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Abstract

Snow and ice melt processes on the Greenland Ice Sheet are a key in Earth’s energy balance and hydrological cycle, and they

are acutely sensitive to climate change. Melting dynamics are directly related to a decrease in surface albedo, amongst others

caused by the accumulation of light-absorbing particles (LAPs). Featuring unique spectral patterns, these accumulations can

be mapped and quantified by imaging spectroscopy. In this contribution, we present first results for the retrieval of glacier

ice properties from the spaceborne PRISMA imaging spectrometer by applying a recently developed simultaneous inversion of

atmospheric and surface state using optimal estimation (OE). The image analyzed in this study was acquired over the South-

West margin of the Greenland Ice Sheet in late August 2020. The area is characterized by patterns of both clean and dark ice

associated with a high amount of LAPs deposited on the surface. We present retrieval maps and uncertainties for grain size,

liquid water, and glacier algae concentration, as well as estimated reflectance spectra for different surface properties. We then

show the feasibility of using imaging spectroscopy to interpret multiband sensor data to achieve high accuracy, fast cadence

observations of changing snow and ice conditions. In particular, we show that glacier algae concentration can be predicted

from the Sentinel-3 OLCI impurity index with less than 10 % uncertainty. Our study evidence that present and upcoming

orbital imaging spectroscopy missions such as PRISMA, EnMAP, CHIME, and the SBG designated observable, can significantly

support research of melting ice sheets.
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Abstract20

Snow and ice melt processes on the Greenland Ice Sheet are a key in Earth’s energy bal-21

ance and hydrological cycle, and they are acutely sensitive to climate change. Melting22

dynamics are directly related to a decrease in surface albedo, amongst others caused by23

the accumulation of light-absorbing particles (LAPs). Featuring unique spectral patterns,24

these accumulations can be mapped and quantified by imaging spectroscopy. In this con-25

tribution, we present first results for the retrieval of glacier ice properties from the space-26

borne PRISMA imaging spectrometer by applying a recently developed simultaneous in-27

version of atmospheric and surface state using optimal estimation (OE). The image an-28

alyzed in this study was acquired over the South-West margin of the Greenland Ice Sheet29

in late August 2020. The area is characterized by patterns of both clean and dark ice30

associated with a high amount of LAPs deposited on the surface. We present retrieval31

maps and uncertainties for grain size, liquid water, and glacier algae concentration, as32

well as estimated reflectance spectra for different surface properties. We then show the33

feasibility of using imaging spectroscopy to interpret multiband sensor data to achieve34

high accuracy, fast cadence observations of changing snow and ice conditions. In par-35

ticular, we show that glacier algae concentration can be predicted from the Sentinel-336

OLCI impurity index with less than 10 % uncertainty. Our study evidence that present37

and upcoming orbital imaging spectroscopy missions such as PRISMA, EnMAP, CHIME,38

and the SBG designated observable, can significantly support research of melting ice sheets.39

Plain Language Summary40

The Greenland Ice Sheet plays a key role in climate change since increased melt-41

ing over the past decades significantly contributes to global sea level rise and the asso-42

ciated socioeconomic consequences. Melting dynamics are controlled by the amount of43

solar radiation absorbed by the surface. This amount increases when ice gets darker, which44

is mainly caused by small particles such as algae and dust accumulating on the surface45

and reducing its brightness. Therefore, the detection of these particles is essential for pre-46

dicting melt processes on the Greenland Ice Sheet. A new generation of Earth observa-47

tion satellites provides the technical prerequisites to achieve this objective. In this study,48

we present first results from the recently started PRISMA satellite mission using a dataset49

recorded over the Greenland Ice Sheet in late August 2020. We apply a new method to50

estimate the size of ice crystals, liquid water content, and algae concentration on the sur-51
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face demonstrating the potential of the new missions to detect and quantify snow and52

ice properties with a high accuracy. Finally, we evidence that a combination of novel fu-53

ture satellite observations and existing data records from other instruments can decisively54

support research of melting ice sheets.55

1 Introduction56

Snow and ice melt processes on the Greenland Ice Sheet are a key in Earth’s energy-57

balance and hydrological cycle, and they are acutely sensitive to climate change (Tedesco58

et al., 2016). Melting dynamics are directly related to environmental factors and to a59

decrease in surface albedo, amongst others caused by the accumulation of light-absorbing60

particles (LAPs), including both inorganic (i.e., mineral dust) and biological impurities61

(i.e., glacier algae) (Flanner et al., 2007; Skiles et al., 2018; Di Mauro, 2020). The mag-62

nitude of this absorption is controlled by LAP type, mass mixing ratio, and size distri-63

bution (Warren, 1982). Variability in snow and ice grain size caused by the presence of64

liquid water can also affect the surface reflectance (Dozier et al., 2009). At the same time,65

surface melting promotes the formation of cryoconite on bare ice, which is a supraglacial66

sediment composed of very fine organic and inorganic material transported by glacial streams67

and therefore, leads to a further decrease of albedo by depositing LAP’s on the ice sur-68

face (Sneed & Hamilton, 2011; Cook et al., 2016). The increasing amounts of melt wa-69

ter settle in supraglacial lakes, which play a crucial role in climate feedback processes70

and in the hydrological system of the Greenland Ice Sheet in general (Pope et al., 2016).71

Overall, snow and ice conditions can change on rapid timescales, and regular observa-72

tions are critical to infer the rate at which accumulation, LAP deposition, and melt pro-73

cesses occur. A recent report by the National Academy of Sciences called for snow albedo74

observations on a weekly basis to constrain changes in the water and energy cycles (National75

Academies of Sciences, Engineering, and Medicine, 2018). Remote Sensing from space76

can significantly contribute to achieve these requirements by mapping local and global77

trends of snow and ice surface properties.78

The most common variable of the cryosphere being monitored from space is the79

effective snow grain radius in µm (Dozier et al., 1981). It is a measure of the ice crys-80

tal size and can also be expressed as specific surface area (Warren, 1982). Likewise, the81

spatial distribution and amount of LAP accumulation can be detected from space. In82

particular, depositions of algae in snow and glacier ice can be monitored by relying on83
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chlorophyll and carotenoids absorption characteristics (Painter et al., 2001). Algal ac-84

cumulation can be quantified as concentration in units of cells ml−1 or as mass mixing85

ratio expressed in µg/gsnow/ice (Painter et al., 2001; Cook et al., 2017). Finally, the ef-86

fective grain radius is also an indicator for surface wetness since the crystal size increases87

due to clustering processes in liquid water enriched snow and ice (Dozier et al., 2009).88

Alternatively, liquid water content can be expressed as spherical fraction of the snow and89

ice grains. However, this approach requires a separation of the liquid water and ice ab-90

sorption lines and can therefore only be pursued by using imaging spectroscopy measure-91

ments (Green et al., 2002).92

Optical remote sensing of snow and ice surface properties from space was among93

the earliest geophysical retrieval methods based on satellite missions and is a valuable94

tool to obtain amount and spatial distribution of different parameters on a global scale95

with a high temporal resolution (Rango & Itten, 1976). The potential of the near-infrared96

(NIR) wavelengths to estimate snow grain size was already demonstrated in the early97

80’s based on measurements from the NOAA Advanced Very High Resolution Radiome-98

ter (AVHRR) (Dozier et al., 1981). Prominent subsequent missions used to retrieve snow99

grain size include the Moderate Resolution Imaging Spectroradiometer (MODIS) (Zege100

et al., 2008, 2011; Carlsen et al., 2017), and the Sentinel-3 Ocean and Land Colour In-101

strument (S3 OLCI) (Kokhanovsky et al., 2019). The detection of biological LAP on snow102

and ice surfaces has also been studied in detail and a couple of investigations focused on103

mapping glacier algal blooms and determining their effects on ice melt on the Greenland104

