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Abstract

Bayesian inversion is commonly applied to quantify uncertainty of hydrological variables. However, the focus in Bayesian

inversion is more on spatial hydrological properties instead of hyperparameters or global/non-gridded variables. In this paper,

we present a hierarchical Bayesian framework to quantify uncertainty of both global and spatial variables. We estimate first the

posterior of global variables and then hierarchically estimate the posterior of the spatial field. We propose a machine learning-

based inversion method to estimate the joint distribution of data and global variables directly without introducing a statistical

likelihood. We also propose a new local dimension reduction method: local principal component analysis (local PCA) to update

large-scale spatial fields with local data more efficiently. We illustrate the hierarchical Bayesian formulation with two case

studies: one with a linear forward model (volume averaging inversion) and a second with a non-linear forward model (pumping

tests). Results show that quantifying global variables uncertainty is critical for assessing uncertainty on predictions. We show

how the local PCA approach accelerates the inversion process. Furthermore, we provide an open-source Python package on the

hierarchical Bayesian framework including two case studies.
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Abstract13

Bayesian inversion is commonly applied to quantify uncertainty of hydrological vari-14

ables. However, the focus in Bayesian inversion is more on spatial hydrological proper-15

ties instead of hyperparameters or global/non-gridded variables. In this paper, we present16

a hierarchical Bayesian framework to quantify uncertainty of both global and spatial vari-17

ables. We estimate first the posterior of global variables and then hierarchically estimate18

the posterior of the spatial field. We propose a machine learning-based inversion method19

to estimate the joint distribution of data and global variables directly without introduc-20

ing a statistical likelihood. We also propose a new local dimension reduction method:21

local principal component analysis (local PCA) to update large-scale spatial fields with22

local data more efficiently. We illustrate the hierarchical Bayesian formulation with two23

case studies: one with a linear forward model (volume averaging inversion) and a sec-24

ond with a non-linear forward model (pumping tests). Results show that quantifying global25

variables uncertainty is critical for assessing uncertainty on predictions. We show how26

the local PCA approach accelerates the inversion process. Furthermore, we provide an27

open-source Python package on the hierarchical Bayesian framework including two case28

studies.29

1 Introduction30

Estimating hydrological properties and quantifying their uncertainty from observed31

measurements is vital for groundwater exploration and exploitation decision-making pro-32

cesses. Bayesian inversion is now commonly applied to obtain posterior distributions (Tarantola,33

2005). Two popular Bayesian inversion approaches are 1) the Markov chain Monte Carlo34

(MCMC) method, 2) the Monte Carlo ensemble method.35

Many MCMC methods have been well studied to solve Bayesian inversion prob-36

lems in hydrology and other subsurface reservoirs: Metropolis-Hasting sampling (Oliver37

et al., 1997; Kuczera & Parent, 1998), DREAM: differential evolution adaptive Metropo-38

lis (Vrugt et al., 2008; Vrugt & Ter Braak, 2011; Laloy & Vrugt, 2012), Hamiltonian Monte39

Carlo (Saley et al., 2016; Fichtner & Simutė, 2018), etc. MCMC performs well if the for-40

ward modeling is relatively fast, because MCMC requires many forward model simula-41

tions. Therefore this class of methods is relatively computational expensive.42

Monte Carlo-based ensemble methods rely on independently sampled ensembles43

to estimate statistical properties such as covariances: ensemble Kalman filter (Evensen,44

2003), ensemble smoother with multiple data assimilation (Emerick & Reynolds, 2013)45

or the learnable relationship between data and model (or prediction) variables directly:46

direct forecasting (Satija & Caers, 2015; Hermans et al., 2016; Satija et al., 2017; Athens47

& Caers, 2019; Yin et al., 2020; J. Park & Caers, 2020), data-space inversion (Sun & Durlof-48

sky, 2017). Other methods directly evaluating the likelihood for each ensemble include49

rejection sampling (Tarantola, 2005) and Generalized Likelihood Uncertainty Estima-50

tion (GLUE) (Beven & Freer, 2001). Monte Carlo methods can be easily parallelized.51

Monte Carlo methods may however require iterations for non-linear problems (Emerick52

& Reynolds, 2013)53

However, building stochastic spatial fields such as hydraulic conductivity requires54

considering other uncertainties such as in terms covariances, mean values, boundary con-55

ditions, or even multiple types of prior models (H. Park et al., 2013; Scheidt et al., 2015,56

2018; Grana, 2020), etc. Those non-spatial variables may also be subject to high uncer-57

tainty and are often neglected in Bayesian inversion process. In this paper, we denote58

those non-spatial variables as global variables, which are also known as hyperparame-59

ters or structural parameters (Kitanidis, 1995; Emerick, 2016; Xiao et al., 2021). Even60

with the simplest linear forward model, the relationship between global variables and data61

variables are non-linear. Chosen for a single deterministic set may lead to biases (Zhao62
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& Luo, 2021). Moreover, global and spatial variables are not independent and have a com-63

plex relationship: global variables determine the statistical properties for spatial fields,64

spatial data measurement might inform global variables. Therefore, one objective of this65

paper is to adapt the hierarchical Bayesian framework to quantify uncertainty of global66

and spatial variables in a hierarchical fashion, for both linear and non-linear forward mod-67

els.68

Another challenge in hierarchical Bayesian inversion is to invert high-dimensional69

large spatial fields. We often perform dimension reduction before the actual inversion70

to make those problems more tractable (Kitanidis & Lee, 2014; Lee & Kitanidis, 2014;71

