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Abstract

Isoprene is the dominant non-methane organic compound emitted to the atmosphere, where it drives ozone and aerosol produc-

tion, modulates atmospheric oxidation, and interacts with the global nitrogen cycle. Isoprene emissions are highly variable and

uncertain, as is the non-linear chemistry coupling isoprene and its primary sink, the hydroxyl radical (OH). Space-based isoprene

measurements can help close the gap on these uncertainties, and when combined with concurrent formaldehyde data provide a

new constraint on atmospheric oxidation regimes. Here we present a next-generation machine-learning isoprene retrieval for the

Cross-track Infrared Sounder (CrIS) that provides improved sensitivity, lower noise, and thus higher space-time resolution than

earlier approaches. The Retrieval of Organics with CrIS Radiances (ROCR) isoprene measurements compare well with previous

space-based retrievals as well as with the first-ever ground-based isoprene column measurements, with 20-50% discrepancies

that reflect differing sources of systematic uncertainty. An ensemble of sensitivity tests points to the spectral background and

isoprene profile specification as the most relevant uncertainty sources in the ROCR framework. We apply the ROCR isoprene

algorithm to the full CrIS record from 2012-2020, showing that it can resolve fine-scale spatial gradients at daily resolution over

the world’s isoprene hotspots. Results over North America and Amazonia highlight emergent connections between isoprene

abundance and daily-to-interannual variations in temperature, nitrogen oxides, and drought stress.
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Key Points: 19 

• We present a next-generation spaced-based isoprene retrieval with higher sensitivity and 20 
resolution than previous approaches 21 

• Global, daily isoprene distributions are derived from 2012-2020 that compare well with 22 
the first ground-based isoprene column observations 23 

• High-resolution results over isoprene hotspots highlight processes controlling isoprene 24 
abundance and its daily-to-interannual variability 25 

  26 
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Abstract 27 

Isoprene is the dominant non-methane organic compound emitted to the atmosphere, where it 28 

drives ozone and aerosol production, modulates atmospheric oxidation, and interacts with the 29 

global nitrogen cycle. Isoprene emissions are highly variable and uncertain, as is the non-linear 30 

chemistry coupling isoprene and its primary sink, the hydroxyl radical (OH). Space-based 31 

isoprene measurements can help close the gap on these uncertainties, and when combined with 32 

concurrent formaldehyde data provide a new constraint on atmospheric oxidation regimes. Here 33 

we present a next-generation machine-learning isoprene retrieval for the Cross-track Infrared 34 

Sounder (CrIS) that provides improved sensitivity, lower noise, and thus higher space-time 35 

resolution than earlier approaches. The Retrieval of Organics with CrIS Radiances (ROCR) 36 

isoprene measurements compare well with previous space-based retrievals as well as with the 37 

first-ever ground-based isoprene column measurements, with 20-50% discrepancies that reflect 38 

differing sources of systematic uncertainty. An ensemble of sensitivity tests points to the spectral 39 

background and isoprene profile specification as the most relevant uncertainty sources in the 40 

ROCR framework. We apply the ROCR isoprene algorithm to the full CrIS record from 2012-41 

2020, showing that it can resolve fine-scale spatial gradients at daily resolution over the world’s 42 

isoprene hotspots. Results over North America and Amazonia highlight emergent connections 43 

between isoprene abundance and daily-to-interannual variations in temperature, nitrogen oxides, 44 

and drought stress. 45 

Plain Language Summary 46 

Isoprene is a naturally occurring trace gas emitted primarily from the leaves of woody plants. 47 

Isoprene has important impacts on both air quality and climate; however, these impacts are 48 

difficult to assess and predict given large uncertainties in its sources and atmospheric chemistry. 49 

Space-based measurements can help to address these uncertainties. Here we present new satellite 50 

measurements of isoprene from the Cross-track Infrared Sounder (CrIS), using a computationally 51 

efficient machine-learning framework (Retrieval of Organics from CrIS Radiances; ROCR). 52 

ROCR measurements provide improved sensitivity and richer spatiotemporal information on 53 

atmospheric isoprene than was previously available. Results compare well to previous satellite-54 

based approaches and to new ground-based observations. We apply the ROCR framework to 55 

measure daily, global isoprene distributions from 2012-2020. Results over North America and 56 
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Amazonia highlight the processes controlling isoprene abundances and their variability over 57 

time. 58 

1 Introduction 59 

Isoprene is the dominant non-methane volatile organic compound (VOC) emitted to the 60 

atmosphere (Guenther et al., 2012). Produced mainly in the leaves of woody plants, isoprene is 61 

highly reactive and drives ozone and aerosol production (Lin et al., 2013; Paulot et al., 2012), 62 

modulates atmospheric oxidation (Bates and Jacob, 2019), and affects the global nitrogen cycle 63 

(Mao et al., 2013; Paulot et al., 2013). Accurate flux estimates are critical for assessing and 64 

predicting these impacts; however, bottom-up isoprene inventories are highly uncertain as they i) 65 

rely on emission factors extrapolated from limited point measurements and ii) are sensitive to 66 

model assumptions for land cover, meteorology, and plant canopy structure (Arneth et al., 2011; 67 

Messina et al., 2016; Ganzeveld et al., 2002). Particular uncertainties have been identified in the 68 

world’s isoprene hotspots such as Amazonia, where studies show that isoprene exhibits much 69 

stronger seasonal and spatial variability than can be explained by current models (Barkley et al., 70 

