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Abstract

Since the late 70’s, successive satellite missions have been monitoring the sun’s activity, recording the total solar irradiance

(TSI). Some of these measurements last for more than a decade. It is then mandatory to merge them to obtain a seamless

record whose duration exceeds that of the individual instruments. Climate models can be better validated using such long TSI

records which can also help provide stronger constraints on past climate reconstructions (e.g.,back to the Maunder minimum).

We propose a 3-stepmethod based on data fusion, including a stochastic noise model to take into account short and long-term

correlations. Compared with previous products, the difference in terms of mean value over the whole time series and at the

various solar minima are below 0.2W/m2. Next, we model the frequency spectrum of this 41-year TSI composite time series

with a Generalized Gauss-Markov model to help describing an observed flattening at high frequencies. It allows us to fit a linear

trend into these TSI time series by joint inversion with the stochastic noise model via a maximum-likelihood estimator. Our

results show that the amplitude of such trend is -0.009±0.010 W/(m2yr) for the period 1980-2021. These results are compared

with the difference of irradiance values estimated from two consecutive solar minima. We conclude that the trend in these

composite time series is mostly an artefact due to the coloured noise.

1



manuscript submitted to JGR: Atmospheres

Data Fusion of Total Solar Irradiance Composite Time
Series Using 41 years of Satellite Measurements

J.-P. Montillet1, W. Finsterle1, G. Kermarrec2, R. Sikonja3, M.
Haberreiter1,W. Schmutz1, T. Dudok de Wit4

1Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC), Davos,

Switzerland
2Geodätisches Institut, Leibniz Universität Hannover, Hannover, Germany
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Abstract
Since the late 70’s, successive satellite missions have been monitoring the sun’s activ-
ity, recording the total solar irradiance (TSI). Some of these measurements last for more
than a decade. It is then mandatory to merge them to obtain a seamless record whose
duration exceeds that of the individual instruments. Climate models can be better val-
idated using such long TSI records which can also help provide stronger constraints on
past climate reconstructions (e.g.,back to the Maunder minimum). We propose a 3-step
method based on data fusion, including a stochastic noise model to take into account short
and long-term correlations. Compared with previous products, the difference in terms
of mean value over the whole time series and at the various solar minima are below 0.2
W/m2. Next, we model the frequency spectrum of this 41-year TSI composite time se-
ries with a Generalized Gauss-Markov model to help describing an observed flattening
at high frequencies. It allows us to fit a linear trend into these TSI time series by joint
inversion with the stochastic noise model via a maximum-likelihood estimator. Our re-
sults show that the amplitude of such trend is ∼ −0.009 ± 0.010 W/(m2yr) for the pe-
riod 1980-2021. These results are compared with the difference of irradiance values es-
timated from two consecutive solar minima. We conclude that the trend in these com-
posite time series is mostly an artefact due to the coloured noise.

1 Introduction

Monitoring the Earth’s radiation budget is key to understand the anthropogenic
contribution to climate forcing (Kren, 2015). Total solar irradiance is Earth’s dominant
energy input. Global temperature and TSI are linked by the energy equilibrium equa-
tion for the Earth system. As summarized by Schmutz (2021), the derivation of this equa-
tion with respect to a variation of the solar irradiance has two terms: a direct forcing
term, which can be derived analytically and quantified accurately from the Stefan-Boltzmann
law, and a second term, describing indirect influences on the surface temperature. If a
small TSI variation should force a large temperature variation, then it has to be the sec-
ond indirect term that strongly amplifies the effect of the direct forcing. This amplifi-
cation mechanism has been debated in the scientific community for the past two decades
(Rind et al., 2014; Shapiro et al., 2017; Egorova et al., 2018; Schmutz, 2021), because
it will most likely call for a strong modification of the models that describe the Earth’s
climate response to variations in the solar radiative output. On shorter time scales (e.g.,
weekly), the existence of trend in the measurements could on a longer timescale (e.g.,
yearly) bias significantly the analysis of a solar phenomena (e.g., estimation of a new so-
lar minima). Therefore, it is important to produce robust and reliable TSI composite
time series using all the observations available recorded by successive space instruments
spanning 4 decades. The satellite measurements show that the TSI varies at all timescales
with a pronounced signature of quasi-periodicity of approximately 11 years (Fröhlich et
al., 1997; Kopp, 2016). Timescale variations can be classified in subdaily (minutes to hour),
daily to weekly, and yearly to one solar cycle. Major mechanisms, such as the evolution
of magnetic features on the solar surface, dominating each timescale are complex and
still under investigation within the solar physics community (Yeo et al., 2017; Xiang, 2019).
Several studies (Fontenla et al., 1999; Kopp & Lean, 2011; Yeo et al., 2021) have shown
that TSI variations on timescales of hours are a combination of the sunspots blocking
and the intensification due to bright faculae, plages and other elements. This contributes
to the difficulty of forecasting and modelling the solar cycle. All satellite observations
are limited in time, making composites the key to investigation over several decades. Merg-
ing all these observations is a difficult exercise with both a scientific and a statistical chal-
lenge (Dudok de Wit et al., 2017). Previous approaches (Willson, 1997; Fröhlich & Lean,
2004; Mekaoui & Dewitte, 2008) produced TSI composite time series by daisy chaining
all the available TSI observations without including any models of the stochastic noise
properties. The first methodology which relied on some knowledge of the underlining noise

–2–



manuscript submitted to JGR: Atmospheres

characteristics was developed by Dudok de Wit et al. (2017), including a data-driven noise
model and a multiscale decomposition.

We are here presenting a 3-step method. The first step relies on data fusion of mul-
tiple observations based on a Bayesian framework and Gaussian processes. Our compos-
ite spanning the last 4 decades is obtained in the second step by daisy chaining the sub-
time series resulting from the first step. The last step is the application of a wavelet fil-
tering to correct some unwanted correlations in the fused observations (i.e. bandwidth
noise). The robustness of our approach is guaranteed via a careful modelling of the TSI
observations during the data fusion process. Various assumptions formulated by data
scientists, can introduce biases in the data analysis. Some algorithms (Willson, 1997; Fröhlich
& Lean, 2004; Mekaoui & Dewitte, 2008) based on daisy chaining the raw TSI observa-
tions required the choice of the most trustworthy instrument, hence introducing a bias
toward preconceived ideas of how the TSI should vary. Note that our data fusion pro-
cess is merging dataset from subsequent solar missions only based on a few stochastic
noise assumptions. It circumvents the weakness of choosing the most trustworthy instru-
ment when performing the daisy chain on the TSI observations from various instruments,
which could influence towards preconceived ideas of how the TSI should vary (Dudok
de Wit et al., 2017).

Finally, recent studies (Scafetta et al., 2020; Dudok de Wit & Kopp, 2020; Schmutz,
2021) have debated about the existence of a trend in the composite time series. If it ex-
ists, the origin of this trend in the TSI observations is unknown: one could speculate that
it could be caused by a drift in the solar cycle peaks’ amplitude while the minima could
all remain at the same level. Another possibility is the presence of an unknown diffu-
sion process which could generate a transient signal making variations in the solar min-
ima. Dudok de Wit and Kopp (2020) argue in favor of an artifact generated by unwanted
noise looking at the difference between consecutive solar minima. Here, we go further
by performing a time-frequency analysis of various TSI composite time series produced
with various techniques, including our new product. We focus on describing the stochas-
tic noise properties within these 40-year long time series. We use this knowledge to model
the TSI composites and to conclude on the existence of a long-term trend.

