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Abstract

In its three-dimensional (3-D) characterization, drought is approached as an event whose spatial extent changes over time. Each

drought event has an onset and end time, a location, a magnitude, and a spatial trajectory. These characteristics help to analyze

and describe how drought develops in space and time, i.e., drought dynamics. Methodologies for 3-D characterization of drought

include a 3-D clustering technique to extract the drought events from the hydrometeorological data. The application of the

clustering method yields small ‘artifact’ droughts. These small clusters are removed from the analysis with the use of a cluster

size filter. However, according to the literature, the filter parameters are usually set arbitrarily, so this study concentrated on

a method to calculate the optimal cluster size filter for the 3-D characterization of drought. The effect of different drought

indicator thresholds to calculate drought is also analyzed. The approach was tested in South America with data from the Latin

American Flood and Drought Monitor (LAFDM) for 1950–2017. Analysis of the spatial trajectories and characteristics of the

most extreme droughts is also included. Calculated droughts are compared with information reported at a country scale and a

reasonably good match is found.
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 10 

Abstract 11 

In its three-dimensional (3-D) characterization, drought is approached as an event whose spatial 12 

extent changes over time. Each drought event has an onset and end time, a location, a 13 

magnitude, and a spatial trajectory. These characteristics help to analyze and describe how 14 

drought develops in space and time, i.e., drought dynamics. Methodologies for 3-D 15 

characterization of drought include a 3-D clustering technique to extract the drought events 16 

from the hydrometeorological data. The application of the clustering method yields small 17 

‘artifact’ droughts. These small clusters are removed from the analysis with the use of a cluster 18 

size filter. However, according to the literature, the filter parameters are usually set arbitrarily, 19 

so this study concentrated on a method to calculate the optimal cluster size filter for the 3-D 20 

characterization of drought. The effect of different drought indicator thresholds to calculate 21 

drought is also analyzed. The approach was tested in South America with data from the Latin 22 

American Flood and Drought Monitor (LAFDM) for 1950–2017. Analysis of the spatial 23 

trajectories and characteristics of the most extreme droughts is also included. Calculated 24 

droughts are compared with information reported at a country scale and a reasonably good 25 

match is found. 26 

Keywords  27 

spatiotemporal drought analysis, drought tracking, drought dynamics, drought characterization, 28 

drought clustering 29 

1 Introduction 30 

In recent decades, methods for drought calculation have increasingly treated this phenomenon 31 

as an event characterized in space and time (Andreadis et al., 2005; Corzo Perez et al., 2011; 32 

Diaz et al., 2020a, 2020b; Herrera-Estrada and Diffenbaugh, 2020; Lloyd-Hughes, 2012; 33 

Sheffield et al., 2009; van Huijgevoort et al., 2013; Vernieuwe et al., 2020). Each drought event 34 
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is calculated considering different characteristics, such as duration, spatial extent, and location. 35 

A better characterization of drought improves the analysis of its behavior and its possible 36 

effects on different economic and environmental sectors (World Meteorological Organization 37 

(WMO), 2006). Treating drought as an event with spatial extent has also allowed new methods 38 

for its monitoring and prediction to be proposed (Diaz et al., 2018, 2020a). 39 

The approach to calculating drought in three dimensions (longitude, latitude, and time) has 40 

followed a gradual process. One of the first works to consider drought with a spatial extent 41 

(area) was Yevjevich (1967). He used spatially distributed synthetic precipitation data to define 42 

the drought areas. The time series of drought areas allowed him to calculate the onset, end, 43 

duration, and magnitude of drought. Another key work that marked a before and after in 44 

calculating drought was the research of Andreadis et al. (2005). They introduced a 45 

methodology for the calculation of drought areas. In this methodology, the areas are contiguous 46 

in space. By using a clustering technique, the different areas (2-D clusters) are calculated. 47 

Later, this method was expanded to three dimensions. The works of Corzo Perez et al. (2011) 48 

and Lloyd-Hughes (2012) are some of the first examples in which drought is calculated as a 3-49 

D object. Drought characterization includes new features such as volume (number of cells) and 50 

location. The location is defined as the centroid of the 3-D cluster. Subsequently, the centroids 51 

of the drought are used to monitor its spatial trajectory, i.e., drought tracking. In works such as 52 

those of Diaz et al. (2020a, 2020b), Herrera-Estrada et al. (2017), and Herrera-Estrada and 53 

