bands110

comprising fine-grained γ grains, which were different from those in Burnley et al. (1991).111

Its phase transformation is an exothermic phenomenon; hence, the formation of new γ112

grains releases a small amount of heat that produces a slight increase in local temper-113

ature, leading to an increase in the local nucleation rate of the γ phase (Green, 2007).114

Simultaneously, the negative volume change of the α→ γ phase transformation causes115

the nucleation of the γ phase owing to compressive hoop stresses that increase the driv-116

ing force for the nucleation of additional crystals (Green, 2007). Majewski and Teisseyre117

(1998) described the microphysics of anticrack formation using a theory of antidisloca-118

tion leading to the faulting for the deep-focus earthquakes. However, they hardly referred119

to how anticracks formed with a strong preferred orientation normal to the maximum120

compression direction and the difference in the form of γ phase derived from a confin-121

ing pressure. Furthermore, a comparison of our results with those of two previous ex-122

periments conducted under different pressures (Burnley et al., 1991; Schubnel et al., 2013;123

Wang et al., 2017) shows the robustness of our simulations.124

In this study, we simulated the growth of the γ phase nucleated at the grain bound-125

ary when the nucleation rate is slow relative to the growth rate because the PFM method126

cannot simulate nucleation. Thus, we introduced the initial γ grains in advance. First,127

we constrained the grain boundary mobility in the magnesium germanate system required128

for the simulation. Because the mobility has not yet been determined experimentally,129

we conducted numerical experiments under identical conditions to those of previous ex-130

periments in which the growth rate of the γ phase has already been clarified (Burnley131

et al., 1991; Burnley, 1995). We then determined the grain boundary mobility by com-132

paring the grain area of the γ phase in these simulations with that calculated from the133

growth rate of the γ phase in previous studies. Second, we simulated the phase trans-134

formation under various conditions of pressure, temperature, grain boundary energy, and135

plastic strain to reveal the microstructural growth kinetics of the α → γ phase trans-136

formation and the difference in the formation conditions between anticracks at a low con-137

fining pressure and nano shear bands comprising fine-grained γ grains at a high confin-138

ing pressure.139
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2 Model setting140

2.1 Initial geometry141
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Figure 1. Geometry of the initial germanate olivine aggregate. The origin is the lower left of

the aggregate. (a) θ and θ′ show the angles of the α and γ phases between the global coordinate

system (x-y-z) and the local coordinate system (x’-y’-z’), respectively. The initial nucleation sites

of the γ phase are indicated by arrows A, B, and C. (b) The numbers show the crystallographic

orientation of the α phase. The crystallographic orientations of the γ phase are 50◦ at position

A, 25◦ at position B, and 75◦ at position C, respectively.

We set the geometry and coordinate system of the initial germanate olivine aggre-142

gates, as shown in Figure 1. γ grains were introduced in advance. The number of α and143

γ phase grains is six (white grains in Figure 1a) and 3 (small red grains shown by ar-144

rows A, B, and C in Figure 1a), respectively. For simplicity, we consider only the grains145

of the α phase with one crystallographic axes normally oriented to the plane. In this sim-146

ulation, we adopted a periodic boundary condition under plane-strain conditions. The147

direction of the maximum principal compressive stress σ1 is vertical (Line-filled arrows148

in Figure 1a), and the direction of the minimum principal stress σ2,3 is horizontal (white149

arrows in Figure 1a). θ and θ′ show the angles of the α and γ phases between the global150

coordinate system (x-y-z) and the local coordinate system (x’-y’-z’), respectively. Hence,151

θ and θ′ represent the crystallographic orientations of the α and γ phases, respectively.152
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The crystallographic orientations of each grain in the α phase are shown in Figure 1b.153

The crystallographic orientations of the γ phase are 50◦ at position A, 25◦ at position154

B, and 75◦ at position C in Figure 1b, respectively.155

2.2 Multi-Phase-Field method156

For the olivine (α)-spinel (γ) transformation, we follow the multi-phase-field method157

proposed by Steinbach et al. (1996); Steinbach and Pezzolla (1999); Steinbach and Apel158

(2006); Takaki et al. (2009). Assuming that a polycrystalline system includes N grains159

(Figure 1), the phase field parameter is φi(r, t), where i = 1, 2, . . . , N, 0 ≤ φi ≤ 1. φi160

indicates the probability of the phase with the i-th crystal orientation at the position161

r and time t, and must satisfy
∑N
i=1 φi(r, t) = 1. The evolution equation of φi is de-162

rived as follows (Steinbach & Pezzolla, 1999):163

∂φi
∂t

= − 2

N

N∑
j=1, j 6=i

Mij

{ N∑
k=1

[
1

2
(kik − kjk)∇2φk + (Wik −Wjk)φk

]
+
∂G(i)

∂φi
− ∂G

(j)

∂φj

}
, (1)164

where Mij is the phase-field mobility, kij is the gradient coefficient, Wij is the height of165

the energy barrier, and G(i) is the Gibbs free energy of the i-th phase. This was devel-166

oped from the phase-field method using a time-dependent Ginzburg-Landau equation167

assumed in irreversible thermodynamics (e.g. Fitts, 1962). The time-dependent Ginzburg-168

Landau equation has also been used in various fields (e.g., Lyakhovsky et al., 1993, 1997;169

Kawada et al., 2007; Muto et al., 2007). The first term in Eq. (1) indicates the gradi-170

ent energy, and the fourth term is the penalty term that prohibits the growth of grains171

with different crystallographic orientations at the same place (Steinbach et al., 1996).172

In Eq. (1), we set Mij , kij , and Wij as the following matrices:173

Mij =
π2

8δ



0 M0 · · · M0

M0 0
...

... . . .
...

M0 · · · · · · 0


, (2)174

175

kij =
8δ

π2



0 γ0 · · · γ0

γ0 0
...

... . . .
...

γ0 · · · · · · 0


, (3)176
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177

Wij =
4

δ



0 γ0 · · · γ0

γ0 0
...

... . . .
...