Sun & Durlofsky, 2017; Scheidt et al., 2018; Yin et al., 2020; Fouedjio et al., 2021). How-72

ever, observed data may locate within a small local field and does not inform spatial vari-73

ables far away. Directly using the lower dimension representation obtained from the full74

field might cause an ensemble collapse or worse data matching (Chen & Oliver, 2010;75

Oliver & Chen, 2011). Therefore, the other objective of this paper is to perform efficient76

local inversions in large-scale spatial fields using local dimension reduction techniques.77

We organize this paper as follows. In the methodology section, we first review the78

hierarchical Bayesian framework for quantifying the uncertainty of global and spatial model79

variables jointly. We then propose a machine learning-based inversion method within hi-80

erarchical Bayes to estimate the posterior distribution of global variables. We limit our-81

selves within a linear Gaussian case and only focus on the geostatistical part of global82

variables. Then we move to non-linear forward models and incorporate all possible global83

variables. We then address the local inversion problem for large-scale spatial fields us-84

ing a new dimension reduction technique: local principal component analysis (local PCA).85

The applications section presents hierarchical Bayes inversion on two synthetic studies86

with linear and non-linear forward models and measurement errors. We compare our ma-87

chine learning-based inversion method and a statistical sampling method with analyt-88

ical likelihood functions. We also compare spatial inversions with global PCA and lo-89

cal PCA.90

2 Methodology91

2.1 Review of hierarchical Bayes: invert both global and spatial vari-92

ables93

The characterization of spatial fields depends on global variables that have no spe-94

cific grid location, such as variance, range and anisotropy. In the same category, one may95

include other global variables that are not related to spatial fields, such as hydraulic head96

or flux at boundaries or specific yield. Global variables, also known as hyperparameters97

or nuisance parameters, are subject to a high degree of uncertainty and may impact flow98

prediction.99

Therefore, the objective of this paper is to quantify uncertainty of global and spa-
tial variables θ and m jointly given the observed data dobs:

p(m,θ|dobs) (1)

This joint posterior distribution can be decomposed as follows:

p(m,θ|dobs) = p(m|θ,dobs)p(θ|dobs) (2)

One intuitive solution to obtain the joint posterior is to estimate two conditional
probabilities hierarchically: first estimating the posterior of global variables p(θ|dobs);
then given this global variable posterior, estimating the spatial posterior p(m|θ,dobs).
This formulation which considers both uncertainty in global and spatial variables and
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solves inversion problem hierarchically is known as hierarchical Bayes in statistics (Gelman
et al., 1995; Kitanidis, 1995; Banerjee et al., 2003; Malinverno & Briggs, 2004). In hi-
erarchical Bayes, the posterior distribution of spatial variables p(m|dobs) is the marginal
posterior distribution by integrating the above joint posterior distribution:

p(m|dobs) =

∫
p(m,θ|dobs)dθ =

∫
p(m|θ,dobs)p(θ|dobs)dθ (3)

However, integration over all global variables is practically infeasible. We choose to rep-100

resent this integral using Monte Carlo sampling method presented in Algorithm 1.101

Algorithm 1: Hierarchical Bayesian inversion of both global and spatial
variables

1) State prior uncertainty of θ: p(θ)
2) Estimate posterior distribution of global variables: p(θ|dobs) ∝ p(dobs|θ)p(θ)
3) Estimate posterior distribution of spatial variables hierarchically:
for each posterior realization θ∗ sampled from p(θ∗) = p(θ|dobs) do

3.1) Estimate posterior distribution of spatial variables m given θ∗:
p(m|θ∗,dobs)

3.2) Sample m∗ from p(m|θ∗,dobs), which gives us one joint posterior
realization (m∗,θ∗)

end

102

An alternative approach to this general formulation is proposed in Kitanidis (1995)103

by means of a quasi-linear geostatistical theory, which estimates global variables θ us-104

ing restricted maximum likelihood.105

Note that the relationship between global variables θ and observed data dobs re-106

mains analytically unknown and non-linear in both linear and non-linear forward mod-107

els. Furthermore, when updating spatial variables, we often have large-scale spatial mod-108

els and a larger number of unknowns while the observed data may only be collected in109

a specific local area. This is a local inversion challenge for large-spatial fields.110

In the following sections 2.2 and 2.3, we focus on new methods for inverting global111

variables θ and subsequently inverting spatial variables m in hierarchical Bayesian for-112

mulation. Specifically, we propose a machine learning-based inversion method to invert113

global variables when the forward model is non-linear (2.2.2). Then, we tackle the lo-114

cal inversion problem for large-spatial fields using a novel local principal component anal-115

ysis method (2.3).116

2.2 Posterior distributions of global variables117

In this section, we cover two methods to estimate the posterior distribution of global118

variables p(θ|dobs): 1) statistical sampling method with analytical likelihood functions119

and 2) machine learning-based inversion method.120

2.2.1 Linear Gaussian inversion: statistical sampling with analytical121

likelihood functions122

We start with the case where the forward model is linear and the prior distribu-
tions on spatial variables and error terms are assumed Gaussian:

m ∼ N(µm,Cm), ε ∼ N(0,Σ), d = Gm+ ε (4)