2009; Alves et al., 2018; Wei et al., 2018; Gu et al., 2017; Batista et al., 2019). Isoprene’s impact 71 

on atmospheric oxidation has been a further subject of debate, and specifically the degree to 72 

which it acts to sustain or deplete hydroxyl radical (OH) concentrations under low-NOx 73 

conditions (Lelieveld et al., 2008; Fuchs et al., 2013; Feiner et al., 2016). 74 

Satellite-based measurements of isoprene are beginning to provide powerful new information for 75 

addressing these gaps (Fu et al., 2019). Our team recently developed the first global isoprene 76 

measurements from space by applying an efficient machine-learning algorithm to thermal 77 

infrared radiances from the Cross-track Infrared Sounder (CrIS; Wells et al., 2020). That 78 

approach derived isoprene column abundances from the CrIS-measured on-peak/off-peak 79 

brightness temperature difference (ΔTb) at the 𝜈!" absorption feature, and showed that combining 80 

these data with concurrent formaldehyde observations affords joint constraints on isoprene 81 

emissions and chemistry over source regions. A major finding of that work was that the 82 

isoprene:formaldehyde relationship observed from space supports current understanding of 83 

isoprene-OH chemistry, with no indication of missing OH recycling at low NOx. The new 84 

measurements also pinpointed regions where emission errors for both isoprene and NOx cause 85 

major prediction biases in current models.   86 
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In this paper, we present the Retrieval of Organics from CrIS Radiances (ROCR) next-generation 87 

isoprene retrieval, which improves on our original machine learning algorithm by employing a 88 

hyperspectral range index (HRI) to quantify column abundances. The HRI approach has been 89 

used previously with the Infrared Atmospheric Sounding Interferometer (IASI) to retrieve global 90 

distributions of ammonia (Whitburn et al., 2016), methanol, formic acid, peroxyacetyl nitrate 91 

(Franco et al., 2018), acetone (Franco et al., 2019), and acetic acid (Franco et al., 2020). By 92 

leveraging a broader spectral range than the brightness temperature difference, the HRI increases 93 

near-surface sensitivity while reducing impacts from interferences; our updated algorithm thus 94 

enables isoprene detection at unprecedented resolution while maintaining high computational 95 

efficiency. We apply the ROCR algorithm here to obtain global isoprene distributions on a daily 96 

basis from 2012 through 2020. We evaluate the results against other observations, including the 97 

first ground-based column retrievals of atmospheric isoprene, and characterize pertinent sources 98 

of measurement uncertainty. Finally, we explore this long-term global dataset, and highlight the 99 

new, high-resolution information provided over two key isoprene hotspots. 100 

2 Materials and Methods 101 

CrIS is a Fourier transform spectrometer flying in a sun-synchronous orbit onboard Suomi-NPP 102 

(SNPP, launched 10/2011) and JPSS-1/NOAA-20 (launched 11/2017), with a third instrument 103 

planned for inclusion on JPSS-2 (launch expected 09/2022). CrIS has 0.625 cm-1 spectral 104 

resolution in the longwave IR (LWIR; 650-1095 cm-1), and an angular field of regard consisting 105 

of a 3×3 pixel array with a 14-km diameter footprint at nadir and a 2200 km cross-track scan 106 

width that provides near-global coverage twice daily. This sampling strategy affords the 107 

opportunity for high-resolution quantification of daily isoprene distributions. The early-afternoon 108 

daytime overpass (~1330 LT for SNPP and ~1240 LT for JPSS-1/NOAA-20) typically 109 

corresponds with peak isoprene emissions, enhanced vertical mixing, and strong land-110 

atmosphere thermal contrast—all of which increase sensitivity to near-surface absorbers. CrIS 111 

also features significantly lower noise (e.g., ~0.04 K at 900 cm-1 and 280 K) than other 112 

atmospheric sounders (Zavyalov et al., 2013). 113 

2.1 CrIS HRI derivation 114 

The ROCR algorithm derives isoprene column abundances based on the HRI (Eq. 1), which is a 115 

dimensionless quantity measuring the spectral signature of a target atmospheric species (Walker 116 



manuscript submitted to JGR: Atmospheres 
 

 5 

et al., 2011). The retrieval begins with single-footprint Level 1B CrIS spectra (available from 117 

02/2012 onward from SNPP) over land. We cloud-screen the spectra based on the difference 118 

between the MERRA-2 (Gelaro et al., 2017) surface temperature and the CrIS-measured 900 119 

cm-1 brightness temperature (Fig. S1), following Wells et al. (2020). The HRI is then computed 120 

for each spectrum via (Franco et al., 2018): 121 

HRI = #
$
𝐊𝑻𝐒𝒚#𝟏(𝒚)𝒚*)

,𝐊𝑻𝐒𝒚#𝟏𝐊
      (1) 122 

Here, y is the measured spectrum, while 𝒚' and Sy are respectively the mean background spectrum 123 

and background covariance matrix, both calculated from scenes in which isoprene is 124 

undetectable. Sy characterizes the expected correlations between spectral channels due to factors 125 

other than isoprene, such as interfering trace gases (Whitburn et al., 2016). K is the spectral 126 

Jacobian for a change in the target species, which we calculate at the midpoint of 12 equally-127 

spaced viewing angle bins (0-5° to 55-60°) using radiances generated by the Earth Limb and 128 

Nadir Operational Retrieval (ELANOR) radiative transfer model (Clough et al., 2006) and 129 

simulated isoprene output from GEOS-Chem (v11-02e, www.geos-chem.org). The employed 130 

spectral range (890-910 cm-1) encompasses the two =CH2 wag absorption peaks exhibited by the 131 

isoprene molecule (Brauer et al., 2014). 132 

The background quantities 𝒚' and Sy are calculated monthly for each angle bin from CrIS spectra 133 

that are selected iteratively following the approach used for IASI VOC retrievals (Franco et al., 134 