Diffenbaugh (2020), spatial trajectories of drought are calculated, serving to analyze the 54 

dynamics of drought. The 3-D characterization of drought opens up other possibilities for 55 

drought monitoring and prediction. In addition to predicting drought duration and magnitude, 56 

its spatial extent, location, and trajectory could also be predicted (Diaz et al., 2018, 2020a). 57 

Research gaps remain in the topic of 3-D drought characterization. When calculating drought, 58 

it is common practice to apply a cluster size filter to remove small clusters resulting from the 59 

methodology and not from the droughts themselves. In most cases, the cluster size filter is 60 

chosen arbitrarily, or such a choice is generally driven by the past work or experience. Another 61 

parameter commonly chosen arbitrarily is the drought indicator threshold (Sect. 2.1), i.e., the 62 

value for which a value of the hydrometeorological variable is considered a drought. Although 63 

there is extensive research on the latter, its combined effect with the cluster size filter has not 64 

been fully analyzed. 65 

This research proposes a method to calculate the optimal cluster size filter for the 3-D 66 

characterization of drought. Droughts are calculated with a 3-D clustering technique using 67 

different cluster size filters and drought indicator thresholds. The analysis of the most extreme 68 
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droughts in the analysis period is also presented. The methodology was tested in South 69 

America, using data from the Latin American Flood and Drought Monitor (LAFDM) (Sheffield 70 

et al., 2014; Wood et al., 2016) for 1950–2017. 71 

2 Methods and data 72 

2.1 Drought calculation 73 

In this methodology, drought is represented by a 3-D cluster. The data must be organized in a 74 

grid system where each cell is geographically referenced (latitude and longitude). The 75 

arrangement of these geospatial data cells can be schematized as a cube with latitude, longitude, 76 

and time as its sides (Figure 1). Each 3-D drought cluster is made up of cells that indicate 77 

drought (Figure 1). The methodology considers three main steps: (1) calculation of the drought 78 

indicator, (2) identification of the cells in drought, and (3) calculation of the 3-D clusters 79 

(Figure 1). 80 

First, the drought indicator is calculated with the hydrometeorological data. This indicator 81 

makes it possible to define anomalies in the data by using a statistic (Figure 1a). The 82 

standardized drought indicators, for example, standardize the values of the 83 

hydrometeorological variable. Using these standardized values, the drought is identified by 84 

means of a threshold associated with a statistical value that defines an anomaly as drought. 85 

Values lower than the threshold are considered as drought. Other indicators use a threshold 86 

value directly applied to the hydrometeorological variable for the entire analysis period or a 87 

moving time window. In this second method, the values that are below the threshold are also 88 

considered as drought. 89 

After drought indicator calculation, the indication that a cell is in drought is carried out with 90 

the drought indicator data (second step). The binary classification is used to indicate drought, 91 

i.e., the use of 1s and 0s (Figure 1b, 1c, and 1e). In this way, drought is identified with 1s and 92 

non-drought with 0s, as indicated in Eq. 1. When the drought indicator (DI) is below a selected 93 

threshold (T), a cell is in drought. In Eq. 1, Ds stands for drought state, i.e., drought (1) or non-94 

drought (0).  95 

 
1  if  DI( )

0  if  DI( )
S

t T
D t

t T


 


                                                                                                   (Eq. 1) 96 

This research also analyzes the effect of the threshold (T) on the calculation of droughts (3-D 97 

clusters). The thresholds of 0, −1, −1.5, and −2 are tested. It is noted that, in standardized 98 

drought indices, the values equal to or below zero indicate ‘drought’. Eq. 1 is applied in each 99 

cell in each time step (t). 100 
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 101 

 102 

Figure 1. Schematic overview of the methodology for 3-D clusters calculation: (1) calculation of the 103 

drought indicator (a), (2) identification of cells in drought (b, c, d), and (3) calculation of 3-D clusters 104 

(d and f). 2-D view in each time step (c and d) and 3-D view (a, e, and f). 105 
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The third step is the calculation of the 3-D clusters. A clustering method to extract the drought 106 

events is applied following Corzo Perez et al. (2011). The drought events correspond to the 3-107 

