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Abstract

Saline pans are environments with evaporite crusts, high-salinity surface and groundwater brines, and low topographic gradients.

These characteristics make them sensitive to diverse hydrological processes. The Bonneville Salt Flats, a valued and changing

saline pan, was investigated to identify saline pan hydrology responses to diurnal to seasonal cycles. Seasonal changes in

evaporation and relationships between groundwater levels and environmental processes in saline pans are not well understood.

The results presented here, which improve characterizations of saline pan water balances and movement, enable predictions

of salt growth or dissolution associated with geoengineering to mitigate the impacts of mining saline pans. Three months of

eddy-covariance evaporation measurements were collected, spanning a flooded to desiccated surface transition. Two techniques,

an artificial neural network and an albedo-based calibration of the Penman equation, were evaluated and used to estimate

evaporation with over four years of inexpensive micrometeorological measurements. Albedo, a water availability proxy, inversely

correlated with evaporation. Shallow groundwater levels varied seasonally by >50 cm and daily by >6 cm in response to

temperature fluctuations. Groundwater level fluctuations should be carefully interpreted as they may not reflect recharge or

discharge. Evaporation had a minor, <10 cm y-1, effect on groundwater levels. Surface moisture, primarily from rain, controlled

evaporation. Summer desiccated surface evaporation was ˜0.1 mm d-1. The net annual water balance was < +/-1.5 cm y-1,

indicating the saline pan stabilizes the water table. Surface dynamics of these environmentally-sensitive and variable landscapes

are increasingly important to understand as water scarcity in arid environments rises.
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Key Points: 9 

• Over four years of evaporation were estimated by using eddy-covariance measurements 10 
to calibrate micrometeorological measurements. 11 

• Saline pan albedo, which reflects water availability, can be used to calibrate evaporation 12 
estimates. 13 

• Seasonal to diurnal temperature fluctuations have significant impacts on groundwater 14 
levels. 15 

  16 
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Abstract 17 

Saline pans are environments with evaporite crusts, high-salinity surface and groundwater brines, 18 

and low topographic gradients. These characteristics make them sensitive to diverse hydrological 19 

processes. The Bonneville Salt Flats, a valued and changing saline pan, was investigated to 20 

identify saline pan hydrology responses to diurnal to seasonal cycles. Seasonal changes in 21 

evaporation and relationships between groundwater levels and environmental processes in saline 22 

pans are not well understood. The results presented here, which improve characterizations of 23 

saline pan water balances and movement, enable predictions of salt growth or dissolution 24 

associated with geoengineering to mitigate the impacts of mining saline pans. Three months of 25 

eddy-covariance evaporation measurements were collected, spanning a flooded to desiccated 26 

surface transition. Two techniques, an artificial neural network and an albedo-based calibration 27 

of the Penman equation, were evaluated and used to estimate evaporation with over four years of 28 

inexpensive micrometeorological measurements. Albedo, a water availability proxy, inversely 29 

correlated with evaporation. Shallow groundwater levels varied seasonally by >50 cm and daily 30 

by >6 cm in response to temperature fluctuations. Groundwater level fluctuations should be 31 

carefully interpreted as they may not reflect recharge or discharge. Evaporation had a minor, <10 32 

cm y-1, effect on groundwater levels. Surface moisture, primarily from rain, controlled 33 

evaporation. Summer desiccated surface evaporation was ~0.1 mm d-1. The net annual water 34 

balance was < ±1.5 cm y-1, indicating the saline pan stabilizes the water table. Surface dynamics 35 

of these environmentally-sensitive and variable landscapes are increasingly important to 36 

understand as water scarcity in arid environments rises. 37 

Plain Language Summary 38 

Saline pans are vast, awe-inspiring, salt-encrusted landscapes that form from the evaporation of 39 

saline water. We describe four years of observations, including measured evaporation and 40 

groundwater levels at the Bonneville Salt Flats saline pan. We examine how water moves 41 

through this system over time. We tested inexpensive methods of estimating evaporation and 42 

used these methods to study water balances. We found that the majority of water table changes 43 

reflected temperature changes, not evaporation. Most evaporation at the saline pan center was of 44 

rainwater. The salt crust acted as a barrier to evaporation of shallow groundwater. These 45 

processes are important to understand as these environments are changed by increasing 46 
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desertification. The Bonneville Salt Flats saline pan formed when there was more regional water 47 

and solute input into the saline pan and evaporation significantly exceeded precipitation; this 48 

differs from current conditions. Additionally, seasonal fluctuations in groundwater levels in these 49 

systems do not reflect regional changes in discharge and recharge.  50 

1. Introduction 51 

Saline pans are dynamic environments where hydrology, mineralogy, and landscape evolution 52 

are strongly coupled (Rosen, 1994; Tyler et al., 2006). Evaporite-containing basins have become 53 

increasingly important in the past century as desertification has increased and lithium and 54 

potassium extraction and anthropogenic water use have led to the global decline of saline lakes 55 

and pans. These changes can inadvertently increase sources of aerosolized dust and impact air 56 

quality and human health (e.g. the Salton Sea and the Salar de Atacama) (Boutt et al., 2016; 57 

Kipnis & Bowen, 2018; Marazuela et al., 2019b; Wurtsbaugh et al., 2017). Saline pan 58 

environmental fluxes and surface properties change as they oscillate between flooding and 59 

desiccation periods (Craft & Horel, 2019; Nield et al., 2015). The mechanisms that control 60 

evaporation and hydrology within saline pans and how these processes change over time are not 61 

fully understood. Environmental measurements can improve understanding of the mechanisms 62 

and feedbacks between climate, hydrology, and the evolution of saline pans. This study uses a 63 

suite of hydrological and meteorological measurements to observe feedbacks between the halite 64 

crust, evaporation, and groundwater fluxes over four years at the Bonneville Salt Flats. 65 

Hydrology is integral to understanding and interpreting saline pans (Rosen, 1994). These systems 66 

form when saline minerals crystallize as surface water and groundwater evaporate. Groundwaters 67 

in and around saline playas often represent regional flow paths' terminus (Lerback et al., 2019; 68 

Rosen, 1994). Delineation of evaporation rates helps constrain long-term solute and hydrological 69 

budgets and informs understanding of saline pan formation and alteration (Garcia et al., 2015; 70 

Mason & Kipp, 1998). Improved knowledge of saline pan sediments and processes can inform 71 

astrobiology, sedimentology, paleoclimatology, and evaporite-related resource management 72 

(Lowenstein et al., 1989). Since saline pan waters can remain liquid across a wider range of 73 

environmental conditions than fresh water environments and host and preserve microbial 74 

ecosystems, saline pans are increasingly studied as Martian analogs (Benison & Bowen, 2006; 75 

Benison & Karmanocky, 2014). Evaporite mineral formation and alteration rates are directly 76 
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influenced by hydrology and evaporation rates. Both regional micrometeorology and 77 

understanding of climatic trends can be improved by studying and describing saline pans, which 78 

can be very extensive (>1000 km2) (Craft & Horel, 2019; Kampf et al., 2005; Tyler et al., 2006).  79 

Highly saline shallow or intermediate waters underlie approximately 16% of the earth’s land area 80 

(van Weert & van der Gun, 2012). Saline pan hydrology differs from other, more humid settings 81 

in response to changes in evaporative demand, temperature, and regional recharge (Tyler et al., 82 

2006). Large diurnal water-level fluctuations have been observed in these systems (Turk, 1975). 83 

High-salinity brines create gradients that can lead to density-driven groundwater convection 84 

(Van Dam et al., 2009; Duffy & Al‐Hassan, 1988; Fan et al., 1997; Wooding et al., 1997). 85 

Differences in hydraulic conductivity and density between saline pans and regional groundwater 86 

flow prevent groundwaters from mixing. Fresher regional groundwater flows along alluvial fans 87 

and discharges at the surface around the edges of saline pans (DeMeo et al., 2003; Duffy & Al‐88 

Hassan, 1988; Fan et al., 1997; Garcia et al., 2015; Huntington et al., 2014; Munk et al., 2021). 89 

Although these landscapes are characterized by the remnants of evaporation (evaporites), 90 

evaporation rates are minimal despite groundwater within cm of the surface (Kampf & Tyler, 91 

2006). Low evaporation rates and numerical groundwater flow modeling of playas, including 92 

saline pans, indicate that modern saline pans contribute to <2% of a basin’s groundwater 93 

discharge in the western United States (Jackson et al., 2018). This highlights saline pans’ ability 94 

to stabilize groundwater levels and associated landscape surfaces. 95 

This work aims to use the Bonneville Salt Flats to investigate how saline pan hydrology, 96 

specifically evaporation and groundwater levels, responds to processes occurring at daily to 97 

seasonal time scales. Techniques to use long-term, inexpensive meteorological equipment 98 

measurements to estimate saline pan evaporation rates are presented and evaluated. These results 99 

and methods can help constrain environmental processes, coupling, and response rates to 100 

environmental changes within other saline pans. This robust dataset is used to examine 101 

mechanisms and controls upon saline pan water fluxes and water levels. Furthermore, 102 

hydrological budgets can use these methods to improve understanding of the role and 103 

mechanisms of groundwater evaporation upon evaporite development, resource evolution, and 104 

landscape change. 105 
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2. Background 106 

2.1. Hydrogeological setting 107 

This study was conducted at the Bonneville Salt Flats (BSF), Utah, on traditionally 108 

Newe/Western Shoshone and Goshute lands. BSF consists of a thin (<2 m) lens-shaped deposit 109 

of halite and gypsum that overlays laminated carbonate lacustrine sediments (Bowen, Kipnis, et 110 

al., 2018). Groundwater in this system is near or within 1 m of the surface and ranges from 111 

hypersaline (>1.2 g cm-3) to saline (1.10 to <1.19 g cm-3) (Lines, 1979). The saline pan’s 112 

hydrology has been studied extensively since the 1960’s (Kipnis & Bowen, 2018; Lines, 1979; 113 

Mason & Kipp, 1998; Turk, 1973). BSF’s largest hydrological fluxes are evaporation and 114 

precipitation (Mason & Kipp, 1998). Surface water at BSF is sourced locally from rainfall and is 115 

distributed across its surface by wind. Mason and Kipp (1998) reported that precipitation at the 116 

edge of BSF was within 5% of precipitation at the saline pan’s center, indicating that 117 

precipitation is relatively consistent across the surface (Figure S1). BSF’s water table’s 118 

potentiometric surface slopes away from the center of the saline pan, down to the northwest and 119 

east, limiting lateral input of groundwater at the study location at the center of BSF (Lines, 1979; 120 

Kipnis & Bowen, 2018). BSF is the drainage terminus at the northern end of a subbasin in Utah's 121 

Great Salt Lake Desert. Since 1907, infrastructure south of BSF has limited water inputs from 122 

the larger basin (Kipnis & Bowen, 2018). 123 

Past BSF saline-pan evaporation estimates, from pan evaporation, the Bowen-ratio method, and 124 

surface halite growth rates ranged from 1.3 to 3 mm d-1 when the surface was flooded to 0.001 to 125 