Under these conditions, d has a Gaussian distribution given any θ:

d|θ ∼ N(µd|θ,Cd|θ) (5)
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where
µd|θ = E(d|θ) = GE(m|θ) + E(ε) = Gµm (6)

Cd|θ = Cov(d|θ) = E(G(m− µm)(m− µm)T GT ) + E(εεT ) = GCmGT + Σ (7)

Therefore, the conditional likelihood p(dobs|θ) is:

p(dobs|θ) = (2π)−n/2(det(GCmGT +Σ))−1/2 exp(−1

2
(dobs−Gµm)T (GCmGT +Σ))−1(dobs−Gµm))

(8)
n is the dimension of dobs. Global geostatistical variables θ contribute to µm and Cm123

in this likelihood function, such as mean, range, variance, anisotropy.124

We multiply this likelihood function with prior uncertainty to derive posterior dis-125

tributions and sample posterior realizations using sampling method Markov chain Monte126

Carlo (MCMC):127

p(θ|dobs) ∝ p(dobs|θ)p(θ) (9)

Any Markov chain Monte Carlo method can be used to sample this posterior in this128

linear Gaussian setting.129

2.2.2 Non-linear inversion: machine learning-based inversion method130

In this section, we propose a new machine learning-based inversion method to es-
timate posterior distribution. Now we extend the setting to any non-linear forward model
and without making any Gaussian assumptions on ε and m:

d = g(m) + ε (10)

Then the likelihood p(dobs|θ) is:

p(dobs|θ) =

∫
p(dobs|m,θ)p(m|θ)dm (11)

where we need to sample many spatial variables m given one specific global variables131

θ. Integrating over high-dimensional spatial variables m is practically infeasible. Un-132

like the derivation in Section 2.2.1, there is no analytical likelihood functions between133

d and θ with non-linear forward models. We would also like to include non-geostatistical134

global variables such as flow properties.135

Instead of estimating the likelihood function, we propose to estimate the posterior136

distribution p(θ|d) directly from Monte Carlo samples generated from the prior, which137

does not need to be Gaussian. This approach is more typical in machine learning-based138

inversion, where posterior models are learned directly from training samples. Once the139

posterior distributions are estimated, sampling becomes easier, and there is no need for140

iterative samplers. Many approaches exist (Tipping & Bishop, 1999; Van Kerm, 2003;141

Botev et al., 2010; Silverman, 2018) to estimate high-dimensional densities from train-142

ing data. Our approach will start from the fact that the amount of global variables is143

typically small. In a 3D spatial field, the spatial covariance has 3 ranges, 3 angles, and144

a variance (7 parameters), in a 2D field we have 4 parameters.145

Our approach directly addresses the non-linear nature of the relationship between146

data and global variables, even under a linear forward model. For that reason we will147

train a neural network to predict global variables from the data. Neural networks are148

essentially regression models, whose output is often interpreted as a conditional expec-149

tation (Bishop et al., 1995). The inputs of the neural network are high-dimensional data150
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variables d, the outputs are all global variables θ. Hence, effectively we are performing151

a dimension reduction, but using the global variables as target. The neural network pro-152

jection is denoted as S(.). We train S(.) with the mean squared error loss function: ||S(d)−153

θ||2. The training samples are simply generated by forward simulating the data on prior154

model realizations.155

Note that many machine learning methods can be used to learn this lower-dimensional156

projection S(.): tree-based methods (random forests, gradient boosting, bagging), poly-157

nomial regression or neural networks. In this paper, we use neural networks with mul-158

tiple hidden layers and non-linear activation functions to learn the non-linear relation-159

ship between d and θ.160

What the neural network effectively does is to turn d into a summary statistic (Vrugt,
2016). Then, the joint distribution p(d,θ) is approximated by the lower dimensional joint
distribution p(S(d)),θ). We use kernel density estimation to estimate the joint distri-
bution (Van Kerm, 2003; Botev et al., 2010; Scott, 2015; Scheidt et al., 2015), where we
directly evaluate the posterior probability p(θ|S(dobs)). Then the posterior distribution
p(θ|dobs) is approximated by p(θ|S(dobs)). We assume that the machine learning-based
non-linear projection S(d) preserves all relevant information from d to infer θ. The rest
of information drest and θ are assumed to have become independent:

p(θ|drest) ≈ p(θ) (12)

so that
p(θ|d) = p(θ|drest, S(d)) ≈ p(θ|S(d)) (13)

Algorithm 2: machine learning-based inversion method

1) Sample L global variables realizations from their prior distribution p(θ):
θ(`), ` = 1, 2, ..., L

2) Sample L corresponding spatial variables realizations given each set of global
variables θ(`): m(`)

3) Apply the non-linear forward model g(.) on each m(`), sample corresponding
data variable d(`) = g(m(`)) + ε(`) with measurement error ε(`) ∼ N(0,Σ)