D clusters calculated with the data of 0s and 1s (Figure 1d and 1f). The following describes the 108 

unsupervised machine learning-based method to extract the clusters. The method follows the 109 

connected-component labeling approach to cluster the cells in drought (Haralick and Shapiro, 110 

1992). In this method, a two-scan algorithm is applied. First, each cell is numbered. Then, the 111 

first run is carried out, in which the binary grid is explored and provisional labels are assigned 112 

to connected (contiguous) components (cells). These labels identify the connection of every 113 

cell with its nearest neighbors. In this first run, the cell’s label does not yet refer to the cluster 114 

number but to the cells with which the given cell is connected. Finally, the second scan is 115 

carried out to find similar cell connections, i.e., clusters, which are given a unique label. 116 

Examination of the grid can be performed by columns or by rows. The clustering method is 117 

conducted over the whole binary data (Figure 1d and 1f). 118 

As mentioned, it is a common practice to remove small 3-D clusters that constitute ‘artifact’ 119 

droughts produced by the clustering technique. This task uses a cluster size filter to clean the 120 

number of calculated 3-D clusters. This cluster size filter is usually set based on similar studies 121 

or experiences, or left at the default value. In this research, we propose a method to calculate 122 

the optimal cluster size filter introduced in the following. To test this method, we used the 123 

cluster size filters of 0, 4, 9, 16, 25, 36, 49, 64, 81, and 100 cells to remove clusters. The value 124 

of 0 indicates no cluster cleaning. The procedure is as follows. For each time step (t), clustering 125 

was carried out to identify 2-D clusters. Afterward, the 2-D clusters below each cluster size 126 

filter were removed. Finally, the 3-D clusters were identified for each cleaned sample data. We 127 

carried out the procedure in this way because, owing to the large size of this region and the 128 

resolution of the data, extremely large events were identified when applying the 3-D clustering. 129 

The subsequent filtering of 3-D clusters was not practical, i.e., there were no or few small 3-D 130 

clusters to remove. By applying the cluster cleaning to the 2-D clusters in each time step, we 131 

removed small isolated areas (2-D clusters) throughout the region, which was found a more 132 

effective means of cleaning the 3-D cluster data. 133 

For the identification of 3-D drought clusters, we also considered a filter of duration. All the 134 

3-D clusters of one-month duration were excluded from further analysis. We made sure that 135 

none of these clusters was of a large number of cells, thus avoiding the risk of removing severe 136 

events. The 3-D clusters of one-month duration were removed for each case of cluster size filter 137 

and drought indicator threshold. 138 
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Drought calculation concluded with the selection of the cluster size filter (Figure 2). The 139 

optimal cluster size was defined as the value in the curve ‘cluster size filter vs. the number of 140 

3-D clusters,’ at which the number of clusters stabilizes, i.e., does not undergo considerable 141 

changes for a constant increase of the cluster size filter (Figure 2). This point is defined as the 142 

vertex of the curve (Figure 2). To identify this point, we developed a method based on the angle 143 

C formed between two continuous segments of the curve ‘cluster size filter vs. number of 3-D 144 

clusters’ (Figure 2). We calculated this angle C using the law of cosines (Eq. 2), which 145 

considers the length of the sides of the triangle a, b, and c formed by the coordinates of three 146 

subsequent points, i.e., the points (x1, y1), (x2, y2), and (x3, y3) (Figure 2). For each triad of 147 

points, the angle C was calculated. The vertex corresponds to the smallest angle of all the 148 

calculated Cs. The optimal cluster size filter was calculated for each drought indicator 149 

threshold. 150 

   2 2 2cos 2C a b c ab                                                                                              (Eq. 2) 151 

 152 

Figure 2. Scheme of the method to calculate the optimal cluster size filter. The angle C is calculated 153 

with the sides a, b, and c of the triangle formed by the three subsequent points (zoomed-in view). 154 

2.2 Drought characterization 155 

After identifying the droughts, the onset and end in time, duration, and severity (magnitude) 156 

were calculated for each drought (3-D cluster). Drought duration (dd) and magnitude (ds) were 157 

obtained with Eqs. 3 and 4, respectively. The times ti and tf are the onset and end of each 158 

drought, respectively. DA is the drought area (number of cells) at each time step t. Eqs. 3 and 159 