0.50 mm d-1 when the surface is desiccated (Lines, 1979; Mason & Kipp, 1998). Tyler et al. 126 

(1997) evaluated several evaporation techniques and found that only the eddy-covariance and 127 

lysimeter techniques were sensitive enough to accurately measure saline pans’ low evaporation 128 

rates. Low evaporation rates from BSF’s desiccated surface are comparable to other saline pans 129 

and playas, which have average evaporation rates of 0.21 mm d-1 (Allison & Barnes, 1985; 130 

Costelloe et al., 2011; DeMeo et al., 2003; Garcia et al., 2015; Hang et al., 2016; Jacobson & 131 

Jankowski, 1989; Kampf et al., 2005; Lines, 1979; Malek & Bingham, 1990; Mardones, 1998; 132 

Menking et al., 2000; Sanford & Wood, 2001; Schulz et al., 2015; Tyler et al., 1997; Ullman, 133 

1985). Evaporation of groundwater from saline pans is so low that it is often within eddy 134 
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covariance measurement errors of 4 cm y-1 (0.1 mm d-1), making it challenging to quantify 135 

groundwater evaporation from saline pans (Garcia et al., 2015; Kampf et al., 2005). 136 

BSF’s surface undergoes stages where it is flooded and desiccated. Annually, there are autumn 137 

and spring periods of surface flooding at BSF (Bowen et al., 2017). Surface moisture at BSF is 138 

directly related to albedo. Decreasing albedo correlates with increasing water availability (Craft 139 

& Horel, 2019). Surface flooding is uneven over the surface of BSF. A persistent seasonal pond 140 

occurs along BSF’s northwest side. Past research and Landsat 8’s normalized difference water 141 

index indicate that, after the western pond, this study’s location at BSF’s center, is the second-142 

most moist area on BSF’s crust (Figure 1) (Bowen et al., 2017; Craft & Horel, 2019). 143 

Figure 1. Overview of study location. (a-b) Contrast-enhanced false-color Landsat 8 images (bands 5, 4, and 3 as 145 
red, green, and blue, respectively), showing the presence of water (blue) during representative (a) flooding and (b) 146 
desiccation period conditions (2018). The black star indicates the study location in the middle of BSF. The linear 147 
features to the east are brine drainage ditches. The parallel lines at the base are Interstate 80. (c) Flooded surface at 148 
the weather station site at the beginning of the calibration period looking to the southwest. (d) Image of the surface 149 
of the study location weather station and wells after a sustained dry period (vehicle for scale). Date is shown on the 150 
lower right corner of each image. 151 



manuscript submitted to Water Resources Research 

7 
 

Anthropogenic processes alter BSF’s hydrology. Up to several billion liters of groundwater are 152 

harvested annually, leading to local decreases in groundwater level (Kipnis & Bowen, 2018; 153 

Lines, 1979). Brine created by dissolving the evaporation mine’s halite by-product with brackish 154 

water from the alluvial fans of the mountains adjoining BSF to the west is introduced onto BSF 155 

in February and March through an experimental geoengineering salt restoration program. 156 

Cumulatively, more brine has been introduced into BSF than extracted through this program, 157 

which started in 1998 (Figure S2).  158 

2.2. Mineralogy and salinity impact hydrology 159 

Saline crusts and water salinity substantially impact radiative, thermal, and evaporative fluxes. 160 

Brines and evaporite crusts create osmotic resistance and physical impediments to groundwater 161 

vapor fluxes, thereby severely limiting evaporation(Li & Shi, 2019; Nachshon et al., 2011, 2018; 162 

Schulz et al., 2015). Water activity, the equivalent vapor pressure of the atmosphere in relation to 163 

a brine, decreases with increasing brine salinity (Calder & Neal, 1984; Mor et al., 2018; Turk, 164 

1970). Potential evaporation decreases with lowering water activities. BSF’s predominantly 165 

sodium-chloride brines have a water activity of ~0.74 (Text S2). A groundwater evaporation 166 

extinction depth for saline pans was estimated at 0.5 m at Salar de Atacama (Marazuela et al., 167 

2019a).  168 

Interpretation of groundwater levels requires an understanding of the factors that control water-169 

table levels. Tyler et al. (2006) showed that water table fluctuations in response to hydrological 170 

forcings, such as precipitation and evaporation, are muted when the water-table depth is below 171 

0.2 to 0.5 m. Temperature influences saline pans’ water-table depths seasonally (Garcia et al., 172 

2015; Turk, 1973). On shorter timescales, diurnal temperature and air-pressure changes can also 173 

influence the water-table levels by several cm and almost immediately impact water level (Turk, 174 

1975). Temperature affects water level by altering the capillary surface tension and changing the 175 

volume of air entrapped in pores (Meyer, 1960; Turk, 1975). The impacts of surface temperature 176 

on water level decrease with increasing water depth.  177 

3. Methods 178 

The methods used in this study are discussed in more detail in Text S1, S2, and S3.  179 
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3.1. Eddy-covariance data 180 

An EC 150 CO2/H2O open-path infrared gas analyzer (IRGA) and CSAT3 3-D sonic 181 

anemometer/thermometer open path eddy-covariance system (Campbell Scientific, Inc., Logan, 182 

UT) was installed at 2.6 m height along with an HMP45C temperature/relative humidity sensor 183 

(Vaisala, Vantaa, Finland). High-frequency IRGA and sonic data were collected at 20 Hz and 184 

slow-response temperature and humidity data at 1 Hz using a CR3000 (Campbell Scientific, Inc., 185 

Logan, UT). Data were collected near BSF’s center from May to August 2018 (the calibration 186 

period, Figure 1C). Latent and sensible heat fluxes were calculated by applying the eddy-187 

covariance technique with 30-minute averaging intervals. Standard turbulence-flux corrections 188 

and quality control measures were applied following Jensen et al. (2016). Data gaps in 189 

evaporation measurements determined during quality control were filled with values generated 190 

with an artificial neural network (Kang et al., 2019). This study focuses on daily sums of 191 

evaporation, so ground heat flux was not measured. Sonic anemometer data were used to 192 

calculate BSF’s aerodynamic roughness (de Bruin & Holstag, 1982; Nield et al., 2013). 193 

3.2. Weather-station data 194 

Research-grade weather station data collected at 5-minute intervals spanned from September 27, 195 

2016 to the Spring of 2021 (the study period). Incoming and outgoing longwave and shortwave 196 

radiation were measured with an Apogee SN-500 net radiometer (Logan, Utah, USA, installed 197 

June 6, 2017). Before June 2017, incoming and outgoing shortwave radiation were measured 198 

with LI-200R solar sensors pointing upwards and downwards (400 to 1100 nm; LI-COR, 199 

Lincoln, Nebraska). Additional sensors include a Vaisala PTB110 pressure gauge; Texas 200 

Instruments TR-525USW unheated tipping bucket rain gauge; Vaisala HMP60 air temperature 201 

and relative humidity sensor at 2 m; and a R. M. Young 05103 anemometer at 3 m. A Campbell 202 

Scientific soil temperature sensor buried at 10 cm depth and an Axis Communications web 203 

camera were also installed on June 6, 2017. Weather station data gaps were filled with regional 204 

environmental measurements, an artificial neural network, and linear extrapolation. Weather-205 

station data averaged over 30-minute intervals was used to calculate albedo, potential 206 

evaporation adjusted for water activity (PE), and estimated evaporation using an artificial neural 207 

network (EeANN) and an albedo-calibrated modification of the Penman-equation (EeLow and 208 

EeHigh). 209 
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Albedo (α) was calculated with Equation 1, where the sum of daily outgoing shortwave radiation 210 

(SWout) between sunrise and sunset (dt) is divided by the sum of daily incoming shortwave 211 

radiation (SWin) over the same period. Surface moisture was quantified with albedo 212 

measurements (Craft & Horel, 2019) and was confirmed using time-lapse imagery (Bernau & 213 

Bowen, 2020). 214 

α =   ∫ 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑
∫ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑

          (1) 215 

3.3. Potential evaporation 216 

A modified Penman equation was used to calculate potential daily evaporation corrected for 217 

water activity (Equation 2) (Calder & Neal, 1984; Malek & Bingham, 1990). Transpiration at 218 

this site is negligible because it lacks macroflora. 219 

𝑃𝑃𝑃𝑃 = � ∆
∆+𝛾𝛾𝛽𝛽

�𝑅𝑅𝑛𝑛 + 𝐻𝐻𝑔𝑔� + 𝛾𝛾
∆+𝛾𝛾𝛽𝛽

15.36(0.75 + 0.0115𝑈𝑈2) �𝑒𝑒𝑠𝑠 −
𝑒𝑒
𝛽𝛽
�� 86400/𝜆𝜆  (2) 220 

where PE is potential evaporation (mm d-1); ∆ is the slope of the saturation-vapor-pressure curve 221 

(kPa/°C); γ is the psychometric constant (kPa/K); β is the water activity (0.74); Rn is net radiation 222 

(W/m2); U2 is the wind speed at 2 m height (m/s); es is the saturation vapor pressure at 223 

temperature T (kPa); e is the vapor pressure (kPa); and λ is the latent heat of vaporization (J/kg) 224 

(1 kg H2O = 1 mm H2O/m2). Hg is the ground heat flux, which could not be calculated with 225 

available equipment. Ground heat flux is negligible over daily timescales, and was not 226 

considered because only daily potential evaporation values were used to measure long term 227 

fluxes (Allen et al., 1998). Unless otherwise noted, PE in this work refers to PE corrected for 228 

water activity.  229 

3.4. Estimated evaporation 230 

Estimated evaporation (Ee) was calculated by multiplying PE by a crop coefficient (Kc) 231 

calibrated with the eddy-covariance data and a daily albedo value (Equation 3). The calibration 232 

was segmented for two albedo ranges: albedo <0.37, and albedo >0.37. Evaporation fell sharply 233 

and stabilized as the surface dried out, at an albedo of ≥0.37. Two models were used to create 234 

evaporation estimates when the surface was desiccated to address variability between measured 235 
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and estimated evaporation (Figure S4). A dry surface Kc was multiplied by albedo in the first 236 

model (EeHigh). A constant scaling factor was used in the second model (EeLow).  237 

𝐸𝐸𝑒𝑒  = 𝐾𝐾𝑐𝑐
𝑃𝑃𝑃𝑃
α

           (3) 238 

Implementing the methods of Kelley and Pardyjak (2019), artificial neural network models were 239 

used to estimate evaporation (EeANN). The input 30-minute average values of the weather-240 

station observations were trained to replicate evaporation measured by the eddy-covariance 241 

method. The effectiveness different input parameters was assessed by comparing artificial neural 242 

network model evaporation estimates to EeHigh and EeLow values (Figure S5). The model 243 

discussed in this work incorporates humidity, air temperature, air pressure, wind speed, 244 

shortwave radiation (net and in), longwave radiation (net and out), and time of day as inputs. 245 