Ice Sheet (Takeuchi et al., 2006; Stibal et al., 2017; Wang et al., 2018, 2020; Cook et al.,105

2020; Gray et al., 2020). These studies applied retrieval algorithms to data from the Satel-106

lite Probatoire d’ Observation de la Terre (SPOT), MODIS, S3 OLCI, the Medium Res-107

olution Imaging Spectrometer (MERIS), or Sentinel-2.108

In contrast to most of the existing optical satellite missions, imaging spectroscopy109

can be used to accurately map and quantify snow and ice surface properties using physically-110

based retrievals by modeling characteristic atmospheric and surface absorption features111

(Painter et al., 2013). So far, this technique has been almost entirely based on airborne112

spectrometers though, and in particular, on measurements from NASA’s Airborne Vis-113

ible Infrared Imaging Spectrometer (AVIRIS). Approaches to estimate snow grain size114

from AVIRIS data have been introduced by Nolin and Dozier (1993), and further devel-115

oped by Nolin and Dozier (2000) and Painter et al. (2013). It has also been demonstrated116
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that concentration of snow algal blooms can be quantified using AVIRIS acquisitions (Painter117

et al., 2001). The same instrument was used to quantify liquid water in-between the snow118

grains (Green et al., 2006). Recently, Bohn et al. (2021a) demonstrated a promising po-119

tential of spaceborne imaging spectroscopy missions to simultaneously detect and quan-120

tify snow and ice grain size, liquid water, and glacier algal accumulation on the Green-121

land Ice Sheet based on simulated data and AVIRIS measurements. In this context, a122

new generation of orbital imaging spectroscopy missions is expected to provide much wider123

coverage on a more regular basis with high resolution footprints of only 30 m. The Ger-124

man Aerospace Center’s (DLR) Earth Sensing Imaging Spectrometer (DESIS) (Mueller125

et al., 2016) and the Italian Hyperspectral Precursor of the Application Mission (PRISMA)126

(Cogliati et al., 2021) already are in operation since 2018 and 2019, respectively. Forth-127

coming missions include NASA’s Earth Surface Mineral Dust Source Investigation (EMIT)128

(Green et al., 2018), the German Environmental Mapping and Analysis Program (En-129

MAP) (Guanter et al., 2015), the Copernicus Hyperspectral Imaging Mission (CHIME)130

led by ESA (Rast et al., 2019), and NASA’s Surface Biology and Geology (SBG) des-131

ignated observable (National Academies of Sciences, Engineering, and Medicine, 2018).132

In this work, we present the first estimation of snow and ice surface properties from133

existing spaceborne imaging spectroscopy data. We apply a recently developed simul-134

taneous Bayesian inversion of atmospheric and surface state using optimal estimation135

(OE). The algorithm was introduced by Bohn et al. (2021a) and is an extended version136

of the concept presented in Thompson et al. (2018). It incorporates prior knowledge, mea-137

surement noise as well as model uncertainties. We use a dataset from the PRISMA in-138

strument in order to map and quantify ice grain size, surface liquid water, and algae mass139

mixing ratio. The image was acquired over the South-West margin of the Greenland Ice140

Sheet in late August 2020 capturing the ”dark zone” or ”k-transect”, which is charac-141

terized by patterns of clean snow and dark ice featuring high concentration of deposited142

LAPs (Wientjes et al., 2011). We present retrieval maps and associated posterior un-143

certainties, as well as estimated reflectance spectra for different surface conditions. We144

also analyze the optical properties of melt ponds or supraglacial lakes, which are numer-145

ous in the selected PRISMA acquisition. In addition to presenting the new spectroscopic146

retrievals, we finally show how these measurements can be used in concert with multi-147

band data in a comprehensive cryosphere observation system. We demonstrate for the148

first time that simple local regression models applied to multispectral S3 OLCI data can149

–5–



manuscript submitted to JGR: Biogeosciences

achieve a high degree of alignment with retrieval maps from imaging spectroscopy mea-150

surements.151

2 Methods152

2.1 Spectroscopic snow and ice property retrievals153

The algorithm our study is based relies on statistical relationships between surface154

reflectance spectra and snow and ice properties to estimate the most probable solution155

state given a particular reflectance. It is based on the principles of OE described by Rodgers156

(2000) and uses a comprehensive library of reflectance spectra and associated snow and157

ice surface parameters as a representation of prior knowledge. Bohn et al. (2021a) named158

this approach a ”lazy Gaussian” or ”lazy prior-driven” inversion since the forward model159

is a function of the atmospheric state and the surface reflectance, but not of the addi-160

tional surface parameters. These extra parameters are estimated entirely based on the161

prior mean and covariance with the surface reflectance. They comprise grain radius, liq-162

uid water path length as well as mass mixing ratios of various LAPs. The statistical cor-163

relations between reflectance and surface properties are derived from runs of the snow164

and ice radiative transfer model (RTM) BioSNICAR-GO.165

BioSNICAR-GO simulates surface spectral albedo by combining a bio-optical model166

with the two-stream multilayer SNow, ICe, and Aerosol Radiation model SNICAR (Flanner167

et al., 2007; Cook et al., 2020). It facilitates the modeling of ice grains and LAP either168

as collections of spheres based on Lorenz-Mie theory (Grenfell & Warren, 1999) or as ar-169

bitrarily large hexagonal plates and columns using a geometric optics (GO) parameter-170

ization from van Diedenhoven et al. (2014). To enable the estimation of surface liquid171

water, Bohn et al. (2021a) coupled BioSNICAR-GO with the two-layer coated sphere172

reflectance model developed by Green et al. (2002). The model assumes an increased grain173

radius attributed to a particular liquid water fraction, and is based on a slight shift be-174

tween the imaginary parts of the spectral refractive index of liquid water and ice (Dozier175

& Painter, 2004).176

This section presents a brief discussion of the difference in modeling of snow and177

ice grains, followed by an overview about the forward model and OE in general. We ad-178

here to standard conventions and denote matrices with uppercase boldface letters, and179

vectors as well as vector-valued functions with a lowercase boldface notation. For in-depth180
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details, the reader is referred to Rodgers (2000), Thompson et al. (2018), and Bohn et181

al. (2021a).182

2.1.1 Snow vs. ice grains183

Most of the scientific literature on the retrieval of snow and ice surface parameters184

is focused on snow grain size (see, e.g., Nolin and Dozier (1993, 2000); Painter et al. (2013);185

Kokhanovsky et al. (2019)). However, the optical properties of ice crystals are very dif-186

ferent compared to snow, which is a mixture of air and ice (Warren, 2019). There is an187

inner complexity in estimating ice grain dimensions since the transition from snow to188

glacier ice is a continuum. On ice sheets, snow is compressed by its own weight and with189

increasing density, present air forms enclosed bubbles. The higher the density and the190

pressure, the smaller the bubbles get until they finally dissolve to spare pure ice (Warren,191

2019).192

The most common method to model the shape of snow grains is to assume non-193

spherical snow particles being arranged as a collection of spheres and to obtain their op-194

tical properties from Lorenz-Mie theory (Grenfell & Warren, 1999). This approach is jus-195

tified by expecting the snow grain radius being much larger than the incident radiation196

wavelengths. However, this method features clear limitations when applied to surfaces197

of bare ice since the grains typically appear to be arbitrarily shaped as plates and columns198

with irregular dimensions (Kokhanovsky & Zege, 2004). To capture this in the model-199

ing, Aoki et al. (2007) proposed to consider length, width, and thickness of the ice crys-200

tals instead of the collected-spheres approach. These parameters are likewise the basis201

of the geometric optics (GO) calculations introduced by Kokhanovsky and Zege (2004).202