4 were applied for each 3-D cluster. 160 

1 tftidd                                                                                                                     (Eq. 3) 161 

 DA
tf

t ti

ds t


                                                                                                                     (Eq. 4) 162 
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For each drought, the spatial trajectory was also calculated. These trajectories were built with 163 

the union of the centroids of the drought areas at each time step (t), following Diaz et al. 164 

(2020a). Trajectories of the largest events were analyzed. 165 

2.3 Data 166 

For the identification of droughts, we used data of the Standardized Precipitation Index (SPI) 167 

retrieved from the Latin American Flood and Drought Monitor (LAFDM) 168 

(https://platform.princetonclimate.com/PCA_Platform/lafdmLanding.html). Within LAFDM, 169 

the SPI is calculated with precipitation and numerically indicates the magnitude of the water 170 

anomaly, and runs from -3 to 3. Being below zero, SPI shows a dryness condition, whereas 171 

above zero, it indicates a wetness condition (McKee et al., 1993). The aggregation period of 172 

six months in the SPI, denoted by SPI6, is considered a good proxy for monitoring drought 173 

condition on the surface, i.e., on runoff and soil moisture, which is more relevant to the 174 

potential impact on agricultural activities (WMO, 2012). Thus, SPI6 data was considered for 175 

the calculation of droughts. The period of the analysis was 1950–2017 (816 months) on a 176 

monthly basis. The spatial resolution was 0.25 deg. 177 

3 Results and discussion 178 

3.1 Drought calculation 179 

Figures 3 and 4 show the duration, magnitude (number of cells), and number of 3-D drought 180 

clusters (nc) for each drought indicator threshold and cluster size filter. Figure 3 presents the 181 

results for all the durations and magnitudes. For better visualization of the results, Figure 4 was 182 

prepared, which deploys the droughts for durations up to 20 months and 10,000 cells. Results 183 

show that, for the threshold of 0, the least number of droughts is achieved (Figures 3 and 4). 184 

These clusters are smaller in quantity, but their structure is made up of more cells than those 185 

of the other thresholds, as shown also in Figure 7. As the drought indicator threshold decreases 186 

(from 0 to −2), more clusters are identified, although they have fewer cells (Figures 3 and 4). 187 

This increase in the number of clusters is not constant; there is a decrease when the threshold 188 

has a small value such as drought indicator ≤−2. The latter indicates that the number of clusters 189 

with extreme drought (drought indicator ≤−2) tends to be smaller. In the case of the cluster size 190 

filter (number of cells), the decrease in the number of clusters is more evident than in the 191 

drought indicator threshold (Figures 3 and 4). Results show that when the cluster size filter 192 

increases, it separates large clusters into smaller clusters with shorter durations. 193 

https://platform.princetonclimate.com/PCA_Platform/lafdmLanding.html
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Figures 3 and 4 display the clusters of one-month duration. Although these clusters have a 194 

number of cells greater than the cluster size filter in each case, they are small compared to the 195 

rest of the clusters in each case (Figures 3 and 4); for this reason, they were also removed. 196 

Figures 5 and 6 show the final results after removing the one-month duration clusters. Figure 197 

5 shows the droughts for all durations and magnitudes. In Figure 5, scarce events with durations 198 

greater than 100 months and a considerable number of cells are observed; most droughts have 199 

durations of less than 20 months. Figure 6 shows the results for droughts of up to 20 months 200 

and 10,000 cells. A direct relationship is observed between duration and magnitude. 201 

 202 

Figure 3. Number of 3-D clusters (nc) calculated for different drought indicator (DI) thresholds and 203 
cluster size filters. The duration (months) and magnitude (number of cells) are indicated. Note: The 204 
number of cells for the first threshold is up to 10×106, while for the rest it is up to 10×105. 205 

DI threshold=0

duration [months]

n
o
.

o
f 

ce
lls

−1 −1.5 −2

filter=

4

9

16

25

36

49

64

81

100

0

duration [months] duration [months] duration [months]

n
o
.

o
f 

ce
lls

n
o
.

o
f 

ce
lls

n
o
.