γ0 · · · · · · 0


. (4)178

Here, δ, M0, and γ0 are the grain boundary thickness, grain boundary mobility, and179

grain boundary energy, respectively. M0 is calculated as follows:180

M0 =
VmD

δRT
, (5)181

where Vm is the molar volume, D is the diffusivity of the atoms, R is the gas constant,182

and T is the absolute temperature (Hillert, 1975).183

To consider the chemical energy Gchem and elastic energy Gstr, we set184

∂G(i)

∂φi
− ∂G(j)

∂φj
=

(
∂Gchem
∂φi

+
∂Gstr
∂φi

)
−
(
∂Gchem
∂φj

+
∂Gstr
∂φj

)
. (6)185

Eq. (6) indicates the difference in the Gibbs free energy potential (chemical energy po-186

tential + elastic energy potential) between the i-th and j-th grains. Gchem is often ap-187

proximated by188

∂Gchem
∂φi

− ∂Gchem
∂φj

= − 8

π
Eij
√
φiφj , (7)189

where Eij is the driving force for the phase transformation, and 8/π is obtained from190 ∫ 1

0

√
φ1φ2dφ =

∫ 1

0

√
φ(1− φ)dφ = π/8 (Takaki et al., 2009). In Eq. (7), we set Eij191

as the following matrix:192

Eij =



0 · · · 0 −E0 −E0 −E0

... . . .
... −E0 −E0 −E0

0 · · · 0 −E0 −E0 −E0

E0 E0 E0 0 · · · 0

E0 E0 E0

... . . .
...

E0 E0 E0 0 · · · 0


, (8)193

where E0 is a constant corresponding to the driving force of the grain boundary migra-194

tion between the i-th and j-th grains. Under the given external stress σAij , Gstr is cal-195

culated as196

Gstr =
1

2V

∫
r

Cijklε
el
ij(r)εelkl(r)dr− σAij

1

V

∫
r

εcij(r)dr (9)197

=
1

2V

∫
r

Cijkl{ε̄cij + δεcij(r)− ε0ij(r)}{ε̄ckl + δεckl(r)− ε0kl(r)}dr− σAij ε̄cij , (10)198
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where Cijkl is the elastic modulus of germanate olivine, ε̄cij is the homogeneous strain,199

δεcij(r) is the heterogeneous strain, ε0ij(r) is the eigen strain in the γ phase, and V is the200

volume of the computational area (Eshelby, 1957). The homogeneous strain ε̄cij is a uni-201

form macroscopic strain. Assuming the free surface, ε̄cij satisfies202

∂Gstr
∂ε̄cij

= 0. (11)203

Therefore, the homogeneous strain ε̄cij is given by204

ε̄cij = C−1ijklσ
A
ij +

1

V

∫
V

ε0ijdV. (12)205

The heterogeneous strain δεcij(r) is defined as the deviation from a homogeneous206

strain (Yamanaka et al., 2010). The heterogeneous strain satisfies:207 ∫
V

δεcijdV = 0. (13)208

In the elastic model (Koyama & Onodera, 2003; Yamanaka et al., 2008), the heteroge-209

neous energy is calculated by210

δεcij =
1

(2π)3

∫
k

1

2
{niΩmj(n) + njΩmi(n)}σ̂0

mn(k)nn exp(ikr)dk, (14)211

where Ωik(n) is the Green function tensor inverse to Ωik(n)−1 = Cijklnjnl. k denotes212

the reciprocal space vector. n = k/|k| is the unit vector along the k direction. σ̂0
ij =213

Cijklε̂
0
ij is the Fourier transform of σ0

ij = Cijklε
0
ij . The elastic equation of the system214

is solved by a fast Fourier transform with respect to the displacement field (Khachaturian,215

1983; Koyama & Onodera, 2003; Yamanaka et al., 2008).216

Assuming an elastoplastic material, ε0ij(r) is defined as the sum of the transformation-217

induced eigen strain εtij(r) and plastic strain εp′ij(r) as (Guo et al., 2005),218

ε0ij(r) = εtij(r) + εp′ij(r). (15)219

We assume that εtij(r) is proportional to the phase-field parameter φq(r, t) and calcu-220

lated by221

εtij(r, t) =

Nα∑
p=1

N∑
q=Nα+1

Rik(θ′)Rjl(θ
′)ε00kl (p, q)φq(r, t), (16)222

where Rij(θ
′) is the rotation matrix which converts the local coordinate (”intra-crystalline223

coordinate system”) system into the global coordinate system (”aggregate coordinate224

system”) and ε00kl (p, q) is the misfit strain between p and q in the local coordinate sys-225

tem of γ phase (Wang & Khachaturyan, 1997).226

–9–



manuscript submitted to JGR: Solid Earth

The evolution of plastic strain, εp′ij(r) is calculated as the sum of a term governed227

by the shear strain energy and creep strain when the differential stress ∆σ reaches a cer-228

tain flow stress σF (Tsukada et al., 2011):229

εp′ij(r) =

 εpij(r) (∆σ < σF )

εpij(r) + εcp(r). (∆σ ≥ σF )
(17)230

εpij(r) is given by the following time-dependent Ginzburg-Landau (TDGL) equation (Guo231

et al., 2005):232

∂εpij
∂t

= −Kijkl
δGshearel

δεpkl
, (18)233

where Kijkl is the fourth-order kinetic coefficient tensor for the plastic strain, and δ is234

the functional derivative. Considering the relationship of the subscripts, Kijkl is linear235

and given by Kijkl = (KCijkl)
−1 with constant K. Gshearel is the shear strain energy236

(Guo et al., 2005), which is calculated as237

Gshearel =
1

2

∫
V

Cijkl(e
c
ij − e0ij)(eckl − e0kl)dV, (19)238

where ecij and e0ij are the deviatoric components of the total strain and total eigen strain239

tensors, respectively. This study assumes that plastic deformation occurs when the shear240

strain energy reaches a certain value determined by the yield stresse σY .241

The evolution of creep strain, εcpij (r) is experimentally calculated by242

ε̇cp = Aσn exp

(
− Q

RT

)
(20)243

where A is a constant, σ is the flow stress, n is the stress exponent, and Q is the acti-244

vation energy (e.g., Kirby, 1983).245

To test the numerical implementation, we investigated the case of a single spher-246

ical particle. The details of the procedure and results are shown in the supplementary247

file.248

3 Parameter setting249

3.1 Experimental conditions250

The governing equations in Eqs. (1) and (18) were solved using the finite-difference251

method, as in previous studies (Takaki et al., 2009, 2014). We used a finite-difference252

domain with 512×512 square meshes. When the length of one side of the mesh was set253

to ∆l, the length of the model area L was 512×∆l. For computational efficiency, we254

–10–
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Table 1. Experimental Parameters