Because the model outputs were not normally distributed, the median value of each 30-minute 246 

interval over 1000 models was used. The upper and lower quartile values are also shown to 247 

demonstrate the variability in model output. Variability is considered a measure of model 248 

robustness and generality (Kelley et al., 2020). Periods with larger interquartile ranges indicate 249 

higher uncertainty in artificial neural network modeled evaporation values. 250 

Eddy covariance equipment was only installed at BSF’s center from May to August 2018, 251 

making winter periods with low temperatures and high humidity outside of the artificial neural 252 

network’s training dataset. To test the effect of removing these conditions from the training 253 

dataset, the artificial neural network was run with training data incrementally trimmed to remove 254 

progressively lower humidity and higher temperature periods. Modeled outputs after each 255 

increment were saved and then compared (Figure S5). When the training dataset was limited to 256 

higher temperatures, winter evaporation estimates were elevated, indicating neural network 257 

model outputs overestimate winter evaporation because they did not have cold winter 258 

temperature in their training data. To counter this, neural network model outputs greater than 259 

potential evaporation (PE) or two times greater than albedo-calibrated estimated evaporation 260 

(EeHigh) were replaced with the neural network’s 25th percentile values. If the 25th percentile 261 

values exceeded these parameters, model outputs were replaced with EeHigh values.  262 
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3.5. Groundwater-level data 263 

Pressure-temperature transducers (U20L-04 and U20L-01, Onset, Bourne, Massachusetts, USA) 264 

were installed in a 3.5-m deep well screened in lacustrine sediments (lacustrine sediment well) 265 

between December 2017 to June 2021. Pressure-temperature transducers were installed in a 0.8-266 

m deep well screened within the salt crust (salt crust well) from September 2019 to September 267 

2021. Both wells were within 20 m of the weather station (Figure 1D). Additional wells 268 

dispersed across the saline pan were also considered.  269 

The water depth in the saline salt crust well was more representative of the water table. The 3.5-270 

m deep well was less saline. To make the water levels in the 0.8 and 3.5-m deep wells more 271 

comparable their heads were corrected by using Equation 4 (Post et al., 2007) (Figure S6). 272 

ℎ1 =  𝜌𝜌2
𝜌𝜌1
ℎ2 −

𝜌𝜌2−𝜌𝜌1
𝜌𝜌1

𝑧𝑧           (4) 273 

where ρ1 is the reference density to adjust the sample to (the average annual density of halite-274 

saturated brine, 1.21 g cm-3); ρ1 is the density of the well-water; h2 is the height of the water level 275 

above a datum (sea-level) as was measured using a depth to water meter or pressure transducer; z 276 

is the elevation (above the sea-level datum) of the mid-point of the screened interval; and h1 is 277 

the equivalent head relative to the datum. 278 

Water levels in the 3.5-m lacustrine sediment wells changed in response to air pressure changes, 279 

indicating it did not have high barometric efficiency. Measured changes in water level were 280 

influenced by the differential between atmospheric pressure at the well and at the aquifer 281 

(McMillan et al., 2019). The median-of-ratio’s and linear regression methods over hourly and 282 

daily timescales were used to determine well’s barometric efficiency (Turnadge et al., 2019). 283 

Because the effect of air pressure changes upon water level was quantified, these changes could 284 

be removed from the observed water level changes to determine what water levels would be if 285 

the wells had a perfect barometric efficiency and their water levels did not change in response to 286 

air pressure changes (Figure S7). If applying the barometric efficiency to water levels increased 287 

their variability, the calculated barometric efficiency was not used and was assumed to be one. 288 

Similar to barometric efficiency, daily and seasonal water level fluctuations were influenced by 289 

temperature; this effect is defined here as a well’s thermal efficiency. The barometric efficiency 290 
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framework can be applied to calculating and applying corrections for thermal efficiency. Periods 291 

with water movement in and out of the system or water levels above the surface are removed 292 

from datasets before using them to determine a well’s thermal efficiency with barometric-293 

efficiency-corrected water level measurements. Because of lags in temperature peaks with water 294 

depth, daily ranges of water level and soil temperatures were used to calculate daily thermal 295 

efficiencies with the median-of-ratios method. Weekly to monthly intervals were used to 296 

calculate seasonal values of thermal efficiency with the median-of-ratio’s method. The thermal 297 

efficiency could be used to correct water levels to understand how they would change if 298 

temperature fluctuations were not affecting levels. 299 

The apparent specific yield was calculated with a water budget equation. The apparent specific 300 

yield was determined from the change in water level over a period given a known change in 301 

water balance (Gerla, 1992; Lv et al., 2021; Walton, 1970). The apparent specific yield was used 302 

to quantify evaporation from groundwater changes in groundwater levels corrected for 303 

barometric and thermal efficiency, and density.  304 

4. Results  305 

The results of evaporation estimation methods applied during the calibration period are 306 

reviewed, then the results of the full study period are described. Controls upon water level 307 

fluctuations are described. Finally, daily fluxes in evaporation and water level throughout the 308 

year are reported. 309 

4.1. Calibration period 310 

Evaporation rates from the surface were relatively high at the beginning of the calibration period, 311 

when the surface was flooded (Figure 1C). Evaporation sharply decreased over time, briefly 312 

increasing after rainfall (Figure 2A). Depth to groundwater reflected evaporation. Evaporation 313 

was elevated when the water level was at or within 5 cm of the surface (Figure 2A and 2C). 314 

During the desiccation stage, the average daily evaporation rate was ~0.1 mm d-1. The potential 315 

evaporation rate, 2.3 mm d-1, was >20 times higher than actual evaporation. The aerodynamic 316 

roughness length was similar to other playas at 5.4×10-4 m (Jensen et al., 2016; Marticorena et 317 

al., 2006). Evaporation was negatively correlated with albedo (Figure 2D, r2: 0.90). Evaporation 318 

was positively related to potential evaporation divided by albedo (Figure 2E, r2: 0.85). This 319 
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relationship was used to create the albedo-calibrated estimated evaporation models (EeHigh and 320 

EeLow). 321 

Figure 2. Environmental measurements and data relationships during the summer 2018 calibration period when the 323 
eddy-covariance system was at the Bonneville Salt Flats. (a) to (c) have the same x-axis values (a) Evaporation and 324 
precipitation (PPT). Eddy covariance evaporation was used to calibrate the albedo-adjusted evaporation estimates 325 
(EeHigh and EeLow). These two estimates provide bounds for evaporation during the desiccation stage. Evaporation 326 
from the artificial neural network is not shown during this period because it nearly matches evaporation values. (b) 327 
Potential evaporation (PE) is much higher than evaporation but does reflect its changes. Albedo gradually rises when 328 
the surface is flooded and plateaus during the desiccation stage. (c) Water level (adjusted for density and corrected 329 
for barometric efficiency), from 3.5 m deep well screened in lacustrine sediment, reflects changes in surface 330 
moisture indicated by albedo. Temperature is shown to highlight its impact on water levels. (d) The correlation 331 
between albedo and evaporation is robust. Evaporation after small summer rain events where the albedo does not 332 
decrease by much (July 17) is the exception to this relationship. (e) Linear correlation between evaporation and 333 
potential evaporation (PE) divided by albedo. This relationship was used to calibrate estimated evaporation (Ee) 334 
values in (a). 335 
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During the desiccation period, the relationship between evaporation and potential evaporation 336 

divided by albedo was poor (r2: 0.05) so the two albedo-calibrated models were used to create 337 

bounds for upper (EeHigh) and lower (EeLow) evaporation estimates (Figure 2A). These models 338 

are dependent upon albedo, which is primarily controlled by surface moisture. However, surface 339 

buckles and dust accumulation can also decrease local albedo, artificially increasing the apparent 340 

surface moisture (Figure 1D). 341 

Albedo stabilized during the desiccation stage, except after a 6.9 mm rain event in July 2018, 342 

which led to a minor dip in albedo and a spike in evaporation. The dip in albedo was too minor 343 

to impact the value of EeHigh significantly, but the generally elevated evaporation levels of 344 

EeHigh compensate for this over periods greater than two weeks. This is reflected in the 345 

cumulative values of measured evaporation, EeLow, and EeHigh during the calibration period. 346 

EeLow is below measured evaporation, while EeHigh is above measured evaporation (Figure 347 

S4C). Cumulative differences between the EeHigh and EeLow models encompass the uncertainty 348 

of evaporation measurements during the desiccation period. 349 

The measured daily evaporation values and the artificial neural network's estimated evaporation 350 

values were effectively the same during the calibration period. During this period, cumulative 351 

artificial neural network evaporation values were within 1% of the eddy-covariance evaporation 352 

values (Figure S4). 353 

4.2. Full study period  354 

4.2.1. Evaporation estimation methods 355 

Over the full study period from Autumn 2016 to Autumn 2021 the artificial neural network’s 356 

estimated evaporation (EeANN) values were similar to evaporation estimated by the calibrated 357 

albedo-based models. In the summer months, EeANN values were generally between the EeLow 358 

and EeHigh values. EeLow values were more similar to EeANN values than EeHigh values were, 359 

except for periods immediately following rainfall. In contrast, the corrected artificial neural 360 

network values had slightly higher evaporation estimates in winter than the other evaporation 361 

estimation models. Furthermore, EeANN values had large interquartile ranges during winter 362 

months, indicating winter results were less robust because winter temperatures differed from the 363 

calibration periods training dataset.  364 
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4.2.2. Evaporation over time 365 

Evaporation was highest during the wet spring months and peaked after autumn flooding (Figure 366 

3A). Evaporation was low in the summer when the salt crust was desiccated and low in the 367 

winter when potential evaporation was minimal. There was a strong relationship between 368 

evaporation and precipitation (Figure 3). Maximum potential evaporation peaked at ~2.5-3.5 mm 369 

d-1. The maximum model estimated evaporation rate was 2.5 mm d-1. The length of spring 370 

flooding varied between years, but the surface consistently desiccated by July. The autumn 371 

flooding period was much smaller, and evaporation quickly decreased as the surface desiccated 372 

or as potential evaporation fell. Autumn 2020 was unusually dry, and is the only time during the 373 

study period to not have an autumn flooding period and an associated spike in evaporation.  374 

Low albedo is generally associated with the higher estimated evaporation rates and results in 375 

increased estimated evaporation values. Time-lapse imagery shows that increases in crust 376 

roughness and dust accumulation depressed albedo. Rain dissolves surface halite and enables 377 

dust to settle. As ponded water evaporates, new, highly reflective halite crystals form, leading to 378 

high albedo values. Lower maximum albedo values during dry years (2020 and 2021), when a 379 

lack of rain impairs this process, erroneously increase evaporation estimates (Figure 3B).  380 

Figure 4 demonstrates that the cumulative precipitation and evaporation estimates are well-381 

aligned. The high evaporation model (EeHigh), which overestimates evaporation, indicates 382 

evaporation exceeds precipitation annually by ~2.0 cm y-1 on average. The EeANN model 383 

indicates precipitation exceeds evaporation by ~0.1 cm y-1 on average. Similarly, the EeLow 384 

model indicates precipitation exceeds evaporation by ~0.7 mm y-1 on average. The uncorrected 385 