o
f 

ce
lls

n
o
.

o
f 

ce
lls

n
o
.

o
f 

ce
lls

n
o
.

o
f 

ce
lls

n
o
.

o
f 

ce
lls

n
o
.

o
f 

ce
lls

n
o
.

o
f 

ce
lls

Cluster size 



This is a non-peer reviewed preprint, manuscript submitted to Advances in Hydroinformatics (AGU book) 

 206 

Figure 4. As Figure 3 but for durations up to 20 months and sizes up to 10,000 cells. 207 
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 209 

Figure 5. Number of 3-D clusters (nc) calculated for different drought indicator (DI) thresholds and 210 

cluster size filters. The duration (months) and magnitude (number of cells) are indicated. Note: The 211 

number of cells for the first threshold is up to 10×106, while for the rest it is up to 10×105. In these 212 

results, the 3-D clusters of one-month duration were excluded. 213 
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 215 

Figure 6. As Figure 5 but for durations up to 20 months and sizes up to 10,000 cells. 216 

Figure 7 shows the percentages of drought area (PDAs) without considering the one-month 217 

duration clusters. PDAs were calculated for each 3-D cluster as the number of cells of each 218 

drought area at each time step divided by the total number of cells of the region (24,877). This 219 

figure helps visually compare the durations and magnitudes of the events for each threshold. 220 

Figure 7 shows a drought event with a duration almost equal to the analysis period when the 221 

threshold is 0. This result shows that, even in this large study area, there are consecutive 222 

drought areas in time with at least 20% of the total study area that are connected to each other 223 

and form the long-lasting 3-D cluster. For the threshold of 0, the use of the cluster size filter 224 

does not show any significant difference. In the other thresholds, more events with shorter 225 

durations and less extensive areas are observed. In general, as the threshold decreases, 226 

indicating a more severe drought, the events are smaller in magnitude (size) and duration. The 227 

results also show that the 2010–2020 decade had more events with considerable magnitudes 228 

that indicated severe and extreme drought. 229 
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 230 

Figure 7. Percentage of drought area calculated for each 3-D cluster. Results for each drought indicator 231 

(DI) threshold and cluster size filter. Drought areas are shown for the period 1950–2017. Drought events 232 

are indicated in different colors.  233 

The number of 3-D clusters for each drought indicator threshold and cluster size filter is 234 

presented in Figure 8. The method developed to find the optimal cluster size filter (Sect. 2.1) 235 

shows, for instance, that, for the threshold of −1, the cluster size filter is 49 cells. Table A1 236 

shows the results for each of the thresholds. In the following sections, the results of the drought 237 

characterization are shown for this optimal cluster size filter. For the case of the drought 238 

indicator threshold, we focused our analysis on the threshold of −1. In general, the −1.5 and −2 239 

thresholds produced more events but with shorter durations and magnitudes (sizes) (Figure 7). 240 

The threshold of 0 produced a long-lasting event and some small events. Based on the results, 241 

this threshold of 0 is not recommended for drought calculation.  242 
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 243 

Figure 8. Identification of the optimal cleaning filter size. The result for the threshold of −1 is 244 

highlighted. 245 

3.2 Drought characterization 246 

A total of 399 drought events were identified. Figure 9 shows that the distribution of the 247 

duration and magnitude (number of cells) is mainly concentrated in durations of less than 20 248 

months and 10,000 cells. Few events lasting around 24 months or longer are observed. The 249 

linear correlation coefficient between the duration and magnitude is R2 = 0.89, indicating an 250 

almost linear relationship between these two characteristics.  251 

 252 

Figure 9. (a) Duration (months) and magnitude (number of cells) of the droughts for the period 1950–253 

2017. (b) Detail for drought durations up to 20 months and 10,000 cells. 254 
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The centroids of each of the 3-D clusters are shown in Figure 10a. The centroids are classified 255 

by their duration in four intervals: 2 to 6, 7 to 12, 13 to 24, and 24 or more months. The centroids 256 

of the clusters of two to six months are observed practically throughout the entire study area, 257 

as well as the centroids of the seven- to 12-month events. Those of durations of 13 to 24 months 258 

are also seen, although with less density. Most of the centroids of 3-D clusters with durations 259 

greater than 24 months are located in the central region of the study area, although two 260 

centroids are located outside this region, one in the south and one in the north. Figure 10b 261 

shows the number of 3-D clusters counted in each cell. In general, 14 or more clusters are 262 

observed over the study area, except in some areas of the Amazon basin, upper Magdalena 263 

