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Abstract

Conceptual hydrological models imply a simplification of the complexity of the hydrological system; however, it lacks the

flexibility in reproducing a wide range of the catchment responses. Usually, a trade-off is done to sacrifice the accuracy of

a specific aspect of the system behavior in favor of the accuracy of other aspects. This study evaluates the benefit of using

a modular approach, “The fuzzy committee model” of building specialized models (same structure associated with different

parameter realization) to reproduce specific responses (high and low flow response) of the catchment. The study also assesses

the applicability of using predicted runoff from both specialized models with certain weights based on a fuzzy membership

function to form a fuzzy committee model. This research continues to explore the fuzzy committee models first presented by

[Solomatine, 2006] and further developed by [Fenicia et al., 2007; Kayastha et al., 2013]. In this paper, weighting schemes with

power parameter values are investigated. A thorough study is conducted on the relation between the fuzzy committee variables

(the membership functions and the weighting schemes), and their effect on the model performance. Furthermore, the Fuzzy

committee concept is applied on a conceptual distributed model with two cases, the first with lumped catchment parameters

and the latter with distributed parameters. A comparison between different combinations of the fuzzy committee variables

showed the superiority of all Fuzzy Committee models over single models. Fuzzy committee of distributed models performed

well, especially in capturing the highest peak in the calibration data set; however, it needs further study of the effect of model

parameterization on the model performance and uncertainty.
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Abstract 

Conceptual hydrological models imply a simplification of the complexity of the hydrological 
system; however, it lacks the flexibility in reproducing a wide range of the catchment responses. 
Usually, a trade-off is done to sacrifice the accuracy of a specific aspect of the system behavior in 
favor of the accuracy of other aspects. 

This study evaluates the benefit of using a modular approach, “The fuzzy committee model” of 
building specialized models (same structure associated with different parameter realization) to 
reproduce specific responses (high and low flow response) of the catchment. The study also 
assesses the applicability of using predicted runoff from both specialized models with certain 
weights based on a fuzzy membership function to form a fuzzy committee model. 

This research continues to explore the fuzzy committee models first presented by [Solomatine, 
2006] and further developed by [Fenicia et al., 2007; Kayastha et al., 2013]. In this paper, 
weighting schemes with power parameter values are investigated. A thorough study is conducted 
on the relation between the fuzzy committee variables (the membership functions and the 
weighting schemes), and their effect on the model performance. Furthermore, the Fuzzy committee 
concept is applied on a conceptual distributed model with two cases, the first with lumped 
catchment parameters and the latter with distributed parameters. 

A comparison between different combinations of the fuzzy committee variables showed the 
superiority of all Fuzzy Committee models over single models. Fuzzy committee of distributed 
models performed well, especially in capturing the highest peak in the calibration data set; 
however, it needs further study of the effect of model parameterization on the model performance 
and uncertainty. 

1. Introduction 

Conceptual models are a handy tool as they provide a simplified description of the complexity and 
heterogeneity of reality; consequently, they only produce a narrow range of catchment response, 
and the accuracy in reproducing a specific behavior may come against the accuracy of other aspects 
[Fenicia et al., 2007]. Using hydrological models with the best set of parameters result from the 
calibration of a single objective function might not capture the complexity of the rainfall-runoff 
relationship in all ranges of flow. 

The sources of errors in conceptual models, as described by [Agawa & Takeuchi, 2016] are that 
the model structure is not correct to some extent, even with optimization. Furthermore, parameters 
values obtained using a real measurement or estimated from equations differ from values that 
would achieve an optimal fit. Besides, the spatial variation in both climate variables and catchment 
characteristics are ignored[Beven, 1996]. 

The rainfall-runoff relationship is very complex and characterized by highly variable spatial and 
temporal properties. According to [Fenicia et al., 2007], catchment behavior may display different 
states characterized by phenomena that can generally be identified qualitatively but challenging to 
be quantified. Some of these phenomena are seasonality effects due to vegetations, land cover, 
changes in the top-soil, which affect processes like interception, infiltration. Therefore, catchment 
responses are season dependent.  



 

 

Furthermore, catchment hydrological states are the main driving forces for the catchment 
responses. Changes in the hydrological state could change the catchment conditions from dry to 
wet or high to low flow. The changes also affect the contributing areas (saturated areas close to 
the river streams) to discharge, leading to a change in the domain of the hydrological processes. 
Last, most hydrological processes are characterized by nonlinear behavior like rainfall intensities, 
groundwater level, soil moisture conditions. These processes, in return, control the surface runoff, 
fast and slow runoff response.  

Calibration of Rainfall-runoff models depends mainly on the objective function used during 
calibration, and therefore, different objective function results in different parameter sets. Having 
more than one set of parameters for one catchment violates the model's physical justification, 
which ideally should have one unique parameter set [Oudin et al., 2006a]. The unavoidable 
dependency of calibration on objective function can be turned into a solution to the different states 
of the catchment responses. Hence objective function can be adjusted to handle the practical issue 
for which the model is built.  