25th to 75th ANN models indicate evaporation exceeds precipitation by -0.5 to 5.0 cm y-1. Water 386 

balances vary annually. These differences are best seen with annual comparisons starting in 387 

August, which is the last month of the year to be consistently desiccated. In 2018 and 2019, BSF 388 

was water neutral to slightly water positive. All models show 2020 to have a negative water 389 

balance, 2021is similar to 2020. A negative water balance, indicating evaporation exceeds 390 

precipitation, is typically limited to spring and summer months. 391 
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Figure 3. Weekly results of evaporation models applied to the entire dataset (Autumn 2016-Spring 2021) and 393 
associated environmental measurements. (a) and (b) have the same x-axis values. (a) Potential evaporation (PE and 394 
PE CN) far exceeded evaporation calculated with an artificial neural network and albedo-calibrated evaporation. 395 
Potential evaporation corrected for water activity (PE CN) was slightly lower (<20%) than the uncorrected potential 396 
evaporation (PE). The first vertical black line indicates when the Apogee SN-500 net radiometer and time-lapse 397 
camera were installed (June 6, 2017). Evaporation values before this period are not directly comparable to later 398 
evaporation values. The following two vertical black lines indicated the calibration period for this study (Figure 2). 399 
(b) Weekly precipitation and albedo measurements. The horizontal line indicates the cut-off value (0.37) for the 400 
albedo-calibrated evaporation models (EeHigh and EeLow). 401 

4.2.3. Water balance from groundwater level 402 

Temperature changes had a substantial impact on groundwater-level changes during dry periods. 403 

Significant decreases (<50 cm) in groundwater level occurred in dry autumns from the crust's 404 

cooling. Season thermal efficiency values were able to replicate these changes. These corrections 405 

showed that groundwater levels should have peaked in July, not May or June, indicating the 406 

effect of evaporation on summer water levels (Figure S2). 407 

In general, groundwater evaporation rapidly decreases in the early summer as the groundwater 408 

levels declines. From May to August, ground temperatures increased ~6 °C, and groundwater 409 

levels in the 0.8 m deep well decrease by ~2 cm (~7 cm if corrected for temperature change). Of 410 

note, the average August groundwater depth in density-corrected wells at BSF’s center is 10 cm 411 

(±3 cm) (Figure S8), indicating that water levels stabilize in the subsurface after two to three 412 
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months of desiccation. This also makes this month ideal for year-to-year comparisons of water 413 

levels. 414 

Figure 4. Measures of the water balance and water level from June 2017 to September 2021. All charts have the 416 
same x-axis values. Vertical black lines added at August 1 used to differentiate years because the water level 417 
stabilizes at roughly the same level in August each year, and the crust has been desiccated for at least one month 418 
prior to August. (a) Cumulative precipitation and estimated evaporation values. Evaporation increases after 419 
precipitation. These data indicate an annual mean net water balance (PPT - Ee) of 0.1 cm (EeANN), 0.7 cm (EeLow), 420 
-2.0 cm (EeHigh). The EeHigh model overestimates long-term evaporation. (b) Adapted Standardized Precipitation 421 
Evaporation Index (SPEI) where monthly evaporation is subtracted from monthly precipitation. Most months are 422 
water negative if potential evaporation is considered. Many water positive months were desiccated at the end of the 423 
month, e.g., November 2019, suggesting incorporation of precipitation into groundwater, overland flow of 424 
precipitation away from the system, or that evaporation was underestimated. (c) The cumulative net water balance 425 
(PPT - Ee) for each year (starting in August), 2018 and 2019 are water positive, 2020 and 2021 were water negative 426 
to water neutral for the EeANN and EeLow models. (d) Equivalent head water levels in the shallow salt crust (0.8 m 427 
deep) and lacustrine sediment (3.5 m deep) wells. The water level difference between the two wells shows that 428 
upward brine fluxes are buffering decreases in the saline pan water table in the summer. The water level in the wells 429 
begins to fall rapidly after August, when the air and ground temperatures decline. 430 
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The calculated apparent specific yield was 9% (standard deviation of 4%). This value likely 431 

underestimates effective specific yield over longer drainage periods with deeper groundwater 432 

levels, as the shallow crust is highly porous and permeable (average porosities of 23 to 29%). 433 

Using specific yields of 5-13%, the average change in temperature-corrected water level 434 

indicates that the normal groundwater evaporation rate from June to August is 0.06 to 0.15 mm 435 

d-1, these estimates would be halved if temperature impacts on groundwater were not considered. 436 

If the majority of groundwater evaporation occurs from June to August, as inferred from changes 437 

in groundwater levels, then 0.4 to 0.9 cm y-1 of groundwater evaporation is occurring annually. 438 

This evaporation-rate estimate agrees with evaporation estimated with micrometeorological 439 

techniques (0.1 mm d-1 during the desiccation stage, and net evaporation of -0.7 to 2 cm y-1).  440 

4.3. Diurnal fluxes: daily to seasonal changes 441 

Evaporative fluxes are very low during the desiccation stage (Figure 5). Like other saline pans 442 

(e.g. Kampf et al., 2005), it is challenging to identify diurnal patterns within evaporation 443 

measurements from a desiccated saline pan. The half-hour median values of evaporation 444 

measured with the eddy-covariance technique indicate higher evaporation occurs from sunrise to 445 

noon. There are two evening spikes in evaporation, a short one at 18:00 MST and another at 446 

23:00 MST. Evaporation is lowest in the morning before sunrise. In contrast, diurnal evaporative 447 

fluxes during the flooding stage primarily reflected changes in potential evaporation.  448 

Several other environmental parameters fluctuate daily during the summer desiccation stage 449 

(Figure 5). Under the atmospheric tide (Chapman & Lindzen, 1970) air pressure generally rises 450 

rapidly and peaks as evaporation with evaporation in the morning, it then falls until 20:00 MST 451 

(sunset); and then rises and stabilizes in the evening. Albedo rises after 10:00 MST. Windspeed 452 

is lowest at noon and highest in the evening, peaking at ~4 m/s at 21:00 MST.  453 

The groundwater level in the salt crust well changes by ~6 cm from 09:00 to 18:00 MST each 454 

day. During this period, air pressure changes by the equivalent of ~3 cm of halite-saturated brine 455 

from 10:00 to 19:00 MST. Given this well’s high barometric efficiency (>0.91), this change 456 

would affect water levels by <0.5 cm. The ground temperature increased by 6 °C from its 457 

minimum at 07:00 to its peak at 17:00 MST. Given this well’s high summer diurnal thermal 458 

efficiency (0.76), this change would affect water levels by 4.7 cm. The thermal efficiency 459 
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explains the majority of diurnal groundwater 460 

fluctuations, furthermore, the minimum and 461 

maximum water level points lag one hour 462 

behind these peaks in soil temperature, as 463 

would be suggested by a temporal lag for 464 

thermal diffusion, further support this 465 

hypothesis. 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

Figure 5.Diurnal fluxes over the salt crust. (a) Mean 474 
evaporation (smoothed fit) when the surface is flooded 475 
from the calibration period. (b to g) Mean fluxes when 476 
the surface is desiccated. Vertical gray lines added to 477 
highlight minimum and maximum water levels. (b) 478 
Median and mean evaporation (smoothed fit) from the 479 
desiccated surface during the calibration period. Note 480 
the peak in evaporation from the desiccated surface in 481 
the early morning (10 am) and the other peak in 482 
evaporation in the evening. (c) Wind speed is highest in 483 
the evening and lowest in the mid-morning. (d) Albedo 484 
is lowest in the early morning and rises throughout the 485 
day. (e) Air pressure (in cm of water with a density of 486 
1.2 g cm-3). (f) Ground temperature at 10 cm depth. (g) 487 
Mean water depth (from the 0.8 m salt crust well) is 488 
lowest during early morning and falls during the 489 
evening. The orange line shows the calculated water 490 
depth change due to the well’s thermal efficiency, 491 
demonstrating the majority of diurnal water fluctuations 492 
are attributable to temperature fluctuations. 493 
  494 
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Seasonal trends in diurnal groundwater water-level fluctuations in the shallow salt crust well 495 

indicate that the maximum range in groundwater levels reflects seasonal temperature change 496 

(Figure 6). The well’s highest diurnal thermal efficiencies occurred in summer months and daily 497 

changes in water depth were most correlated with maximum soil temperature. Groundwater 498 

levels increased sharply after rainfall and fell gradually in the subsequent weeks. Groundwater 499 

level fluctuations are highest when the water table is 4 to 8 cm below the surface on average. 500 

Diurnal temperature swings at the water table-vadose zone interface were muted by increasing 501 

groundwater depth and the insulating property of the ground in autumn to winter. Similarly, 502 

diurnal temperature variations were muted when the water table was at the surface (Figure 6B).  503 

5. Discussion 504 

The hydrological system at BSF is discussed here through the lens of groundwater levels, diurnal 505 

fluctuations, seasonal changes in surface water, and overall water balances. These results’ 506 

implications are then discussed.  507 

1.1. Daily to seasonal changes in groundwater level 508 

Because evaporation rates for saline pans are so low and because their water levels can be so 509 

variable throughout the year, the controls on water-table levels must be understood if 510 

groundwater levels are used to interpret local to regional hydrological balances. Near-surface 511 

ground temperature, followed by air temperature, when scaled using a seasonal or daily thermal 512 

efficiency values predicted the majority of groundwater level fluctuations during periods with 513 

little water movement in or out of the system. 514 

Air pressure, which mirrors temperature changes, was previously shown to influence diurnal 515 

groundwater-level fluctuations in saline pans (Macumber, 1991; Sieland, 2014; Turk, 1975). 516 

However, given the high barometric efficiency of the 0.8-m salt crust well, air pressure appears 517 

to play a minor (<10%) role in diurnal groundwater level fluctuations. Temperature changes, 518 

which were previously shown to alter the surface tension in capillary pores and the volume of 519 

pore-entrapped air (Meyer, 1960; Turk, 1975), are the primary control upon groundwater level 520 

changes when the system is water neutral. 521 
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Figure 6. Daily water level changes in the 0.8 m salt crust well and associated daily environmental values. 523 
Smoothed fitted lines added to (a) to assist data interpretation. (a) Daily Δ water level ranges between ~0.5 to 7.0 cm 524 
throughout the year. Daily Δ water level are consistently high in the middle of the summer and are lower, with some 525 
days of high variation, in the autumn and winter. (b) Daily maximum 10-cm depth soil temperature and Δ soil 526 
temperature. (c) Daily precipitation and 30-minute intervals of measured water depth. Rainfall during this period 527 
was very low and contributed to a small minority of diurnal water level changes. (d) The daily Δ water depth in the 528 
0.8 m salt crust well correlates most strongly with maximum daily soil temperature. (e) The water table depth 529 
influences daily Δ water depth. Daily Δ water level is higher when the water level is between ~4 to 8 cm below the 530 
surface. 531 