In this study, we run the ”lazy Gaussian” inversion based on both the collected-203

spheres and the GO method representing the prior distributions. Although the simulated204

spectra for glacier ice surfaces display the more appropriate prior mean and covariance205

for our case study, we also applied the Lorenz-Mie based snow spectral library to our PRISMA206

dataset to enable a comparison with the grain radius maps derived from S3 OLCI data.207

Furthermore, this demonstrates the resulting differences both in spatial distribution and208

value range of the estimated grain sizes, and therefore, gives an impression of the appli-209

cability of the different approaches to model snow and ice grain shape. Figure 1d shows210

representative surface reflectance spectra of clean snow and dark ice, respectively, with211
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highlighted characteristic absorption features. Abundance of carotenoids and chlorophyll212

indicates presence of biological impurities on the surface, whereas ice and liquid water213

absorption bands are used for retrieving grain size as well as liquid water content. The214

spectra highlight the differences in reflectivity of snow and ice surfaces and thus, con-215

firm the importance of choosing an appropriate prior knowledge for the inversion.216

2.1.2 Forward model217

We denote the forward model as a vector-valued function f of the state vector x =218

[x1, ..., xn]
T yielding the measurement vector y = [y1, ..., ym]

T:219

y = f(x) + ϵϵϵ, (1)220

with ϵ representing a random error vector, which in our case includes measurement noise,221

prior uncertainties in x, and errors due to unknown forward model parameters. Follow-222

ing Thompson et al. (2018), x contains columnar water vapor in g cm−2 and dimension-223

less Aerosol Optical Thickness (AOT) at 550 nm being an atmospheric part xATM =224

[xH2O, xAOT]
T, and the reflectance of each instrument channel as a surface part xSURF.225

Here, the snow and ice properties are added leading to the extended version xSURF =226

[xλ1 , ..., xλm , xSURF1 , ..., xSURFn ]
T. Thompson et al. (2018) use the hemispherical-directional227

reflectance factor (HDRF) as a representation of the surface reflectance. In contrast, our228

implementation of the ”lazy Gaussian” method optimizes the hemispherically-integrated229

spectral albedo. This approach is limited by the used 2-stream snow and ice RTM BioSNICAR-230

GO. However, although the HDRF is the more appropriate quantity when modeling mea-231

surements of imaging spectrometers (Schaepman-Strub et al., 2006), the use of spectral232

albedo for applications to the flat parts of the Greenland Ice Sheet can be pursued (Bohn233

et al., 2021a).234

In specific form, f models the wavelength-dependent top-of-atmosphere (TOA) ra-235

diance using a simplified solution of the radiative transfer equation (Chandrasekhar, 1960):236

LTOA = L0 +
1

π

ρs(Edirµsun + Edif)T↑

1− Sρs
, (2)237

where L0 is the atmospheric path radiance; Edir and Edif are the direct and diffuse so-238

lar irradiance arriving at the surface; µsun is the cosine of the solar zenith angle; T↑ is239

the total upward atmospheric transmittance; S is the spherical albedo of the atmosphere;240

and ρs is the surface spectral albedo. For simplicity, we assume an infinite, horizontal,241
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and isotropic Lambertian surface as well as clear sky and a plane-parallel atmosphere.242

At the same time, these assumptions ensure validity of using spectral albedo in place of243

HDRF (Bohn et al., 2021a). The atmospheric flux parameters L0, Edir, Edif , T↑, and S244

are functions of xATM, surface elevation as well as solar and observation geometry. They245

are derived from radiative transfer simulations using the MODTRAN code (Berk et al.,246

1989). The prior covariance matrix of xATM is assumed to be diagonal and unconstrained.247

While the first part of the surface state vector, [xλ1
, ..., xλm

], is expressed by ρs in248

f , the remaining parameters of xSURF, [xSURF1 , ..., xSURFn ], are not an input to the for-249

ward model. They are optimized entirely based on their prior mean and covariance, which250

are obtained from the prior surface statistics. These statistics are characterized by a mul-251

tivariate Gaussian distribution of surface reflectance for each instrument channel and the252

additional surface parameters with a non-diagonal covariance matrix due to expected253

correlations across channels.254

2.1.3 Optimal estimation255

OE acts on two main assumptions: measurement and state vectors as well as the256

associated errors follow a Gaussian distribution, and the forward model is locally linear.257

Then, f can be inverted by minimizing the following cost function, which is the nega-258

tive logarithm of the posterior probability density function:259

C(x̂) = 1

2
(x̂− xa)

TS−1
a (x̂− xa) +

1

2

(
y − f(x̂))TS−1

ϵ (y − f(x̂)
)
. (3)260

Here, xa is the prior state vector; Sa is the prior covariance matrix; and Sϵ is the mea-261

surement covariance matrix. The first term of the right-hand side penalizes the depar-262

ture of the modeled TOA radiance from the measurement, weighted by Sϵ, which cap-263

tures both instrument noise, expressed by the noise-equivalent change in radiance, and264

uncertainties due to unknown forward model parameters. We assume no correlation be-265

tween the measurement noise of different instrument channels as well as between the un-266

known parameters, so that Sϵ is diagonal. The second term evaluates the difference be-267

tween prior and solution state by taking into account Sa. The iteration then searches268

for the solution state x̂ that leads to a local minimum of Equation 3, being the state with269

the highest probability given the measurement and the prior state. In this work, we find270

x̂ using a Gauss-Newton iteration scheme that typically converges in less than 30 iter-271

ations.272
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Besides the converged solution state, the OE retrieval scheme reports the poste-273

rior predictive uncertainty for each x̂:274

Ŝ = (KTS−1
ϵ K+ S−1

a )−1, (4)275

where K is the Jacobian of the forward model with respect to x̂. To facilitate an inter-276

pretation of the posterior uncertainties, Ŝ can be normalized leading to an error corre-277

lation matrix (Govaerts et al., 2010).278

2.2 Sentinel-3 OLCI snow property retrievals279

Measurements from S3 OLCI can be used to derive several snow properties includ-280

ing spectral and broadband albedo, snow specific surface area, snow extent, and snow281

grain size (Kokhanovsky et al., 2019). Additionally, multiple band indices have been de-282

veloped for identifying impurities on snow and ice surfaces from instruments such as MERIS,283

MODIS, or S3 OLCI, including different chlorophyll indices and the impurity index (Wang284

et al., 2018, 2020; Dumont et al., 2014). In this section, we briefly introduce the S3 OLCI285

grain size retrieval algorithm as well as the impurity index, as results from both are used286

for comparison with retrieval maps from PRISMA data.287

The snow grain radius is estimated from S3 OLCI data using the following rela-288

tion (Kokhanovsky et al., 2019):289

r =
Al

2
, (5)290

where l is the effective ice absorption length, and A is derived from a scaling constant291

depending both on snow type and grain shape. Kokhanovsky et al. (2019) suggest A = 0.06292

based on findings from various studies, which analyze the scaling constant (see Kokhanovsky293

(2006); Libois et al. (2014); Di Mauro et al. (2015)). The absorption length l is calcu-294

lated by:295

l =
1

α2f2
ln(

R2

R1
), (6)296

where R1 and R2 are the OLCI TOA reflectance at 865 and 1020 nm, α2 is the ice ab-297

sorption coefficient at 1020 nm, and f is an angular function that depends on solar and298

viewing geometry as well as on the theoretical reflectance of a non-absorbing snow layer.299