2 Description of The Raw Dataset

Table 1 displays the instruments and the processing centers providing the obser-
vations relative to the various missions used in this study. The data processing, includ-
ing corrections for all a priori known influences such as distance from the sun (normal-
ized to 1 AU), radial velocity to the sun, and thermal, optical, and electrical corrections,
are usually implemented by each processing center, leading to level-1 time series. Most
of these instruments observe on a daily basis, with occasional interruptions and outliers.
Usually, one to three of them are operating simultaneously, although some days are de-
void of observations. Note that PMODv21a is the new VIRGO/SOHO dataset released
in March 2021 by PMOD using a new software described in Finsterle et al. (2021). PRE-
MOS (v1) is the released version described in Schmutz et al. (2013). ERBE and HF dataset
are retrieved from the PMOD archive and the corrections made by C. Fröhlich, which
are explained in Fröhlich (2006).

Figure 1 displays the observations from each mission spanning a specific period of
time. All the space missions have provided TSI observations with a different sampling
rate. Recent instruments make several observations per day (with a cadence of up to 50
s for TIM). Earlier radiometers such as ERBE observes the sun once every 14 days for
3 min on average, so that the stochastic noise properties of such sensors are different from
higher recording rate instrument. Note that active in Table 1 means that the instrument
is still operating. The dataset for these missions ends up in March 2021 for this study.
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Mission/Experiment/Instrument Version Start Date End Date

HF/NIMBUS-7 ERB - 11/1978 1/1993

ERBE/ERBS - 10/1984 8/2003

VIRGO/SOHO PMODv21a 01/1996 active

PREMOS/PICARD v1 06/2010 03/2014

ACRIM1/SMM 1 2/1980 7/1989

ACRIM2/UARS 7/14 10/1991 9/2000

ACRIM3/ACRIMSAT 11/13 04/2000 11/2013

TIM/SORCE 18 02/2003 02/2020

TIM/TSIS 3 11/01/2018 active

Table 1: Overview of the datasets used in this study including the starting & ending dates
for each mission and the latest version released by the various centers.

3 The 3-step Method to Produce the 41-year Long TSI Composite

3.1 Step 1: Merging Multiple Dataset with Data Fusion

Data fusion is the process of integrating multiple data sources to produce more con-
sistent, accurate, and useful information than that provided by each individual data source
alone. The process has found many applications in various areas ranging from industry
to geosciences and solar science (Cocchi, 2019).

Let us call the observations to merge (a(ti), b(ti), c(ti)) (with {i = [1, n]}) recorded
from 3 different instruments. The noise for each observation is additive and uncorrelated
between the instruments. The model of the observations is defined such as:



a(ti) = s(ti) + εa(ti), εa(ti) ∼ N (0, σ2
a)

b(ti) = s(ti) + εb(ti), εb(ti) ∼ N (0, σ2
b )

c(ti) = s(ti) + εc(ti), εc(ti) ∼ N (0, σ2
c )

(1)

where εa, εb and εc are zero-mean Gaussian distributed random variables (with vari-
ance σ2

a, σ2
b and σ2

c respectively) modelling the noise properties intrinsic to each instru-
ment. The data fusion algorithm aims at merging the observations available at each epoch
ti in order to get a reliable estimate of the true signal s, i.e. the solar activity (Feynman,
1982). We formulate the following assumptions: i) the solar cycle is an unknown pro-
cess (i.e. not a perfect sinusoidal signal with 11.5 year cycle) and its variations are ran-
dom (no a priori knowledge). Physically, it means that two or more radiometers mon-
itor the solar activity from a different distance due to different orbits, but monitoring
the same underlying information on the solar cycle. The model of s is a Gaussian pro-
cess (GP) with zero mean and a covariance function kθ (or kernel). A GP can be gen-
erally defined as a finite sum of random variables normally distributed where the over-
all distribution is a multivariate normal distribution (Kolar et al., 2020); ii) we consider
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the noise on the measurements zero-mean Gaussian distributed, we can then estimate
the parameters of the model of s(t) via maximum likelihood estimator (MLE). There-
fore, we have s ∼ GP (0, kθ(ti, ti){i=[1,n]}), with n the number of samples in the vari-
ous measurements a, b and c. The parameters of s(t), expressed in θ, are selected by max-
imizing the log-likelihood log p(y|x), where x and y are the concatenation of times, i.e.
x = [ti, ti], and corresponding corrected observations, i.e. y = [a(ti), b(ti), c(ti)]. The
main limitation of GPs is that given n observations, the inverse of the n-by-n covariance
matrix must be computed. Time complexity of such operation is of the order of O(n3),
which is computationally expensive for long records. Some of these missions have been
recording data over two decades generating large data sets. To overcome this limitation,
we approximate the exact GPs by utilizing sparse Gaussian processes (SGP), yielding
a maximization problem of the lower bound of log p(y|x) following Bauer et al. (2016):

log p(y|x) ≥ −1

2
yT (Qθ+σ2I)−1y− 1

2
log |Qθ + σ2I|−n

2
log (2π)− 1

2σ2
tr(kθ(x,x)−Qθ) (2)

where tr is the trace operator, Qθ = kθ(x,u)kθ(u,u)−1kθ(u,x), u is a vector of induc-
ing points to learn about the stochastic properties of the data, which allows to take into
account long-term and short-term correlations in the observations and are a reasonable
approximation of s. This subset of observations is used to estimate the initial param-
eters in θ. I is the identity matrix, with σ2I the noise component of the covariance ma-
trix (assuming uncorrelated measurements) formulated as diag([σ2

a, σ
2
b , σ

2
c , σ

2
a, σ

2
b , σ

2
c , ...]).

Next, we estimate the kernel kθ by maximizing the right-hand-side of Eq. (2) with re-
spect to u and θ. Further mathematical simplifications to estimate the kernel are vol-
untarily left out for clarity, but readers can refer to Kolar et al. (2020) for additional in-
formation. We emphasize that the number of inducing points defines the size of the ma-
trix Qθ which must be inverted in the maximization of Eq. (2). A large number of points
is necessary to avoid smoothing completely the short-term and long-term correlations
due to the difference in the recording rate of the instruments. The computational com-
plexity is in the order of O(nm2) (with m the number of inducing points, m � n ). There-
fore, we are limited by the computing resources available when dealing with a large ma-
trix (i.e. over m = 3000). Now, the number of inducing points varies due to the size
of the input datasets (i.e. size of the boxes defined in Figure 1). In order to see the in-
fluence of this parameter on the quality of the fused time series, Figure Appendix C.1
shows the variations in both time and frequency when fusing VIRGO/SOHO, TIM/SORCE
and ACRIM3/ACRIMSAT (box 8 in Figure 1). Figure Appendix C.2 displays the as-
sociated power spectrum density (PSD). It is difficult to find an optimal number, because
above 1500 points the time fluctuations do not show much differences, but the PSD is
still varying (i.e. continuity of the spectrum, amplitude of the frequencies associated with
the solar cycle). We chose 2000 points, which provide a good balance between compu-
tational time and accuracy. Now, most of the sub-time series have a length greater than
7 years, therefore one can select 2500 points or more if necessary. The shortest time se-
ries is when fusing PREMOS/PICARD, VIRGO/SOHO and TIM/SORCE (box 7). We
have ∼ 1400 observations. In this case, we use 1300 points. Note that the number of in-
ducing points for the fusion of TIM/TSIS and VIRGO/SOHO is also constrained. This
is due to the availability of both products at the time of writing this article.