4) Train a non-linear machine learning projection S(d) using the training set
(d(`),θ(`)), ` = 1, 2, ..., L

5) Estimate the joint distribution p(θ, S(d)) using kernel density estimation, and
estimate the conditional posterior distribution p(θ|S(dobs))

161

Step 1-3 in Algorithm 2 summarizes how to construct a training dataset from Monte162

Carlo sampling. Note that we directly incorporate measurement errors ε(`) in sampled163

data variables d(`). If ε(`) are larger and obscure the underlying data, the trained ML164

model has larger training errors. We use kernel density estimation to directly estimate165

large training errors. Later in the application section, we will present global variables166

estimations with different levels of measurement errors. In our setting, the errors can be167

correlated and don’t need to be Gaussian or additive.168

2.3 Posterior distribution of large-scale spatial fields: local principal com-169

ponent analysis170

The next step in the hierarchical Bayes formulation is to invert high-dimensional171

spatial variables p(m|θ∗,dobs) given posterior global variables θ∗ ∼ p(θ|dobs). In this172

section, we first focus on a general method on large-spatial field inversions then move173

to local inversions of large-spatial field with local measurements.174

Spatial fields are very high-dimensional with more than thousands or even millions
of unknowns, if a gridded parameterization is used. Therefore, dimension reduction tech-
niques are preferred to estimate posterior distribution of spatial variables more efficiently.

–6–



manuscript submitted to Water Resources Research

One way to reduce this high dimensionality of spatial variables is through principal com-
ponent analysis (Kitanidis & Lee, 2014; Lee & Kitanidis, 2014; Sun & Durlofsky, 2017;
Scheidt et al., 2018; Yin et al., 2020; Fouedjio et al., 2021):

m = µm + V y (14)

where V is the set of principal components, y is corresponding low-dimensional prin-175

cipal component scores, µm is the mean for m.176

We perform eigenvalue decomposition (EVD) to decompose covariance matrix of
the spatial variables into eigenvalues and eigenvectors. The eigenvectors are termed prin-
cipal components V . Performing EVD on a large p×p covariance matrix is time-consuming
where spatial variables have many p unknowns. We use Monte Carlo sampling and lin-
ear algebra properties to overcome this high-dimensional large matrix challenge. First,
we sample N spatial variables, remove the mean of spatial fields µm and create the spa-
tial variable matrix X:

X = [m(1),m(2), ...,m(N)]− µm (15)

which is a p×N matrix. Then instead of performing eigenvalue decomposition on the
estimated covariance matrix XXT (p× p matrix):

XXT = V ΛV T ,XXT vi = λivi, i = 1, ..., p (16)

we perform eigenvalue decomposition on a smaller matrix XTX (L× L matrix):

XTX = UΛUT ,XTXui = λiui, i = 1, ..., N (17)

where U is the set of eigenvectors of XTX, with the length of N and Λ is the diago-177

nal matrix of eigenvalues. XXT and XTX share the same non-zero eigenvalues Λ =178

diag(λ1, λ2, ..., λN ).179

The principal components V of XXT are:

V = XU (18)

with the length of p. The proof of this derivation is as follows: multiplying X on each
side of the equation,

XXTXui = Xλiui (19)

XXT (Xui) = λi(Xui) (20)

XXT vi = λivi (21)

The corresponding principal component scores y are:

y = V Tm = [v1 ·m, v2 ·m, ..., vN ·m]T (22)

with a maximal dimension N . We can truncate the dimension at the certain amount of180

variance to reduce dimensions even more. We then estimate the posterior distribution181

of lower dimensional scores p(y|θ∗,dobs) using Bayes-linear-Gaussian method (Tarantola,182

2005) for the linear forward modeling or ensemble smoother with multiple data assim-183

ilation (Van Leeuwen & Evensen, 1996; Emerick & Reynolds, 2013) for the non-linear184

forward modeling. We reconstruct posterior spatial fields with all principal components185

multiplying posterior lower dimensional scores (Eq. 14).186

Principal component analysis focuses on the variance of the full/entire spatial field.187

However, the observed data may be collected locally and inform that field locally only.188

Examples are pumping tests or a local high resolution geophysical survey. Then this ob-189

served data dobs is unlikely to be informative of principal component scores y on full fields.190
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Therefore, we propose a dimension reduction method that account for the local in-
formation provided by data: local principal component analysis (local PCA). We state
a local area (see examples in Section 3.2 on how this is done) and denote the local spa-
tial field as mloc, a subvector of m. We then perform eigenvalue decomposition on Xloc

TXloc,
where Xloc = [m

(1)
loc,m

(2)
loc, ...,m

(N)
loc ] is a q × N matrix. q is the number of local spa-

tial variables.
Xloc

TXloc = UlocΛU
T
loc (23)

The local principal components Vloc for XlocXloc
T are:

Vloc = XlocUloc (24)

The corresponding principal component scores y′ are:

y′ = Vloc
Tmloc (25)

We estimate posterior y′ and reconstruct posterior local spatial fields. We also want to
have full posterior spatial fields. Therefore, we calculate full principal components V

′

which are extended from local principal components Vloc:

V
′

= XUloc (26)

where Vloc is a subvector for V ′ and Xloc is a submatrix of X. Full principal compo-191

nents V ′ are continuous at the boundary of local area. The continuity of V ′ is estab-192

lished through the spatial continuity of Monte Carlo samples X.193

Algorithm 3: Local principal component analysis

1) Sample N spatial variables realizations given one posterior θ∗:
m(`), ` = 1, 2, ..., L

2) State the target local spatial area
3) Construct matrix X = [m(1),m(2), ...,m(N)] and submatrix

Xloc = [m
(1)
loc,m

(2)
loc, ...,m

(N)
loc ].