Time increment ∆t 0.004 s

Grain boundary thickness δ 5×∆la

Molar volume V 4.58× 10−5 m3/mol

Crystal lattice of α phase a = 4.908 Å, b = 10.302 Å, c = 6.025 Å

Crystal lattice of γ phase a = b = c = 8.254 Å

Yield stress at 1000 K 1200 MPa

Yield stress at 1200 K 500 MPa

Gap of entropy ∆Se −13.3± 0.6 [J ·mol−1 ·K−1]

Heat capacity of α phase (Cp)α 183.80 + 5.79× 103 × T − 56.44× 10−5 × T− 1
2 [J ·mol−1 ·K−1]

Heat capacity of γ phase (Cp)α 156.11 + 30.50× 103 × T − 36.50× 10−5 × T− 1
2 [J ·mol−1 ·K−1]

a∆l: length of one side of a mesh.

introduce the algorithm proposed by Kim et al. (2006). The time increment was 0.004255

s.256

In Eqs. (2), (3), and (4), the grain boundary thickness is δ = 5 ×∆l (Takaki et257

al., 2014). Although the grain boundary energy γ0 is proportional to the misorientation258

angle (Read & Shockley, 1950), for simplicity, we set several different constant values γ0 =259

0.5, 1.0, 1.4 J/m2 independent of the misorientation angle. These values are within the260

range of the grain boundary energy of the silicate olivine, 0.0 ≤ γ0 ≤ 1.4 J/m2 (Duyster261

& Stöckhert, 2001). In Eq. (5), Vm = 4.58 × 10−5 m3/mol was calculated using the262

Avogadro constant 6.02 × 1023 mol−1, crystal lattices of α phase: a = 4.908 Å, b =263

10.302 Å, c = 6.025 Å, and the unit cell number of atoms of germanate olivine, 4 (Roy264

& Roy, 1954). In Eqs. (7) and (8), E0 is given by:265

E0 = ∆Se∆T −
∆Cp, e

2Te
∆T 2, (21)266

where ∆Se is the entropy gap for the α−γ phase transformation, ∆T is the degree of267

supercooling, Te is the temperature of the α − γ phase transformation, and ∆Cp, e is268

the gap in the heat capacity of the α and γ phases (Kashchiev, 2000):269

∆Cp, e = (Cp)γ − (Cp)α. (22)270

According to Ross and Navrotsky (1987), ∆Se = −13.3±0.6 [J ·mol−1 ·K−1], (Cp)α =271

183.80+5.786×103×T −56.442×10−5×T− 1
2 [J ·mol−1 ·K−1] and (Cp)γ = 156.11+272
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30.50× 103×T − 36.498× 10−5×T− 1
2 [J ·mol−1 ·K−1]. In Eqs. (10) and (19), under273

the assumption of an isotropic elastic material, we adopted the elastic moduli of the ger-274

manate α phase (K = 125 GPa, µ = 72 GPa, and ν = 0.259, Liebermann, 1975). For275

simplicity, we set the elastic moduli of the γ phase to the same value as the α phase. In276

Eqs. (25) and (26), we used the crystal lattices of Xα = c = 6.025 Å and Yα = b =277

10.302 Å as the α phase (Roy & Roy, 1954), Xγ = Yγ = a = b = c = 8.254 Å as the278

γ phase (Von Dreele et al., 1977). The yield stress of the aggregates was estimated from279

the results of Burnley et al. (1991). We set 1200 MPa and 500 MPa as the yield stresses280

of the aggregates at 1000 K and 1200 K, respectively. The flow stress of the α and γ phases,281

σF , is calculated using the following flow laws (Shi et al., 2015).282

α phase : ε̇ = 105.01σ3.1
F exp

(
−441

RT

)
, (23)283

γ phase : ε̇ = 10−3.4σ2.9
F exp

(
−228

RT

)
. (24)284

After the differential stress reached the flow stress, we set ε̇cp11 = 2.0 × 10−4 s−1. To285

calculate the misfit strain in Eqs. (16), ε00ij (p, q), we must convert the local coordinate286

system to the global coordinate system (Figure 1(a)). First, the coordinate system of287

the p-th crystal lattice parameters of the α phase L′α(p) are converted into the local co-288

ordinate system of the γ phase as follows:289

L′α(p) = r(θ − θ′)

 Xα

Yα

 =

 X ′α

Y ′α

 , (25)290

where r(θ−θ′) is the rotation matrix, and Xα and Yα are the crystal lattices of the α291

phase. The q-th crystal lattice parameters of the γ phase L′γ(q) are given by:292

Lγ(q) =

 Xγ

Yγ

 , (26)293

where Xγ and Yγ are the crystal lattices of the γ phase. Therefore, the misfit strain in294

Eq. (16), ε00ij (p, q) is calculated as follows:295

ε00ij (p, q) =

 Xγ(q) − X′α(p)
X′α(p)

Yγ(q) − Y ′α(p)
Y ′α(p)

 . (27)296

The kinetic parameter of Eq. (18) for the plastic strain is set to K = 90 as the stress-297

strain curves are closer to those of the previous study (Burnley et al., 1991). D in Eq.298

(5) is the diffusivity of Ge in germanate olivine, but it is unknown. Hence, we assumed299

D in Section 4.1 by comparing our results with those of previous experiments by Burnley300

et al. (1991). The details of the experimental parameters are listed in Table 1.301
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Table 2. Experimental Parameters and results

Run P a [GPa] T b [K] ε̇ [s−1] Lc [µm] γ0 [J/m2] V Ld [%]

SP1T1 1.0 1000 - 60 1.4 0.079

SP3T1 3.0 1000 - 60 1.4 0.079

SP5T1 5.0 1000 - 60 1.4 0.079

SP1T1.2 1.0 1200 - 60 1.4 0.77

SP3T1.2 3.0 1200 - 60 1.4 0.12

SP5T1.2 5.0 1200 - 60 1.4 0.21

P1T1 1.0 1000 2.0× 10−4 60 1.4 0.079

P3T1 3.0 1000 2.0× 10−4 60 1.4 0.079

P5T1 5.0 1000 2.0× 10−4 60 1.4 0.079

P1T1.2 1.0 1200 2.0× 10−4 60 1.4 0.66

P3T1.2 3.0 1200 2.0× 10−4 60 1.4 2.02

P5T1.2 5.0 1200 2.0× 10−4 60 1.4 0.33

SP1T1.2NPe 1.0 1200 - 60 1.4 0.082

SP5T1.2NPe 5.0 1200 - 60 1.4 0.079

P1T1.2NPe 1.0 1200 2.0× 10−4 60 1.4 0.079

P5T1.2NPe 5.0 1200 2.0× 10−4 60 1.4 0.076

P1T1.2GB 1.0 1200 2.0× 10−4 60 1.0 0.67

P5T1.2GB 5.0 1200 2.0× 10−4 60 1.0 0.33

P1T1.2GB2 1.0 1200 2.0× 10−4 60 0.5 0.67

P5T1.2GB2 5.0 1200 2.0× 10−4 60 0.5 0.34

aConfining pressure. bTemperature. cLength of model area.

dVolume fraction of γ phase at ε1 = 9 %. e without plastic and creep strains
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Figure 2. Phase diagram (after Ross & Navrotsky, 1987) and conditions of numerical experi-

ments.