As described in Section 2, each instrument records the data with different sampling
rate. The fusion requires regularly sampled records with no gaps. We first regrid all the
datasets with a sampling rate higher than 1 day. The datasets recorded with a lower rate
are (linearly) interpolated. Note that the starting date of the composite time series is
defined by the fusion between HF and ACRIM 1 which is 2/1980.

Nonetheless, events resulting from short-term variations in solar activity lasting less
than a few days (e.g. solar flares) are relatively difficult to fuse. The radiometers on board
of the various missions at time ti may not have recorded exactly the same event due to
different distances (i.e. different orbits) and also because of differences in the observa-
tion time (i.e. sampling rate). The fusion of these short-term solar variations results gen-
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erally in keeping only major events or underneath long-term solar events recorded by all
the instruments at ti.

1980 1990 2000 2010 2020
Time
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2 )
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9
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ACRIM1
ERBS
ACRIM2
VIRGO
ACRIM3
TIM
PREMOS
TISIS

Figure 1: The various satellite missions recording TSI observations since 1980. We per-
form the fusion using the observations included in each box (dash lines).

Last, we should distinguish in the following between stochastic and solar noises in
order to avoid any confusion for the reader. We refer as stochastic noise, the statistical
definition of random processes which includes short and long-term correlations (i.e. white
and coloured noise). Solar noise results from the photospheric activity associated with
granules varying at different timescales over a few hours (e.g., sunspots) to a decade (e.g.,
solar cycle) generating fluctuations in the recorded irradiance values.

3.2 Step 2: Producing the 41-year composite time series with a mod-
ified adaptive filter

To perform the data fusion, we first select all the periods where at least two mis-
sions overlap for more than 6 months (see boxes in Figure 1). With a shorter overlap-
ping time, simulations have shown that the fusion is not optimal due to the limited num-
ber of inducing points. For each overlapping period, we fuse the time series correspond-
ing to different missions/instruments together in order to obtain the sub-time series.

We produce q partially overlapping composite time series (yq) with associated un-
certainties (α2

q). We use a modified adaptive algorithm (Haykin, 2004) to daisy-chain all
the sub-time series and build the 41-year composite such as:
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y(ti) = y1(ti) ∗ w(ti) + y2(ti) ∗ (1− w(ti))

w(ti) = α2
1(ti)/(α

2
2(ti) + α2

1(ti))

ᾱ2
1 ≤ ᾱ2

2

α2(ti) = 0.5 ∗ (α2
2(ti) + α2

1(ti))

(3)

with ti the time spanning the period 1978-2021, with the sampling of 1 day. The
two time series overlapping are y1 and y2 and associated uncertainties α2

1 and α2
2 respec-

tively. ᾱ2
1, ᾱ2

2 are the average of the uncertainties over the overlapping time for y1 and
y2. Note that y1 is chosen in order to satisfy the condition ᾱ2

1 ≤ ᾱ2
2. We define w (in

[0, 1]) using the denominator (α2
2(ti)+α2

1(ti)) in order to avoid a divergence of w. We
exclude the case for which α2

1(ti) = α2
2(ti) = 0.

Now, the mean value of each sub-time series resulting from the data fusion process
is relative to the lowest mean value of the input TSI datasets. We end up with a differ-
ent mean value for each sub-time series. Before applying the modified adaptive algorithm
on two consecutive time series, we scale the second sub-time series using the common
period between the two time series. It results in a TSI composite time series with an ar-
bitrary mean value. To obtain the correctly scaled TSI composite, we employ the TSI
value by Prša et al. (2016). The nominal TSI in Prša et al. (2016) was derived as the
averaged TSI value of Solar Cycle 23. This approach is also applied here, i.e. we deter-
mine the average TSI for Solar Cycle 23 of the new composite and scale it to the nom-
inal TSI value. As such the new TSI composite is consistent with the nominal TSI of 1361
W/m2 as recommended by the IAU 2015 Resolution B3. Finally, the last step includes
a wavelet filter in order to smooth the correlations introduced by the data fusion. The
effect of these correlations in time and frequency domains is discussed in the next sec-
tion.

3.3 Step 3: Filtering the Composite with a Wavelet Filter

The data fusion process acts as a low pass filter, which results in a modification
of the PSD of the composite time series at high frequencies. Possible reasons are to be
associated with the number of inducing points or other parameters as discussed in Sec-
tion 3.1. This drawback is unwanted: 1) it may mask some peaks at high frequencies linked
with daily components; 2) the solar minimum can be affected in the time domain by the
presence of long-term correlations. Unfortunately, this effect is theoretically unpredictable.
We propose to reconstruct empirically the high frequencies of our fused time series. To
that aim, the wavelet variance (WV) provides a robust mathematical framework to per-
form the rescaling of the filtered noise (Abry & Veitch, 1998). More specifically, we de-
compose the time series into an ensemble of records whose spectral content is concen-
trated in a specific frequency band. By adding them together, the original time series
is recovered. We make use of the Maximum Overlap Discrete Wavelet Transform (MODWT),
which has some advantages over the usual discrete wavelet transform: it permits to avoid
a downsampling process, unfavourable for an analysis at high scales (Percival & Gut-
torp, 1994).

In the input parameters, we choose the least asymmetric wavelet (LA(4)) with 8
scales which provides coefficients that are approximately uncorrelated between scales and
reduces the impact of boundary conditions (see Section Appendix B). Consecutively, for
each of the 8 levels (or wavelet bands) one WV is estimated. Following Abry and Veitch
(1998), we perform an analysis of the WV versus scale in a log-log diagram. The same
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WV decomposition is applied to the reference time series. Here, we use the one released
by Fröhlich (2006), based on its properties in time domain, discussed in the next section.
The coefficients of the input time series are then rescaled with the WV ratio between
the wavelet coefficients of the two time series. We perform the rescaling on the three first
levels of decomposition. Those ones were identified by analysing the previous TSI prod-
ucts and are the ones that are mostly affected by the data fusion process. With our ap-
proach, no assumption has to be made about the noise structure, as coming e.g. from
a power-law or quantization noise. It can be summarized as adding the right amount of
white noise in the right frequency band and does not distort the underlying signal. Fi-
nally, we reconstruct the time series by inserting the rescaled coefficient in the inverse
of the decomposition function used in the first step called the IMODWT. A comprehen-
sive description of the wavelet filter is given in the appendices.