The important assumptions of this approach are that R1 and R2 have to be sensitive to300

the snow grain radius and least influenced by atmospheric absorption and scattering (Kokhanovsky301

et al., 2019). For more details about the algorithm the reader is referred to Kokhanovsky302

et al. (2019).303
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The impurity index was introduced by Dumont et al. (2014) and exploits the much304

higher sensitivity of the visible (VIS) wavelengths to impurity content compared with305

the near-infrared (NIR) spectral region. It is calculated by the ratio of the natural log-306

arithms of green and NIR surface reflectance at 560 and 865 nm, respectively:307

iimp =
ln(R560 nm)

ln(R865 nm)
. (7)308

Dumont et al. (2014) showed that iimp is almost non-sensitive to the ice grain size, whereas309

it can be affected by atmospheric aerosols in case of biased atmospheric correction re-310

sults. An accurate surface reflectance retrieval is therefore needed prior to calculating311

iimp. Furthermore, Di Mauro et al. (2017) demonstrated that iimp is also sensitive to min-312

eral dust and black carbon concentration on ice surfaces. Typical values of the impurity313

index are 0.2−0.5 for bare ice, 0.7−0.9 for low to moderate chlorophyll content, and314

more than 0.9 for high chlorophyll concentration (Wang et al., 2020). Its values can reach315

up to 1.2 for high loads of impurities and cryoconite on bare ice (Di Mauro et al., 2017).316

317

3 Materials318

3.1 Study area319

Our study area is located at the South-West margin of the Greenland Ice Sheet at320

66–68◦ N and 48–50◦ W. It belongs to the Kangerlussuaq transect (k-transect) and is321

characterized by patterns of clean snow and dark ice. Especially in the summertime, i.e.,322

July and August, the k-transect features a low surface albedo forming a zone of dark ice323

(Alexander et al., 2014; Ryan et al., 2018). This process is highly correlated with melt-324

water production and runoff as well as with associated occurrences of algal blooms on325

the ice surface (Wang et al., 2018; Cook et al., 2020; Bohn et al., 2021a). As shown by326

previous studies, the predominant species of biological impurities during the melt sea-327

son in the dark zone are Mesotaenium berggrenii and Ancylonema nordenskioldii (Yallop328

et al., 2012; Williamson et al., 2018). In fact, these eukaryotic species are known to dom-329

inate the supraglacial environment both in Greenland and elsewhere (Di Mauro et al.,330

2020). Additionally, the large amount of meltwater production leads to the development331

of several widespread melt ponds (Diamond et al., 2021).332
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3.2 PRISMA data333

PRISMA is an Italian satellite mission led by the Italian Space Agency (ASI) (Cogliati334

et al., 2021). The instrument was launched in March 2019 and provides on-demand data335

for most of the Earth. It features 239 spectral bands covering the wavelength region from336

400 to 2500 nm with a spectral sampling interval (SSI) less than 12 nm. The ground sam-337

pling distance (GSD) is 30 m, while the swath is 30 km.338

For our study, we selected an acquisition from August 30, 2020, covering a part of339

the k-transect. Figure 1a-b shows a true-color representation of the scene and its loca-340

tion on the Greenland Ice Sheet. The image contains representative examples of both341

clean snow and dark ice at the end of the melting season. Several melt ponds are also342

displayed. After converting PRISMA L1 TOA radiance data to reflectance, we calculated343

the normalized difference snow index (NDSI) (Dozier, 1989), which is visualized in Fig-344

ure 1c. We mostly obtain an NDSI beyond 0.8 with 0.74 being the minimum value of345

the entire image, which clearly indicates that the surface is covered with snow and ice346

(Dozier & Painter, 2004). We can also observe some smooth structures towards the East347

showing lower values of NDSI, which might be some thin clouds not easily detectable in348

the true-color image. Stillinger et al. (2019) have shown that the NDSI of dark clouds349

can be high enough to cause misclassification.350

In order to improve the radiometric and spectral quality of the selected PRISMA351

data, we applied a suite of preprocessing tools, including a spectral smile correction and352

a radiometric radiance correction (Chlus et al., 2021).353

To obtain the individual noise-equivalent change in radiance for each PRISMA spec-354

trum needed by the OE-based inversion, we use an estimation of the signal-to-noise ra-355

tio (SNR) based on a discrete cosine transform and scale the results assuming a photon356

shot noise square root dependence with the radiance (Gorroño & Guanter, 2021).357

3.3 Sentinel-3 OLCI data358

OLCI is a moderate resolution imaging spectrometer installed on the Sentinel-3 satel-359

lite, which was launched in 2016. The instrument provides 21 spectral bands spanning360

400 to 1020 nm with an SSI between 2.5 and 40 nm. With 1, 270 km and 300 m, it fea-361

tures much larger swath and GSD, respectively, than the PRISMA imaging spectrom-362
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Figure 1. a) Map of Greenland showing the location of the PRISMA acquisition as a red

box; b) a true-color image of the TOA radiance dataset; c) the normalized difference snow index

(NDSI) calculated from the difference between the VIS green and shortwave infrared (SWIR)

TOA reflectance; and d) exemplary surface reflectance spectra estimated from PRISMA TOA

radiance data for clean snow and dark ice, respectively. Center wavelengths of characteristic

absorption features of carotenoids (Car), chlorophyll (Chl), liquid water (Liq), and ice (Ice) are

highlighted with dashed lines.
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eter. OLCI was specifically designed for retrieving chlorophyll content, primarily over363

ocean surfaces, which is highly facilitated by its large footprint (Malenovský et al., 2012).364

For the comparison with our PRISMA dataset, we selected an OLCI acquisition365

from the same date, i.e., August 30, 2020, and almost the same time of overpass, i.e., ap-366

proximately 15:00 GMT-2. The scene covers large parts of the western shore of the Green-367

land Ice Sheet and part of the Canadian arctic. It includes our study area in the k-transect368

of southwest Greenland and shows a slightly larger cloud fraction, which is mainly lo-369

cated over water surfaces though. We used the OLCI L1B product providing radiomet-370

rically calibrated TOA radiances and converted the data both to TOA and surface re-371

flectance using the S3 OLCI Snow and Ice Properties Processor (SICE). Details on SICE372

can be found in Kokhanovsky et al. (2020). Subsequently, we produced a snow grain size373

map and calculated the impurity index for each pixel using OLCI bands 6 at 560 nm and374

17 at 865 nm.375

4 Results and discussion376

4.1 Snow and ice parameter maps377

The left panel of Figure 2 quantifies the spatial distribution of ice grain radius, ice378

liquid water path length, and glacier algae mass mixing ratio from the PRISMA data379

using the glacier ice spectral library as prior knowledge. Comparing the maps with the380

true-color image in Figure 1b, it is obvious that the darker the surface, the larger are the381

estimated ice grains and the algae concentration since high amounts of both quantities382

lead to decreasing reflectance in the VIS (Bohn et al., 2021a). Likewise, the liquid wa-383

ter path length detected on the ice surface is significantly larger for the dark zone in the384

western part. The algae map is calculated from the sum of retrieved values of the species385

Mesotaenium berggrenii and Ancylonema nordenskioldii, and conforms to values mea-386

sured in the field (Cook et al., 2020).387

Figure 3 illustrates these findings by showing spatial transects of ice grain radius,388

ice liquid water path length, and glacier algae mass mixing ratio at 67.14◦ N. We selected389

this particular latitude as this transect not only covers the dark zone and clean ice and390

snow, but also the large dark melt pond located in the north-eastern part of the image.391

Between 48.5◦ and 48.8◦W, the transect can generally be characterized as transition area392

from the dark zone near the coastline towards the clean ice at higher elevated parts of393