Under the above conditions, we conducted the following four simulations in which302

all α grains were metastable (Figure 2). (1) We conducted deformation simulations (Runs303

P1T1-P5T1.2) at different pressures and temperatures, as shown in Figure 2, to reveal304

the pressure and temperature dependence on the grain growth of the γ phase. Further-305

more, to reveal the effect of deformation on the grain growth of the γ phase, we conducted306

both static (Runs SP1T1-SP5T1.2) and deformation simulations (Runs P1T1-P5T1.2).307

(2) To reveal the effect of plastic strain on the grain growth, we conducted simulations308

with plastic strain (εp′ij) accompanied with the phase transformation in the static exper-309

iments (Runs SP1T1.2 and SP5T1.2), without plastic strain in the static experiments310

(Runs SP1T1.2NP and SP5T1.2NP), with plastic strain in the deformation experiments311

(Runs P1T1.2 and P5T1.2), and without plastic strain in the deformation experiments312

(Runs P1T1.2NP and P5T1.2NP). (3) To reveal the effect of grain boundary energy on313

the grain growth, we conducted simulations at three different values of the grain bound-314

ary energy: 1.4 J/m2 (Runs P1T1.2 and P5T1.2), 1.0 J/m2 (Runs P1T1.2GB and P5T1.2GB),315

and 0.5 J/m2 (Runs P1T1.1GB2 and P5T1.2GB2). These conditions are listed in Ta-316

ble 2. All simulations were stopped after reaching an axial strain (ε1) of 9 % (450 s), ac-317

cording to a previous study (Burnley et al., 1991).318
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4 Results319

4.1 Evaluation of undetermined grain boundary mobility, M0320
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Figure 3. Area variation of γ phase with ξ. The solid line is a regression quadratic function:

y = 9.4427 × 10−3ξ2 − 6.4926 × 10−1ξ + 1.8594 × 10. The coefficient of determination was

R2 = 0.9998.

Although the calculation of the grain boundary mobility M0 in Eq. (5) requires321

the diffusivity of Ge in germanate olivine D, and D has not yet been experimentally de-322

termined. Hence, we numerically constrained D using the flow law of germanate olivine.323

The strain rate ε̇ is theoretically given by the following flow law of dislocation creep:324

ε̇ =
Dbσ3

kG2
, (28)325

where D is the lattice diffusivity, b is the Burgers vector, σ is the strength, k is the Boltz-326

mann constant, and G is the shear modulus (Meyers et al., 1999). In the flow law of ger-327

manate olivine, only dislocation creep was experimentally determined and is given by328

Eq. (23). Given that the theoretical flow law (Eq. (28)) and the experimentally deter-329

mined flow law (Eq. 20) are identical, we can acquire the following equation:330

D =

(
σn

σ3

)
kG2A

b
exp

(
− Q

RT

)
331

= ξ
kG2A

b
exp

(
− Q

RT

)
. (29)332
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We set ξ = (σn/σ3), k = 1.38 × 10−23 J/K. G = 70.3 GPa (Weidner & Hamaya,333

1983). According to Shi et al. (2015), A = 105.01 MPans−1, Q = 441 kJ/mol. The Burg-334

ers vector b is 0.4915 nm (Dupas-Bruzek et al., 1998). To determine the diffusivity of335

Ge in germanate olivine D, we must calculate the undetermined constant ξ in Eq. (29),336

which depends on the strength σ and the stress exponent n.337

Thus, we conducted numerical simulations with several different values ξ = 50,338

75, 100, 125 under identical conditions to the deformation experiment GL299 (Burnley339

et al., 1991; Burnley, 1995), and calculated the grain area of the γ phase. By compar-340

ing the grain area of the γ phase in this simulation with that calculated from the result341

of the deformation experiment GL299 (Burnley et al., 1991; Burnley, 1995), we deter-342

mined the reasonable ξ. The numerical simulations were conducted at a pressure of 1.19343

GPa, temperature of 1210 K, strain rate of 2.0×10−4 s−1, experimental duration of 450344

s, L = 60 µm, and γ0 = 1.4 J/m, which are identical to GL299 (Burnley et al., 1991;345

Burnley, 1995). Three grains of the γ phase were introduced in advance. The other ex-346

perimental conditions are listed in Table 2. We also stopped the simulation at ε1 = 9347

% (450 s) because the maximum axial strain (ε1) in GL299 was 9 % (Burnley et al., 1991;348

Burnley, 1995).349

The results are shown in Figure 3. We fitted the grain area variation of the γ phase350

to the following quadratic function:351

y = 9.4427× 10−3ξ2 − 6.4926× 10−1ξ + 1.8594× 10, (30)352

where y is the area of the γ phase grown from the initial three grains of the γ phase, and353

the coefficient of determination is R2 = 0.9998 (solid line in Figure 3).354

We calculated the grain area of the γ phase in GL299 (Burnley et al., 1991) from355

a growth rate of 4.37×10−9 m/s. When we hypothesize that the grain is spherical, the356

increment of the grain radius is 1.97 µm at growth rates of 4.37×10−9 m/s and an ex-357

perimental duration of 450 s. Because we introduced three grains of the γ phase in ad-358

vance in the numerical simulation, we also hypothesized that the number of initial grains359

of the γ phase was 3 when we calculated the grain area of the γ phase in GL299 (Burnley360

et al., 1991). Consequently, the grain area of the γ phase in GL299 was 36.4 µm2 after361

the experiment.362
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Substituting 36.4 µm2 into Eq. (30), we obtain ξ = 89.8. Using this value, we can363

obtain the stress exponent n = 3.2 from ξ = (σn/σ3), where ξ = 89.8 and experi-364

mentally obtained flow stress of σ = 1224 MPa (Burnley, 1990). The stress exponent365