4 Results and Discussions

4.1 Time-Frequency Analysis of The Composite Time Series

To perform a time-frequency analysis on the 41-year TSI composite, we first pro-
duce our time series with the 3-step method. The previous products released by Dudok
de Wit et al. (2017), Dewitte and Nevens (2016) and Fröhlich (2006) are called respec-
tively Composite 1 (C1), Composite 2 (C2) and Composite 3 (C3) in the following text.
The new TSI composite is named Composite PMOD- Data Fusion (CPMDF1) and af-
ter applying the wavelet filter (CPMDF2). Figure 2 display the composite time series.
The estimation of the TSI at the solar minimum across the various solar cycles from 1980
to present days are estimated in Table 2.

TSI level (µ± σ [W/m2])

Name of the Composites

C1 C2 C3 CPMDF1 CPMDF2

µ σ µ σ µ σ µ σ µ σ

Solar Cycle 21/22
Minimum (SM1) 1360.30 0.14 1362.82 0.12 1360.58 0.12 1360.57 0.11 1360.57 0.12

∆I21/22−20/21 - - - - - - - - - -

Solar Cycle 22/23
Minimum (SM2) 1360.68 0.14 1362.90 0.16 1360.57 0.15 1360.56 0.14 1360.56 0.14

∆I22/23−21/22 0.38 0.14 0.08 0.14 -0.01 0.14 -0.01 0.11 -0.01 0.13

Solar Cycle 23/24
Minimum (SM3) 1360.53 0.04 1362.89 0.04 1360.42 0.06 1360.46 0.05 1360.46 0.05

∆I23/24−22/23 -0.15 0.12 -0.01 0.13 -0.15 0.12 -0.10 0.10 -0.10 0.12

Solar Cycle 24/25
Minimum (SM4) - - 1362.88 0.07 - - 1360.41 0.08 1360.41 0.09

∆I24/25−23/24 - - -0.01 0.06 - - -0.05 0.04 -0.05 0.07

Table 2: Estimation of TSI at solar minimum (Minimum) over last 41 years from the TSI
time series (mean µ and standard deviation σ) released by Dudok de Wit et al. (2017)
(C1), by Dewitte and Nevens (2016) (C2) and by Fröhlich (2006) (C3). The new TSI
composite is abbreviated to (CPMDF1) and after using the wavelet filter (CPMDF2).
The difference of irradiance between solar minima (SM) from consecutive solar cycles
(e.g., ∆I22/23−21/22) is also displayed with the uncertainties (bold text)

Note that the solar minima are underlined in Figure 2 (see yellow boxes). The so-
lar minimum periods are chosen according to Dudok de Wit et al. (2017) and Finsterle

–8–



manuscript submitted to JGR: Atmospheres

et al. (2021) by looking at the lowest value in the yearly-averaged sunspot number and
then average the irradiance values over a one-year interval centered on that date. When
comparing the mean difference between the product and our time series over the vari-
ous solar minima, the new composites agree with C1 at 0.15±0.08 W/m2, C2 at 2.37±
0.08 W/m2, and C3 at 0.02±0.01 W/m2. It is the same order of magnitude if we use
the wavelet filter (see CPMDF2). The difference is marginal for C1 and C3, within the
1-sigma interval of 0.2 W/m2. This value is defined in Finsterle et al. (2021) based on
the inter quantile range estimated on the difference with the reference time series. The
large difference with C2 is due to the absolute level estimated from DIARAD/SOVIM.
If we compare with the nominal TSI value of 1361 W/m2 adopted by the IAU 2015, av-
eraged over Solar cycle 23, the offset is equal to 2.44 W/ m2. By rescaling C2 to the nom-
inal TSI value, the discrepancy is reduced to 0.08±0.06 W/m2, hence within the 1-sigma
interval. Figure Appendix C.5 in the appendix shows the box plot of the difference be-
tween the products (i.e. Composite 1, 2, 3) and the new TSI composite time series. The
mean value is less than 0.2 W/ m2, with the smallest value associated with C3 around
0.11 W/ m2. The results are improved at an order of ∼ 0.05 W/ m2 with applying the
wavelet filter.
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Figure 2: New Compsite (CPMDF1, blue) and with wavelet filter CPMDF2 (orange)
based on merging 41 years of TSI measurements. For comparison, C3 (Fröhlich, 2006) is
also shown (grey line). A 30-day running mean of CPMDF1 is shown as the yellow/purple
dash line. The orange boxes are associated with the solar minima (SM) for each solar
cycle described in Table 2. For context the monthly sunspot number is also displayed.
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Now, we perform a PSD analysis of the composite time series displayed in Figure
3. We can underline the 4 frequencies (11.5 year, 27, 9 and 7 days ) related to solar ac-
tivities and described in the analysis of Fröhlich et al. (1997). The frequency associated
with 11.5 years is the Schwabe cycle. The quasi 27-day solar cycle is caused by the sun’s
differential rotation (presumably first observed by Galileo Galilei or Christoph Scheiner
in the first half of the 17th century) (von Savigny et al., 2019).The spectrum is divided
in three areas (i.e. box A, B and C) following the previous assumptions on the stochas-
tic properties of the TSI observations (and the solar cycle). The definition of the three
areas also follows the description of the photospheric activity. The latter associated with
granulations, super-granulations and meso-granulations (Andersen et al., 1994; Fröhlich
et al., 1997) generates fluctuations in the TSI at different timescales. Due to our 1 day
resolution, frequencies associated with phenomena lasting a few hours or less (i.e. most
of the granulations - (Fröhlich et al., 1997)) cannot be observed.
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Figure 3: Power Spectrum Density of the TSI C1 (Dudok de Wit et al., 2017), C3
(Fröhlich, 2006), together with the new TSI composite produced with the current method
CPMDF1 and applying the wavelet filter CPMDF2. The (∗) means that the time series
are shifted by rescaling the amplitude by −4 W2.m−4.day in the log-log plot. Box A, B
and C refer to the different sections of the PSD: A is centered on the high frequency (∼
3 days) showing the flattening of the PSD; B is the power-law which is mainly due to
coloured noise (correlations between 20 and 6 days) within the time series; C emphasises
the low frequency associated with the stochastic and deterministic parts of the solar cycle
and long-term correlations. The dash lines are the various power-law models when varying
the exponent only for indication. The vertical doted lines (black) mark the frequencies at
11.5 years, 27, 9 and 7 days (left to right).
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Box A shows a flattening of the curve at high frequencies. In the appendices, Fig-
ure Appendix C.4 displays the PSD of data recorded by the VIRGO/SOHO radiome-
ter (PMO6V) for the degradation corrected TSI observations on the main channel (VIRGO-
A) released in PMO6v21 (Finsterle et al., 2021). The time series is displayed with daily
and minute sampling rate. For comparison we also show the PSD of C3 and CPMDF2.
The PSD of the products with a daily sampling rate experience the same flattening at
high frequencies, whereas the monotonically of the curve disappears in the sub-daily fre-
quency band. Shapiro et al. (2017) discuss that the high frequencies are associated with
the radiometer technical characteristics and satellite movements (i.e. open/close shut-
ter, orbit revolutions). Andersen et al. (1994); Fröhlich et al. (1997) show also that the
solar noise does flatten in this frequency band. We can then conclude that the flatten-
ing is due to the low-sampling rate in the TSI composites.