–14–



manuscript submitted to JGR: Biogeosciences

66
.9

3°
N

67
.0

7°
N

67
.2

1°
N

49.20°W 48.83°W 48.46°W

a) Ice grains

66
.9

3°
N

67
.0

7°
N

67
.2

1°
N

49.20°W 48.83°W 48.46°W

b) Snow grains

66
.9

3°
N

67
.0

7°
N

67
.2

1°
N

49.20°W 48.83°W 48.46°W

c) Ice liquid water

66
.9

3°
N

67
.0

7°
N

67
.2

1°
N

49.20°W 48.83°W 48.46°W

d) Snow liquid water

66
.9

3°
N

67
.0

7°
N

67
.2

1°
N

49.20°W 48.83°W 48.46°W

e) Glacier algae

66
.9

3°
N

67
.0

7°
N

67
.2

1°
N

49.20°W 48.83°W 48.46°W

f) Snow algae

Water
Vapor

AOT Ice
Grains

Meso
Algae

Ancy
Algae

Water
Vapor

AOT

Ice
Grains

Meso
Algae

Ancy
Algae

1.001.00 -0.02 -0.01 -0.01 0.02

-0.02 1.001.00 -0.69-0.69 -0.05 0.11

-0.01 -0.69-0.69 1.001.00 -0.01 0.04

-0.01 -0.05 -0.01 1.001.00 -0.91-0.91

0.02 0.11 0.04 -0.91-0.91 1.001.00

g) Ice

Water
Vapor

AOT Snow
Grains

Liquid
Water

Snow
Algae

Water
Vapor

AOT

Snow
Grains

Liquid
Water

Snow
Algae

1.001.00 0.02 0.08 -0.13 0.03

0.02 1.001.00 0.17 0.11 0.02

0.08 0.17 1.001.00 0.600.60 0.02

-0.13 0.11 0.600.60 1.001.00 0.08

0.03 0.02 0.02 0.08 1.001.00

h) Snow

4000 8000 12000 16000 20000
µm

0 200 400 600 800 1000
µm

0 40 80 120 160
µg/gice

0 200 400 600 800 1000
µm

0 20 40 60 80 100
µm

0 100 200 300 400 500
µg/gsnow

1.0 0.5 0.0 0.5 1.0
Correlation Coefficient

Figure 2. Estimated surface parameter maps from PRISMA data using different spectral

libraries as prior knowledge. Left panel: glacier ice; right panel: snow. a-b) Grain radius; c-d) liq-

uid water path length; e-f) algae mass mixing ratio; and g-h) posterior error correlation matrices

for selected atmosphere and surface state parameters. The dashed red lines in a, c, and e indicate

the latitude that is selected to create the spatial transects in Figure 3.
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Figure 3. Spatial transects of estimated ice grain radius, ice liquid water path length, and

glacier algae mass mixing ratio at 67.14◦ N (see dashed red lines in the left panel of Figure 2).

The selected latitude covers the dark zone of high impurity concentration as well as a large dark

melt pond and an area of clean ice and snow in the eastern part of the image. The lower panel

is complemented by a boxplot calculated from samples of algal field measurements collected be-

tween 10 and 17 July 2017 within the k-transect by Cook et al. (2020). The pink dashed line and

the pink colored point show median and mean of the distribution, respectively.
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the Ice Sheet. This transition area is interrupted by some small scale accumulations of394

glacier algae around melt ponds, which typically cause algal disposition in the surround-395

ing area. In contrast, we observe constantly large ice grain radii and ice liquid water path396

lengths as well as high algae concentration within the dark zone. The discrete spike in397

all transects between 48.8◦ and 48.9◦ W originates from a small and shallow melt pond,398

whose brighter reflectance properties are most likely influenced by underlying bare ice399

featuring a smaller grain radius and very low algae concentration. On the other hand,400

the dark melt pond is characterized by large estimated ice grains and high concentra-401

tion of glacier algae (see Section 4.5 for a detailed analysis). Finally, the region of clean402

ice and snow shows small grain radii, less liquid water on the ice surface, and almost no403

biological impurities. Overall, the reported value ranges for the various parameters co-404

incide with findings from previous studies (Cook et al., 2020; Bohn et al., 2021a). Es-405

pecially the comparison with samples of algal field measurements collected and provided406

by Cook et al. (2020) proves a similar value range of mass mixing ratios remotely retrieved407

from PRISMA data (Figure 3). In fact, the concentrations observed in the field are slightly408

lower, but this is probably due to an earlier sampling date within the melting season,409

i.e., mid of July instead of late August. Furthermore, the results from the PRISMA data410

rather represent average values of 30×30 m pixels than point measurements. Thus, the411

mean of the algal field measurements, indicated by a pink colored point within the box-412

plot, is the more appropriate quantity to compare with.413

The right panel of Figure 2 presents the estimated maps for snow grain radius, snow414

liquid water path length, and snow algae mass mixing ratio using the Lorenz-Mie based415

snow spectral library as prior knowledge. In contrast to the retrieved ice grain size, a416

correlation with surface brightness is not observable for the snow grain radius. In fact,417

this retrieval ideally works for sphere-shaped snow grains, so that the reported values418

for the dark ice surface have to be treated carefully. Towards the most eastern part, the419

map features smaller grain radii potentially related to the increasing surface elevation,420

which rises from 1000 to 1500 m in our PRISMA image and leads to lower air temper-421

atures when moving landwards. Under these conditions, generally dry snow with small422

grain size is found on the surface (Warren, 2019). Several studies well describe the spa-423

tial distribution of snow grain size including its decline on the uplifted parts of the Green-424

land Ice Sheet (see, e.g., Kokhanovsky et al. (2019) or Bohn et al. (2021a)). The esti-425

mated snow liquid water path lengths confirm the retrieved snow grain size map since426
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the highest values can be observed for pixels with large grain radii of up to 800 to 1000 µm.427

The grains in liquid water enriched wet snow tend to form clusters, which behave as larger428

grains with the respective optical properties (Dozier et al., 2009). Finally, the snow al-429

gae map in Figure 2f points out the importance of selecting appropriate priors for the430

inversion. Applying the snow spectral library to retrievals on glacier ice surfaces obvi-431

ously leads to less realistic results of algae concentration. The estimated mass mixing432

ratios do not correlate with surface brightness and show artificially high values when com-433

pared to the field observations of Cook et al. (2020) (see Figure 3). This is mainly due434

to the different approaches of modeling the shape of both snow and ice grains and the435

algal cells. Relying on prior knowledge based on GO calculations significantly enhances436

the retrieval results since it simulates existing conditions on glacier ice surfaces more ap-437

propriately (Cook et al., 2020).438

4.2 Posterior error correlation439

Then, we present posterior error correlation matrices for selected atmosphere and440

surface parameters to show how retrieval uncertainties of particular state vector elements441

affect each other. We calculated the mean coefficients from the posterior predictive un-442

certainties for all x̂ of the PRISMA image. Depending on the used surface prior spec-443

tral library, Figure 2g-h divides into glacier ice and snow surface parameters.444