By acknowledging the limitations of the conceptual models, [Corzo & Solomatine, 2007; Fenicia 
et al., 2007; Fernando et al., 2009; Oudin et al., 2006b] have proposed approaches for the 
representation of a catchment behavior. Instead of searching for the best model to represent the 
whole domain in rainfall-runoff relation, runoff can be categorized into different flow regimes, 
and different models can be calibrated to reproduce each regime (Figure 1). Such specialized 
models then can be dynamically combined to establish a more comprehensive representation of 
the catchment processes. This approach is called the modular or multimodel approach and is 
considered one way of adding hydrological knowledge into models [Corzo & Solomatine, 2007]. 
The multimodel approach can implicitly consider the variability in the behavior of the catchment 
response that is not explicitly taken into account in the conceptual model realization  

The modular approach considers switching between different models representing different 
aspects of system behavior. Therefore these models have to address different ranges of the flow 
hydrograph [Abrahart & See, 2000] or different seasons. Based on [Corzo & Solomatine, 2007], 
the flow hydrograph was partitioned using three different methods: clustering-based classification, 
baseflow separation, and temporal segmentation, Jain & Srinivasulu, 2006 have decomposed the 
hydrograph into different segments relying on the concept that different physical processes 
generate different hydrograph segments. Using Multi-objective optimization to address different 
targeted hydrological responses (High and low flow) will result in a set of optimal solutions called 
“Pareto front”. The Pareto front represents a trade-off between the selected objectives. None of the 
optimization objectives can be further improved without the degradation of the other. 

To incorporate the hydrological knowledge encapsulated in each of these specialized “local“ 
models, [Clemen, 1989] has explored different architectures to combine models and forecasts, 
[Jain & Srinivasulu, 2006] has used a straight forward switching between models at different time 
steps. Various ways have been proposed to include a system of weighing which can be very simple 
like the averaging method by [Shamseldin et al., 1997] or a more complex technique [Ajami et al., 
2006; Duan et al., 2007; Shamseldin et al., 1997; Xiong et al., 2001]. The Bayesian model 
averaging scheme (BMA) [Duan et al., 2007] exploit predictions made by different hydrological 
models to form a probabilistic prediction. BMA weighs different models based on their 
probabilistic likelihood measures.[Xiong et al., 2001] applies the Takagi-Sugeno fuzzy system 



 

 

[Takagi & Sugeno, 1985] to combine forecasted discharge from different models. Specialized 
models can also be combined based on a membership function. Membership function gives each 
model a different weight at every time step based on the runoff status [Kayastha et al., 2013]. 
Models can also be combined using a time-varying seasonal index extracted from a state variable 
or climatic data to weigh the specialized models [Oudin et al., 2006a]. 

The “Fuzzy committee“ approach by [Solomatine, 2006] uses a membership function to express 
the difference in the degree of believability of the outputs of two models (high & low flow models).  
The membership function allows for a soft combination of models' output and prevents unrealistic 
discontinuities in the simulated system behavior (Figure 1). 

 

Figure 1. The concept of building local models represents different flow regimes and combining 
the flow simulated by these models using fuzzy membership function. 

This research explores the fuzzy committee models first presented by [Solomatine, 2006] and 
further developed by [Fenicia et al., 2007; Kayastha et al., 2013].By building and combining 
different specialized models across weighting schemes and membership functions. In this paper, 
different fuzzy committee model setups are tested with different goodness of fit. As recommended 
by [Kayastha et al., 2013], weighting schemes with a power parameter of a value of 2 and 3 are 
considered. A thorough study is performed on the relation between the fuzzy committee 
parameters (the membership function (gamma, delta, the weighting schemes’ type, and power 
parameter) and their effect on the model performance. The fuzzy committee concept is applied to 
a conceptual distributed model. Two cases are considered. The first uses a lumped catchment 
parameters where two specialized models represent the whole catchment. The second uses 
distributed parameters where each cell is represented by two specialized models.  

2. Case Study 

The study catchment is in the Jiboa River in the central part of El Salvador. The catchment (Figure 
4) spread over 432 km2 with the outlet stations Puente Viejo located at (13.52° N, 88.98° W). The 
catchment consisted of four topographical areas; San Vicente Volcano with an elevation of 2171 
m a.s.l (above sea level) and very steep slopes, The Ilopango Lake (covers an area of 70 km2), The 
Balsamo mountain range area with an elevation of 1000 m a.s.l, the coastal plain area with 
elevation ranges from 0-100 m a.s.l.  