2018). We start by calculating the HRI values for all spectra in a given month and angle bin. 135 

After removing spectra with an HRI exceeding a specified threshold, we rederive 𝒚', Sy, and the 136 

corresponding HRIs, and iterate until convergence upon a spectral ensemble with below-137 

threshold values. Each iteration step involves normalization (by N) to maintain an HRI mean of 138 

0.0 and standard deviation of 1.0 for background conditions. N is calculated as the HRI standard 139 

deviation over a region where target species detection is not expected; we employ spectra over 140 

central Australia (20°-30° S, 122°-137° E) for this purpose and test the use of an alternate 141 

normalization region in Section 3.2. We achieve enhanced sensitivity for isoprene with a 142 

background HRI threshold of 1.0, consistent with prior VOC findings for IASI (Franco et al., 143 

2018); we explore the retrieval sensitivity to this threshold in Section 3.2. Once iteration is 144 

complete, we generate daily gridded HRI maps at 0.5° ´ 0.625° resolution. 145 
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By encompassing a broader spectral range over which the target species is optically active, the 146 

HRI generated as above delivers improved sensitivity over ΔTb-based and other approaches. It 147 

also lessens the impacts of interferents by using measured radiances to account for spectral 148 

correlations under background conditions. Figure S2 demonstrates this improvement by 149 

comparing the isoprene HRI and ΔTb (at 𝜈!") for synthetically-generated radiances under varying 150 

environmental conditions and a given viewing geometry. The HRI exhibits a tighter linear 151 

correlation with isoprene (r = 0.78 versus 0.51 in this example) with significantly less scatter for 152 

low and moderate column densities (Wisoprene < 1 ´ 16 molec cm-2). Thermal contrast, water vapor 153 

and other factors still drive some variability in the HRI-isoprene relationship, and we account for 154 

these residual effects using a neural network as described next. 155 

2.2 Machine-learning retrieval 156 

Isoprene abundances are derived from the CrIS HRIs using a feed-forward neural network (NN) 157 

as employed in our previous work (Wells et al., 2020). The NN is trained using a synthetic HRI 158 

dataset generated from a full year of global overland ELANOR radiances simulated at the 159 

midpoint of the 12 angle bins described earlier. ELANOR inputs include temperature and water 160 

vapor profiles from the NASA Goddard Modeling and Assimilation Office (GMAO) and 161 

isoprene profiles from GEOS-Chem (Wells et al., 2020), with the latter subjected to 100% 1s 162 

Gaussian noise to ensure that NN predictions reflect the spectroscopic effects of the input 163 

variables rather than any prior correlations between them. We replicate the ELANOR spectral 164 

output 25 times per scene, with CrIS-like noise applied each time, and compute the resulting 165 

simulated HRIs as: 166 

HRI-./ = 𝐊𝑻𝐒𝒚#𝟏(𝒚)𝒚𝒐)

,𝐊𝑻𝐒𝒚#𝟏𝐊
      (2) 167 

where y and yo are simulated spectra with and without the target species, and Sy is the CrIS-168 

observed background spectral covariance matrix for the same month-of-year. Using spectral 169 

pairs with and without the target species for the simulated HRI reduces retrieval sensitivity to 170 

forward model errors, while preserving a mean of zero in the absence of the target gas (Franco et 171 

al., 2018). The final HRIsim for each scene is obtained as the mean across the 25 replications. 172 

We then train the NN to convert the HRI values to isoprene columns while accounting for the 173 

additional factors that affect that relationship. For isoprene we find that these comprise water 174 
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vapor column, thermal contrast, surface pressure, and viewing angle. Our previous ΔTb-based 175 

retrieval also included nitric acid as a predictor (Wells et al., 2020), but we find here that its 176 

inclusion does not improve predictive power, implying that its effects are already captured in the 177 

HRI computation. Other factors found here (surface emissivity) or previously (ammonia, CFCs; 178 

Wells et al., 2020) to confer no predictive benefit are similarly omitted. 179 

After testing multiple architectures, we find optimum performance for a two-layer network with 180 

10 and 5 nodes. The training proceeds on 10 random extractions of the data, with 50% of each 181 

extraction used for training, 30% for validation, and 20% for testing. Finally, we apply the 182 

resulting 10 NNs to the CrIS-measured HRIs with temperature and water information obtained 183 

from MERRA-2 reanalysis (Gelaro et al., 2017), and derive the final retrieved isoprene column 184 

as the mean output across the 10 NNs. 185 

We have applied the above ROCR algorithm to obtain global, daily distributions of isoprene at 186 

0.5° ´ 0.625° resolution spanning most of the CrIS SNPP record (2012-2020). As we 187 

demonstrate below, the retrieval exhibits significantly less noise than our previous version 188 

outlined in Wells et al. (2020). We do obtain some artifacts at high latitudes that we attribute to 189 

surface effects in the presence of ice and snow. We therefore postfilter scenes with surface 190 

temperatures below 273 K as we do not expect to detect isoprene in such conditions; a similar 191 

approach is used for IASI VOC retrievals (Franco et al., 2018; Franco et al., 2019).  192 