4) Perform eigenvalue decomposition on Xloc
TXloc: Xloc

TXloc = UlocΛU
T
loc.

5) Calculate local principal components Vloc = XlocUloc and full principal
components V ′ = XUloc.

6) Calculate local principal component scores y′ = V T
locmloc

7) Denote spatial variables as m = µm + V ′y′ and local spatial variables as
mloc = µmloc + Vlocy

′

194

Step 7 in Algorithm 3 denotes spatial variables m and mloc using local PCA. We195

then reconstruct both posterior local and full spatial fields with all principal components196

given posterior y′.197

3 Applications and Discussion198

3.1 Linear forward model: volume averaging199

We start with a case involving a linear forward model. A simple example is that200

of linear averaging over some defined volume or area. Such forward models are common,201

such as measuring averaged moisture content or averaged electrical conductivity from202

indirect geophysical survey. Our synthetic case has a low resolution averaged property203

as data. The goal is to estimate spatial fields in high resolution thereby inferring detailed204

geological features (Fig. 1). The true spatial model m (Fig. 1, left) is 2D spatial Gaus-205

sian field, a 3.5 km × 1.5 km field with the lateral resolution 50m. This spatial field m206

has corresponding global variables θ: mean = 29, variance = 12, maximum range = 25*(50m),207

minimum range = 8*(50m), major anisotropic direction = 20 degrees. Prior uncertainty208

–8–
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Figure 1. The true spatial field m (left) and the observed low-resolution data dobs (right).

The true global variables θ are: mean = 29, variance = 12, maximum range = 25*(50m), mini-

mum range = 8*(50m), major anisotropic direction = 20 degrees

Global variables θ Mean Variance Maximum range Minimum range Anisotropy

Uniform distribution U(28,12) U(9,16) U(15, 30) U(5,15) U(0,180)

Table 1. Prior uncertainty of θ in the linear Gaussian study

Figure 2. Monte Carlo sampling results (4 realizations): an ensemble of global variables,

corresponding spatial variables and data variables

p(θ) is stated in Table 1. We perform linear volume averaging within two rectangular209

areas. The forward model G is therefore linear averaging 4 × 4 high resolution spatial210

fields. The observed data dobs = Gm are averaged values with lateral resolution 200m211

(Fig. 1, right).212

3.1.1 Monte Carlo and sensitivity analysis213

Before going further with hierarchical Bayesian inversion, we first explore the re-214

lationship between low resolution data variables and global model variables using sen-215

sitivity analysis. Sensitivity analysis studies the relationship between the variations of216

input model variables and output forward modeling responses. In our case, we are in-217

terested in whether the variations of global variables change the observed low resolution218

data, which can be answered by the sensitivity analysis method. We apply a distance-219

based generalized sensitivity analysis method (DGSA) (Fenwick et al., 2014; J. Park et220

al., 2016) to an ensemble of model and data variables using Monte Carlo sampling, fol-221

lowing the first 3 steps in Algorithm 2. We sample L = 5, 000 sets of variables as shown222

in Figure 2. DGSA method first classifies the data variables into multiple different classes223

using a distance metric, and then see if the global variable distributions in different classes224

are similar or different. The similarity indicates the data output is insensitive to the global225

variable, while the difference means the data output is sensitive to the global variable.226

Here we perform principal component analysis on data variables first and use the227

euclidean distance metric on each individual principal component score. In Figure 3, each228

–9–
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Figure 3. Distance-based Generalized Sensitivity Analysis results with euclidean distance

between individual principal component scores: > 1 sensitive, < 1 insensitive

Figure 4. Neural network structure for the machine learning-based dimension reduction

colored block indicates the sensitivity between one global variable and one principal com-229

ponent score from d. For example, the bottom right corner red block means the observed230

6-th principal component score is sensitive to the major anisotropic direction. We note231

that the output data variables are sensitive to all global variables. We also learn that232

the relationship between global model variables and data variables are complex and pos-233

sibly non-linear.234

3.1.2 Non-linear inversion of global variables using machine learning-235

based inversion method236

In the previous Section 3.1.1, we investigate the relationship between observed data237

and global variables using sensitivity analysis. To perform non-linear inversion on global238

variables, we use a 5-layer neural network S(.). The inputs are vectorized data variables239

–10–
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Figure 5. Training results from ML-assisted dimension reduction. First five plots: the x-axis

is the lower dimensional S(d), the y-axis is the re-scaled θ, the dashed vertical line is the lower

dimensional observed data S(dobs). The last plot: anisotropy angle axis is from 0 degree to 180

degree, difference axis between prediction and true angles is from 0 degree to 90 degree.