 

 

The basin is instrumented by a telemetry system of 15-minute time step rainfall gauges & a water 
level gauge at the outlet of the catchment. For calibration of the model, rainfall & water level 
values were aggregated to the hourly time step, while the water level was further converted into 
discharge using a rating curve equation. Monthly potential evapotranspiration values were 
obtained for each station using a potential evapotranspiration-elevation relation derived by the 
Hargreaves method & Linear regression[SNET, 2005]. Hourly temperature estimates were 
calculated from one available daily station using the sine function and were used for the whole 
catchment. The lake is simulated using a storage-outflow relation, where storage changes from 
inflow, direct rainfall, and evaporation are updated each time step. Outflow from the lake is 
calculated using the newly calculated storage. Inverse square distance weighting method was used 
to calculate distributed data for different spatial resolution for all data required for the hydrological 
simulation (precipitation, temperature, potential evapotranspiration). 
 

 

Figure 2. a) Jiboa Catchment stations and b) model setup. 

3. Methodology 

The first step in building a fuzzy committee is hard partitioning, where a Pareto-optimal set of 
specialized non-dominated models is created via multi-objective optimization. Out of many 
possible models generated, those better representing high and low regimes are selected. The first 
step results in two specialized-high and low flow-models addressing the catchment response they 
are built to reproduce. The second step combines the simulated discharge from each model 
developed in the first step, using a fuzzy membership function. The Fuzzy membership function 
consists of two parameters γ and σ whose values are obtained using optimization; the result of this 
step will be one simulated discharge output. (see Figure 3) 

The term committee model will refer to a committee of two specialized models for low and high 
flow combined using a weighting scheme with optimized values of γ & δ to minimize the value of 
RMSE. 



 

 

 

Figure 3. Proposed steps and approaches for improving committee models using a dynamic 
weighting scheme. 

3.1. Model Structure description 
 
HBV-96 lumped conceptual model [Lindström et al., 1997] is used in this study to simulate the 
vertical movement of water for each cell/sub-catchment. The raster-based distributed model is built 
where runoff from each cell is routed directly to the outlet using the Maxbas function (Figure 4); 
each cell has a MAXBAS value depends on its flow path length. Discharge at the outlet is obtained 
by summing the routed runoff from all cells at each time step. Only superficial discharge (surface 
runoff and interflow generated from upper zone UZ reservoir in the HBV model structure) is 
routed, while flow generated from lower zone LZ is assumed to be lumped for the whole catchment 
(Figure 4).Several trials have been made to adapt the model structure to the spatial separation of 
the hydrological process, which happens when using the distributed model, as stated by [Dehotin 
& Braud, 2008]. The beta parameter is responsible for passing water to the upper zone (Eqn.1). 
To increase the sensitivity of the model structure to catchment fast response, beta is considered in 
the calibration with a value greater than 1. Additionally, a direct runoff rule is added to move water 
from the soil moisture tank to the upper zone whenever soil moisture exceeds the soil's field 
capacity [Schumann, 1993].  

           (1) 



 

 

 

Figure 4: Model structure. 

3.2. Model calibration & building specialized “local” models 
Model calibration follows a multi-objective optimization using the non-dominated sorted genetic 
algorithm NSGA-II by [Deb et al., 2002] is used where different objective functions are used as 
introduced by [H. V. Gupta & Sorooshian, 1998]. The result of the multi-objective optimization 
is a Pareto-optimal set of specialized models, which are nondominated solutions, and all are 
equally important. Having more than one solution indicates the conflicting nature of solutions, 
stating that optimal performance in one objective is paid in terms of suboptimal performance in 
other objectives. Every solution has its limitations and strengths in reproducing different catchment 
responses as a reflection of the associated objective function. 

Model performance is always measured based on how close the simulated flow to the observed 
hydrograph is and how much the model succeeds in reproducing the streamflow volume correctly. 
Therefore, high and low flow were selected as distinct flow regimes and states of the system 
behavior; if the model managed to capture both states, the overall performance would be improved. 
The objectives of the modular model are to reproduce the system behavior during both regimes as 
accurately as possible. Root mean square error (RMSE) with 𝑊  & 𝑊  as weighting schemes 
(Eqn.2 & 3) were used to put a higher emphasis on high and low flow values, respectively. 

𝐑𝐌𝐒𝐄𝐡𝐟
𝟏

𝐧
∑ 𝐐𝐨𝐛𝐬𝐢 𝐐𝐬𝐢𝐦𝐢

𝟐𝐧
𝐢 𝟏 ∗ 𝐖𝐡𝐟,𝐢      (2) 

𝐑𝐌𝐒𝐄𝐥𝐟
𝟏

𝐧
∑ 𝐐𝐨𝐛𝐬𝐢 𝐐𝐬𝐢𝐦𝐢

𝟐𝐧
𝐢 𝟏 ∗ 𝐖𝐥𝐟,𝐢       (3) 

Where 𝑄𝑜𝑏𝑠 , 𝑄𝑠𝑖𝑚  are the observed flow and simulated flow respectively at each time step, Wlf 
and Whf are the two weighting functions which W  to place high weights on low flow and low 
weights on high flow values and W  to place stronger weights on high flow and weaker weights 
on low flow values on the hydrograph. The objective function, together with the weighting 
function, will be referred to as a weighting scheme (WStype), the corresponding figures & 
equations for each WStype are below. 