Next, in Section 3, we present a series of intercomparisons and sensitivity tests to characterize 193 

relevant uncertainties in the ROCR isoprene retrievals. Subsequently, in Section 4 we explore the 194 

spatial and temporal information provided by these new satellite-based isoprene measurements 195 

over key global source regions. 196 

3 Validation and error characterization 197 

3.1 Comparison to OE and brightness-temperature difference approach 198 

We begin with a spatial evaluation of the next-generation ROCR isoprene retrievals against 199 

previously published results generated using optimal estimation (OE; Fu et al., 2019) and 200 

brightness-temperature difference (Wells et al., 2020) methods. Fig. 1 compares these three 201 

datasets over Amazonia during September 2014. The high degree of spatial consistency (panels 202 

a-c) and strong correlation (r = 0.92-0.93, panels d-e) among them provides confidence in the 203 
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isoprene distribution provided by these separate approaches. Furthermore, we see reduced scatter 204 

at low-to-moderate isoprene for the HRI-OE comparison (Fig. 1e) compared to the ΔTb-OE case 205 

(Fig. S3)—demonstrating the HRI signal-to-noise improvement over the earlier ΔTb approach. 206 

 207 
Figure 1. Isoprene retrieval comparison over Amazonia during September 2014. Maps display monthly-mean 208 
columns averaged on a 2° × 2.5° grid and normalized to their domain means for (a) the ROCR HRI-based 209 
retrieval, (b) the ΔTb- based retrieval presented in Wells et al. (2020), and (c) the OE-based retrieval 210 
presented in Fu et al. (2019). Scatter plots compare the corresponding absolute column densities. Error bars 211 
in the scatter plots show the standard deviation across the 10 NNs; the red line and gray shaded area indicate 212 
the reduced major axis regression and bootstrapped 95% confidence interval, respectively. The dashed line 213 
shows the 1:1 relationship. 214 

The major-axis intercomparison slope for the ROCR HRI-based isoprene columns is 0.81 vs. the 215 

ΔTb-based columns and 0.63 vs. the OE-based columns (Fig. 1d-e). As discussed by Franco et al. 216 

(2018), each of these retrieval approaches is subject to its own uncertainties, some of which may 217 

be systematic. In the OE case, these include forward model assumptions, fitting errors for 218 

interfering species, and the dependence on a priori target species information. In particular, the 219 

OE columns in Fig. 1 (Fu et al., 2019) employ isoprene columns from GEOS-Chem as prior, 220 

which have been shown to have a major high bias over Amazonia (Wells et al., 2020); this may 221 

partly explain the difference seen in Fig. 1e. Uncertainties for the HRI-based approach include 222 

assumptions in the forward model set-up and in the HRI derivation. We examine the impact of 223 

these in Section 3.2, and present a comparison of the ROCR HRI-based isoprene retrievals to 224 

independent ground-based column observations in Section 3.3. 225 
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3.2 Uncertainty analysis  226 

We assess the uncertainties of the HRI-based results through a series of sensitivity analyses 227 

targeting specific aspects of the retrieval. We focus in particular on the HRI background 228 

computation, cloud screening, normalization approach, vertical mixing, and potential 229 

interferences from monoterpenes. 230 

3.2.1 Background definition 231 

The background spectrum and covariance matrix (𝒚', Sy) were derived in Section 2.1 using an 232 

HRI < 1 threshold following Franco et al. (2018). We tested the impact of this selection by 233 

reanalyzing a full year of CrIS spectra with an alternate background definition (HRI < 2). The 234 

resulting Sy matrix was used to rederive the simulated HRI values, with the NN then retrained 235 

and applied to the updated CrIS HRI fields.  236 

Figure 2a-b compares the resulting monthly-mean isoprene columns to those obtained with our 237 

standard approach. The comparison slope across the entire dataset is 0.774 ± 0.002 (bootstrapped 238 

95% confidence interval); however, differences occur primarily for points with Wisoprene < 1 ´ 239 

1016 molec cm-2. Use of a higher threshold leads to retention of more low-to-moderate isoprene 240 

scenes in the background calculation, yielding a negative bias at low column amounts. This 241 

impact is strongly reduced when isoprene is elevated, with mean differences decreasing from 242 

20% at 1 ´ 1016 molec cm-2 to near-zero at higher column amounts.  243 
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 244 
Figure 2. ROCR isoprene sensitivity to different aspects of the retrieval: (a) Comparison of monthly-mean 245 
isoprene columns derived with a background definition of HRI<2 against the baseline approach using HRI<1. 246 
(c) Comparison of monthly-mean isoprene columns derived with a more stringent cloud-screening threshold 247 
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against the baseline approach (see text). (e) Comparison of monthly-mean isoprene columns derived when 248 
including ocean scenes against the baseline land-only approach. (g) Comparison of monthly-mean isoprene 249 
columns derived when using an alternative PBL mixing scheme during NN training. The red and dashed lines 250 
show the reduced major axis regression and 1:1 relationship, respectively. (b, d, f, and h) Percent difference 251 
(𝟏𝟎𝟎%× [𝛀𝒕𝒆𝒔𝒕 −𝛀𝒃𝒂𝒔𝒆] 𝛀𝒃𝒂𝒔𝒆⁄ ) for each test as a function of the baseline column amount, with black dots 252 
and error bars denoting the mean and standard deviation for each bin. Coloring in each panel indicates the 253 
data density. 254 

3.2.2 Cloud-screening  255 

Clouds are an important consideration in thermal-IR retrievals, generally acting to reduce signal 256 

by obscuring the below-cloud portion of the trace gas column (Whitburn et al., 2016). For that 257 

reason we cloud-screen the CrIS spectra as described in Section 2.1; if such screening were 258 

inadequate we would expect a low retrieval bias due to retained cloudy scenes. To characterize 259 

the uncertainties associated with cloud-screening, we performed a sensitivity test using a more 260 

conservative cloud threshold (based on the clear-sky difference between the 900 cm-1 brightness 261 

temperature and surface skin temperature, as shown in Fig. S1). As above, we then reanalyzed a 262 

year of CrIS spectra, regenerated the training set using the updated Sy, retrained the NN, and 263 

applied it to the observed HRI fields. Results plotted in Fig. 2c-d show that for all but the lowest 264 

isoprene columns the impact of this alternate cloud treatment is minimal, with mean differences 265 

of < 5% relative to the base-case. We conclude that clouds are not a predominant source of 266 

uncertainty in these retrievals.  267 

3.2.3 Inclusion of ocean scenes and HRI normalization 268 

Given isoprene’s terrestrial sources and short atmospheric lifetime, we restrict the base-case 269 

retrieval to land scenes for computational efficiency. The HRI normalization step, which requires 270 

scenes lacking the target species, then employs spectra over central Australia as outlined in 271 