(approximately 3.2) estimated from the calculation is consistent with the stress expo-366

nent of the Mg2GeO4 spinel harzburgite of 2.9±1.0 reported experimentally by Shi et367

al. (2015).368

4.2 Volume fraction of γ phase369

Table 2 shows the calculated volume fraction V L of γ phase after 450 s. γ phase370

does not grow at 1000 K in either static (Runs SP1T1-SP5T1) or deformation (Runs P1T1-371

P5T1) simulations. At 1200 K, the γ phase grows in both static (Runs SP1T1.2-SP5T1.2)372

and deformation (Runs P1T1.2-P5T1.2) simulations. In the static simulations at 1200373

K (Runs SP1T1.2-SP5T1.2), the volume fraction of γ increases as confining pressures374

increase from 1 GPa to 5 GPa. In the deformation simulations at 1200 K (Runs P1T1.2-375

P5T1.2), the volume fraction of γ increases as confining pressures increase from 1 GPa376

to 3 GPa, whereas the volume fraction decreases as confining pressures increase from 3377

GPa to 5 GPa. The volume fraction of γ phase in deformation simulations (Runs P1T1.2-378

P5T1.2) is larger than that in static simulations (Runs SP1T1.2-SP5T1.2), respectively.379

This is also shown in Figure 4. The effect of plastic strain on the volume fraction of γ380

phase is shown in Table 2. The plastic strain is generated by the deformation and the381

eigen strain associated with the phase transformation. The volume fraction of the γ phase382

does not increase in static and deformation experiments without plastic strain. Although383

the grain boundary energy changes from 0.5 J/m2 (Runs P1T1.2GB2 and P5T1.2GB2)384

to 1.4 J/m2 (Runs P1T1.2 and P5T1.2), the volume fraction of γ phase does not change.385

4.3 Microstructure386

The microstructural development of the α−γ aggregates with plastic strain at 1387

and 3 GPa and 1200 K is shown in Figures 5 and 6, respectively. γ grains grew around388

the initial γ grains and along the grain boundaries. In particular, lens-shaped γ grains389

grow perpendicular to the axial stress in the deformation simulations (black arrows in390

Figures 5 and 6). The von Mises stress increases around the grains of the γ phase and391

inside some of the α phases (Figures 5b and 6b). The shear component of plastic strain392

(called shear plastic strain, εp′12) increases around γ grains and inside of α grains in the393
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Figure 4. Volume fraction of γ phase as a function of the experimental duration with plastic

strain. (a) SP1T1.2: static simulation at P = 1 GPa and T = 1200 K. P1T1.2: deformation sim-

ulation at P = 1 GPa and T = 1200 K. SP3T1.2: static simulation at P = 3 GPa and T = 1200

K. P3T1.2: deformation simulation at P = 3 GPa and T = 1200 K. SP5T1.2: static simulation at

P = 5 GPa and T = 1200 K. P5T1.2: deformation simulation at P = 5 GPa and T = 1200 K.

deformation simulations (Figures 5c and 6c). In deformation simulations, the shear plas-394

tic strain developed sub-horizontally (almost perpendicular to the maximum compres-395

sion direction). Therefore, in Figures 5 and 6, the eigen strain also develops sub-horizontally396

because of Eq. (15). The microstructural development of the α−γ aggregates with plas-397

tic strain at 5 GPa and 1200 K is shown in Figure 7. The grains of the γ phase are rounded398

in the static simulations (shown by the black arrows in Figures 7a). The grains of the399

γ phase are elongated like an ultra-thin tail in the deformation simulations (shown by400

an orange arrow in Figure 7c). The horizontal evolution of the shear plastic strain in the401

static simulations was weaker than that in the deformation simulations (Figures 7b and402

d).403
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(c)

(d)

α phase γ phase

P1T1.2 (P = 1 GPa, T = 1200 K, deformation experiment)
(a)

(b)

t = 1 s t = 400 s t = 450 s

0.10.0-0.1

(GPa)0.5 50

0.10.0-0.1

Figure 5. Microstructure development of α → γ aggregates in the deformation simulations at

P = 1 GPa and T = 1200 K (Run P1T1.2). (a) Grain growth of the γ phase as the experimental

duration increases. Only the γ phase with φ ≥ 0.8 is visualized. The phase-field parameter φ was

multiplied to visualize the grain boundaries. The black arrow shows the lens-shaped grains of the

γ phase. (b) Von Mises stress evolution. (c) Shear plastic strain evolution (d) Shear eigen strain

evolution. Animations are shown in Videos S1-S4.
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(c)

(d)

α phase γ phase

P3T1.2 (P = 3 GPa, T = 1200 K, deformation experiment)
(a)

(b)

t = 1 s t = 400 s t = 450 s

(GPa)0.5 50

0.10.0-0.1

0.10.0-0.1

Figure 6. Microstructure development of α → γ aggregates in the deformation simulations at

P = 3 GPa and T = 1200 K (Run P3T1.2). (a) Grain growth of the γ phase as the experimental

duration increases. Only the γ phase with φ ≥ 0.8 is visualized. The phase-field parameter φ was

multiplied to visualize the grain boundaries. Black arrows show the lens-shaped grains of the γ

phase. (b) Von Mises stress evolution. (c) Shear plastic strain evolution. (d) Shear eigen strain

evolution. Animations are shown in Videos S5-S8.
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(a)

(b)

α phase γ phase

P5T1.2 (P = 5 GPa, T = 1200 K, deformation experiment)
(c)

(d)

SP5T1.2 (P = 5 GPa, T = 1200 K, static experiment)

α phase γ phase

t = 1 s t = 400 s t = 450 s

0.10.0-0.1

0.10.0-0.1

Figure 7. Microstructure development of α → γ aggregates in both static (a, b) and deforma-

tion (c, d) simulations at P = 5 GPa and T = 1200 K (Runs SP5T1.2 and P5T1.2). (a, c) Grain

growth of the γ phase as the experimental duration increases. Only the γ phase with φ ≥ 0.8 is

visualized. The phase-field parameter φ was multiplied to visualize the grain boundaries. Black

arrows show rounded grains of γ phase. The orange arrow shows the γ grains like a tail. (b, d)