Although we do not analyze the retrieval of the atmospheric state xATM in this study,445

we take a look at potential effects of water vapor and AOT on the additional surface pa-446

rameters. Whereas water vapor uncertainties are clearly uncorrelated with all other pa-447

rameters over glacier ice, a negative correlation between errors in the ice grain retrieval448

and the AOT estimation can be observed. Scattering and absorption by atmospheric aerosols449

show similar effects on the reflectance shape and magnitude in the VIS as increasing ice450

grain radii. Thus, corresponding retrieval uncertainties are introduced, which was one451

of the key findings in Bohn et al. (2021a). Furthermore, posterior errors for the glacier452

algae species are strongly negatively correlated since their absorption features are sim-453

ilar (Cook et al., 2020). However, we report the sum of both in the retrieval maps, so454

that potential inaccuracies compensate for each other.455

Figure 2h illustrates the positive correlation between uncertainties in the snow grain456

size retrieval and errors in the liquid water estimation. This is most likely due to the sim-457
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Figure 4. TOA radiance fits and estimated surface reflectance for three selected Ice Sheet

surface types. a) Clean snow with small ice crystals, smaller liquid water path length, and no

algae accumulation; b) dark ice with large ice crystals, large liquid water path length, and high

algae accumulation; and c) dark melt pond with very large ice crystals, medium liquid water

path length, and moderate algae accumulation. The upper panel shows fits between PRISMA L1

data and the forward modeled radiance at convergence. The lower panel presents a comparison of

reflectance solution states with the PRISMA L2C product. The blue lines in all plots depict the

absolute residuals between PRISMA data and the lazy Gaussian results.

ilarities between liquid and ice absorption shapes (Green et al., 2006). Even errors in the458

solution state for atmospheric water vapor can be little affected by posterior uncertain-459

ties in the surface liquid water estimation. However, the respective correlation coefficient460

is only −0.13 and likewise, the remaining values of the matrix are more or less close to461

0. Overall, Figure 2g-h confirms the independence of most state vector parameters and462

therefore, our ability to estimate them with the ”lazy Gaussian” inversion.463

4.3 TOA radiance fits464

Next, we present a comparison between PRISMA L1 data and the respective TOA465

radiance fits, modeled by Equation 2. As an example, the upper panel of Figure 4 shows466

three selected spectra of different Ice Sheet surface types as highlighted in Figure 3. The467

left panel represents a clean snow surface in the eastern part of the image featuring small468

–19–



manuscript submitted to JGR: Biogeosciences

ice crystals, a smaller liquid water path length, and no algae accumulation. In contrast,469

the spectrum in the middle panel originates from a dark ice pixel in the ablation zone470

having large ice crystals, a large liquid water path length, and a high glacier algae mass471

mixing ratio. Finally, the right panel emphasizes the radiative and reflective properties472

of the dark melt pond located on the spatial transect drawn in the left panel of Figure473

2.474

While showing almost no residuals in the SWIR, all spectral fits illustrate discrep-475

ancies of up to 2 µWnm−1cm−2sr−1 in the VIS/NIR wavelength region. Generally, the476

modeled TOA radiance rather underestimates the measured PRISMA L1 data, except477

for the NIR part of the melt pond spectrum. However, we observe slightly different spec-478

tral regions of largest error occurrence. The radiance fit for the dark ice surface almost479

exclusively deviates from the PRISMA measurement between 400 and 750 nm, where480

the TOA radiance signal is strongly affected by the scattering of atmospheric aerosols.481

An explanation is directly presented in Figure 2g. Here, we notice a correlation coeffi-482

cient of −0.69 between errors in the ice grain radius retrieval and the AOT estimation.483

Therefore, the AOT value reported in the solution state for the dark ice spectrum might484

be overestimated due to an underestimated ice grain radius. This reduces the modeled485

radiance in the VIS. Additionally, the AOT estimation is biased by a missing first guess486

retrieval prior to the inversion.487

The fit for the clean snow spectrum shows less influences by the AOT retrieval in488

the VIS. Here, we observe the largest model discrepancies in the NIR wavelength region.489

As the inversion reports a much smaller ice grain radius, but remarkably higher relative490

liquid water fraction, the residuals might be explained by error correlation in-between491

the three phases of water, i.e., atmospheric water vapor, surface liquid water, and ice grain492

radius. Figure 2h confirms this assumption since we note correlation coefficients of 0.60493

between snow grain and liquid water retrieval uncertainties as well as at least −0.13 for494

errors in water vapor estimation and the reported liquid water fraction.495

Finally, the radiance fit for the melt pond spectrum slightly deviates from the PRISMA496

L1 data in the blue VIS region, but shows larger differences in the NIR wavelength range.497

The former is most likely caused by uncertainties in the AOT estimation, while the lat-498

ter might be explained by insufficient surface prior knowledge. The applied spectral li-499

braries of snow and ice reflectance do not include simulations for melt pond surfaces and500
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consequentially, the prior state vector does not cover these characteristics in the inver-501

sion. This is also reflected in the estimated ice crystal size for this spectrum. The inver-502

sion reports a disproportionately large radius of 23212 µm, although we rather find open503

water than ice-covered surface in this pixel. Here, the solution state of the ice crystal size504

is clearly guided by the relatively low radiance, which is commonly observed for water505

surfaces.506

Overall, the discrepancies in modeled TOA radiance may also originate from too507

strong constraints on the surface reflectance priors. The optimization then attends less508

to the measurement part of the cost function and consequentially, models y with a higher509

associated uncertainty. Increasing the surface reflectance diagonal of the prior covari-510

ance matrix may improve the performance of our forward model. Also, uncertainties in-511

troduced by the radiometric calibration of the instrument itself might be another source512

of errors influencing the TOA radiance fits.513

Finally, we presume though that at least the amount of algae accumulation on the514

ice surface has less effects on the fitted TOA radiance. Bohn et al. (2021a) have shown515

that the information content of the radiance measurement is almost unaffected by bi-516

ological impurities. However, small errors might still remain in the TOA radiance fits.517

518

4.4 Estimated surface reflectance519

Since the ”lazy Gaussian” inversion is embedded in an atmospheric correction al-520

gorithm and the spectral albedo for each instrument channel are elements of the state521

vector, the evaluation of the retrieved surface reflectance is an essential part of our anal-522

ysis. Although we lack appropriate field measurements for validation, a qualitative com-523

parison with the official PRISMA L2C product is informative. Since our resulting reflectance524

map is yet in sensor geometry similar to the PRISMA L1 product, we use the L2C data525

for comparison instead of the final orthorectified L2D product.526

The lower panel of Figure 4 shows results for the same pixels as analyzed in Sec-527

tion 4.3. For clarity, we excluded reflectance values from instrument channels located within528

the deep SWIR water vapor absorption features around 1350 and 1850 nm, where the529

solar radiation is almost entirely absorbed by the atmosphere. Even marginally biased530

simulations of atmospheric water vapor transmission could lead to artificially high re-531
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Figure 5. The middle panel presents examples of retrieved melt pond surface reflectance

spectra from the PRISMA image. In addition to the figure legend, estimated mass mixing ratios

of glacier algae are displayed in textcolor according to the respective spectrum. Dashed vertical

lines indicate the positions of both carotenoid and chlorophyll absorption features at 500 and

680 nm, respectively. The left panel shows a true-color RGB with the location of the areas on the

map. The right panel zooms in on carotenoid and chlorophyll absorption features between 400

and 700 nm present in spectra (c) and (d).

flectance values at these wavelengths. Again, we evaluate spectra of clean snow, dark ice,532

and a melt pond surface. Overall, we see a good agreement with PRISMA L2C spectra.533

The results from the ”lazy Gaussian” inversion feature less spikes and a smoother reflectance534

gradient especially in the VIS. This emphasizes the capabilities of OE, which enables a535

less noisy reflectance estimation by incorporating the prior distribution in the surface536

model (Thompson et al., 2018). However, all spectra show deviations from the PRISMA537

data in the same spectral ranges as illustrated by the upper panel of Figure 4. This con-538

firms the assumptions of the previous Section 4.3. On the other hand, further studies539

are needed to assess the quality of PRISMA L2C spectra and if they can serve as val-540

idation targets (Cogliati et al., 2021). Instead, an accurate evaluation of the retrieval re-541

sults from the ”lazy Gaussian” inversion would require field measurements of surface re-542

flectance.543

4.5 Melt ponds544

Figure 5 shows selected melt pond reflectance spectra representing different water545

types. Additionally, the estimated glacier algae accumulation for the respective pixels546
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is given in the plot. When comparing with snow or ice surfaces, the reflectance spectrum547

of melt ponds is characterized by a missing peak at 1100 nm. The reflectance beyond548