Section 2.1. We tested the impact of this treatment by reanalyzing a year of CrIS spectra for both 272 

ocean and land scenes, with HRI normalization based on spectra over the remote Pacific (10° to 273 

30° S, 180° to 130° W) rather than Australia. Results are shown in Fig. 2e-f. Isoprene columns 274 

derived when including vs. excluding ocean scenes generally agree to within 5-10% on average 275 

for retrievals above 0.5 ´ 1016 molec cm-2, showing that this data selection criterion does not 276 

impart significant uncertainty to the results.  277 

3.2.4 Vertical mixing  278 
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Satellite-based measurement sensitivity in the thermal IR depends on the vertical distribution of 279 

the absorber and hence on atmospheric mixing. To test the sensitivity of the retrievals to model 280 

vertical mixing assumptions, we generated a new HRI training set from ELANOR simulations 281 

driven by GEOS-Chem isoprene profiles produced using an alternate planetary boundary layer 282 

(PBL) scheme (Wu et al., 2007). Here, all surface emissions are mixed instantaneously through 283 

the vertical extent of the boundary layer, resulting in higher lofting of isoprene than in the 284 

standard case, which employs the GEOS-Chem default non-local PBL mixing scheme (Lin and 285 

Mcelroy, 2010). Fig. S4 compares results for these two mixing treatments over Amazonia. We 286 

then trained a NN with this modified output and applied it to a year of CrIS-measured HRI 287 

values.  288 

Figure 2g-h shows that the resulting columns have mean differences of up to 20% between these 289 

two cases, with higher columns generally obtained with the full-mixing scheme. By itself we 290 

would expect the enhanced isoprene lofting to yield a higher HRI for a given isoprene 291 

abundance—therefore leading to lower column predictions from the CrIS HRI fields. This is 292 

indeed what occurs under dry conditions (Fig. S5). However, isoprene is predominantly emitted 293 

in humid tropical climates, and under wet conditions enhanced water-driven IR absorption below 294 

the lofted isoprene yields the opposite effect (the water distribution is prescribed by the 295 

assimilated meteorological fields driving the simulation, and is not altered by the change in 296 

mixing scheme). Overall, however, we can consider the <20% mean differences arising from this 297 

sensitivity test (as shown in Fig. 2d) to reflect the envelope of uncertainty arising from vertical 298 

mixing as currently represented in chemical transport models. 299 

3.2.5 Potential interference from monoterpenes 300 

In our previous work (Fu et al., 2019; Wells et al., 2020) we assessed the potential for other 301 

molecules with terminal =CH2 groups to interfere with the isoprene signal, and concluded that 302 

monoterpenes are likely the most important such species to consider. To estimate the extent of 303 

their potential impact, we compute and compare optical depths for isoprene and total 304 

monoterpenes at the peak of the ν28 isoprene feature. For purposes of this assessment, optical 305 

depths are approximated as the product of the GEOS-Chem column densities and the 306 

corresponding absorption cross sections (Gordon et al., 2017) at ν28 and 298 K. Monoterpenes 307 

are simulated in GEOS-Chem as MTPA (𝛼-pinene + 𝛽-pinene + sabinene + carene), MTPO 308 
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(terpinene + terpinolene + myrcene + ocimene + other monoterpenes), and limonene. For MTPA 309 

we employ the 𝛽-pinene cross-section (which is the largest reported among constituent species) 310 

whereas for MTPO we employ the myrcene cross-section (the only one reported among 311 

constituent species). 312 

While these biogenic species share a number of emission hotspots, Fig. 3 shows that the total 313 

estimated monoterpene optical depth is typically <5% that of isoprene for major isoprene source 314 

regions. The monoterpene signal only becomes relevant for isoprene columns < 5 × 1014 molec 315 

cm-2, well below the CrIS limit of detection (Wells et al., 2020). Furthermore, this influence is 316 

likely to be an upper limit, for two reasons. The first is our assumption that all MTPO species 317 

absorb as efficiently as 𝛽-pinene. The second is that all the published monoterpene cross sections 318 

in 890-910 cm-1 (Gordon et al., 2017) are spectrally distinct from that of isoprene, diminishing 319 

any potential impact on the HRI. We therefore consider monoterpene interferences to be minimal 320 

for the isoprene retrievals shown here. 321 

 322 
Figure 3. Potential impact of monoterpenes on the CrIS isoprene retrievals. Shown is the estimated 323 
isoprene:monoterpene optical depth ratio as a function of isoprene column. Optical depths are derived from 324 
GEOS-Chem model predictions as described in-text. 325 

3.3 Comparison to ground-based isoprene retrievals 326 

We showed in the last section that different retrieval assumptions, particularly the HRI 327 

background definition and vertical mixing treatment in the forward model, can each lead to 328 

systematic uncertainties on the order of 10-20% for isoprene columns > 1 × 1016 molec cm-2 (and 329 

higher at lower column amounts). For that reason, independent evaluation is key. Here, we 330 
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compare the ROCR isoprene retrieval from CrIS against ground-based Fourier Transform 331 