 

 

 

Figure 5. Weighting schemes for weighted root mean squared error as an objective function. Wlf 
and Whf are obtained from Eqn.4-7, a) WS-I, b) WS-II, c) WS-III, and d) WS-IV. 

Table 1. Weighting schemes for root mean square error for high (RMSE ) & low flow 
(RMSE ) l and h in the previous equations are calculated as (Eqn.8) 

WStype 𝐖𝐥𝐟 𝐖𝐡𝐟 Eq Figure 

I 𝑙  ℎ  4 Figure 5-a) 

II 

0, 𝑖𝑓 𝑙  𝛼
1
𝛼

∗ 1 𝑙
2
α

∗ 1 𝑙 1 , 𝑖𝑓 𝑙  𝛼
 

 

1, 𝑖𝑓 ℎ  𝛼
ℎ/𝛼 , 𝑖𝑓 ℎ  𝛼 

 5 Figure 5-b) 

III 

0, 𝑖𝑓 𝑙  𝛼
1
𝛼

∗ 1 𝑙
2
α

∗ 1 𝑙 1 , 𝑖𝑓 𝑙  𝛼
 

1, 𝑖𝑓 ℎ  𝛼
0, 𝑖𝑓  𝛼  6 Figure 5-c) 

IV  

0, 𝑖𝑓 𝑙  𝛼

1
1 l
α

, 𝑖𝑓 𝑙  𝛼
 

1, 𝑖𝑓 ℎ  𝛼
0, 𝑖𝑓  𝛼  7 Figure 5-d) 

𝒍 𝑸𝒐𝒃𝒔,𝒎𝒂𝒙 𝑸𝒔𝒊𝒎,𝒊 /𝑸𝒐𝒃𝒔,𝒎𝒂𝒙,   𝒉 𝑸𝒐𝒃𝒔,𝒊/𝑸𝒐𝒃𝒔,𝒎𝒂𝒙     (8) 

Where 𝑄 ,  is max observed flow value, α is a threshold for selecting weights, N is the power 
(see Table 1). N was chosen to be 2 & 3, the value of α is a ratio between calculated discharge at 
a particular time step and the maximum discharge value in the calibration data set (𝑄 /𝑄 , ). 
α, determines the range of values where both models are working together, and the range where 
discharge value from the High flow model is only considered, α was chosen to be 0.75.  



 

 

It is important to mention that the values of RMSE , RMSE  and 𝑅𝑀𝑆𝐸 are calculated differently 
and cannot be compared to each other, as they have been multiplied by different weights. RMSE  
evaluates the error in low flow and RMSE  evaluates the error in high flow while RMSE evaluates 
the error in the general flow. Data used in the calibration is almost two years and a half-hourly 
time step, two wet seasons were used in the calibration dataset and one in the validation. 

3.3. Combining specialized models 
The main objective is to produce a flow simulation efficient in both low & high flow domains 
using time-varying weights, as mentioned earlier. Obtaining a competent solution in all flow 
regimes is very difficult, and using a specialized model in both high & low flow is a better way to 
achieve a general efficient model. 

The challenge in combining different specialized models built under different flow regimes is to 
determine which model will work and how to switch smoothly from one model to another carrying 
the water balance information, and in case more than one models are working at a time how to 
handle the compatibility at the boundaries. 

In order to avoid such complication, using a weighting scheme which guarantees a smooth 
transition between models can be the solution, and the share of each specialized model will be 
determined using a fuzzy membership function described by [Fenicia et al., 2007; Kayastha et al., 
2013; Solomatine, 2006]. 
In the weighting scheme, a trapezoidal function with two parameters γ & δ is used, wherein the 
membership function of the low flow model a weight of 1 will be given to low flow values if the 
relative flow is below parameter γ (Figure 6 c)), then starts to decrease when relative flow values 
are between γ & δ (both models are working together), till it reaches zero beyond the boundary of 
parameter δ (Figure 6 c)). Similarly, the membership function of a high flow model is working 
but in the opposite logic. The membership functions are shown below (Eqn.9 & Eqn.10 ) 

𝑴𝒍𝒇

𝟏 , 𝒊𝒇 𝒉 𝜸

𝟏
𝒉 𝜸

𝜹 𝜸
𝑵 , 𝒊𝒇 𝜸 𝒉 𝜹

𝟎, 𝒊𝒇 𝒉 𝜹

       (9) 

𝑴𝒉𝒇

𝟎 , 𝒊𝒇 𝒉 𝜸
𝒉 𝜸

𝜹 𝜸

𝟏
𝑵 , 𝒊𝒇 𝜸 𝒉 𝜹

𝟏, 𝒊𝒇 𝒉 𝜹

       (10) 