900 nm is typically low due to strong liquid water absorption in these wavelengths, with549

any signal due only to Fresnel reflection (Malinka et al., 2018). Spectra (a) and (b) in550

Figure 5 only show a marginal peak in the NIR indicating an open pond without ice cover.551

Shape and magnitude of both spectra conform with field spectrometer measurements of552

dark and light-blue ponds presented in Malinka et al. (2018). However, while the inver-553

sion reports no present algae accumulation for spectrum (a), the estimated mass mix-554

ing ratio of 71 µg/gice is comparatively high for spectrum (b). Here, we most likely ob-555

serve the influence of cryoconite on the bottom of the pond, which has been interspersed556

with melt water.557

In contrast, spectra (c) and (d) exhibit absorption features in the VIS spectral re-558

gion caused by abundance of biological impurities on the surface. This assumption is con-559

firmed by retrieved glacier algae mass mixing ratios of 38 and 154 µg/gice, respectively.560

Even a distinction between different species of algae is enabled by the retrieval result since561

both spectra hold different characteristic absorption features. The right panel of Figure562

5 presents a closer look at carotenoid and chlorophyll absorption between 400 and 700 nm563

present in spectra (c) and (d). We observe a mixture of phycoerythrin and chlorophyll564

absorption around 620 nm in spectrum (c) (Bryant, 1982), pointing to green algae or565

blue colored cyanobacteria, which are commonly found on the Greenland Ice Sheet (Wientjes566

et al., 2011; Yallop et al., 2012; Gray et al., 2020; Di Mauro et al., 2020). In contrast,567

spectrum (d) can be distinguished by a broad carotenoid feature around 500 nm indi-568

cating the presence of red or purple algae (Hoham & Remias, 2020). They are found in569

large quantities on the Greenland Ice Sheet (Cook et al., 2020), which is underlined by570

the relatively high retrieved concentration of 154 µg/gice. Present reflectance peaks at571

1100 nm in spectra (c) and (d) suggest though that the respective ponds seem to be ei-572

ther partly covered with ice or to consist of a mixture of water and ice grains (Malinka573

et al., 2018). This is further endorsed since both spectra (c) and (d) resemble the shape574

of spectrum (e), which is retrieved from a frozen pond featuring almost clean ice with-575

out significant algae accumulation.576

Overall, the results demonstrate that the ”lazy Gaussian” inversion is able to re-577

port meaningful results from PRISMA data for glacial melt ponds by quantifying dif-578

ferent brightness of water surfaces, distinguishing turbid and clear water as well as iden-579
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Figure 6. Resulting maps from the S3 OLCI snow properties retrieval for the western Green-

land dataset (acquisition date: August 30, 2020, 15:00 GMT-2). a) Snow grain radius; and b)

impurity index. For non-snow covered pixels, the true-color image is displayed. Red boxes indi-

cate the location of the PRISMA acquisition analyzed in this study.

tifying potential ice cover. Furthermore, we show that even weak chlorophyll absorption580

can be resolved by PRISMA data. To our knowledge, this is the first time that this small581

absorption is observed from a spaceborne imaging spectrometer, which opens a valuable582

perspective for the life detection on snow and ice using imaging spectroscopy data.583

4.6 Comparison with Sentinel-3 OLCI584

Finally, we present results from the S3 OLCI snow properties retrieval and show585

a comparison with the PRISMA retrieval maps. In particular, we demonstrate the po-586

tential of snow and ice surface parameters derived from imaging spectrometers to develop587

regression models for multispectral data.588

Figure 6 shows S3 OLCI snow grain radius and impurity index calculated accord-589

ing to Equations 5 and 7, respectively. It is important to note that the OLCI grain size590

algorithm assumes a spherical grain shape, so that the retrieval rather reports radii of591

snow grains than dimensions of arbitrarily shaped ice crystals (Kokhanovsky et al., 2019).592

We masked out non-snow covered pixels to save processing time and complemented the593

plot with a true-color image of the S3 acquisition. When looking at the eastern part of594
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the scene, we observe a distinct spatial pattern of both parameters having the largest595

values towards the edge of the ice sheet in a stripe parallel to the coastline. Moving land-596

wards, snow grain radius and impurity index significantly decline. Both their value range597

and spatial distribution coincide with reported values in, e.g., Kokhanovsky et al. (2019)598

or Wang et al. (2020), and are in line with the seasonal conditions to be found at the599

end of the melting season in late August (Alexander et al., 2014).600

As a next step, we generated spatial subsets from the S3 OLCI retrieval maps to601

match the geographic extent of the PRISMA acquisition. Figure 7 shows a visual com-602

parison of retrieved snow grain radius from both instruments as well as the S3 impurity603

index and estimated PRISMA glacier algae concentration. First of all, the maps derived604

from PRISMA data reveal finer spatial structures and patterns on the surface due to the605

much smaller GSD. Nevertheless, both distribution and value range of snow grain radius606

are very similar. We observe a broader stripe of larger radii of up to 1000 µm extend-607

ing from North to South in the eastern part of the image and a distinct decrease towards608

the most north-eastern corner with values of around 200 µm. The impurity index like-609

wise follows the spatial distribution of retrieved glacier algae accumulation. However,610

the PRISMA glacier algae map yields a clearer distinction of high algae accumulation611

spots, which is especially demonstrated by the patterns in the middle of the image with612

mass mixing ratios of up to 160 µg/gice, and the large melt pond towards the North show-613

ing algae concentration both on the water surface and at the shoreline. It is important614

to note that the impurity index is not only sensitive to biological impurities but also to615

inorganic LAP such as mineral dust, black carbon, and cryoconite (Dumont et al., 2014;616

Di Mauro et al., 2017; Wang et al., 2020). Consequentially, deposits of these particles617

on the ice surface might influence the value of iimp, and thus, explain a part of the vari-618

ability in the comparison.619

We assess the before-mentioned spatial correlation of S3 and PRISMA snow grain620

radius as well as impurity index and algae concentration by showing scatter plots in Fig-621

ure 7c and f. To enable a per pixel comparison, we resampled the PRISMA surface pa-622

rameter maps to 300 m GSD by taking the mean values of 10×10 pixel aggregates. Es-623

timated snow grain radii show a remarkable consistency. While we achieve an R2 of 0.61624

and an RMSE of 77.25 µm, the values retrieved from multispectral S3 data spread over625

a larger range reaching 1000 µm. In contrast, the estimated grain radii for the most north-626

eastern part of the image are much smaller when applying our proposed approach to the627
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Figure 7. Visual comparison of PRISMA snow grain radius and glacier algae mass mixing ra-

tio retrieval maps with the spatially equal subsets from the S3 OLCI results. a) Subset of the S3

OLCI snow grain radius map (GSD: 300 m); b) PRISMA snow grain radius map (GSD: 30 m);

d) subset of the S3 OLCI impurity index map (GSD: 300 m); and e) PRISMA glacier algae mass

mixing ratio map (GSD: 30 m). The right panel shows scatter plots for the results shown in a-b

and d-e. c) Snow grain radius; and f) impurity index vs. glacier algae mass mixing ratio. To en-

able a per pixel comparison, the PRISMA surface parameter maps were resampled to 300 m GSD

by calculating mean values of 10× 10 pixel aggregates.
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PRISMA data. Here, we observe values even lower than 200 µm. The impurity index628

seems to be less correlated with glacier algae mass mixing ratio, although featuring an629