InfraRed (FTIR) isoprene column measurements at Porto Velho (8.77° S, 63.87° W), on the 332 

border between the Brazilian states of Rondônia and Amazonas.  333 

The ground-based instrument is a Bruker 125M high-resolution (up to 0.006 cm-1) spectrometer 334 

previously deployed at Saint-Denis, Réunion Island (Vigouroux et al., 2009, 2012). Since 2016, 335 

the instrument has been used at Porto Velho for satellite validation of formaldehyde, methane, 336 

and carbon monoxide (Vigouroux et al., 2020; Sha et al., 2021). Measurements in the spectral 337 

range needed for isoprene detection started in June 2019 and ended October 2019.  338 

These measurements represent the first retrievals of isoprene from ground-based FTIR spectra. 339 

Information on retrieval settings is provided in Table 1 and we refer to Vigouroux et al. (2012) 340 

for further details. Retrievals employ the SFIT4 algorithm commonly used in the InfraRed 341 

Working Group of the Network for the Detection of Atmospheric Composition Change 342 

(NDACC), with the spectral range extended to 917 cm-1 to encompass the CCl2F2 feature 343 

maximum. Figure S6 shows an example of the retrieved spectral signatures. As Porto Velho is 344 

located in a tropical environment, the H2O lines are very strong (Fig. S6b) and we therefore 345 

apply a de-weighting (Signal-to-Noise Ratio of 0 instead of 200) to some of these lines that are 346 

not well-fitted (see residuals in Fig. S6c). The theoretical (OE) mean total random uncertainty is 347 

approximately 7% (3.4 ´ 1014 molec cm-2) and is due primarily to temperature uncertainties 348 

(~6%; Vigouroux et al., 2018) and measurement noise (~3%). The mean theoretical total 349 

systematic uncertainty is approximately 21%, dominated by spectroscopic (~20%) and 350 

temperature (~4%) components.  351 

Figure 4a shows that the monthly-mean ground-based retrievals derived as above agree well with 352 

the CrIS observations, with both datasets exhibiting consistent seasonal increases between June 353 

and September. We also see significant CrIS-FTIR correlation on a daily timescale (r = 0.47 354 

when employing FTIR spectra within ± 2 h of the CrIS overpass), showing that both datasets are 355 

capturing short-term ambient fluctuations. The daily isoprene columns from CrIS are somewhat 356 

higher than the ground-based results (slope: 1.5; 95% confidence interval: 1.1-2.0, Fig. 4b), 357 

whereas they were somewhat lower than the previously published OE and ΔTb retrievals shown 358 

in Section 3.1. 359 
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 360 
Figure 4. Comparison of CrIS ROCR and ground-based FTIR isoprene retrievals at Porto Velho, Brazil for 361 
June-September 2019. (a) Monthly mean (± standard deviation) isoprene columns based on the CrIS (black) 362 
and ground-based (red) retrievals. (b) Daily mean CrIS vs. ground-based (±2 hours of the CrIS overpass) 363 
isoprene columns; the reduced major axis regression and bootstrapped 95% confidence interval are indicated 364 
by the red line and gray shaded area, respectively. The dotted line shows the 1:1 relationship. 365 

The Porto Velho measurements are slated to resume in the future, and with time should provide 366 

an increasingly robust resource for quantitatively testing the space-based retrievals. In theory, 367 

such measurements can also be performed across the global network of ground-based solar FTIR 368 

stations (Vigouroux et al., 2020). However,  this site in Amazonia is uniquely situated for the 369 

validation of isoprene, which is measurable from space primarily over hotspot regions (Wells et 370 

al., 2020).  371 

4 Global distribution and key hotspot results 372 

Figure 5 shows the global distribution of monthly-mean ROCR isoprene retrievals as a multi-373 

year mean over the 2012-2020 SNPP CrIS record. These data represent the first space-based 374 

quantification showing the full seasonal cycle of atmospheric isoprene. We see the highest 375 

columns over Amazonia, with a widespread regional maximum in September and a secondary 376 

more localized maximum over northwestern Brazil peaking in April. Within the northern  377 

  378 
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 379 
Figure 5. Global distribution of gridded (0.5° × 0.625°) isoprene column densities as measured from SNPP 380 
CrIS, averaged from 2012-2020 for each month of the year (2013-2020 for January). Data are plotted with 381 
partial transparency on the underlying land cover; missing data (e.g., in the wintertime high northern 382 
latitudes) have full transparency.  383 
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midlatitudes, the highest isoprene columns occur during summer over the Ozarks region of the 384 

US, with other summertime enhancements detected over the forests of Canada and Russia.  385 

Over Africa, CrIS reveals a distinct north-south seasonal shift, with isoprene enhancements in 386 

the southeast (Angola/Zambia) peaking in January-February, throughout the Sahel during May-387 

October, and in central Africa during March-April and September-October. A similar seasonal 388 

pattern manifests over Oceania and East Asia: during February-April the highest columns occur 389 

over northern Australia, with this peak then shifting northward to Southeast Asia, eastern China, 390 

and the eastern Indian subcontinent by July-September. Detection for many of the above patterns 391 

is made feasible by the improved sensitivity of the HRI retrieval: over East Asia, for example, 392 

the short isoprene lifetimes and lower column amounts hindered detection with the previous DTb 393 

approach (Wells et al., 2020).  394 

Below, we explore these results in more detail over two key isoprene source regions—the United 395 

States+Mexico and Amazonia—demonstrating in particular the capabilities of this new dataset 396 

for resolving patterns of isoprene variability at high spatial resolution and on daily timescales. 397 