The output of the two specialized models are multiplied by the previous weights and then 
normalized, so the final calculated flow from the committee models will be as follows (Eqn.11): 

The combining function of high and low flow specialized models 

𝐐𝐂,𝐢 𝐌𝐥𝐟,𝐢 ∗ 𝐐𝐥𝐟,𝐢 𝐌𝐡𝐟,𝐢 ∗ 𝐐𝐡𝐟,𝐢 / 𝐌𝐥𝐟,𝐢 𝐌𝐡𝐟,𝐢       (11) 

Where Q ,  and Q ,  are simulated high and low flows, respectively,M and M  are membership 
functions for low and high flow models, respectively, i is the time step, and γ & δ are two thresholds 
for low and high flows, respectively. 



 

 

N is the power value to smooth the transition between models; for Type A, N is equal to one; for 
Type B, N is equal to two (see Figure 6). 

 

 

Figure 6. Fuzzy membership functions to combine specialized models, a) MF-A uses a linear 
transition between ϓ and σ threshold (N equals1), and b)MF-B uses nonlinear transition with N 
equals 2, c) segments of the hydrograph where each part of the membership function is applied.   

 
γ & σ are the membership function thresholds which represent switches in the catchment 
behaviour; these switches could be a reflection of changing in contributing area that feeds the 
outflow or changing in the channel properties [Fenicia et al., 2007]. 
When there is no way to quantify the change in the catchment behaviour into thresholds, γ & σ 
could be determined using optimization to minimize the root mean squared error of the 
committee model. 
  



 

 

3.4. Model setup  
Different spatial setups were used to simulate the hydrological response of the catchment. The 
presence of the lake prevented the representation of the whole catchment using one lumped model. 
Therefore the lake and all the upstream sub-catchments to the lake were represented as one lumped 
model (Figure 2), which will be referred to as lake sub-catchment. Different spatial resolutions 
are used to simulate the rest of the catchment (which will be referred to as the jiboa sub-catchment) 
in order to capture the spatial variability of the precipitation. 
Jiboa sub-catchment is simulated using different model setups as following: 

- Lumped model (two models in total).  
- Committee of specialized lumped models (Lumped-MF-A and Lumped-MF-B) where 

Two models- are combined using two different membership functions (four models in total, 
two specialized models for each sub-catchment). 

- Conceptual distributed model built with lumped catchment parameters (Dist-L) using 
different spatial resolutions (4 km, 2km,1km, and 500 m) (two models in total, one model 
for each sub-catchment)  

- Committee of conceptual distributed models (Dist-L-C two specialized models for the 
entire sub-catchment) built with lumped catchment parameters using a spatial resolution of 
4km2 (four models in total, two specialized models for each sub-catchment). 

- Conceptual distributed model built with distributed catchment parameters (Dist-D different 
parameter for each cell) using 4km2 spatial resolutions (one model for each cell, and one 
model for the lake sub-catchment). 

- Committee of conceptual distributed models (Dist-D-C two specialized models for each 
cell) built with distributed catchment parameters using a spatial resolution of 4km2 (two 
models for each cell and two specialized models for the lake sub-catchment).  

The lake sub-catchment is represented the same way in all models, and the only difference between 
models is the spatial representation of the Jiboa sub-catchment. 



 

 

 
Figure 7. Experimental models Setup. 

3.5. Evaluation criteria 
Different performance criteria were used to compare and asses the performance of each model, 
Nash-Sutcliffe efficiency coefficient (NSE) (Eqn.12), Nash-Sutcliffe with logarithmic values 
(Eqn.13), root mean square error (RMSE) (Eqn.15). 

𝐍𝐒𝐄 𝐇𝐅 𝟏
∑ 𝐐𝐨𝐛𝐬 𝐐𝐬𝐢𝐦 𝟐
𝐭

∑ 𝐐𝐨𝐛𝐬 𝐐𝐚𝐯𝐠 𝟐
𝐭

       (12) 

As the standard formula of Nash-Sutcliffe overestimates high values, so changing the values of 
flow by logarithmic values (Eqn.13) will flatten the high flow. The peaks and low flow values will 
be the same. As a result, the effect of the error in low flow values will dominate, and the error 
value will be more sensitive to error in low flow values [Krause et al., 2005] 

𝑵𝑺𝑬 𝒍𝒇 𝟏
∑ 𝐥𝐧 𝑸𝒐𝒃𝒔 𝐥𝐧 𝑸𝒔𝒊𝒎 𝟐
𝒕

∑ 𝐥𝐧 𝑸𝒐𝒃𝒔 𝐥𝐧 𝑸𝒂𝒗𝒈 𝟐
𝒕

      (13) 

The mean cumulative error measures how much the model succeeds in reproducing the streamflow 
volume correctly (Eqn.14). 