Box B is the power-law or the frequency ramp (between 0.006 and 0.25 day−1).
This phenomenon is due to the existence of correlations in the observations. It is arguable
that this power-law describes the long-term correlations (i.e. over years), due to the ramp
spanning frequencies over only a few days (4 - 20 days). Therefore we can only specu-
late what underlying process can generate it. For example, it could be an unknown dif-
fusion process associated with the sun’s activity which could be modeled with a specific
coloured noise called Matérn process. Nonetheless, the steepness of this ramp shows the
degree of correlation or the type of stochastic noise within the time series, by fitting a
power-law model such as S(f) ∼ 1/fβ . The exponent β defines the type of coloured
noise: flicker noise corresponds to β equal to 1, a random walk to β equal to 2, and white
noise with β equal to 0 (Montillet et al., 2021). Now, Figure 3 displays that the steep-
ness of the ramp is above 2, and even above 3 for the new TSI composite (CPMDF1).

Two main factors can explain these results:

i) The high steepness of the ramp in the new TSI composite CPMDF1, with β above
3.5 shown in Figure 3, is intrinsic to data fusion. The fusion process behaves as a wide
band filtering, similarly to a, e.g., Butterworth filter of low order. If one assumes that
the filtered high frequency noise is most likely to be Gaussian, i.e. the slope of the power
spectral density in the high frequency domain is close to 0, a smooth filtering will yield
a power-law noise. The resulting power-law noise properties depend on the transition
band of the filter so that the white noise is transformed into a power-law noise with a
variable exponent β. This effect has been exposed in (Accardo et al., 1997) and (Kermarrec,
2020) where high frequency Gaussian noises masked the desired fractional noise. In our
composite time series, the power of the bandwidth noise is a nonlinear function of the
input parameters used in the fusion process such as the number of inducing points to
train the dual kernel. As discussed in Section 3.1, the number of inducing points is an
important parameter which drives the quality of the data fusion process. It is recommended
to use a large number depending on the size of the series to fuse together, but we are lim-
ited to avoid an excessive computing time. Fortunately, the wavelet filter provides an
answer to deal with the bandwidth noise. Figure 3 shows the results before and after ap-
plying the filter on the frequency spectrum. Also, Figure 2 displays the composite time
series with and without applying the wavelet filter. Visually in time, this is similar to
having introduced white noise as the time series may appear slightly noisier when us-
ing the wavelet filter. That is why the uncertainties associated with the estimated so-
lar minima are slightly higher (∼ 0.01 W/ m2) with the filtered time series (see Table
2). However, from a spectral perspective, this is not the case. The high frequency do-
main in Box B matches well with our reference product (C3). We reconstruct the high
frequency bandwidth of the fused time series. Figure Appendix C.5 highlights the im-
provement without modifying the statistical quantity such as median value, upper and
lower quantile. Therefore, the wavelet filter improves the 41-year TSI composite time
series from data fusion in an effective way without introducing additional computing time.

ii) In the C1, C2 and C3, the stochastic noise properties include the correlation from
the stochastic part of the solar cycle. In Dudok de Wit et al. (2017), the authors sub-
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Figure 4: Power Spectrum Density of the difference of composite time series including
C1 - CPMDF2, C3 - CPMDF2 , C1 - C3. The vertical doted lines (black) mark the
frequencies at 11.5 years, 27, 9 and 7 days (left to right).
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tracted various TSI time series from different missions (i.e. ACRIM1, ACRIM2, ACRIM3,
TIM) in order to eliminate the solar cycle, resulting with only the stochastic properties
i.e., a mix between the two instruments. Figure 4 displays the PSD of the difference of
41-year TSI composite. The frequency ramp is mostly attenuated. We can compare its
steepness with the various power-law models, hence concluding that the difference com-
posite time series have an exponent β within the interval ]1, 1.5]. The power-law model
is not limited anymore to box B and it includes Box C which advocates for long-term
dependencies over years associated with the photospheric activity. This result supports
the conclusions in Dudok de Wit et al. (2017).

Finally, box C is associated with the low frequencies (0.006 - 0.00015 day−1). They
are assumed to be mostly related to the deterministic part of the solar cycle and the long-
term correlations (i.e. lasting up to years). In the appendices, Figure Appendix C.3 shows
the spectrum of the C1 with and without the solar cycle. To remove this cycle, we sub-
tract the time series with a running mean with a 5-day window. We clearly see that the
low frequencies in box C have a lowest power in the PSD after subtracting the running
mean, hence supporting our assumption. In addition, this frequency band also contains
some of the coloured noise linked to long-term correlations (over years). Previously, we
have discussed the analysis of Figure 4 when subtracting two TSI composites. We have
concluded that the power-law can be extended within Box C highlighting the long-term
correlations due to the sun’s activity.

4.2 Investigating the solar minimum variations

Once the 41-year TSI composite time series is obtained, we can study the existence
of variations in the solar minima. There are two approaches:i) the variations between
consecutive solar minima ii) the global fluctuations over the duration of the time series.

The estimation of the variations between two consecutive solar minima is challeng-
ing based on the analysis of the PSD of the composite time series. In order to be sta-
tistically robust, one needs to take into account the long-term correlations generated by
the coloured noise. Therefore, we follow the same methodology as in (Dudok de Wit et
al., 2017), where we differentiate the estimated irradiance at solar minima between four
consecutive cycles. The results are shown in Table 2 (see e.g., ∆I22/23−21/22). Note that
there is an unexpected difference -i.e. about twice the amplitude - for the value of ∆I22/23−21/22

forC1 between our estimation and the results in Dudok de Wit et al. (2017). Overall,
the fluctuations of solar minima between Solar Cycle 21/22 and 22/23 (∆I22/23−21/22)
do not agree between the composites. For example, the difference is positive for the C1
and C2, whereas negative for the other composites. This disagreement can be due to the
processing of the TSI observations for the first missions (e.g., HF, ERBE) discussed in
Section 3.1. The fluctuations between the other solar cycles (i.e Solar Cycle 22/23, 23/24,
24/25) is more homogeneous between the various composites with an averaged value of
−0.10±0.05 and −0.04±0.02 for ∆I23/24−22/23 and ∆I24/25−23/24 respectively. There
is a decrease between the differences of solar minima (after cycle 21), which could ad-
vocate the presence of a linear trend in the TSI composite. This result is also supported
by the fact that the fluctuations between the other cycles (i.e 22/23, 23/24, 24/25) are
negative for all the composites. However, this result is downplayed by the large uncer-
tainties associated with the difference between solar minima - up to 10 times the value.

For the study of the global fluctuations, our approach is inspired by the estima-
tion of a tectonic rate in geodetic time series (Davis et al., 2012; Montillet & Bos, 2020).
The problem is formulated into a joint estimation of a functional and stochastic mod-
els. The functional model is composed of two terms a linear trend and a periodic sig-
nal with 4 frequencies (11.5 years, 27, 9 and 7 days) based on our PSD analysis. Because
of the flattening experienced by the TSI composite time series at high-frequency (see above
discussions - Box A), the use of the General Gauss-Markov model (GGM) with white
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noise is appropriate in order to model the frequency ramp feature of the PSD (i.e. Box
B). The justification of the model and the estimation of the parameters (using a MLE)
are described in the appendices. Now, all the composite time series experience a much
lower solar minima at the end of cycle 21 around 1986, it renders the fitting of the de-
terministic part of the solar cycle difficult with a periodic signal. That is why we per-
form this study by splitting the composite time series in two time periods 1980-2021 (in-
cluding cycle 21) and 1987-2021 (starting at cycle 22). The analysis of the functional model
fitting the residual shows that the model fits best when using the period 1987- 2021. This
confirms our previous study where the exclusion of the solar cycle 21 allows to discute
the trend between the difference of solar minima.