Shear plastic strain evolution. Animations are shown in Videos S9-S12.
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5 Discussion404

5.1 Effect of deformation, overpressure, grain boundary, and plastic strain405

As Table 2 and Figure 4 show, the volume fraction of the γ phase under differen-406

tial stress (Runs P1T1.2-P5T1.2) is larger than that under static conditions (Runs SP1T1.2-407

SP5T1.2). Generally, the elastic strain energy around the γ phase (precipitated phase)408

inhibits the grain growth of the γ phase (e.g., Liu et al., 1998; Steinbach & Apel, 2006).409

Thus, the volume fraction of the γ phase decreases as the elastic strain energy increases.410

The elastic strain energy under differential stress is larger than that under static con-411

ditions because of the deformation; therefore, the grain growth of the γ phase is inhib-412

ited under differential stress. Nevertheless, in this simulation, the opposite results were413

obtained. This was caused by the shear plastic strain. Figure 8 shows the plastic strains414

(εp′11, εp′22, and εp′12) distributions of the modeled area with 512 × 512 square meshes in415

both simulations at 1200 K with plastic strain. The plastic strains (εp′11, εp′22, and εp′12) dis-416

tributions under the deformation conditions are different from those under static con-417

ditions. Compressive (positive) plastic strains (εp′11 and εp′22) governed by the shear elas-418

tic strain energy (Eqs. (18) and (19)) are generated by compressive stress, whereas the419

extension (negative) plastic strain (εp′11 and εp′22) is generated by the transformation-induced420

eigen strain derived from the negative volume change of the α→ γ phase transforma-421

tion. The shear plastic strain (εp′12) was also generated by the transformation-induced422

eigen strain. As the extension plastic strain increases with the grain growth of the γ phase,423

it locally reduces the elastic strain energy, and the volume fraction of the γ phase fur-424

ther increases. The reduction in the elastic energy associated with plastic strain due to425

a phase transformation is also known in metals (Yamanaka et al., 2010; Ammar et al.,426

2011). However, the compressive plastic strain (εp′11 and εp′22) dominate over the exten-427

sion strain derived from the transformation-induced eigen strain under the deformation428

conditions (Figures 8(j), (k), (m), (n), (p), and (q)). Therefore, εp′11 and εp′22 do not pro-429

mote the grain growth of the γ phase in the α→ γ phase transformation. Meanwhile,430

the shear plastic strain distribution under differential conditions (Figures 8(l), (o), and431

(r)) is different from that under static conditions (Figures 8(c), (f), and (i)). Further-432

more, the average magnitude of the shear plastic strain in the differential conditions was433

larger than that in the static conditions. The shear plastic strain promotes the grain growth434

of the γ phase in the α→ γ phase transformation. Without plastic strain, the volume435
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Figure 8. Effect of plastic strain on the volume fraction of γ phase in both simulations at

1200 K with plastic strain. The plastic strain (εp′11, εp′22, and εp′12) distribution of the modeled area

with 512 × 512 square meshes and the volume fraction of the γ phase (right next to the plastic

strain distribution). The red and blue bins represent positive and negative plastic strains, respec-

tively. The blue ”Count (C)” shows the sum of the absolute frequencies of the negative strain.

The blue ”Average (A)” shows the average magnitude of the negative strain. In contrast, the red

”Count (C)” shows the sum of the absolute frequencies of the positive strains. The blue ”Average

(A)” shows the average magnitude of the positive strain.
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fraction of the γ phase does not increase (Table 2 and Figure 4). This also indicates that436

plastic strain is essential for the grain growth of the γ phase.437

As the confining pressure increased, the elastic strain energy that inhibited the grain438

growth of the γ phase increased. At the same time, the chemical-free energy promoting439

the grain growth of the γ phase also increases because of the large overpressure. Hence,440

the volume fraction of the γ phase is determined by the competition between the chem-441

ical energy that promotes grain growth and the elastic strain energy inhibiting grain growth.442

As a result, as the confining pressure increased, the volume fraction of the γ phase de-443

creased or increased depending on the magnitudes of the elastic strain energy and the444

chemical-free energy. As Table 2 and Figure 4 show, under the deformation conditions,445

the volume fraction of the γ phase at 3 GPa is larger than that at 1 and 5 GPa. This446

indicates that the chemical-free energy dominates over the elastic free energy at less than447

3 GPa, whereas the elastic strain energy dominates the chemical free energy at more than448

3 GPa. Meanwhile, under static conditions, the volume fraction of the γ phase increases449

as the confining pressure increases. This indicates that the chemical-free energy dom-450

inates the elastic strain energy over a wide range of confining pressures.451

As Eqs. (1) and (3) show that the grain boundary energy is related to the gradi-452

ent energy that promotes the grain growth of the γ phase: a large grain boundary en-453

ergy indicates large gradient energy. Nevertheless, the volume fraction of the γ phase454

did not increase with the grain boundary energy. This indicates that the gradient en-455

ergy is smaller than the elastic strain energy and chemical energy, and it hardly affects456

the grain growth of the γ phase under these conditions. Therefore, we can assume that457

the volume fraction of the γ phase is independent of the misorientation angle of the α458

phase.459

Most of the γ phase is lens-shaped under differential stress at low pressure with plas-460

tic strain (Figures 5a and 6a). Meanwhile, most of the γ phase is ultra-thin under dif-461

ferential stress at high pressure (Figure 7c). This difference was caused by the elastic strain462

energy. The stable shape of the precipitated phase, such as the γ phase, is determined463

by the balance between the elastic strain energy and the gradient energy (Nabarro, 1940).464

When the elastic strain energy and the volume of the precipitated phase are large, the465

stable shape becomes thin, which can reduce the elastic strain energy, as revealed by the466

calculation of the elastic strain energy of the precipitated phase using the axial ratio of467
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its geometry as a variable (e.g., Pineau, 1976; Miyazaki et al., 1979). Therefore, under468

differential stress, the γ grains become thin. Furthermore, as the confining pressure in-469

creases, the elastic strain energy increases; thus, the thickness of the γ grains becomes470

even thinner. The horizontal elongation of γ grains is caused by the evolution of the shear471

plastic strain in the horizontal direction. Under static conditions, γ grains are rounded,472

and the shear plastic strain does not develop strongly in the horizontal direction (Fig-473

ures 7a and b). Meanwhile, under differential stress, most of the γ grains are perpen-474

dicular to the maximum compressive direction, and the shear plastic strain develops strongly475

in the horizontal direction. In other words, the elastic strain energy and shear plastic476

strain would control the shape of the γ grains.477

The distribution of shear plastic strain developing sharply in the horizontal direc-478

tion (perpendicular to the maximum compression direction) is similar to that of shear479

stress by wedge disclination (e.g., Fig. 2a Capolungo & Taupin, 2019). A pair of pos-480

itive and negative shear plastic strains developed horizontally with γ grains at the core481