𝑾𝑩 𝟏𝟎𝟎 ∗ 𝟏 𝟏
∑𝑸𝒔𝒊𝒎

∑𝑸𝒐𝒃𝒔
)        (14) 

𝑹𝑴𝑺𝑬
𝟏

𝒏
∑ 𝑸𝒐𝒃𝒔 𝑸𝒔𝒊𝒎 𝟐𝒏
𝒊 𝟏        (15) 



 

 

[H. V. Gupta et al., 2009] have shown the limitation of using a single error function to measure 
the efficiency of calculated flow and showed that Nash-Sutcliff efficiency (NSE) or RMSE could 
be decomposed into three component correlation, variability, and bias. The KGE index (Eqn.16) 
has aggregated this information into one formula, which measures how far the values of these 
properties to the ideal point. 

𝑲𝑮𝑬 𝟏  𝒄 𝟏 𝟐 𝜶 𝟏 𝟐 𝜷 𝟏 𝟐      (16) 

where 𝑄obs is the observed discharge, 𝑄si𝑚 is the simulated discharge, and 𝑄𝑎𝑣g is the mean of 
observed discharges, 𝑐 𝑐𝑟𝑜𝑠𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑄𝑜𝑏𝑠 & 𝑄𝑠𝑖𝑚, α measures the variability 
in the data α 𝜎 /𝜎 , and β mean Qsim /mean Qobs  

4. Results and Discussion 

The conceptual representation of the catchment responses in the HBV model does not allow for 
simultaneous optimal representation of various behaviors of the catchment response. Therefore, 
the committee model approach is used to capture simultaneously different aspects of the catchment 
behavior  
 
For the lake sub-catchment, two specialized models have been built and used for the whole study 
without change, while for the Jiboa sub-catchment, different spatial discretization (lumped & 
distributed) were modeled using four different cell resolutions (4 km, 2km, 1km, and 500 m)(see 
Figure 7 and 0   



 

 

Model setup) 

For the lumped representation of the Jiboa sub-catchment, two specialized models have been built 
for each sub-catchment (two models for lake sub-catchment and two models for Jiboa sub-
catchment). The following table shows a summary of the performance of a different combination 
of committee models. 
 
Table 2. Performance of Committee models with a different combination of Weighting schemes 
and membership 

Model 
WS type Membership function 

Low flow 
RMSE (lf) 

High flow 
RMSE (Hf) 

RMSE KGE 

WS type N MF γ Δ Cal. Val. Cal. Val. Cal. Val. Cal. Val. 
Single Model 0.98 0.80 0.63 0.70 1.66 1.72 0.70 0.650 

Committee 
Model 

I 
2 

A 0.19 0.36 0.95 0.84 0.58 0.71 1.36 1.45 0.84 0.84 
B 0.23 0.26 0.97 0.90 0.59 0.72 1.39 1.51 0.84 0.84 

3 
A 0.17 0.43 0.80 0.68 0.42 0.47 1.28 1.34 0.88 0.87 
B 0.08 0.79 0.83 0.64 0.44 0.45 1.33 1.25 0.85 0.85 

II 
2 

A 0.15 0.35 0.80 0.65 0.75 0.88 1.33 1.37 0.85 0.83 
B 0.24 0.26 0.83 0.78 0.76 0.91 1.38 1.50 0.83 0.81 

3 
A 0.18 0.41 0.81 0.70 0.60 0.73 1.28 1.41 0.87 0.86 
B 0.06 0.72 0.84 0.65 0.61 0.70 1.33 1.31 0.86 0.87 

III - 
A 0.16 0.57 0.82 0.67 0.35 0.29 1.31 1.28 0.87 0.87 
B 0.10 0.84 0.84 0.65 0.34 0.26 1.34 1.22 0.86 0.87 

IV - 
A 0.19 0.61 1.01 0.85 0.33 0.24 1.32 1.26 0.86 0.86 
B 0.13 0.87 1.03 0.79 0.34 0.24 1.35 1.18 0.86 0.90 

 
  



 

 

 

Model 
WS type 

Membership 
function 

Low flow 
NSE (ln) 

High flow 
NSE 

WB 

WS type N MF Cal. Val. Cal. Val. Cal. Val. 