TSI level (µ± σ [W/(m2yr)])

Period 1980 - 2021 1987 - 2021

Amplitude Solar Trend µ σ µ σ

C1 -0.002 0.005 -0.001 0.007

C2 -0.001 0.006 -0.003 0.007

C3 -0.009 0.006 -0.011 0.009

CPMDF1 -0.015 0.008 -0.010 0.008

CPMDF2 -0.016 0.008 -0.011 0.007

Table 3: Estimation of the linear trend (mean µ and uncertainty σ) via MLE using the
GGM model together with white noise for the TSI composite time series released by
Dudok de Wit et al. (2017) (C1), by Dewitte and Nevens (2016) (C2) and by Fröhlich
(2006) (C3); applying (i.e. CPMDF2) or not (i.e. CPMDF1) the wavelet filter; and choos-
ing different time periods. yr means year

Table 3 displays the results for each TSI composite time series. C3 has the largest
trend for both periods 1980 - 2021 and 1987 - 2021 compared with C1 and C2. The trend
of the new products CPMDF1 and CPMDF2 is larger than the previous product for the
period 1980 - 2021. However, it is the same order of magnitude as C3 for the second pe-
riod.

Averaging the estimated trend for all the previous products produces −0.004±0.004
W/(m2yr) and −0.005±0.004 W/(m2yr) for the periods 1980 - 2021 and 1987 - 2021.
When we add the new products, the average trend is −0.008±0.006 W/(m2yr) and −0.012±
0.014 W/(m2yr) for the same periods. The overall estimate, using the results from all
the TSI composite time series and both period, is equal to ∼ −0.009 ± 0.010 W/(m2yr).
Overall for each product, the uncertainty associated with the estimated trend is large,
mostly larger than the amplitude of the trend. This result means that the estimated am-
plitude is statistically insignificant: the stochastic properties of the composite time se-
ries are likely the source of the variations. This result corroborates the previous results
based on the estimation of the variations between two consecutive solar minima. Both
are showing the same pattern after cycle 21. Note that these conflicting decadal trends
exhibited by the previous TSI composites (C2 and C3) are discussed by Yeo et al. (2014)
using proxy data. Furthermore, most of the estimated amplitudes are negative. This re-
sult has a certain significance related to the solar noise which describes the solar activ-
ity, hence meaning that over the last 41 years there has been a slowly decreasing solar
activity. This result is supported by several studies focusing on the forecast of the sun’s
activity over the next 80 years (Steinhilber & Beer, 2013; Velasco Herrera et al., 2015).
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5 Conclusions

This work focuses on producing a new 41-year long TSI composite time series us-
ing a 3-step method which can be used to study the solar cycle modulation and the Earth’s
energy budget. We have performed a time-frequency comparison of our new TSI com-
posite with previous releases. The results show that the mean value difference over the
solar minima is below the 1 sigma confidence interval of 0.2 W/m2, i.e. a maximum of
0.15 W/m2 with C1 and a minimum of 0.02±0.01 W/m2 with C3. In terms of frequency
spectrum comparison, we observe a flattening at high frequencies for all products which
is linked to the various instrumental noises and the low sampling rate (1 day). We ex-
pect that future TSI composite time series including observations recorded from future
missions will be produced with a higher time resolution ( i.e. hourly, sub-hourly) in or-
der to include frequency in the meso-granulations, granulations and p-modes frequency
bands.

Secondly, the power spectrum experiences a power-law between 4 and 20 days which
could correspond to an unknown diffusion process. The steepness of this ramp is more
accentuated for our new TSI composite time series than in the previous products. The
power-law is between 2.5 and 3 for the previous releases, and between 3 and 3.5 with our
new product. This increase steepness is a weakness of the data fusion process, which can
smooth the short-term and long-term correlations. It is a nonlinear effect of the input
parameters (e.g., inducing points). Increasing this number decreases the steepness to a
certain extend. This problem is intractable when using GPs with a very large number
of inducing points (e.g., 2000 points) due to computational complexity. Nevertheless, the
implementation of a wavelet filter has shown that we can efficiently reconstruct the high
frequency bandwidth, hence having a PSD comparable with previous products and with-
out the cost of increasing the processing time. In addition, when removing the solar cy-
cle by differencing two TSI composite time series, a power-law is observed over the whole
frequency band. The power-law exponent varies between [1, 2]. It highlights the pres-
ence of long-term correlations from the solar noise.

Finally, our approach permits the estimation of a trend in the 41-year composite
TSI time series which could reflect variations in the solar activity. The analysis of the
irradiance difference (∆I) estimated at two consecutive solar minima in order to detect
a trend is inconclusive due to large uncertainties. Our results using a joint inversion of
both a functional and stochastic noise models show that the estimated amplitude is be-
low ∼ −0.009 ± 0.010 W/(m2yr) based on the analysis of all the 41-year TSI compos-
ite time series used in this study. This number is not statistically robust due to the large
uncertainties. Therefore, it is impossible to conclude in the existence of a linear trend
in the TSI composite time series. Any visual effects or short-term trends are most likely
related to the coloured noise rather than a physical phenomenon generated by the sun’s
activity corroborating previous discussions (Dudok de Wit & Kopp, 2020) and support-
ing recent analysis (Schmutz, 2021). Nevertheless, the negative sign from this trend, which
is also shown in the analysis of ∆I, indicates a slowly decreasing solar activity in the last
41 years.
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Appendix A Model Descriptions for the Estimation of the Linear Trend

Following the discussion in Section 4, the stochastic noise model of the TSI time
series is described with the variance (Williams et al., 2004):

E{ψTψ} = σ2
wnI + σ2

plJ(β) (A1)

where the vector ψ = [ψ(t1), ψ(t2), ..., ψ(tL)] is a multivariate continuous-time stochas-
tic process. At each time step, we define ψ(ti) = ψwn(ti) + ψpl(ti), with ψwn(ti) and
ψpl(ti) the white Gaussian noise (zero mean) and the coloured noise (or power-law noise)
sample respectively. T is the transposition operator, I the identity matrix, σ2

pl the vari-
ance of the power-law noise and J(β) the covariance matrix of the power-law noise (β
> 0). The definition of J depends on the assumptions on the type of coloured noise (e.g.,
Flicker, random-walk).