(e.g., in Run P3T1.2, Supplementary figure S2). Disclinations are line defects charac-482

terized by a rotational misfit (e.g., Volterra, 1907; Hirth et al., 2020). The eigen strain483

generating plastic strain has shear components owing to Eq. (16). Although the bound-484

ary conditions assume that boundaries are not constrained, the eigen strain that can-485

not be resolved on the boundaries would generate the disclination derived from the ro-486

tational misfit.487

5.2 Comparison with previous study and the implication for metastable488

olivine wedge489

Many previous studies conducted deformation experiments of metastable germanate490

olivine (α phase) under conditions (P = 1−5 GPa, T = 900−1500 K), similar to our491

numerical conditions (e.g., Green et al., 1990; Burnley et al., 1991; Tingle et al., 1993;492

Schubnel et al., 2013; Wang et al., 2017; Sawa, Muto, et al., 2021; Sawa, Miyajima, et493

al., 2021). The partial α→ γ phase transformation resulted in faulting with a large stress494

drop and acoustic emissions (AEs) called transformational faulting (e.g., Tingle et al.,495

1993; Schubnel et al., 2013; Wang et al., 2017). Faulting occurred at a limited window496

of temperatures (approximately 1100-1300 K at 1 GPa), where the α and γ phases could497

coexist. At lower temperature than the window (<1100 K), the samples behaved duc-498

tile with differential stress > 2.0 GPa (called strong ductile in Burnley et al., 1991) be-499
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cause α phase did not undergo the phase transformation to γ phase. At a higher tem-500

perature than the window (<1400 K), the samples behaved ductile with differential stress501

> 0.5 GPa (called weak ductile) because α phase completely underwent the phase trans-502

formation to γ phase. In our simulations, we set the temperature dependence on the grain503

boundary mobility Mij as Eqs. (5) and (29), respectively. Therefore, we reproduce a sim-504

ilar temperature dependence of the α→ γ phase transformation such that the γ phase505

did not grow at 1000 K but at 1200 K (Table 2). However, we did not set the temper-506

ature dependence of the plastic strain in Eq. (15) and (19), respectively. Therefore, it507

was not easy to reproduce the mechanical behavior during phase transformation fully508

in this study. The experiments conducted at high confining pressures of 2-5 GPa reported509

that faulting occurred on the nano-shear bands of fine-grained γ grains (Schubnel et al.,510

2013; Wang et al., 2017). On the other hand, the experiments conducted at a low con-511

fining pressure of 1-2 GPa reported that faulting occurred at lens-shaped anticracks com-512

posed of fine-grained γ phase with a strong preferred orientation normal to the maxi-513

mum compression direction (Green & Burnley, 1989; Burnley et al., 1991). As discussed514

above, under differential stress at a low confining pressure, shear plastic strain develops515

sharply in the horizontal direction (normal to the maximum compression direction). Fur-516

thermore, when the elastic strain energy and volume of the γ phase are large, the sta-517

ble shape becomes thin. Therefore, lens-shaped γ grains grow with a strong preferred518

orientation normal to the maximum compression direction in the simulation. Although519

the anticracks in the previous study are composed of fine-grained γ grains, and we did520

not simulate the nucleation, if the anticrack can be considered as a single crystal, these521

lens-shaped γ grains are similar to anticracks reported by previous deformation exper-522

iments at a low confining pressure (Green & Burnley, 1989; Burnley et al., 1991). Un-523

der differential stress at a high confining pressure, the elastic strain energy is large; there-524

fore, the grain shapes of the γ phase become even thinner. These ultra-thin γ grains are525

similar to the nano-shear bands reported in previous deformation experiments at a high526

confining pressure (Schubnel et al., 2013; Wang et al., 2017). Nano shear bands are com-527

posed of nanocrystalline spinel nucleated along the (010) and (110) dislocations in the528

host α grains (Riggs & Green, 2005). Although we did not simulate the nucleation, the529

formation of the ultra-thin γ grains means that the thin forms are stable for the energy530

under high confining pressure, and this would be applicable even in the nucleation along531

the dislocation forming nano shear bands.532
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According to Mosenfelder et al. (2001), when the intracrystalline transformation533

of β and γ phases is considered, the depth of metastability of olivine is reduced by as534

much as 100 km, owing to the large increase in the density of nucleation sites for the in-535

tracrystalline nucleation at the deep part of the subducting slabs with a large overpres-536

sure. Inhibition of growth by transformational stress can increase the depth interval over537

which the phase transformation takes place, but this is unlikely to be a dominant fac-538

tor if intracrystalline transformation occurs (Mosenfelder et al., 2001). This previous model539

was based on the results of static experiments considering only the eigen strain owing540

to the phase transformation in the static condition and did not consider the effect of de-541

formation in the subducting slab. As discussed above, the deformation increases the elas-542

tic strain energy, inhibiting the grain growth of the γ phase. However, the shear plas-543

tic strain promoting the grain growth of the γ phase under differential stress was larger544

than that under the static condition. This indicates that the γ grains under differential545

stress grow more easily than those under static conditions. However, at large overpres-546

sures, the elastic strain energy inhibiting grain growth and the chemical-free energy lead-547

ing to grain growth increase simultaneously. At pressures larger than 3 GPa, consider-548

ing our simulation results, the effect of the elastic strain energy on the grain growth is549

larger than that of the chemical-free energy. The transformation rate is determined by550

the combination of nucleation and grain growth, and this simulation does not consider551

nucleation. Nevertheless, at a slight overpressure, we assume that the depth of metasta-552

bility of olivine is decreased more than that in a previous study that considered intracrys-553

talline nucleation (Mosenfelder et al., 2001). Conversely, at a large overpressure, the depth554

of metastability of olivine increases. The deformation also increases the density of nu-555

cleation sites (e.g., Dupas-Bruzek et al., 1998). This indicates that phase transforma-556