Single Model 0.6 0.821 0.615 0.691 99.48 85.08 

Committee 
Model 

I 
2 

A 0.66 0.843 0.741 0.781 98.54 89.08 
B 0.66 0.82 0.731 0.762 99.02 89.09 

3 
A 0.69 0.856 0.769 0.812 99.38 93.86 
B 0.68 0.864 0.750 0.836 99.89 87.57 

II 
2 

A 0.7 0.886 0.751 0.805 99.14 87.32 
B 0.69 0.84 0.734 0.764 97.35 85.08 

3 
A 0.7 0.854 0.770 0.792 98.84 93.25 
B 0.69 0.862 0.752 0.820 97.05 91.25 

III - 
A 0.68 0.887 0.759 0.830 99.07 93.15 
B 0.68 0.885 0.749 0.844 99.42 88.93 

IV - 
A 0.66 0.893 0.755 0.833 96.23 96.48 
B 0.65 0.895 0.746 0.855 95.88 93.72 

 
The values of both Gamma & Delta in Table 1are further visualized in Figure 8 to analyze the 
interaction between the weighting scheme, the membership function, and the power value N. 
Gamma & Delta are values of discharge threshold that determines how much both specialized 
models are working together. Figure 8 shows that MF-A makes specialized models work together 
more as it goes from WS-1 to WS-IV (the length of the lines increases from WS-I to WS-IV). On 
the other side, MF-B and N=2 for both WS-I & II specialized models are almost working 
individually (models work together only in the range of Q/Qmax between γ of 0.24 to δ of 0.27), 
while MF-B with WS-I, WS-II (N=3), WS-III & IV make models work together most of the time 
(in the range of Q/Qmax between γ=0.06 to δ = 0.88). 

 

Figure 8. Weighting scheme parameters (gamma & delta). The first part of the x-axis notation 
represents the WS-type, and the second part represents the membership function. The figure is 
divided into parts based on the Power N (WS-III & WS-IV do not have N). The line represents 
the range of discharge where both models (high and low flow models) are considered in the total 
calculated discharge for the committee model Qc. (i.e., for WS I-A for Q/Qmax less than 0.2, 



 

 

only the low flow model is considered, and the opposite for Q/Qmax is greater than 0.36, while 
for Q/Qmax between 0.2 and 0.36, both models are considered in the Qc). 

 
More comprehensive studying on the relation between membership function, weighting scheme & 
power value (N) shows that MF-B tends to make specialized models either to work together all the 
time or to work almost individually, as shown in, Figure 8 which gives higher values of errors as 
shown in Figure 9 (points with bigger size). Whereas MF-A makes specialized models work 
individually and together almost equal times (the difference between delta and gamma around 0.5), 
which gives better results for committee model performance. 

 
Figure 9. the relation between committee component and committee model performance, the 

first part of the points’ notation refers to the WS-type, the second part refers to the membership 
function (A or B), and the last part represents the power N (WS-III & WS-IV do not have N). 

The weights W , W  are mainly affected by the proportional value of the calculated discharge to 
the maximum observed discharge during the calibration period (𝑄 /𝑄 , ), since 𝑄 ,  
depend on the chosen period of the calibration, and it can be surpassed in the validation data set or 
when the model is used in operation, then W  will have negative values. To avoid such a problem, 
a wider range of discharge could be used. 
 
Parameters obtained by the optimization algorithm are shown in Figure 10. 



 

 

 
Figure 10. Normalized parameters plot (parameters corresponding to Pareto optimal solutions). 

In Figure 10, the parameters' values are normalized with respect to the lower and upper bounds so 
that the feasible range of all parameters could be shown at the same figure between 0 and 1. Each 
line on the figure represents one set of parameters, and it indicates the relation between the 
parameter range corresponds to the optimal solutions and the initial feasible parameter range. Any 
observations about the degree of variability of the parameters will not be in the right context as the 
figure represents only the values of the Pareto optimal-set of solutions (red squares in Figure 15), 
not all the solutions (other grey dots in Figure 15). 

The behavior of some parameters may follow a trend when moves from the best model for high 
flow to the best model for low flow; this behavior is obvious in parameter K, which is the discharge 
coefficient of the upper zone (subsurface flow) and K1 the discharge coefficient of the lower zone 
(groundwater flow). As expected, the high flow model overestimates the values of parameter K, 
K1 & C-lake as the trend of the model is to maximize the flow to get as close as possible to high 
flow values and the opposite for low flow. K1 & C-lake coefficients determine the lower reservoir's 
behavior, which dominates the catchment response during low flow simulation. 

As a result of the previous behavior, it was expected to have high flow and low flow hydrograph 
encompassing the observed flow hydrograph (high flow is upper and low flow is lower ), but this 
does not happen as explained by [Oudin et al., 2006a] this could happen in ideal cases but not 
most of the cases. The reason could return to the existence of a lake which dominates the lower 
response of the catchment, and during the low flow season (November till April), the total flow 
from the catchment comes only from the lake. 

For conceptual distributed models, Specialized models have been built using weighting scheme 1 
(N=3) for every single cell in the Jiboa sub-catchment. Membership function A was used to 
combine specialized models obtained earlier using two parameters, gamma & delta obtained by 



 

 

optimization using root mean square as an objective function. The committee of distributed 
models' performance shows very close results in both calibration and validation datasets (see 
Figure 11, Table 2 & Table 3), which implies that the models' degree of complexity is close to 
system complexity. Models in Figure 11 are ordered from left to right based on how many models 
represent the catchment responses. The single model uses one general model for the whole Jiboa 
sub-catchment, while the “Dist-D-C 4km” model uses two models for each cell. Moreover, the 
performance has improved from a RMSE of 1.64 m3/s in single models to 1.3 m3/s in committee 
models, the performance of all committees is very close, and a committee model representing Jiboa 
sub-catchment spatially as lumped using MF-A is the best-performed model see Figure 12 (for 
the indication of models’ name see Figure 7). 