The functional model s0(t) (at epoch t) is based on the polynomial trigonometric
method (Williams et al., 2004; Montillet & Bos, 2020).

s0(t) = at+ b+

N∑
j=1

(Gj cos(Djt) + Ej sin(Djt)) (A2)

with a and b the coefficients of the linear rate; the deterministic part of the solar
cycle is modeled by a sum of cos and sin functions with coefficients Gj and Ej . Note that
Dj is equal to 2πfqj , and fqj are different frequencies (e.g., 11.5 years, 27, 9 and 7 days)
which are determined by analysing the frequency spectrum of the TSI composite time
series (see Section 4). We perform a joint estimation of the functional and stochastic mod-
els based on a maximum likelihood estimator (MLE). To recall (Bos et al., 2020), the
log-likelihood for a time series of length n can be rewritten as:

ln(Lo) = −1

2

[
n ln(2π) + ln(det(~C)) + (~x0 − ~A~z)T ~C−1(~x0 − ~A~z)

]
(A3)

This function must be maximised. Assuming that the covariance matrix ~C is known,
then it is a constant and does not influence finding the maximum. ~C is here defined by
Eq. (A1). The term (~x0− ~A~z) represents the TSI observations minus the fitted model.
Note that ( ~A~z) is the matrix notation of s0. The last term can be written as ~xT ~C−1~x
and it is a quadratic function, weighted by the inverse of matrix ~C. To select the func-
tional model of the solar signal, and therefore estimate the associated parameters, we
have formulated the assumptions in Section 3 and the time-frequency analysis in Sec-
tion 4. The value of n is here equal to the number of observations in the TSI compos-
ite time series (∼ 15330 observations).

For an optimal estimation of the parameters with the MLE, a strong assumption
in geodetic time series is the so-called Gauss-Markov hypothesis (e.g., (Bos et al., 2020))
which states that the noise is Gaussian distributed. With the TSI time series, the func-
tional model cannot remove completely the stochastic part of the solar cycle. Therefore,
the distribution of the residual time series cannot be guaranteed to be a perfect Gaus-
sian. We then formulate two important assumptions in order to get an unbiased estimate.
First, the mean of the coloured noise is slowly varying with time, which means that a/
the noise is non-stationary around the mean, and b/ no intermittency in the time series,
i.e. no events creating short high bursts or sudden large deviations for the mean (e.g.,
aggregations). Secondly, the noise is assumed to be homoscedastic which means there
is no change of variance across the observations in the 41-year composite time series (Montillet
et al., 2021).

The particularity of the TSI composite frequency spectrum has been discussed above,
and in particular its flattening over the high frequencies. Therefore, a simple power-law
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noise model as described in Section 3 with the covariance J(β) is not appropriated for
our ML estimation. Instead, we use the Generalized Gauss-Markov (GGM) noise model
which has the advantage to flatten in high frequency. The power spectrum of the GGM
noise is defined by Bos et al. (2020) such as:

S(f) =
2σ2

f2
s

[
1 + φ2 − 2φ cos (2π

f

fs
)

]−β/2
(A4)

where φ is an important parameter to decide when the flattening occurs in the PSD.
In our study with TSI time series, we have fixed φ to 1.0699. Also from Eq. (A4), if φ
equal to 1 the PSD is similar to an approximation of the power-law model. For more in-
formation and discussions about this model, we invite the reader to refer to Bos et al.
(2014). Note that we use the Hector package to do the joint model estimation.
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Appendix B Description of the Wavelet Filter

This section describes comprehensively the wavelet filter discussed in Section 3.3.
Figure Appendix B.1 underlines the description of the wavelet filter below.

B1 Methodology

Our algorithm is based on an unbiased wavelet-based estimator developed by McCoy
and Walden (1996) and Abry and Veitch (1998) for the correlation analysis and correc-
tion of some of the long-range dependency within the TSI observations. Our method-
ology relies on the decomposition of the variance of a time series on a scale by scale ba-
sis, the so-called WV, which can be simply interpreted as the variance of a process af-
ter filtering by a wavelet bandpass filters (Percival & Guttorp, 1994).

Fractal processes have a power of the form 1/fβ for a range of frequency f close
to 0. The WV multiscale analysis provides an efficient and highly robust estimator of
the fractal parameter of a process against, e.g., the addition of a deterministic trend or
sinusoidal pattern. The WV versus its scales have a logarithmic linear relationship. The
slope in a log2-diagram is related to the power law of the process and can be estimated
by ordinary least-squares (Abry & Veitch, 1998). Here, we propose to use the WV to elim-
inate the correlations induced at high frequency by the windowing used to fuse TSI from
different dataset. The procedure is inspired from the work of Guerrier et al. (2013) on
composite stochastic processes and is based on the standardized distance between the
WV of a reference process and the one to analyse.

B2 The MODWT

By design, the wavelet’s advantage is their ability to simultaneously localize a pro-
cess in time and scale. Low scales are related to long periodic behaviour, whereas high
scales focus on brief phenomena, i.e. high frequencies. The wavelet transformation breaks
the time series down into a scaled and shifted version of the mother wavelet. Unfortu-
nately, the sample size of the orthogonal discrete wavelet transform (DWT) is limited
to a power of 2 so that the number of scaling and wavelet coefficients at each level of res-
olution decreases by the same factor. This results in a loss of information as well as the
introduction of ambiguities in the time domain. MODWT (Cornish et al., 2006) carries
out the same steps as the DWT without a sub-sampling process. The coefficients of de-
composed components in each layer have the same length as the original time-series. This
property is favourable for information extraction such as in our case. Mathematically,
the MODWT is a convolution operation that can be formulated as circular filter oper-
ations of the original time series using the 2 quadrature mirror filters, where {g̃J,l} (with
l = [0, .., Lj ]) represents the single level smoothing filter length Lj and {h̃j,l} (with l =
[0, .., Lj ]) the level-j wavelet filters, i.e. the coefficients of a bandpass filter. The MODWT
algorithm is described in Figure Appendix B.1.A. If c0,f = xf is the input time series
of length n, we generate the wavelet coefficients {dj,f} and the scaling coefficients {cj,f}
from {cj,f−1}, where for a level j = [0, .., J ] we have dj,f =

∑Lj−1
l=0 h̃j,lxf−l(mod.n), and

cJ,n =
∑Lj−1
l=0 g̃J,lxn−l(modN) (n = [0, .., N − 1]). The coefficients {dj,f} are the differ-

ence between generalized averages of the time series each occupying a width of 2j−1. There-
fore, the decomposition at each scale can be understood as a bandwidth filtering of the
original time series in the frequency domain with various high and low-pass filters (Cornish
et al., 2006). MODWT is known as a shift-invariant wavelet transform. It is a highly re-
dundant version of DWT and is considered ideal for time-series analysis, as it accom-
modate any sample size. Note that we use the MATLAB wavelet package from the Math-
works (https : //ch.mathworks.com/) where the MODWT is included.
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B3 Choice of the Type of Wavelet and Width, and Wavelet Variance

Using the MODWT for WV requires the choice of the wavelet filter. Here, we fol-
low the work of Cornish et al. (2006) who proposed to use the least asymmetric (LA)
wavelets. They exhibit near symmetry about the filter midpoint. This property allows
a good alignment of the reconstruction with the original time series by circularly sift-
ing the coefficients. Empirical investigations of the TSI observations have shown that
LA(4) was optimal for reconstruction. We then chose to decompose the signal in a 8 lev-
els which we justify by our specific focus on the high frequency domain. The low frequen-
cies do not need particular attention and should be kept intact with the purpose of not
losing information from the data fusion.