d and the outputs are re-scaled global variables θ (Figure. 4), re-scaled into a uniform240

distribution between -1 and 1. The activation functions for all layers except the last one241

are the Rectified Linear Unit (ReLU) activation. ReLU activation is a piece-wise linear242

function. The activation function of the last layer is a hyperbolic tangent function (tanh),243

to output the value between -1 and 1. We split 5,000 Monte Carlo ensembles into a 4,500244

training set and a 500 test set. The loss functions for all variables except the anisotropy245

is mean squared error. We define a new loss function Laniso to account for the circular246

similarity where 0 and 180 degree are same:247

Laniso = min((θaniso − θ̂aniso)2, (180− |θaniso − θ̂aniso|)2) (27)

which is a circular squared error. The maximum L1 distance |θaniso−θ̂aniso| be-248

tween any anisotropy prediction θ̂aniso and true anisotropy value θaniso is 90 degree.249

Figure. 5 shows the neural network training results. Data variables well predict mean,250

minimum range and anisotropy. We use kernel density estimation to estimate the joint251

distribution p(S(d),θ) and then directly evaluate the posterior distribution p(θ|S(dobs))252

(Figure. 6). The true values of global variables have high posterior probability.253

3.1.3 Non-linear inversion of global variables with different levels of mea-254

surement errors255

We have not considered any measurement error in the forward model. Now we in-256

clude different levels of measurement errors with the purpose of quantifying how errors257

affect posterior estimations. We use eight different levels of measurement errors: Σ =258

[1, 2, 5, 10, 20, 30, 40, 50% of the data variance var(d)] and ε ∼ N(0,Σ). We add those259

errors to both data variables d and observed data variables dobs (Figure. 7).260

Measurement errors ε increase machine learning training errors (Figure. 8). We261

estimate large training errors directly using kernel density estimation. Figure. 9 shows262

posterior distributions for the mean and the minimum range with different levels of mea-263

surement errors ε. The estimated posterior mean stays the same with the increase of ε.264
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Figure 6. Posterior distribution of global variables using ML-assisted dimension reduction

and kernel density estimation

Figure 7. Different levels of measurement errors on observed data
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Figure 8. Training errors with different levels of measurement errors

Figure 9. Posterior distribution of mean and minimum range with different levels of measure-

ment error. The red dashed line is the true global variable value.

ε have different levels of variance but the same zero mean. We have a wider posterior265

minimum range when ε increase.266

3.1.4 Model comparison: machine learning-based inversion and statis-267

tical sampling with analytical likelihood functions268

In Section 2.2.1, we formulated a posterior distribution p(θ|dobs) by multiplying269

a Gaussian likelihood with uniform priors, where m and ε are Gaussian distributed and270

the forward model G is linear. Sampling is done using Markov chain Monte Carlo (MCMC).271

We use the No-U-Turn Sampler (NUTS) MCMC method (Hoffman et al., 2014), which272

is an extension of Hamilton Monte Carlo (HMC) (Betancourt, 2017). HMC uses the gra-273

dient information to avoid the random walk behavior. NUTS method frees users from274

defining step size and the number of steps in HMC and gives users an automatic and ro-275

bust MCMC sampler. Posterior distribution of global variables are presented in Figure.276

10.277

Our goal is to compare two different formulations of the same problem: 1) statis-278

tical sampling with analytical likelihood functions and 2) ML-based inversion method.279

Figure. 10 and 6 show that posterior of anisotropy is narrower in the analytical likeli-280

hood formulation for than in ML-based inversion. The reason for this is that each for-281

mulation makes different assumptions. In the first formulation, we assume Gaussian m282

and ε to obtain an analytical likelihood. In the ML-based inversion no such assumption283

is made, the posterior p(θ|S(dobs)) is estimated directly from Monte Carlo samples af-284

ter the ML-based projection S(.). Note how anisotropy > 50 degree (Figure. 11, right)285
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Figure 10. Posterior distribution of global variables using statistical sampling method Markov

chain Monte Carlo, with the analytical likelihood function

Figure 11. Log(posterior probability) of posterior global variables using 1) statistical sam-

pling: MCMC 2) ML-based inversion
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has low posterior probability under the first formulation. As we will show in the next286

section, this is not due to poor matching of the data (in fact we can match the data per-287

fectly), but due to strict likelihood assumption made under the first formulation.288

3.1.5 Why quantifying uncertainty of global variables is important289

In this section, we show the importance of quantifying uncertainty of global vari-290

ables by comparing three scenarios:291

• Scenario A: Use a set of deterministic values θ0 for global variable θ, only invert292

spatial variable m: p(m|dobs,θ0)293

• Scenario B: State prior uncertainty for global variables: p(θ), only invert spatial294

variable m: p(m|dobs,θ),θ ∼ p(θ)295

• Scenario C: State prior uncertainty for global variable: p(θ), invert both global296

and spatial variables using hierarchical Bayes: p(m,θ|dobs) = p(m|θ,dobs)p(θ|dobs)297