R2 of 0.76. It is obvious that most of the correlation is influenced by two clusters in the630

scatter plot, one at iimp around 0.6−0.7 and mass mixing ratios of 100−140 µg/gice,631

and another at concentrations below 40 µg/gice with corresponding iimp of 0.2 − 0.5.632

When only considering high glacier algae mass mixing ratio, the impurity index does not633

significantly increase and remains almost constant at values of around 0.7. This is an634

indicator that iimp is in fact able to detect algae accumulation on the ice surface, but635

is less appropriate for describing fine-scale variations of higher amounts of concentration636

(Wang et al., 2020). Finally, the scattering of points in both plots may also be due to637

a geometric mismatch, so that a correction for geolocation of the PRISMA image may638

improve the regression. However, our results demonstrate sufficient potential of the cor-639

relation between impurity index and glacier algae mass mixing ratio derived from PRISMA640

spectra to build predictors for S3 OLCI data.641

Figure 8 presents predicted glacier algae concentrations for the S3 OLCI acquisi-642

tion using two different regression methods. First, we applied the linear regression de-643

rived from Figure 7f, y = 227.04x−41.43, to each pixel of the S3 OLCI image. Then,644

we fit a Gaussian process regressor (GPR) with a constant kernel to the data from the645

subset and predicted the glacier algae mass mixing ratios for the complete dataset. We646

selected these two regression approaches as examples for both a simple and a more com-647

plex method in order to show the manifold choice of well performing algorithms in the648

field of supervised learning. Figures 8c and d illustrate the performance of both regres-649

sors when applied to the S3 OLCI subset covering the same extent as the PRISMA im-650

age. We observe almost identical R2 values of 0.76 and 0.75, respectively, with a larger651

RMSE of 36.12 µg/gice though for the GPR. Furthermore, the Gaussian kernel densi-652

ties suggest that a larger fraction of the values predicted by the linear regression is lo-653

cated on the 1 : 1-line. The respective prediction maps in Figures 8a and b indicate that654

both methods are able to locate the dark zone of high glacier algae accumulation at the655

edge of the ice shield. However, the linear regression leads to smoother transitions to-656

wards lower concentrations, whereas the GPR can better reproduce high amounts of al-657

gae on the surface. Nevertheless, for GPR prediction quality, learning the kernel is crit-658

ically important, and the results could be improved by a detailed investigation and a care-659
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Figure 8. a-b) Predicted glacier algae mass mixing ratio maps for the S3 OLCI dataset; and

c-d) scatter plots from the comparison of predicted glacier algae mass mixing ratio for the S3

OLCI subset and the resampled PRISMA map. The left panel shows results for a simple linear

regression. The right panel illustrates the performance of a more complex Gaussian process re-

gression.
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ful selection of the covariance function and the optimizer of the kernel parameters (Rasmussen660

& Williams, 2006).661

Overall, our results provide a promising basis for future exploitation of spectroscopic662

retrievals to be used as predictors for multispectral data. Different instrument revisit times663

and the possibility to use imaging spectroscopy data for re-calibration purposes of multi-664

band sensors are other potential synergies. However, a detailed analysis of uncertainty665

quantification would require concurrent field measurements for a validation of estimated666

quantities of ice surface parameters.667

4.7 Scaling to a global cryosphere product668

With the setup presented in this study, the ”lazy Gaussian” inversion can appro-669

priately be applied to snow and ice surfaces without significant topographic character-670

istics under sufficient illumination conditions, i.e., solar zenith angles not significantly671

exceeding 50−60◦ (Bohn et al., 2021a). This holds true for many parts of the Green-672

land Ice Sheet during summertime. However, forthcoming orbital imaging spectroscopy673

missions will deliver high-resolution data both on a global scale and daily basis, which674

requests for independently applicable retrieval algorithms (Cawse-Nicholson et al., 2021).675

Especially the SBG designated observable and ESA’s CHIME mission are expected to676

record large data volumes covering a wide range of different snow and ice surface con-677

ditions spanning over almost all latitudes.678

The results from PRISMA data demonstrate that our approach for mapping snow679

and ice surface properties has the potential for providing a robust cryosphere product680

based on orbital imaging spectroscopy. However, the method still faces some challenges681

that need to be confronted prior to a global application. So far, the inversion uses sim-682

ulations of spectral albedo by a two-stream snow and ice RTM as prior knowledge, which683

does not account for directional effects in the reflectance. Likewise, geometric charac-684

teristics of the surface such as slope, aspect, sky view factor, or shadow fraction are not685

considered in the forward model. In order to achieve accurate retrieval results over moun-686

tainous areas with complex terrain as well as varying illumination and observation ge-687

ometries, simulations of directional reflectance based on multi-stream RTMs such as DIS-688

ORT have to be considered as prior knowledge (Lamare et al., 2020). Furthermore, Equa-689

tion 2 needs to be extended by some additional terms accounting for surface topogra-690
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phy. However, by applying an OE-based simultaneous atmosphere and surface inversion691

scheme our approach provides the basis for a straightforward implementation of these692

requirements. This will enable a global mapping of snow and ice surface properties cor-693

rected for latitudinal and topographic biases including a rigorous quantification of un-694

certainties.695

5 Conclusion696

We present first results from the recently introduced ”lazy Gaussian” inversion to697

infer glacier ice surface properties from a PRISMA imaging spectroscopy dataset acquired698

over the Greenland Ice Sheet. It is the first time that PRISMA data are used for study-699

ing the cryosphere and it serves as a finger board to the global availability of spaceborne700

imaging spectroscopy data, which will allow to detect and quantify snow and ice vari-701

ables with unprecedented accuracy. The algorithm maps grain radius, liquid water path702

length, and algae mass mixing ratio, and reports associated posterior predictive uncer-703

tainties. Additionally, we show a comparison with multispectral data from the S3 OLCI704

instrument to detect potential synergies and to reveal how these data can be complimented705

by satellite spectroscopy observations.706

Our results demonstrate that spectroscopic observations from space will play a cru-707

cial rule in upcoming research of the Greenland Ice Sheet. We show that these data can708

be used to detect and quantify patterns of LAP accumulated on the surface in areas such709

as the dark zone or k-transect. Maps of algae accumulation, surface liquid water, and710

melt pond evolution provided on a regular basis can support the ongoing investigations711

of ice sheet melt processes and the resulting sea level rise.712

Furthermore, we evidence that glacier algae maps derived from the PRISMA imag-713

ing spectrometer can be used to predict the same surface parameter from simple band714

indices such as the impurity index. This opens new possibilities of producing multi-year715

time series of glacier algae mapping on the Greenland Ice Sheet based on multispectral716

datasets acquired by instruments such as Landsat or Sentinel-2 and 3. High-frequency717

observations may not be possible even from the next generation of imaging spectrom-718

eters due to their global charter and the high fraction of cloud cover over the Arctic. In719

contrast, multiband sensors like Sentinel-3 have far greater temporal coverage, but lack720

imaging spectrometer’s sensitivity to subtler snow and ice parameters. Under such cir-721
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cumstances, a hybrid approach can capture the best of both, with sparse imaging spec-722

troscopy data being used to build local models for a more complete interpretation of the723

multiband data. At the same time, this can fill the gap of missing spectroscopic obser-724

vations from space during the past four decades. A multitude of upcoming missions such725

as EnMAP, EMIT, CHIME, and SBG will lead to an unprecedented availability of high-726

resolution data both on a global scale and daily basis, and thus, improve our understand-727

ing of snow and ice surface processes and facilitate the monitoring of glacier ice changes728

over time.729
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