Predicted diurnal water-level changes were slightly lower than observed groundwater water-level 532 

changes, suggesting variability in diurnal thermal efficiency. Thermal efficiency models or 533 

applications of thermal efficiency to predict groundwater levels could be improved by 534 

incorporating additional inputs and numerical modeling. For example, water levels and lags from 535 
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thermal dispersion when water levels are lower could be incorporated. Seasonal and daily values 536 

of thermal efficiency differ and were uncorrelated. There is no pattern between well parameters 537 

and diurnal thermal efficiency values. Seasonal values of thermal efficiency, however, are 538 

related salt crust thickness. Wells in areas with thicker evaporites (which are more porous) being 539 

less affected by water level changes than wells in areas with little to no evaporites, which are 540 

hosted in fine grained lacustrine sediments. 541 

Previous studies indicate that the shallow water tables in playas can rise above the surface when 542 

air pressure drops (Mason & Kipp, 1998; Turk, 1973; Tyler et al., 2006). Spontaneous water 543 

level rise above the surface from only a reduction in air pressure was not observed during this 544 

study. However, there were periods where the water table did change rapidly when the water 545 

level was near the surface with little precipitation (<2 mm). For example, time-lapse imagery and 546 

pressure transducer data in June 2021 show surface water following a minor rain event along 547 

with rapid increases in groundwater levels (6 cm rise in 30 minutes), water in a small pond rose 548 

to flood the crust surrounding it during this period. The water levels quickly returned to prior 549 

levels in the hours following this event. These observations are consistent with the Lisse effect 550 

(Heliotis & DeWitt, 1987). The Lisse effect occurs when rain traps air in the unsaturated zone, as 551 

the air volume is changed by air pressure fluctuations or as it warms and expands it displaces 552 

water, which can rise into wells, and in this case, breaks in the salt crust surface. Similar 553 

observations in other saline pans may be explained by the Lisse effect.  554 

Estimated evaporation values indicate that the halite crust severely limits evaporation of 555 

groundwater. This research corroborates previous work that demonstrated negligible 556 

groundwater evaporation from saline pans (Jackson et al., 2018; Kampf et al., 2005). The 557 

consistent groundwater level in August at 9 cm (±2 cm) below the surface across several years 558 

indicates falling groundwater levels hinder evaporation. 559 

Seasonal variation in groundwater levels make it challenging to interpret annual net water 560 

balances from groundwater level changes. If only spring to summer months are considered, 561 

groundwater evaporation would be 0.4 to 0.9 cm y-1. This result is consistent with 562 

micrometeorological evaporation estimates. Differences between annual water balance estimates 563 

for the saline pan’s center originate from uncertainties in estimating specific yield or 564 
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evaporation, lateral water movement, or the eddy-covariance technique’s sensitivity, which was 565 

near measurement error when the surface was desiccated. 566 

The effect of temperature on groundwater levels should influence seasonal changes in 567 

evaporation. If winter rain decreases the water-table depth, then later temperature increases will 568 

increase groundwater levels, increasing groundwater availability for evaporation. This effect 569 

would increase spring evaporation; however, it would likely be small given annual estimated 570 

water balances (<1 cm y-1 evaporation increase). Bernau and Bowen (2021) previously described 571 

apparent vertical brine fluxes from differences between the 0.8 and 3.5-m well equivalent head 572 

measurements. An apparent upward gradient occurred in the summer, and a downward flux 573 

occurred in the winter. Vertical gradients originate from differences in temperature effects upon 574 

water level between salt crust and the underlying lacustrine sediment aquifer. The deeper 575 

lacustrine sediment aquifer differs from the overlying evaporite-hosted aquifer because it is 576 

shielded from temperature fluctuations, is thicker, and has much smaller pores. 577 

At BSF’s center, vertical fluxes and incorporation of rainwater into the lacustrine aquifer appears 578 

to be minor. The mean groundwater transit time measured with carbon-14 from the 3.5-m 579 

lacustrine sediment well was 10-15 thousand years old (Lerback et al., 2019). However, the same 580 

study identified modern tritium in samples, indicating some vertical mixing and integration of 581 

rainwater. In general, rainwater integration into the subsurface at BSF’s center appears to be 582 

limited. This interpretation is supported by most tritium measurements that were made on BSF 583 

groundwater samples collected from 1992 to 1993, where wells at the center of BSF, with 584 

consistently high water levels, had lower tritium concentrations than wells at the edge of BSF 585 

(Mason et al., 1995). 586 

5.2. Diurnal changes in evaporation 587 

Diurnal evaporation fluctuations during the desiccation stage reflect changing evaporative 588 

potential and water availability (Figure 6). The subtle morning increase in evaporation, which 589 

has been documented in other saline pans (Malek & Bingham, 1990; Sanford & Wood, 2001), 590 

was interpreted as the evaporation of groundwater from the overnight rehydration of the salt 591 

crust (Malek & Bingham, 1990). The 18:00 MST peak in evaporation is associated with the 592 

diurnal peak in groundwater level and temperature. This evaporation peak suggests that some of 593 
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the groundwater from daily water-level fluctuations increases near-surface water availability. 594 

The 23:00 MST peak in evaporation is associated with the day’s highest windspeed. 595 

5.3. The flooding-evaporation-desiccation cycle 596 

Saline pan sediments are interpreted through the flooding-evapoconcentration-desiccation cycle. 597 

This cycle is enhanced through evaporative and hydrological observations (Bowen et al., 2017; 598 

Lowenstein & Hardie, 1985). The desiccation stage describes periods when the surface is dry and 599 

albedo is high. Bowen et al. (2017) used the Standardized Precipitation Evaporation Index 600 

[(precipitation – evaporation)/variance] to calculate if the surface was in the flooding, 601 

evapoconcentration, or desiccation stage. When this index uses potential evaporation, it reflects 602 

seasonal trends in flooding and desiccation. However, when estimated evaporation is used in this 603 

index, many more months have a positive water balance, suggesting longer flooding periods or 604 

uptake of precipitation into the subsurface (Figure 4B and C). An alternative method to interpret 605 

these stages is with albedo. Rapidly declining albedo indicates flooding, increasing albedo 606 

indicates evapoconcentration, and a constant elevated albedo indicates the desiccation stage.  607 

5.4. Saline pan water balance 608 

There are three endmembers for the natural water budget at BSF: (1) the system is water neutral, 609 

with evaporation equaling precipitation, (2) rainfall exceeds evaporation, and (3) evaporation 610 

exceeds precipitation. 611 

5.4.1. Water addition 612 

Precipitation is the primary water input BSF. If anthropogenic brine, introduced as part of a 613 

mining mitigation project, is ~10-80% of the annual water contributed to the southwestern part 614 

of BSF (distributed over 20-50 km2, Figure S2). Water inputs from snow or surface condensation 615 

such as dew, which would further decrease the calculated volume of groundwater evaporation, 616 

were assumed to be negligible in this study. If introduced brine and precipitation were evenly 617 

distributed over a 120 km2 area, precipitation is 90 to 100% of BSF’s annual recharge, with the 618 

remaining water being anthropogenically introduced. Past studies indicated other inputs such as 619 

vertical water fluxes, overland flow, or lateral groundwater movement are <1% of the incoming 620 

water budget at BSF (Lines, 1979; Mason & Kipp, 1998). 621 
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The distribution of surface water at BSF is uneven. Water accumulates in the low-lying 622 

ephemeral western pond. When the surface is flooded, precipitation can flow downhill to this 623 

pond. The seasonal pond increases evaporation at the weather station study site only when it 624 

extends to the weather station or when wind redistributes surface water over the playa (Bowen et 625 

al., 2017; Craft & Horel, 2019). Contributions to the pond from anthropogenic brine appear to 626 

have had a negligible impact on measured evaporation at the study location. If anthropogenic 627 

brine were significant at the study location, evaporation would exceed precipitation when the 628 

surface was wet, which was not observed. If evaporation from the western pond were included in 629 

estimating BSF’s annual water budget, the ratio of evaporation to precipitation would increase. 630 

Lateral subsurface flow at the study location is considered negligible because of the site’s low 631 

topography and groundwater's potentiometric surface is a local high near the study location. 632 

5.4.2. Water removal 633 

Water is currently removed from the saline pan by evaporation, groundwater extraction for 634 

potash production, and surface and subsurface flow away from the site (Mason & Kipp, 1998). 635 

Overland flow redistributes and concentrates water at the western part of BSF. However, this 636 

only occurs when the water level is near the surface. Removal of surface or groundwater would 637 

increase the local ratio of precipitation to evaporation (which is suggested by the EeLow 638 

evaporation model). 639 

Evaporation was previously estimated to contribute to 80% of BSF’s annual discharge (Mason & 640 

Kipp, 1998). Uncertainties with the evaporation calculation are whether albedo and evaporation 641 

continue to scale consistently in the winter and if the consistency of the year-to-year albedo 642 

value relative to surface moisture. This relationship between albedo surface moisture is most 643 

important when the surface is wet and evaporation is high. Kampf et al. (2005) found that albedo 644 

can be lower in the more arid, dry parts of a saline crust, demonstrating that the relationship 645 

between albedo and evaporation deteriorates under extended aridity. Cumulative evaporation 646 

estimated with the artificial neural network was within 5% of the cumulative rainfall. These 647 

values show that most of the study site’s water budget is contributable to evaporation and 648 

precipitation. The net annual water budget at BSF’s center during this study was 0.5 ±1.5 cm y-1 649 

(Figure 4A). Evaporation from the desiccated surface was 3-10 times lower than that previously 650 
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estimated by Mason and Kipp (1998) using Bowen-ratio energy balance systems. Mason and 651 

Kipp corrected for this in their calibrated model of BSF’s water budget, with precipitation 652 

exceeding evaporation by 15%, which aligns best with EeLow evaporation model (precipitation 653 

is 10% greater than evaporation). 654 

5.4.3. Anthropogenic impacts upon the water balance 655 

Anthropogenic water removal for potash production is two to three times less than anthropogenic 656 

water introduced for mining mitigation (3-5% of annual discharge). However, added water is 657 

more available for evaporation, dampening its offset on the total groundwater volume. 658 

Furthermore, brine is removed from and introduced to different parts of BSF. Groundwater is 659 

extracted year-round, while brine is only introduced in the winter. Removal of groundwater for 660 

potassium production lowered well water levels near the extraction ditches, this signal is most 661 

evident in thermal-efficiency-corrected groundwater levels (Figure S2). 662 

The impact of brine extraction on groundwater levels at BSF’s center is indiscernible. The 663 

monthly average water level at BSF’s center is consistent between March to September from 664 

year to year, regardless of the volume of monthly groundwater extraction during the study 665 

period. Decreases to groundwater levels by wound increase uptake of precipitation into the 666 

ground, creating water balances where precipitation exceeds evaporation, which was indicated 667 

by EeLow evaporation and BSF’s calibrated mass balance model (Mason & Kipp, 1998). 668 

5.5. Implications for evaporite growth and dissolution 669 

These and prior observations of saline-pan evaporation rates and surface features indicate that 670 

once a salt crust has formed and desiccated, evaporite growth is slow to negligible (Bernau & 671 