In all scenarios, we invert spatial variables using Bayes-linear-Gauss inversion (Tarantola,
2005), where given any θ, the posterior of spatial variable m is N ∼ (µpos

m ,Cpos
m ):

µpos
m = µm +CmG

T (GCmG
T + Σ)−1(dobs −Gµ) (28)

Cpos
m = Cm −CmGT (GCmG

T + Σ)−1GCm (29)

Figure. 12 shows inversion results in all scenarios. Scenario A1 has a set θ0 = (29, 12, 25, 8, 45),298

close to the truth. In Scenario A2, we take anisotropy = 110 degree, far from the truth.299

Spatial uncertainty has been reduced significantly along 45 degree in Scenario A1 and300

110 degree in Scenario A2. Scenario A2 has a biased posterior mean outside two observed301

rectangles. Posterior spatial variables are highly dependent on the chosen values of the302

global variables.303

In Scenario B, we state the prior uncertainty of global variables (Table 1). Spatial304

uncertainty has been reduced mostly within the observed area. If we do not quantify global305

variables’ uncertainty hierarchically, we end up with too uncertain spatial fields. Scenario306

B is acceptable only if observed data does not inform any global variables.307

Scenario C1 uses ML-based inversion method. Recall in the last section, we have308

posterior anisotropy values larger than 50 degree. Posterior spatial fields with Anis =309

55 and 143 still match the observed data perfectly. Scenario C2 uses statistical sampling310

with the analytical likelihood function, which has posterior spatial fields less uncertain311

than the ML-based estimation. Therefore, the wider anisotropy in ML-based formula-312

tion is not due to a mismatch of data, it is due to the relaxed linear Gaussian assump-313

tion.314

3.2 Non-linear forward model: pumping test315

In this section, we use a synthetic non-linear forward model: groundwater simu-316

lation of a pumping test to illustrate hierarchical Bayesian inversion. We assume one pump-317

ing test in the middle of a 1km by 1km spatial field, with a pumping rate 10 m3/day.318

This pumping test starts at Day 1, constantly pumps for 2 days, shuts down the pump-319

ing and recovers for 4 days. Uncertain global variables include geostatistical parameters320

for log hydraulic conductivity spatial fields, and specific head boundary condition at the321

west boundary (Figure 13 left). Specific head boundary condition at east is 10m and the322

north and south boundary have no flow boundaries. The horizontal resolution for each323

spatial grid is 10m.324

The goal is to invert all global variables including geostatistical parameters and global325

boundary condition, and log hydraulic conductivity spatial field given the observed draw-326
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Figure 12. Posterior realizations, posterior mean and variance of spatial variable m in differ-

ent scenarios

Figure 13. True spatial log hydraulic conductivity and the observed drawdown curve

Global variables θ Mean Variance Max range Min range Anisotropy Specific head at west

Uniform distribution U(-3, -1) U(0.1,1) U(15, 30) U(5,15) U(0,180) U(8,12)

Table 2. Prior uncertainty of θ, non-linear pumping test study

–16–



manuscript submitted to Water Resources Research

Figure 14. Monte Carlo sampling results for the pumping test case (4 realizations): an en-

semble of global variables, corresponding spatial variables and data variables. The colorbar for m

is the same with the colorbar in Figure 13

.

Figure 15. Posterior distribution of global variables in the non-linear case

down curve (Figure 13 right). Prior uncertainty for all global variables are in Table 3.2.327

The forward groundwater flow model is non-linear: d = g(m) + ε, with no measure-328

ment error ε = 0. We obtain a training set by Monte Carlo sampling with 5,000 sam-329

ples (Figure 14). Then we apply ML-based inversion method to estimate posterior global330

variables p(θ|dobs) (Figure 15). Posterior log hydraulic conductivity mean and specific331

head at west have been updated more than other global variables.332

3.2.1 Sensitivity analysis with local principal component analysis333

In this section, we investigate how the drawdown data informs the spatial field. Specif-334

ically, we want to test if the drawdown data is sensitive to the full spatial field or the nearby335

local spatial field. Using the hierarchical formulation, we sample one θ∗ = (−1.6, 0.2, 16.5, 8.4, 165, 11.8)336

from p(θ|dobs) and generate N = 100 spatial fields. Each spatial field has dimension:337

100 × 100.338

We first do sensitivity analysis with PCA on full fields. We refer to PCA on full339

fields as global PCA. The sensitivity analysis result is shown in Figure 16 (top left). We340

note that the drawdown is insensitive to any of the first ten principal components of the341

–17–



manuscript submitted to Water Resources Research

Figure 16. Sensitivity analysis on the principal components from m and mloc and visualiza-

tions of those principal components

Figure 17. Sensitivity analysis with different local radii. The Y-axis is the number of sensi-

tive principal components in the first 10 PCs

full field m. We then perform sensitivity analysis with local PCA. We state the local spa-342

tial field mloc with a radius of 18∗(10m) near the pumping well (red arrows in Figure343