River basin in Colombia, the north of Uruguay, the northwest of Argentina, and the south of 264 

Chile. One of the areas with the least occurrence is the lower Amazon basin, near the discharge. 265 

 266 

Figure 10. (a) Centroids of the 3-D clusters for the period 1950–2017. Centroids are classified by cluster 267 

duration [months]. (b) Occurrence of the 3-D clusters: each cell indicates the number of 3-D clusters 268 

that took place there in the period 1950–2017. 269 
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1957–1972, 2006–2017, and 1984-1994. 271 

The drought with the longest duration is shown in Figure 11. The drought lasted from May 272 

1957 to September 1972 (185 months). The 3-D cluster is shown in Figure 11a. It is observed 273 
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that this cluster completely covered the region (Figure 11a and 11b). However, its spatial 274 

distribution over time varied significantly, concentrating mainly in the north and south of the 275 

subcontinent. Figure 11b shows the distribution of the duration of each cell in the study area. 276 

This figure shows the amount of time each cell was in drought for this particular drought. In 277 

general, the central, north–central, and south–central regions had the longest amount of time in 278 

drought. The spatial trajectories of this drought are shown in Figure 11c. It is observed that the 279 

centroids of each drought area follow a pattern in which the trajectories go from northeast to 280 

south, northwest, and back to northeast, mostly in a clockwise direction, although the direction 281 

is counterclockwise in the last two years. 282 

 283 

Figure 11. (a) Drought from May 1957 to September 1972. (b) Percentage of duration: each cell shows 284 

the percentage of time in drought with respect to the duration of the indicated drought. (c) Monthly 285 

drought trajectories per year; the onset and the end of the drought trajectory are indicated for each year 286 

by blue and red circles. 287 
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The second-longest drought is shown in Figure 12. This drought lasted from December 2006 288 

to September 2017 (130 months). The 3-D cluster is shown in Figure 12a. The event was mainly 289 

concentrated in the southwestern and southern coast of South America and some areas of Brazil 290 

(Figure 12a and 12b). The trajectories of this drought presented in Figure 12c show a different 291 

dynamic from the drought shown previously (Figure 11c). The trajectories in the first years are 292 

almost diagonal, from southwest to northeast. Later, the trajectories are more concentrated in 293 

the center and then again extend to the southwest and northeast. At the end of the duration, 294 

more trajectories are shown on the coasts of the region. 295 

 296 

Figure 12. (a) Drought from December 2006 to September 2017. (b) Percentage of duration: each cell 297 

shows the percentage of time in drought with respect to the duration of the indicated drought. (c) 298 

Monthly drought trajectories per year; the onset and the end of the drought trajectory are indicated for 299 

each year by blue and red circles. 300 
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The third-longest drought is shown in Figure 13. The 3-D cluster spans almost the entire study 303 

area, although it was mostly concentrated in the northwest and south of the subcontinent 304 

(Figure 13a and 13b). The largest extent was observed in the period from 1988 to 1991 (Figure 305 

13a). The trajectories of this drought show three main patterns (Figure 13c): they run from 306 

northeast to south in the first years, they then change from north to south, and finally they are 307 

located in the north. 308 

 309 

Figure 13. (a) Drought from October 1984 to September 1994. (b) Percentage of duration: each cell 310 

shows the percentage of time in drought with respect to the duration of the indicated drought. (c) 311 

Monthly drought trajectories per year; the onset and the end of the drought trajectory are indicated for 312 

each year by blue and red circles. 313 
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Figure 14a shows the droughts reported in the emergency events database (EMDAT) (Guha-315 