The WV is built using the wavelet coefficients issued from the MODWT. An un-
biased estimator of the WV at scale j is given by ν2

j = 1
Lj

∑Lj−1
l=0 d2

j,l, which is a con-
sistent estimator of the true variance as long as a large number of wavelet coefficients
are available. For a fractal process, Abry and Veitch (1998) demonstrated that the WV
follows a linear relationship in logarithmic scale between ν2

j and β. It then allows the
estimation of β with a simple ordinary least-squares.

When dealing with composite stochastic process - defined as a mix of bandwidth
(fractal) noises - the scales at which a given noise is present have to be identified in a
first step (e.g., −4 slope, flicker noise, random-walk noise). An alignment of the WV ver-
sus a given number of scales is linked with a bandwidth (fractal) noise. Here, we want
to identify the correlated noise introduced by data fusion, which was shown to be found
in the high frequency domain. We illustrate our decorrelation procedure using the C3.
Figure Appendix B.1.C is a log2-diagram showing the WV versus scales. Our reference
time series is marked with the blue dots, together with the fused time series called CP-
MDF2 with pink dots. The WV of both time series lies on a straight line. For the ref-
erence time series, the slope corresponds approximately to a coefficient equal to −3 in
the WV spectrum. The first WV contains most probably an additional WN component
as it is slightly over the line drawn from scale 2 and 3. From scale 4, the WV spectrum
changes clearly its shape, which corresponds to the Matérn process (saturation at low
frequency). Our analysis shows that the high frequency correlated noise is present be-
tween the scales 1 and 3.

Having identified the high frequency correlations in the 3 first scales, we propose
to simply rescale the WV of CPMDF1 in order to fit the reference one. The resulting
WV spectrum is shown in the green dots. Finally, the filtered time series is obtained us-
ing the inverse function inserting our new WV values. Note that the function is the IMODWT,
also included in the MATLAB wavelet package. Our new time series is comparable to
both C1, C2 (after shifting of ∼ −2.44 W/m2), C3 and CPMDF1, well within the in-
terval of confidence of the reconstruction (0.3 W/m2) as discussed in Section 4. Note that
the MODWT and IMODWT require O(n.log2.n) multiplications (Percival & Walden,
2000).

–20–



manuscript submitted to JGR: Atmospheres

2 3 4 5 6 7 8 9 10

level

-16

-14

-12

-10

-8

-6

lo
g

2
(W

V
)

C3

CPMDF2

CPMDF1

Figure Appendix B.1: (Top) Wavelet filter with the estimation of the coefficients for
the MODWT algorithm. (Bottom) Time in Julian Day (JD) WV decomposition of C3
(blue), CPMDF1 (green) and the filtered time series (pink).
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Appendix C Additional Figures
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Figure Appendix C.1: Time series of C3 (Fröhlich, 2006) and the sub-time series in Box 8
(see Figure 1) fusing VIRGO/SOHO, ACRIM 3 and TIM/SORCE using various numbers
of inducing points (500, 2000). The sub-time series are aligned on C3.
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Figure Appendix C.2: Power Spectrum of the TSI C3 (Fröhlich, 2006) and the sub-time
series in Box 8 fusing VIRGO/SOHO, ACRIM 3 and TIM/SORCE using various numbers
of inducing points (500, 1800). Box A, B and C refer to the different sections of the PSD:
A is centered on the high frequency (∼ 3 days) showing the flattening of the PSD; B is
the power-law which is mainly due to coloured noise (correlations between 20 and 6 days)
within the time series; C emphasises the low frequency associated with the stochastic
and deterministic parts of the solar cycle and long-term correlations.The dash line is the
power-law model when varying the exponent only for indication.
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Figure Appendix C.3: Power Spectrum of the TSI C3 (Fröhlich, 2006) with and without
removing partially the solar cycle via a running mean (with a 5 day window). Box A,
B and C refer to the different sections of the PSD. The dash-doted lines are the various
power-law models when varying the exponent. The vertical dotted lines (black) mark the
frequencies at 11.5 years, 27, 9 and 7 days. The purple dash-dot lines are highlighting the
change of power in the box C before and after removing the solar cycle.
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Figure Appendix C.4: Power Spectrum of various products: VIRGO/SOHO with degra-
dation correction (VIRGO-A) from PMO6v21 with minute and daily sampling rate. C3 is
the TSI composite produced by Fröhlich (2006). CPMDF2 is our new TSI composite in-
cluding the wavelet filter. Note that for clarity the different spectra have been rescaled by
multipying them with −6, −6, −4 and −8.5 W2.m−4.day following the order of the leg-
ends from the top. Box A, B and C refer to the different sections of the PSD. The dash
lines are the various power-law models when varying the exponent only for indication.
The vertical dash line emphasizes the 11.5 year peak.
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Figure Appendix C.5: Box plot figure comparing the difference between the TSI C1
(Dudok de Wit et al., 2017), C2 (Dewitte & Nevens, 2016), C3 (Fröhlich, 2006) and
the new TSI composite produced with the current method in terms of root mean square
(RMS) error without (CPMDF1) and with the wavelet filter (CPMDF2). (∗) means that
C2 is shifted of −2.44 W/ m2.
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Fröhlich, C. (2006). Solar Irradiance Variability Since 1978. Revision of the PMOD
Composite during Solar Cycle 21. Space Science Reviews, 125 , 53–65. doi: 10
.1007/s11214-006-9046-5
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Fröhlich, C. (2006). Solar irradiance variability since 1978. Space Sci. Rev., 125 ,
53–65. doi: 10.1007/s1121400690465
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Kolar, L., Šikonja, R., & Treven, L. (2020). Iterative Correction of Sensor Degrada-
tion and a Bayesian Multi-Sensor Data Fusion Method. ArXiv . Retrieved from
https://arxiv.org/pdf/2009.03091.pdf doi: arXiv:2009.03091

Kopp, G. (2016). Solar Variability Magnitudes and Timescales. Space Science Re-
views, 6 . doi: 10.1051/swsc/2016025

Kopp, G., & Lean, J. L. (2011). A new, lower value of total solar irradi-
ance: Evidence and climate significance. Geophys. Res. Lett., 38 . doi:
10.1029/2010GL045777

Kren, A. (2015). Investigating the role of the Sun, the quasi-biennial oscillation, and
the pacific decadal oscillation on decadal climate variability of the stratosphere
(Unpublished doctoral dissertation). University of Colorado at Boulder.

McCoy, E., & Walden, A. (1996). Wavelet Analysis and Synthesis of Stationary
Long-Memory Processes. Journal of Computational and Graphical Statistics,
5 (1), 26–56. doi: 10.2307/1390751

Mekaoui, S., & Dewitte, S. (2008). Total solar irradiance measurement and mod-
elling during cycle 23. Sol. Phys., 247 , 203–216. doi: 10.1007/s11207-007-9070
-y

Montillet, J.-P., & Bos, M. (2020). Geodetic Time Series Analysis in Earth Sciences
. Springer International Publishing.

Montillet, J.-P., He, X., Yu, K., & Xiong, C. (2021). Application of Lévy processes
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