4.1 United States and Mexico 398 

Figure 6 shows the 2012-2020 ROCR isoprene retrievals over the US and Mexico averaged by 399 

month for May-October. The data exhibit strong spatial heterogeneity at unprecedented 400 

resolution, with major hotspots over the “isoprene volcano” in the southern Missouri/northern 401 

Arkansas Ozarks (Wiedinmyer et al., 2005) and over the Yucatán Peninsula in Mexico, an area 402 

with some of the highest predicted emission rates globally (Opacka et al., 2021). Substantial 403 

isoprene enhancements are also observed over the South-Central Plains in eastern Texas and 404 

western Louisiana, where an emission underestimate was previously inferred from satellite-based 405 

measurements of formaldehyde (Kaiser et al., 2018). We also see elevated isoprene columns over 406 

source regions along the Piedmont Plateau in Appalachia, in coastal Mexico, in the national 407 

forests of southwestern Colorado, in northern California, and in the Sierra Nevada foothills.  408 
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 409 
Figure 6. Distribution of gridded (0.5° × 0.625°) isoprene column densities over the US and Mexico as 410 
measured from SNPP CrIS, averaged from 2012-2020 by month for May-October.  411 

The fine-scale patterns of isoprene variability seen by CrIS over North America are also 412 

supported by independent data. For example, Fig. 7 shows that aircraft measurements during the 413 

SENEX (Warneke et al., 2016) and SEAC4RS (Toon et al., 2016) campaigns in the southeast US 414 

exhibit spatial structure that agrees well with CrIS, with all three datasets identifying the Ozarks 415 

as the primary isoprene hotspot in this region. Over this hotspot, the CrIS measurements are 416 

further able to resolve daily isoprene variability correlating strongly with surface temperature 417 
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during summer (Fig. 8), reflecting the underlying emission dependence (Guenther et al., 1993). 418 

Quantifying this isoprene-temperature relationship on a daily basis represents a major advance 419 

over our previous retrievals, which required monthly averaging to enhance signal-to-noise (Wells 420 

et al., 2020). We see in Fig. 8j that the isoprene-temperature dependence seen from space by 421 

CrIS corroborates the bottom-up predictions, with an absolute offset consistent with the isoprene 422 

lifetime underestimate inferred previously for GEOS-Chem over this region (Wells et al., 2020). 423 

 424 
Figure 7. Spatial distribution of isoprene over the Southeast US as measured from aircraft (left) and CrIS 425 
(right) during the SENEX (top, June-July 2013) and SEAC4RS (bottom, August-September 2013) campaigns. 426 
Aircraft data are displayed as campaign mean (daytime flights only) density weighted boundary layer (P > 427 
800 hPa) concentrations (molec cm-3); CrIS data are plotted as column densities (molec cm-2) averaged over 428 
the flight days of each campaign. Areas in gray have no available data. 429 
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 430 
Figure 8. Daily evolution of summertime (June-September) isoprene over the US Ozarks. (a-i) CrIS isoprene 431 
(black) and MERRA-2 surface air temperature (Tsfc, orange) timeseries averaged over the Ozarks region for 432 
each year from 2012-2020. (j) Daily CrIS (black) and GEOS-Chem (red) isoprene columns for the same 433 
region and timeframes plotted as a function of surface air temperature. An exponential fit to each data set is 434 
shown with To = 330 K in each case. 435 

The strong temporal isoprene variability over the Ozarks that is revealed by CrIS in Fig. 8 is 436 

corroborated not only by the above temperature correlation but also by separate aircraft and 437 

ground-based observations. For example, Fig. S7 shows that day-to-day differences of 438 
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comparable magnitude are detected over this region from both space-based and airborne 439 

platforms. Furthermore, the highest CrIS isoprene columns across the entire Ozark data record 440 

occur in early July of 2012 (Fig. 8a), when anomalously large isoprene fluxes were measured in 441 

situ (Seco et al., 2015) during the early phase of an extreme drought.  442 

4.2 Amazonia 443 

Figure 9 shows CrIS isoprene columns over Amazonia averaged across the SNPP record for 444 

January, March, May, July, September, and November. Significant spatial variability is revealed 445 

by the high-resolution CrIS isoprene data over this region. The highest columns are observed 446 

over the western Brazilian state of Acre (on the border with Peru and Bolivia), followed by a 447 

widespread enhancement over the northern Amazon Basin (Brazilian states of Amazonas, Pará, 448 

and Roraima) and a more localized hotspot over Maranhão in eastern Brazil. Persistently low 449 

isoprene columns are detected along the Amazon mainstem and over other major regional 450 

floodplains (Fig. S8; Hamilton et al., 2002), consistent with the elevational and phenological 451 

gradients in isoprene emissions discussed by Gu et al. (2017).  452 
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 453 
Figure 9. Distribution of gridded (0.5° × 0.625°) isoprene column densities over Amazonia as measured from 454 
SNPP CrIS, averaged from 2012-2020 by month for January, March, May, July, September, and November. 455 

Strong seasonal shifts are seen in the location and magnitude of the above isoprene 456 

enhancements. In particular, a widespread maximum is detected during the dry season 457 



manuscript submitted to JGR: Atmospheres 
 

 23 

(September-October) when temperatures and leaf area are highest (Wei et al., 2018). A more 458 

localized maxima then emerges over the northwest Amazon basin during the wet season 459 