Bowen, 2021; Kampf et al., 2005). Groundwater evaporation is minimal once a crust has 672 

desiccated, indicating that salt crusts stabilize and preserve groundwater levels, indirectly 673 

stabilizing the surface. Without saline crusts, playas become ablation surfaces, creating 674 

significant dust sources (Rosen, 1994). 675 

There must be a significant upward gradient for groundwater flow or lateral water input for 676 

saline pans to form primarily from groundwater. Currently BSF does not receive such fluxes 677 
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(Kipnis & Bowen, 2018; Mason & Kipp, 1998). As Rosen suggested (1994), preservation of 678 

evaporite systems is unlikely unless they are actively fed from external water sources and are in 679 

tectonic settings that support their accumulation and preservation. Alternatively, under little 680 

water input, these systems form very slowly or become deflation surfaces. Kampf et al. (2005) 681 

determined that preserved subaerially-formed efflorescent crusts at Salar de Atacama could have 682 

formed from a desiccated saline pan surface at net evaporation rates of 2 mm y-1. 683 

The sediments in saline pans suggest that most evaporite deposition occurs under conditions 684 

when there is enough surface moisture available for evaporation and evaporation exceeds 685 

precipitation. This moisture also decreases the surface albedo, increasing the absorption of solar 686 

energy (Lowenstein & Hardie, 1985). Under wetter conditions in the past, overland flow into 687 

BSF from the surrounding area would have contributed additional solutes to BSF by dissolving 688 

and transporting efflorescent crusts. By directly and indirectly reducing groundwater levels and 689 

water availability for evaporation (Marazuela et al., 2020), anthropogenic activities alter the 690 

balance between water input and evaporation within saline pans, leading growing saline pans to 691 

stabilize and stable saline pans to decline over time. Similiarly, global warming may also 692 

influence some saline pans by reducing water inputs into saline pans and increasing halite 693 

solubility through groundwater warming. Therefore, changes saline pans extent over time are 694 

indicators of regional trends and changes in groundwater availability.  695 

6. Conclusions 696 

Evaporation estimates made with an ensemble of methods demonstrate that the center of the 697 

Bonneville Salt Flats saline pan is water neutral to slightly water positive. Precipitation equals 698 

or exceeds evaporation at the center of this saline pan. Limited evaporation stabilized the local 699 

water table, periods with positive water balances contributed to the crust’s gradual dissolution 700 

over the past century. Sedimentologically, the current neutral water balance indicates the 701 

limited capability of groundwater evaporation to contribute to evaporite deposition in modern 702 

and ancient saline pans. 703 

The methods utilized and evaluated in this work demonstrate that saline pan evaporative fluxes 704 

can be estimated with inexpensive micro-meteorological equipment or groundwater level 705 

monitors, but that calibration of these approaches with robust eddy flux station measurements 706 



manuscript submitted to Water Resources Research 

28 
 

is needed. Understanding saline pan processes, such as the inverse correlation between surface 707 

moisture and albedo and the positive correlation between ground temperature changes and 708 

groundwater level, is critical to utilizing these methodologies and interpreting saline pans.  709 

Saline pan landscapes are dynamic and rapidly evolve in response to climate change and 710 

changes in water and mineral balances. Water extraction alters the water balance. Lowered 711 

groundwater levels lead to a decrease to cessation in surface evaporite growth. Evaporite crust 712 

loss can increase dust production potential. Long-term multi-parameter monitoring of these 713 

systems would allow us to gain new insights and understand how these systems will change in 714 

response to environmental stressors and how these changes will affect water supplies to dust 715 

sources. Furthering our understanding of saline pans’ dynamism will enable us to effectively 716 

interpret and use these dynamic landscapes as sensitive indicators of regional hydrological 717 

fluctuations.  718 
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Introduction  

This file contains supporting information describing data sources, data processing steps, and 
theoretical background, as well as supplemental figures. The data quality control, gap-filling, and 
Matlab (MathWorks, 2020b) analyses code used for this study is available at 
https://doi.org/10.5281/zenodo.5671739 and the datasets that support this work are archived at 
https://doi.org/10.5281/zenodo.5634172 and https://doi.org/10.5281/zenodo.4268710. These 
datasets consist of modern and historical meteorological and groundwater measurements.  
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Supporting Information 

Text S1. Meteorological Data 

Meteorological measurements and products are archived at 
https://doi.org/10.5281/zenodo.5634172. The data quality control, gap-filling, and Matlab 
(MathWorks, 2020b) analyses code used for this study are archived at 
https://doi.org/10.5281/zenodo.5671739.  

Meteorological measurements and surface observations 

Historical meteorological measurements from the Bonneville Salt Flats and the surrounding area 
were reported by Lines (1979) and Mason and Kipp (1998). Additional measurements from 
Wendover, Utah, were collected from the National Oceanic and Atmospheric Administration 
(NOAA) Climate Data Online Portal. Weather station data at BSF was collected from the MesoWest 
weather station data repository (https://mesowest.utah.edu/, station ID: BFLAT) (Horel et al., 2002).  

These measurements were used to examine the spatial and temporal heterogeneity of precipitation 
and evaporation in the area surrounding BSF (Figure S2). Precipitation in 2020 was four times lower 
than the preceding years of 2017 to 2019. The year of 2019 was 40% wetter than the next wettest 
year during the study period of 2016 to 2021.  

Eddy-Covariance Data and Aerodynamic Roughness 

The eddy-covariance equipment was oriented to the northwest and installed at the height of 2.57 
m from May to August 2018. Eddy-covariance data available at 
https://doi.org/10.5281/zenodo.5634172 and the code used to determine the aerodynamic 
roughness length is available at https://doi.org/10.5281/zenodo.5671739. 

The aerodynamic roughness length (𝑍𝑍𝑜𝑜) (meters) was determined with sonic anemometer data 
collected from May to August 2018 with equation S1-1. Equation S1-1 is rearranged to solve for Zo 
in equation S1-2; the data is filtered where L is > 100 m, such that 𝛹𝛹𝑚𝑚(𝑍𝑍

𝐿𝐿
) approaches zero (Stull, 

2012).  

𝑚𝑚
𝑢𝑢∗

= 1/𝐾𝐾(ln � 𝑍𝑍
𝑍𝑍𝑜𝑜
� + 𝛹𝛹𝑚𝑚 �𝑍𝑍

𝐿𝐿
�)        (S1-1) 

𝑍𝑍𝑜𝑜 = 𝑍𝑍/exp (𝐾𝐾 𝑚𝑚
𝑢𝑢∗

)         (S1-2) 

Where 𝑚𝑚 is wind speed (m/s) filtered to only include wind speeds between 2-6 m/s, µ* is the friction 
velocity (m/s), K is the von Karman Constant (0.4), Z is the measurement height (m), 𝛹𝛹𝑚𝑚  is the 
stability function, and L is the Monin-Obukhov length scale. The median value of 𝑍𝑍𝑜𝑜  at BSF was 
5.4*10-4 m. 

Meteorological data gap filling  

Outgoing and net longwave radiometer measurements from November 24, 2019 to March 2, 2020 
were removed from the dataset for quality control. Longwave radiation measurements were not 
available prior to the installation of the longwave radiometers on June 6, 2017. An artificial neural 
network was shown to estimate radiation effectively by Kelley (2020). The neural network (using 
the methods outlined in Text S3, and with the training inputs of air temperature, relative humidity, 
wind speed, incoming and outgoing shortwave radiation, and time of day) was used to fill data 

https://doi.org/10.5281/zenodo.5634172
https://doi.org/10.5281/zenodo.5671739
https://mesowest.utah.edu/
https://doi.org/10.5281/zenodo.5634172
https://doi.org/10.5281/zenodo.5671739
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gaps. The artificial neural network was more effective at estimating net longwave radiation than 
incoming longwave radiation (Figure S3). Incoming longwave radiation was calculated by 
subtracting the outgoing radiation from net longwave radiation. 

From June 9 to 11, 2019, the weather station did not log meteorological measurements. 
Temperature, humidity, air pressure, and incoming shortwave radiation measurement from this 
period were replaced with measurements made by the nearby DPG17 weather station 
(https://mesowest.utah.edu/, station ID: DPG17). Outgoing shortwave radiation and incoming and 
outgoing longwave radiation during this period were replaced with measured mean BSF radiation 
measurements from the preceding and proceeding days. 

Imagery 

The saline pan's surface properties and surface features changed over time with evaporite growth, 
dissolution, and alteration. Time-lapse imagery from the BFLAT weather station is available at 
http://home.chpc.utah.edu/~u0790486/wxinfo/cgi-bin/uunet_camera_explorer.cgi Camera: 
Bonneville Salt Flats, and, along with imagery from other locations at 
https://doi.org/10.5281/zenodo.4171331 (Bernau & Bowen, 2021). There are some gaps within the 
weather station-collected imagery because of equipment malfunctions. The camera view was 
shifted downward from April 7 to 11, 2018. The camera was non-functioning from February 7 to 
May 18, 2020. 
 
 

Text S2. Estimated Evaporation Models 
Estimated evaporation model results are available at https://doi.org/10.5281/zenodo.5634172 and 
code is available at https://doi.org/10.5281/zenodo.5671739. 

Potential evaporation-based models 

Water Activity 

The water activity of BSF brines was estimated with geochemical modeling and previously derived 
empirical relationships between brine density and water activity for BSF brines (Turk, 1973). Water 
samples from BSF (Kipnis et al., 2020) were equilibrated with halite using the React module in 
Geochemist’s Workbench (Bethke, 2013). The phrqpitz thermodynamic dataset was used. The 
water activity of brine equilibrated with halite was then calculated with the SpecE8 module. The 
mean calculated water activity in Geochemist’s Workbench was 0.75 with a standard deviation 
<0.01.  

The density of natural and anthropogenic BSF surface brines was used as an input for an equation 
derived from Turk’s (1973) measurements of BSF brines. The average water activity calculated with 
method was 0.73 (standard deviation of 0.04). The maximum calculated water activity was 0.86. 
These results indicate that sustained surface brines at BSF have water activities between 0.73 to 
0.75. A constant water activity of 0.74 was used in this research. Immediately after meteoric 
precipitation, BSF brine water activity is likely >0.74. Changes in water activity are buffered by 
dissolution of surface halite. 

https://mesowest.utah.edu/
http://home.chpc.utah.edu/%7Eu0790486/wxinfo/cgi-bin/uunet_camera_explorer.cgi
https://doi.org/10.5281/zenodo.4171331
https://doi.org/10.5281/zenodo.5634172
https://doi.org/10.5281/zenodo.5671739
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Penman equation evaporation 

The potential evaporation calculated with the Penman equation (PE) and with the Calder and Neal 
(1984) water-activity corrected adaptation of the Penman equation (PE CN) are similar. The PE CN 
evaporation values were slightly lower (>20% less) than evaporation calculated with the unaltered 
Penman equation. The water activity corrected evaporation was used to create albedo-calibrated 
estimated evaporation values. The scaling correction values that are dependent on albedo and are 
used in the EeHigh and EeLow models are summarized in the table below.  