 
Figure 11. performance Graph of all committee models, models are ordered from left to right 

based on the (how many models are used to represent the catchment). 

Table 3. Committee of conceptual distributed models’ performance  

Model Name 
Low flow 
RMSE (lf) 

High flow 
RMSE (Hf) 

RMSE KGE 
High flow 

NSE 
Low flow 
NSE (ln) 

Cal. Val. Cal. Val. Cal. Val. Cal. Val. Cal. Val. Cal. Val. 
Dist-L-C 4km 0.88 0.71 0.47 0.49 1.36 1.38 0.85 0.87 0.74 0.80 0.67 0.86 
Dist-L-C 2km 0.87 0.73 0.48 0.50 1.35 1.41 0.84 0.86 0.74 0.79 0.68 0.85 
Dist-L-C 1km 0.86 0.77 0.45 0.47 1.35 1.41 0.85 0.80 0.74 0.79 0.71 0.76 
Dist-L-C 500m 0.91 0.92 0.46 0.49 1.41 1.69 0.79 0.79 0.72 0.70 0.66 0.78 
Dist-D-C 4km 0.87 0.64 0.47 0.47 1.34 1.27 0.84 0.88 0.75 0.83 0.67 0.90 



 

 

 

Figure 12. Flow Hydrograph result from Committee model Lumped-MF-A. 

A closer check to the highest flood event during the period of the calibration dataset, it was found 
that the distributed committee model with 4 km spatial resolution Dist-D-C 4km (with distributed 
parameters) manages to capture precisely the peak at the right time while all the other committees 
overestimated the peak. 

 
Figure 13. performance of committee models at the highest flood event in the calibration period. 

The following Figure 14 and Table 3 show the performance of all models, with a normalized 
value of all metrics. For RMSE, RMSE(LF), and RMSE(HF), the highest error is at the top of the 
graph with a value of 1.656, 1.05, and 0.64, respectively, and the lowest values at the bottom of 
the graph with values of 1.282, 0.8 and 0.43 respectively. While for NSE(HF) and NSE(LF), the 
highest values are at the bottom of the graph with values of 0.71 and 0.77, respectively, and the 



 

 

lowest values at the top of the figure with values 0.55, 0.62 respectively. All single models (lumped 
and distributed) appears at the upper part of the figure (highest RMSE and lowest NSE), while 
Committee models appear at the bottom of the graph (lowest RMSE and highest NSE), which 
indicates that committee models outperformed all single models in all performance criteria, Figure 
13 with Figure 11 shows that the effect of cells size in distributed models is very slight, which 
indicates the need for more research regarding the conceptual distributed models. 

 

Figure 14. Normalized performance criteria of all models for the visual comparison, the 
maximum and minimum value of each error are presented. Committee models at the bottom have 

lower RMSE, RMSE(LF), and RMSE(HF) and higher NSE(LF) and NSE(HF); thus, the 
performance is better in all criteria. 

The best 70 model parameterizations found by NSGA-II are presented in Figure 15 as a Pareto 
front of optimal non-dominated solutions. It also illustrates the trade-off between selected 
objectives and indicates that the single models can not simultaneously match the full variability of 
the catchment response. The optimal set of parameters for the calibration dataset does not have the 
superiority over validation dataset, so the best-specialized models of high and low flow obtained 
for the calibration dataset are not the best (among other Pareto optimal set) in the validation dataset. 
 



 

 

 
Figure 15. Pareto optimal sets of specialized models result from the multi-objective optimization 

and the different models. 

Figure 15 shows that committee models are closer to the ideal point than the single models and 
all members of the Pareto front. This ensures that committee models’ performance is better than 
any other single model. The optimal models in calibration are not necessary to be the best in 
validation as well. However, the version in calibration and validation has to be very close. All 
combinations of committee models were better than all of Pareto members in both calibration and 
validation dataset. 

It is easily noticeable that the values of 𝑅𝑀𝑆𝐸  are always higher than the values of 𝑅𝑀𝑆𝐸  the 
reason is that the low flow period is much longer than the high flow period, so it is expected that 
longer periods would have higher error than shorter periods (number of low flow values is more 
than high flow values and in the formula of weighted root mean squared error summation of the 
error is divided by the same total number of observations see (Figure 15). 

A committee of specialized models developed to reproduce a particular aspect of the hydrologic 
response (high and low flow models) combined using a fuzzy membership function managed to 
exploit the strength of each model to improve the performance of the committee. This gives the 
closest performance to the ideal point than all single models and all Pareto front members, which 
ensures that the committee model’s performance is better than any other single model. 
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