16). Local principal components Vloc and full principal components V ′ are shown in Fig-344

ure 16. The drawdown data is sensitive to five local principal components among first345

ten. There is no sensitivity to global PC, but there is for local PC. This then means that346

we need to use the local PC method to invert with the local drawdown data.347

We now present a method for determining the size of local area. We perform mul-348

tiple sensitivity analyses with different radii (Figure 17). The drawdown data is less sen-349

sitive to local principal components with too small or too large radii. The most sensi-350

tive local area has the local radius around 18*(10m).351
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Figure 18. Posterior log hydraulic conductivity fields and corresponding drawdown curves

using ensemble smoother with only one iteration. Row 1: spatial fields m given θ∗. Row 2: up-

dated spatial fields using principal component analysis only. Row 3: updated extended spatial

fields using local principal component analysis

3.2.2 Local non-linear inversion352

To perform spatial inversion, we estimate the posterior distribution of principal com-
ponent scores y using ensemble smoother with multiple data assimilation (ES-MDA):

y(`)
pos = y(`) +Cyd(Cdd + α ∗ Σ)−1(dobs − d(`)) = y(`) +CydC

−1
dd (dobs − d(`)) (30)

where Cyd is the cross-covariance matrix between y and d, Cdd is the covariance ma-353

trix of d, α is the inflation coefficient in ES-MDA, and Σ = 0 means no measurement354

error. Then ES-MDA is multiple iterations of ensemble smoother method.355

We compare two posterior distributions of hydraulic conductivity: invert global PC356

scores y and invert local PC scores y′. In both scenarios, we estimate posterior distri-357

butions of first 30 PCs (> 70% variance) using the ensemble smoother and reconstruct358

spatial fields with all principal components. Posterior log hydraulic conductivity after359

the first iteration are in Figure 18. Posterior uncertainties near pumping well (Row 2,360

Row 3 in Figure 18) have been reduced. We calculate the difference of posterior variances361

between both cases (Figure 18). Local PCA reduces more variance in the local area than362

global PCA and it reduces less variance in regions outside the local area than global PCA.363

Local PCA also provides a better match to the drawdown data.364

Figure 19 shows that more iterations improve matching the drawdown data and365

reducing posterior variance. However, if we solely use global PCA, posterior data vari-366

ance has not decreased significantly and final posterior drawdown curves match worse367

than using local PCA once. Using local inversion reduces the number of iterations in ES-368

MDA.369

Back to the hierarchical formulation, we sample different θ∗ from p(θ∗|dobs) and370

perform local inversions individually with two iterations. Figure 20a shows posterior log371

hydraulic conductivity realizations with corresponding global variables. The mean of the372

full spatial field has been updated (Figure 20b). More uncertainty has been reduced near373

the pumping well. Posterior data variables well match the observed drawdown data (Fig-374

ure 20c).375
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Figure 19. Drawdown curves after multiple iterations

Figure 20. Posterior log hydraulic conductivity: realizations, corresponding global variables,

mean, variance and corresponding data variables. a) realizations with corresponding global vari-

ables b) Row 1: prior mean and variance of log hydraulic conductivity. Row 2: posterior mean

and variance of log hydraulic conductivity c) Prior and posterior data variables.
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Note that posterior global variables θ∗ are continuous. We need to sample large376

amount of θ∗ and estimate posterior spatial variables θ∗|dobs) repeatedly. Therefore, hav-377

ing an efficient inversion method such as the proposed local PCA method on large-scale378

spatial fields is essential for a hierarchical formulation. We can easily parallelize the spa-379

tial inversion stage because posterior global variable samples θ∗ are independent. An-380

other solution to speed up a hierarchical inversion is to select several representative sets381

of posterior global variables. We can select representatives using any unsupervised clus-382

tering methods: K-means (Hamerly & Elkan, 2003), Multi-dimensional Scaling (Mardia,383

1978), t-distributed Stochastic Neighbor Embedding (Van der Maaten & Hinton, 2008),384

etc.385

4 Conclusion386

In this paper, we present a hierarchical Bayesian formulation to quantify uncertainty387

of global and spatial variables. In a hierarchical inversion, we estimate posterior global388

variables first, and then given global posterior, we estimate posterior spatial fields. We389

propose a machine learning-based inversion method to estimate posterior global variables390

with 1) both linear and non-linear forward models and 2) measurement errors. We pro-391

pose a local dimension reduction method: local principal component analysis to efficiently392

invert large-scale spatial fields with local data. Local principal components are calcu-393

lated from covariance matrix of local spatial field and save the number of iterations in394

non-linear inversions.395

We present two synthetic case studies: one linear volume average inversion and one396

non-linear pumping test to illustrate the hierarchical Bayesian formulation. For poste-397

rior global variables, we compare our ML-based inversion method and MCMC sampling398

given the analytical likelihood function. Results from both methods are similar, except399

MCMC has a narrower estimation on the anisotropy variable because of the Gaussian400

assumption that leads to a very specific likelihood distribution. This assumption is not401

made in the machine learning approach. We illustrate why quantifying uncertainty of402

global variables is important with different scenarios. For posterior large-scale spatial403

fields, we compare two dimension reduction techniques: global PCA and local PCA. Re-404

sults show a faster convergence using local PCA given locally collected drawdown data.405

In the future, we would like to extend our local spatial inversion method to discrete fields406

such as discrete models (e.g. lithologies, soil types).407
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