Inputs used for albedo-calibrated estimated evaporation (EeHigh and EeLow) models 

Albedo Evaporation estimation equation Kc (scaling value) 

>0.37 (EeHigh and EeLow) Ee = Kc1(PE CN)/albedo Kc1 = 0.0788 

<0.37 (EeHigh) Ee = Kc2(PE CN)/albedo Kc2 = 0.0570 

<0.37 (EeLow) Ee = Kc3(PE CN) Kc3 = 0.0351 

 

Artificial neural network models 

The MATLAB Deep Learning Toolbox (MathWorks, 2020a) was used to implement the artificial 
neural network used to estimate evaporation. The artificial neural network is structured such that 
each period is evaluated independently of the proceeding and preceding measurements. The 
artificial neural network consisted of two layers (a hidden training layer with 10 nodes and a single 
node output layer). It was trained using the Bayesian regularization backpropagation algorithm. 
This algorithm is implemented with the Levenberg-Marquardt optimization. The data was split 
randomly such that 70% of the dataset was used for training, and 30% was used for validation. 
Following Kelley and Pardyjak’s (2019) methods, the 30-minute average values of weather station 
measurements were used as input values. These data were trained to replicate evaporation 
measured by the eddy-covariance method.  

Different training inputs were used to test what inputs enhanced or decreased the quality of the 
artificial neural network model, as compared to the albedo-calibrated evaporation models (Figures 
S4 and S5). Using longwave radiation as an input improved artificial neural network evaporation 
outputs by making them more similar to the EeLow model during known dry periods. 

The generalizability of artificial neural network models to periods that were outside of training 
conditions was investigated by iteratively removing periods with low temperatures and high 
humidity values from the training dataset and comparing the model outputs (Figure S5). Removing 
lower temperatures from the training dataset led to higher evaporation estimates. This result 
indicates that the artificial neural network overestimated winter evaporation. This was 
corroborated by the difference between potential evaporation-based models of winter evaporation 
and the much higher winter evaporation estimates of the artificial neural network.  
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Text S3. Groundwater Data 
Recent and historical measurements of groundwater levels, temperatures, water chemistry, 
anthropogenic brine fluxes, and well meta-data compiled from published data, the United States 
Geological Survey’s national water information system (NWIS), and the Water Quality Portal are 
available at https://doi.org/10.5281/zenodo.4268710 (Bernau & Bowen, 2021; Kipnis & Bowen, 
2018; Lines, 1978, 1979; Mason et al., 1995; Mason & Kipp, 1998; Read et al., 2017; Turk, 1973). The 
wells referred to in the main text as the 0.8 m and 3.5 m deep wells are identified as BLM-93C and 
BLM-93, respectively, in past publications. Supplemental figures incorporating current and 
historical groundwater data include Figures S2 and S6 to S9.  

Continuous water levels from 2017 to 2021 were measured with non-vented pressure transducers. 
There were some data gaps from repositioning data loggers or loggers reaching data storage 
capacity. Groundwater levels were calculated by subtracting atmosphere pressure from the 
transducer-measured pressure. Where possible, groundwater measurements were corrected to be 
equivalent heads of a halite-saturated water column and were corrected for barometric efficiency. 
The effect of daily to seasonal temperature changes on groundwater level was quantified. 
Furthermore, the apparent specific yield of near surface sediments was estimated. The code used to 
perform these analyses is available at https://doi.org/10.5281/zenodo.5671739. 

Equivalent head calculation 

For flow calculations, head values for waters of differing density are often converted into 
equivalent heads of freshwater (Post et al., 2007). The water table at BSF’s center is in direct contact 
with the evaporite crust, and is therefore halite-saturated. Therefore, to better estimate water table 
levels, head is estimated here by converting the measured head to an equivalent head of halite-
saturated brine. The density for the 0.8 and 3.5-m deep wells was calculated using the equations’ of 
state for these brines (Bernau & Bowen, 2021) with the soil temperature at 10 cm used as the 
temperature input (Figure S6). Calculated densities strongly reflected measured densities. 

Although groundwater density changed throughout the year in both wells because of temperature 
and salinity changes, the equivalent head, when a constant density throughout the year was 
assumed, differed from the variable density equivalent head model by 0.5 to 1.2 cm (Figure S6). 
Because of this minor difference between methodologies, and the limited ground temperature and 
brine density measurements for many sites, groundwater density in each well was assumed to be 
constant when determining the equivalent head. When available, the well’s brine’s equation of 
state and a temperature range throughout the year was used to determine a representative 
average brine density; otherwise, the average measured density of the groundwater from a well 
was used.  

Barometric efficiency correction 

Air-pressure changes and other external forces impact water levels in wells (McMillan et al., 2019). 
There is differential loading of barometric pressure between the exposed well water and the 
aquifer’s matrix and pore water in confined aquifers. This difference leads to an inverse relationship 
between barometric pressure and groundwater levels. The effect of air pressure on water level is 
quantified by a well’s barometric efficiency (equation S3-1). 

𝐵𝐵𝐵𝐵 = 1 −  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

≈ 1 −  𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥

         (S3-1) 

https://doi.org/10.5281/zenodo.4268710
https://doi.org/10.5281/zenodo.5671739
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where barometric efficiency (BE) is equal to 1 minus the change in groundwater pressure (dw) 
relative to the change in barometric pressure (db). For the Bonneville Salt Flats, barometric pressure 
units were converted into an equivalent column of halite-saturated water. The water column 
measurements, reported as an equivalent head of halite-saturated brine, were then used as inputs 
to calculate barometric efficiency.  

The median-of-ratios and linear regression time domain-based methods (as described in Turnadge 
et al., 2019) were used to determine the barometric efficiency BSF wells. The median-of-ratios was 
calculated by taking the median value of the ratio of the change in water level to the change in 
barometric pressure over a time period (Gonthier, 2007). The linear regression method determines 
the coefficient of the linear function where water level changes because of barometric pressure 
changes (Robinson & Bell, 1971). The time periods of change of one hour and one day were selected 
to test the impact of changing time period on the results.  

Once the barometric efficiency was calculated it was applied to the dataset to determine what the 
water level would be without changes in barometric efficiency (Equations S3-2 and S3-3). The 
original water level and barometric efficiency corrected water level were then graphically assessed. 
If the application of barometric efficiency increased variability in measured water level, it was 
increased, in some cases to 1.  

𝛥𝛥𝛥𝛥𝑏𝑏 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐((( 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑏𝑏)) ∗ (1 − 𝐵𝐵𝐵𝐵))       (S3-2) 

where 𝛥𝛥𝛥𝛥𝑏𝑏  is the change in water level originating from air pressure over the study interval relative 
to its starting point, 𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑏𝑏) is the change in air pressure (in units of an equivalent column of halite-

saturated water) per unit time interval and BE is the barometric efficiency. The cumulative sum of 
this is calculated to determine how waster levels would change over time for changes in air 
pressure. 

𝑤𝑤𝐵𝐵𝐵𝐵 =  𝑤𝑤 − 𝛥𝛥𝛥𝛥𝑏𝑏 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛥𝛥𝛥𝛥𝑏𝑏)/2       (S3-3) 

where 𝑤𝑤𝐵𝐵𝐵𝐵  is the water level with the barometric efficiency signal removed, w is the original water 
level (as expressed in equivalent head of halite-saturated water). The effect air pressure on the 
water level at each moment is subtracted from the measured water level, because this would cause 
an offset in reported water elevation the mean value of the cumulative sum of water level change 
column is calculated and divided by two to determine the proper offset, which is added then added 
to the calculated water level at any moment. This methodology assumes that the barometric 
efficiency is invariable over time, which may not be the case for wells in unconfined aquifers. 

For the 3.5 m well, the barometric efficiencies determined by the median-of-ratios and linear 
regression methods and with different time intervals were similar (0.59-0.61). The 0.8 m well’s 
barometric efficiency value differed depending on if the one hour or one day time interval was used 
(from 0.51 to 0.86). Visual analysis of the barometric-corrected data for the 0.8 m well showed that 
water level data was more variable when a barometric efficiency <1 was considered; because of 
this, a barometric efficiency of 1 was assumed. If temperature was known to impact diurnal water 
levels fluctuations then only intervals of one day were used to determine well’s barometric 
efficiency. The barometric efficiency of other BSF wells varied between 0.54 and 1. Wells screened 
within lacustrine sediments near BSF’s center had barometric efficiencies between 0.54 and 0.60.  

When the barometric correction was applied to the 3.5 m well, the resulting water level changes 
were similar to those observed in the 0.8 m well (Figure S6). The 3.5 m well’s low barometric 
efficiency indicates that the lacustrine sediment-hosted aquifer in contact with the well has low 
permeability and poor connection with the atmosphere. 
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Thermal efficiency calculation and correction 

Meyer (1960) first described the effect of temperature on water levels. Turk (1973) first described this 
effect at BSF. This effect is quantified and modeled here to identify intervals during which non-
thermal processes impact water levels from seasonal to daily timescales (Figure S2). 

Methodology 

This methodology makes several simplifying assumptions about water levels at BSF. It assumes 
that the sediment column is uniform in porosity, so water level change scale linearly with 
temperature changes at all depths. It also assumes that temperature fluctuations are the primary 
control on water level changes, namely that there is no water movement in or out of the system. 
The effect of air pressure has also been removed by correcting for barometric efficiency. The dataset 
is limited to intervals that these assumptions hold. Finally, temperatures from a 10-cm depth soil 
probe were used as the input for these analyses to increase comparability between wells. The code 
used to perform these analyses is available at https://doi.org/10.5281/zenodo.5671739. 

The thermal efficiency, TE (equation S3-4), was calculated by adapting the analytical framework for 
barometric efficiency (see prior section). The median-of-ratios was calculated by taking the median 
value of the ratio of the change in water level to the change in soil temperature over some time. The 
linear regression method determined the coefficient of the linear function where the water level 
changes as a function of temperature changes.  

𝑇𝑇𝑇𝑇= ∆𝑤𝑤𝑤𝑤
𝛥𝛥𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

          (S3-4) 

where ∆𝑤𝑤𝑤𝑤 is the change in density and barometric efficiency corrected water depth (cm) and 
𝛥𝛥𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the temperature change(°C) from a 10-cm depth soil probe, and TE is the thermal 
efficiency.  

Daily thermal efficiency values 

The diurnal thermal efficiency was determined through two methods. The first method used linear 
regression and median-of-ratios approaches on hourly water level and temperature change 
periods. The second method used the median-of-ratios technique on the ratio of the daily range in 
soil temperature to the daily range in water level. Each month was analyzed individually using 
both methods to identify seasonal trends in temperature-controlled diurnal water level 
fluctuations. 

The first method only worked with the 0.8 m deep well (BLM-93C) co-located with the soil 
temperature probe. This method showed that there are seasonal variations in the daily thermal 
efficiency. The thermal efficiency signal was strong with a high R2 (>0.6) and a value between ~0.5 
and 0.8 between May and October. This pattern reflects the correlation between diurnal water level 
fluctuation and maximum air temperature (Figure 6). This method was ineffective in other wells 
because of lags in heat transfer relating to well and water depth. Therefore, the second method 
was used to compare wells.  