tion is promoted by an increase in the density of nucleation sites during deformation. Thus,557

we need to build a model that considers nucleation and grain growth to reveal the ef-558

fect of the deformation on the phase transformation more accurately.559

6 Conclusions560

We simulated the growth of the germanate γ phase under various mechanical and561

microstructural conditions using the phase-field method to reveal the microstructural562

growth kinetics of the α→ γ phase transformation and the difference in the formation563

conditions between anticracks at a low confining pressure and narrow bands comprising564
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fine-grained γ grains at a high confining pressure. The volume fraction depends on the565

magnitude of the confining pressure due to the competition between the chemical-free566

energy promoting grain growth and the elastic strain energy inhibiting grain growth. Un-567

der static conditions, the chemical-free energy controls the grain growth of the γ phase568

over a wide range of pressures. Under differential stress, at a slight overpressure, the chemical-569

free energy controls the grain growth of the γ phase. Meanwhile, at large overpressures,570

the elastic strain energy controls the grain growth of the γ phase. Furthermore, the shear571

plastic strain promoting the grain growth of the γ phase develops under differential stress572

more vigorously than under static conditions and conditions without plastic strain. There-573

fore, the volume fraction of the γ phase under differential stress is larger than that un-574

der the other conditions. The grains of the γ phase under differential stress at low con-575

fining pressure (1 and 3 GPa) are lens-shaped with a strong preferred orientation nor-576

mal to the maximum compression direction because the shear plastic strain accompa-577

nied by the phase transformation develops sharply in the horizontal direction, and the578

elastic strain energy and γ grains are large. These lens-shaped γ grains are similar to579

those observed in previous deformation experiments at low confining pressures ranging580

from 1 to 2 GPa (Green & Burnley, 1989; Burnley et al., 1991). Meanwhile, the grains581

of γ phase at a high confining pressure (5 GPa) are ultra-thin because the elastic strain582

inhibiting the grain growth is larger than that at low confining pressure These thin γ grains583

are similar to the nano-shear bands observed in previous deformation experiments at a584

high confining pressure of 5 GPa (Schubnel et al., 2013; Wang et al., 2017).585
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Introduction Text S1 describes a test against an analytical solution. Figure S2 shows

an enlarged view of Run P3T1.2 (P = 3 GPa and T = 1200 K) at 35 s. Videos S1-S4

show animations of the grain growth of γ phase, von Mises stress evolution, shear plastic

strain evolution, and shear eigen strain evolution in the deformation simulations at P = 1

GPa and T = 1200 K (Run P1T1.2), respectively. Videos S5-S8 show animations of the

grain growth of γ phase, Mises stress evolution, shear plastic strain evolution, and shear

eigen strain evolution in the deformation simulations at P = 3 GPa and T = 1200 K (Run

P1T1.2), respectively. Videos S9-S10 show animations of the grain growth of γ phase and
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shear plastic strain evolution in the static simulations at P = 5 GPa and T = 1200 K

(Run SP5T1.2), respectively. Videos S11-S12 show animations of the grain growth of γ

phase and shear plastic strain evolution in the deformation simulations at P = 5 GPa and

T = 1200 K (Run P5T1.2), respectively.

October 22, 2021, 4:12pm
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Text S1.

To test the numerical implementation of the elastic model in this study, we investigated

the case of a single spherical particle Ω such as Steinbach and Apel (2006) and Ammar et

al. (2011). The analytical solution for isotropic elasticity in x1 direction from the center

of the particle is given by Eshelby (1957):

σii =



−σ0 inside Ω; x1 < rp

−σ0
(
rp
x1

)3

for i = 1;x1 > rp

1
2
σ0

(
rp
x1

)3

for i = 2 = 3;x1 > rp.

(1)

Here, rp is the particle radius. σ0 is calculated by

σ0 = −σii = −Ciikl(εkl − ε∗kl) = Ciikl(Sklmnεmn − ε∗kl), (2)

where Cijkl is the elasticity moduli, εij is the total strain, ε∗ij is the eigen strain, and

Sijkl is the eshelby tensor. At the plane strain condition (elliptic cylindrical inclusion),

considering isotropic elasticity of Ω, Sijkl is specifically given by Eshelby (1957) and Mura

(1987):

S1111 = S2222 =
5 − 4ν

8(1 − ν)
,

S1122 = S2211 =
4ν − 1

8(1 − ν)
,

S2233 = S1133 =
ν

2(1 − ν)
,

S3333 = S3311 = S3322 = 0.

(3)

Here, ν is the Poisson ratio. According to (2) and (3), we obtain

σ0 = −σ11 = −σ22 =
µ

1 − ν
ε∗, (4)

where µ is the shear modulus. We used the shear modulus µ = 72 GPa and the Poisson

ratio ν = 0.259 of α phase (Liebermann, 1975). The eigen strain ε∗ and the particle

radius rp is set to be 0.365 and 0.586 µm, respectively. The numerical simulation was

conducted in a square domain of 60 × 60 µm2 with discretizations ∆x of 512 × 512

October 22, 2021, 4:12pm
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square meshes. The grain boundary thickness δ is set to be 5∆x = 0.585 µm because

δ = 4∆x ∼ 7∆x is generally used for stability of the calculation (Takaki, 2014). Figure

S1 shows the numerically simulated tangential (σ11) and normal (σ22) stress components

and the analytical solution of Eq. (1) in a radial direction (x1) from the center of the

particle. The positive value of stress and strain means the compression of the material

in this study. Calculated tangential and normal stresses correspond to the analytical

solution inside Ω. However, both calculated stresses slightly shift to the outside from

the analytical solution because we set a bit large grain boundary thickness of 0.585 µm

caused by a square domain of 60 × 60 µm2 with discretizations ∆x of 512 × 512 square

meshes. Therefore, we have to pay attention to overestimate stresses slightly near the

grain boundary.

Figure S2.
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Figure S1. Calculated tangential (σ11) and normal (σ22) stresses components in a radial

direction from the center of the particle in comparison with the analytical solution of Eq.

(1)
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Figure S2. Enlarged view of Run P3T1.2 (P = 3 GPa and T = 1200 K) at 35 s.

Red- and blue-colored pixels show postive and negative shear plastic strains, respectively.

White-colored pixels shows γ grains. Pair of positive and negative shear plastic strain

develops horizontally with γ grains at the core. Black line is a grain boundary of α grains.
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