Sapir, 2019) for some of the region’s countries. The percentages of drought area calculated for 316 

each of the countries are shown in Figure 14b. The results show that, in general, the occurrence 317 

of the calculated droughts coincides with the information reported. The results indicate some 318 
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periods with important drought events in the 1960s, 1980s, 1990s, 2000s, and 2010s. In the 319 

most recent decades (the 2000s and 2010s), Brazil, Bolivia, Paraguay, Chile, and Argentina 320 

have experienced more droughts than in the rest of the period. The percentage of drought area 321 

shows that drought extent increases in the second semester of the year and concludes in the 322 

first semester of the following year, coinciding with the growing period of various crops of the 323 

region. These droughts can compromise the optimal soil moisture conditions necessary for the 324 

crops. According to EMDAT, Brazil is one of the countries that faced the most economic losses 325 

due to droughts in the period of analysis. The drought event presented in Figure 12 that lasted 326 

from 2006 to 2017 mainly encompassed Bolivia, Paraguay, Chile, Argentina, and part of 327 

Brazil, as shown by the percentages of drought area in Figure 14b. 328 

 329 

Figure 14. (a) Reported droughts in the EMDAT database. (b) Percentage of drought area calculated 330 

for each country. 331 
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4 Summary and conclusions 332 

This research introduces a method of calculating the optimal cluster size filter for the 3-D 333 

characterization of drought. The combined effect of the cluster size filter and different drought 334 

indicator thresholds to calculate drought is also presented. The methodology was tested in 335 

South America with data from the Latin American Flood and Drought Monitor (LAFDM) for 336 

1950–2017.  337 

The following conclusions are drawn:  338 

 The drought indicator thresholds of 0, −1, − .5, and −2 were tested. In general, the −1.5 339 

and −2 thresholds produce more drought events with shorter durations and smaller 340 

magnitudes (sizes) than the threshold of −1. The threshold of 0 produces a long-lasting 341 

drought event and some small events. Based on the results, this threshold is not 342 

recommended as a method of calculating 3-D drought clusters.  343 

 The optimal cluster size filter depends on the spatial resolution of the data and the 344 

threshold used.  345 

 Durations and magnitude (number of cells) are mainly concentrated in less than 20 346 

months and 10,000 cells. Few events lasting around 24 months or longer are observed. 347 

A linear relationship between these two characteristics is found (R2 = 0.89). 348 

The main findings for South America are as follows: 349 

 Droughts of two to six months are observed practically throughout the entire study area, 350 

as well as 12-month droughts. 351 

 Some regions show little occurrence of droughts, such as the Amazon basin, upper 352 

Magdalena River basin in Colombia, the north of Uruguay, the northwest of Argentina, 353 

and the south of Chile. One of the areas with the least occurrence is the lower Amazon 354 

basin, near the discharge. 355 

 The 1957–1972, 2006–2017, and 1984–1994 droughts were the most extreme. 356 

 In general, the occurrence of the calculated droughts coincides with the information 357 

reported. The 1960s, 1980s, 1990s, 2000s, and 2010s were the periods with more 358 

droughts.  359 

 In the most recent decades (the 2000s and 2010s), Brazil, Bolivia, Paraguay, Chile, and 360 

Argentina have shown a greater occurrence of droughts than in the rest of the period.  361 

Further research may include extension and testing of this methodology on other types of 362 

drought indicators. A more detailed study of the characteristics of droughts is also 363 
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recommended. The relationship between drought and the South American Low-Level Jet 364 

phenomenon (Montini et al., 2019), the moisture transporter from the Amazon to the 365 

subtropics, is another interesting topic that could be explored in further studies. The results of 366 

this study are important for the calculation and characterization of drought and better 367 

monitoring and the construction of future drought forecasting systems in the region. 368 
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Appendix A 378 

Table A1 Angle C [degrees] for each drought indicator (DI) threshold and cluster size filter. The lowest 379 

C angle is indicated with an asterisk. For the case of the threshold of −1, the result is indicated in bold. 380 

Cluster size filter [number of cells] DI threshold = 0 −1 −1.5 −2 

0 - - - - 

4 177.2 179.7 179.6 179.9 

9 177.6 178.0 179.1 178.7 

16 168.0 178.8 178.3 178.6 

25 145.1* 175.5 177.0 176.4 

36 168.7 171.7 174.9 179.5 

49 173.8 168.1* 177.3 175.9 

64 152.4 174.0 170.1* 172.8* 

81 153.3 171.5 179.2 173.5 

100 - - - - 

 381 

 382 

 383 

 384 
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