The median-of-ratios approach using daily ranges in water depth and soil temperature yielded 
similar results to the first method for the 0.8 m well. The median diurnal thermal efficiency of wells 
within the saline pan was found to be >0.25 to 0.5. The 0.8-m well was an outlier with a thermal 
efficiency of ~0.73. Wells to the west of the saline pan and at its northeastern edge had lower daily 
thermal efficiencies of 0.15 to <0.25. 

https://doi.org/10.5281/zenodo.5671739
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Seasonal thermal efficiency values 

Seasonal thermal efficiencies were determined using weekly and monthly periods of water level 
and temperature change. Using these more extended periods significantly limited the number of 
data points, so only the median-of-ratios method was used to determine seasonal thermal 
efficiencies. Because of the effect of non-thermal processes on water levels over these longer 
timescales, datasets were clipped to only the driest periods with the most notable temperature-
controlled water level changes (typical August to December).  

Data were plotted and then compared with observed changes in water level to qualitatively assess 
if calculated thermal efficiency values were recreating seasonal changes in water level. In general, 
seasonal thermal efficiencies replicated most groundwater changes during the dry fall months. The 
seasonal thermal efficiency for different wells ranged from ~0.8 to 2.2. The central areas with 
thicker evaporite crust had lower values, and the salt crust edge wells had higher values. Each well’s 
diurnal and seasonal thermal efficiencies do not appear to be correlated.  

Apparent specific yield of near-surface porous material 

The specific yield is defined as the gravity-drainable pores within a sediment. The specific yield is 
often assumed to be constant within wells. However, this simplification does not apply to shallow 
wells and short periods because the drainage rate may take several days to years, and the water 
content of the capillary fringe and vadose zone, and antecedent conditions can vary greatly and 
influence measurements (Crosbie et al., 2019). Because of this, the apparent specific yield (Sya) is 
often reported. This value factors in the effect of the capillary fringe, and it begins to approach zero 
as the groundwater level approaches the surface. Only at deeper groundwater depths does Sya 
approach a sediment’s specific yield (Crosbie et al., 2005; Duke, 1972). 

Specific yield is highly dependent on environmental conditions and sediment texture (Healy & 
Cook, 2002). As Healy and Cook (2002) note, the value of Sy to use for a study can be unclear. 
Because of the low topography at BSF and its well-constrained precipitation and evaporative 
fluxes, the apparent specific yield of the shallow crust at BSF was estimated using a form of the 
water budget equation which relies on water table fluctuations (Gerla, 1992; Lv et al., 2021; Walton, 
1970) (equation S3-5). 

𝑆𝑆𝑦𝑦𝑦𝑦  =
PPT+Q𝑜𝑜𝑜𝑜−Q𝑜𝑜𝑜𝑜𝑜𝑜−ET− ΔS𝑠𝑠𝑠𝑠sw− ΔS𝑢𝑢𝑢𝑢

𝛥𝛥𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥        (S3-5) 

where PPT is precipitation, Qon and Qoff are surface and subsurface water flow in and out of the area 
of interest, ET is evapotranspiration, ΔSsw is surface water storage, ΔSuw is unsaturated zone water 
storage, Δwd is the change in groundwater height, and Δt is the study period. Qon, Qoff, ΔSsw, and 
ΔSuw

 were assumed to be negligible because of the study site’s low topography and hydraulic 
gradients and its near-surface water table with a capillary fringe can intersect the surface. Only dry 
periods with no surface water at the beginning of the interval were used. This equation then 
simplifies to: 

𝑆𝑆𝑦𝑦𝑦𝑦 = ((PPT – E𝑒𝑒)/∆𝑤𝑤𝑤𝑤)𝑑𝑑𝑑𝑑        (S3-6) 

where over a period dt the change in groundwater height (∆𝑤𝑤𝑤𝑤) is attributable to the net recharge 
(PPT – Ee). More simply, this is the ratio of infiltrated precipitation to the change in the water table. 
This calculation assumes that recharge is the only variable influencing water level. To address this 
concern, only daily averages of water levels that were corrected for barometric efficiency were 
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considered were considered to partially eliminate the influence of temperature and air pressure 
fluctuations upon water levels.  

The daily average value of water level, reported as the equivalent height of saturated water column 
and corrected for barometric efficiency (for the 3.5 m well), was used to compensate for these 
variables. Furthermore, the input periods to calculate Sya were selected to meet the following 
criteria 1) initial water depth greater than 6 cm, 2) recharge (PPT-Ee)/Ee > 0.5, and 3) the final water 
depth was below the surface and did not decline rapidly in the days after precipitation (which 
would be indicative the reverse Wieringermeer or Lisse effects, where trapped air increases the 
apparent water column (Gillham, 1984; Heliotis & DeWitt, 1987)). Furthermore, to reduce to impact 
of the Lisse effect, apparent specific yield values less than 0.03 were not considered.  

If these conditions were met more frequently, a threshold value of >5mm of precipitation would 
also be included for determining Sya criteria. The study intervals used here extended one day before 
precipitation to at least one day following precipitation. Some periods include several precipitation 
events. 

The Sya values determined by this method varied (mean of 0.09 with a standard deviation of 0.04). 

Apparent specific yield relative to prior BSF research 

The porosity and characteristics of evaporite crust at BSF have been previously described and 
indicate that the apparent specific yield reported here is reasonable. The porosity of upper halite 
crust samples from X-ray computed tomography measurements was determined to be 29% (±5%) 
(Bernau & Bowen, 2021). Porosity was also estimated from the dry density of crystalline crust from 
30 samples reported by Mason & Kipp (1998). Assuming an 80-20 ratio of halite to gypsum in these 
samples yields an average estimated porosity of 23%. Using other proportions of halite to gypsum 
leads to a range of estimated porosities of 19 to 40%. Halite-rich portions of the lower part of the 
evaporite crust have an estimated porosity of 35-45% (Bernau & Bowen, 2021). The porosity of fine 
to medium sand in gypsum layers is likely between 20-50% (Bowen et al., 2018). Past examination 
of the fine-grained lacustrine sediments at BSF suggests a porosity of 50% and a specific yield of 
10% (Turk et al., 1973). 
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Figure S1. Long-term climate measurements from Wendover, Utah, and comparisons of monthly 
average values of evaporation and potential evaporation, and monthly sums of precipitation at 
the western margin (margin) and center (crust) of the Bonneville Salt Flats from April to October 
1993 and April to August 1994. (a) Crust evaporation (E) was higher than playa margin 
evaporation. (b) Potential evaporation (PE) was higher at the playa margin. (c) Cumulative 
precipitation (PPT) between the crust and the margin was within 5% of each other from October 
1992 to July 1994. (d) Wendover, Utah, annual precipitation record demonstrates that the study 
period was drier than average but included unusually wet and dry years and that there has been a 
long-term decline in precipitation. (e) Average annual temperatures from Wendover, Utah, reveal 
that the study period was warmer than average. (Figure data from Mason & Kipp, 1998; NOAA 
Climate Data Online Portal and MesoWest). 
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Figure S2. Anthropogenic brine volumes and solute mass balances over time in comparison to 
precipitation and limited groundwater level measurements. (a) Net annual BSF anthropogenic 
brine volumes since 2001. (b) Mass of anthropogenic solutes added and removed from BSF 
(updated from Kipnis & Bowen, 2018). (c) Millimeters of water added to southwestern area of BSF 
annually, assuming added brine covers an area between 20 and 50 km2 (as suggested by Bowen et 
al., 2017). (d) Density-corrected changes in groundwater level over time (key in (e)). Wells BLM-41, 
BLM-34, and BLM-31 are located near brine extraction ditch. The black line shows temperature-
controlled water levels in the 3.5 m well if no water inputs or output is assumed. (e) Modeled 
groundwater changes over with temperature effects on water levels removed. (f) Monthly values of 
brine addition and removal during study period. 
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Figure S3. Weekly average values of (a)outgoing longwave (lw) radiation and of (b) net lw 
radiation. 
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Figure S4. Eddy-covariance evaporation values used for training compared with artificial neural 
network evaporation values (model inputs in addition to air temp, relative humidity, wind speed, 
and time of day denoted in legends with LW and SW referring to radiation). (a) Hourly evaporation 
rates from eddy-covariance measurements and the artificial neural network. (b) Comparison of 
cumulative evaporation measurements between eddy-covariance data and different artificial 
neural networks. (c) Calibration period cumulative values of estimated daily evaporation made 
with different methods. (b) and (c) period totals differ because of data gaps in (b).  
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Figure S5. Comparison of the median values of evaporation modeled with select artificial neural 
networks. (a-b) Estimated evaporation trained with different inputs (base inputs are described in 
key, with additional inputs noted). Estimated evaporation made with albedo-calibrated Penman 
evaporation models shown for comparison. A smaller number of inputs without longwave 
radiation are used in (a), while longwave radiation values are used in (b). (c-d) The impact of 
removing incrementally lower humidity and higher temperature periods from the training dataset 
on artificial neural network evaporation estimates. (c) Winter evaporation estimates were much 
higher when lower temperatures are removed from the training dataset. (d) Removing high 
humidity values from the training dataset had minimal effects on evaporation estimates.  
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Figure S6. Groundwater 
equivalent head correction. 
(a) Measured (filled circles) 
and calculated (lines) 
groundwater densities in 0.8 
and 3.5 m deep wells. (b) 
Comparison of measured 
water depth and halite-
saturated water equivalent 
head from 0.8 and 3.5-m 
wells. (c) The difference 
between head calculated 
with a constant density and 
head calculated with a 
variable density is between 
0.5 and 1.2 cm. (d) 
Centimeters of difference in 
head between the 3.5 and 
0.8-m deep wells show 
vertical flow gradients vary 
seasonally. 
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Figure S7. Equivalent halite-saturated head and equivalent halite-saturated head corrected for 
barometric efficiency in the 3.5 m well. Precipitation shown for reference. (a) Barometric correction 
removes significant variability from the water level, making it more representative of the water 
table in the halite crust. (b) Comparison of corrected values and measured water table level in 
shallow surface (0.8 m well) demonstrates agreement between barometric-corrected head and 
observed near-water table water level values. 
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Figure S8. Average monthly groundwater depths (corrected to equivalent head of halite-
saturated brine) from wells along the centerline of the Bonneville Salt Flats, where the water table is 
consistently high (Lines, 1979; Mason & Kipp, 1998; Turk, 1973; and USGS water data portal). (BLM-
93 and BLM-93C are the same wells as the 3.5 and 0.8 m well described in this paper). These 
measurements illustrate that water levels stabilizes in July to August. Other months of the year are 
more variable. The lower summer of 1967 water levels in BR1 and BR2 (Turk, 1973), are from when 
the Salduro Loop water collection ditch was active. Groundwater collection rates from this time are 
unknown. 

  



 
 

18 
 

 

Figure S9. Relationship between water depth in the 0.8 m well and (a) evaporation rate, (b) 
evaporation relative to potential evaporation, and (c) albedo. 
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