(January-May), with a minimum during the transition between these two periods (June-July) 460 

when leaf flushing is believed to cause a large-scale shutdown of isoprene emissions (Barkley et 461 

al., 2009).  462 

As was the case over the southeastern US, we also observe significant day-to-day isoprene 463 

variability over Amazonia. Figure 10a shows an example isoprene timeline for year-2013 over 464 

the state of Acre in western Brazil, where the highest columns in the entire basin are often 465 

detected. Isoprene enhancements of similar magnitude occur during both the wet and dry 466 

seasons—despite the much higher temperatures, and thus presumably higher emissions, in the 467 

dry season (Fig. 10c). Further, the daily isoprene columns have a robust temperature correlation 468 

during the dry season (r = 0.58, Fig. 10c) but not during the wet season (r = 0.11, Fig. 10b) when 469 

the temperature range is small.  470 
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 471 
Figure 10. Seasonal variability in atmospheric isoprene over the state of Acre in western Brazil as seen from 472 
CrIS. (a) Temporal evolution of CrIS isoprene (black), OMI tropospheric NO2 (×10, green; Boersma et al., 473 
2017), and MERRA-2 surface temperature (orange) averaged over the region during year-2013. (b) CrIS 474 
isoprene columns plotted as a function of MERRA-2 surface temperature and shaded by lifetime for the 475 
Amazonian wet season (January-May) and (c) dry season (August-October). Isoprene lifetimes are derived 476 
from the isoprene:HCHO column ratios as described by Wells et al. (2020) using HCHO data from OMI (De 477 
Smedt et al., 2017). Exponential fits to the dry season data are shown for isoprene lifetimes < 3 h (blue), 3-6 h 478 
(green), and > 6 h (orange). The timelines are displayed as a three-day running mean; scatter plots show daily 479 
data. 480 

The above patterns arise because of seasonal NOx-driven differences in the isoprene lifetime. 481 

Wells et al. (2020) showed previously that the isoprene lifetime can be directly estimated from 482 

the satellite-measured isoprene:formaldehyde column ratio. Applying the same approach here, 483 
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we see that in the wet season, when NOx is low (< 5 × 1014 molec cm-2, Fig. 10a), isoprene 484 

lifetimes over Acre are far longer (often 10-20+ h, Fig. 10b) than they are in the dry season 485 

(typically < 6 h, Fig. 10c) when NOx is elevated (> 1 × 1015 molec cm-2, Fig. 10a). This 486 

suppressed OH then leads to runaway wet season concentrations in spite of the relatively low 487 

temperatures. Furthermore, we find during the dry season that the isoprene column:temperature 488 

relationship varies in a coherent way with the isoprene lifetime: when lifetimes are longer the 489 

temperature dependence is steeper, and vice versa (Fig. 10c). This coherence further 490 

demonstrates the fidelity of the daily CrIS isoprene measurements. 491 

5 Conclusions 492 

We have described the next-generation ROCR isoprene retrieval, and applied it to obtain daily 493 

global isoprene distributions from the CrIS satellite sensor for 2012-2020. The retrieval employs 494 

the HRI as isoprene spectral index in a machine learning framework, building on previous work 495 

for other VOCs with the IASI sensor (Franco et al., 2018; Franco et al., 2019; Franco et al., 496 

2020). We show that the ROCR isoprene retrieval provides enhanced sensitivity over our 497 

previous method while maintaining computational efficiency to fully exploit the dense global 498 

sampling of the CrIS instruments. Over Amazonia, the spatial distribution of the new isoprene 499 

retrievals is highly consistent with prior OE and ΔTb-based results, with daily variability that 500 

compares well with ground-based column observations. The derived CrIS isoprene columns are 501 

lower in magnitude (20-40%) than earlier retrieval versions but higher (up to 50% for daily data) 502 

than the ground-based results, likely reflecting different sources of systematic uncertainty in the 503 

various approaches. A series of sensitivity tests identifies the background definition and isoprene 504 

vertical profile as the most relevant uncertainty sources in the ROCR retrieval. Independent 505 

validation continues to be a critical need for robust interpretation of the isoprene column 506 

abundances in terms of controlling process. 507 

The long-term global CrIS dataset presented here has unprecedented resolution, revealing strong 508 

seasonal and spatial variability in atmospheric isoprene. Clear seasonal cycles are seen over the 509 

world’s isoprene hotspots, including East Asia and India where sensitivity was limited with our 510 

previous approach. Over the US and Mexico, isoprene enhancements are observed across a range 511 

of ecosystems and in particular over the “isoprene volcano” in the Ozarks. There, the patterns of 512 

variability detected by CrIS are supported by independent data, reflecting emission drivers on 513 
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daily (e.g., temperature) to interannual (e.g., drought stress) timescales. Over Amazonia, strong 514 

spatial gradients are observed that vary temporally according to seasonal phenology of the 515 

underlying landscape features. Combining the CrIS data with space-based formaldehyde and 516 

NO2 measurements reveals daily lifetime variations that elucidate the dual controls of emissions 517 

and chemistry on the isoprene abundance.  518 

Overall, results presented here demonstrate the ability of these high-resolution CrIS retrievals to 519 

resolve daily isoprene variability from space, thus enabling new investigations into emission 520 

processes across a range of plant functional types. Our initial analyses highlighted some of the 521 

emergent connections between isoprene abundance and daily-to-interannual variations in 522 

temperature, NOx, and drought stress. Because the CrIS record is planned to extend through at 523 

least 2030, the ROCR isoprene retrievals will provide valuable long-term information for 524 

diagnosing ecosystem variability and the links between surface-atmosphere exchange, climate, 525 

and chemistry in biogenic source regions.  526 
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Table 1: Settings for the ground-based FTIR isoprene retrievals at Porto Velho. 713 

Retrieval code SFIT4v09.4.4; available at https://www2.acom.ucar.edu/irwg/ 
Spectral window  891.6-917.0 cm-1 
De-weighted signatures (H2O)    896.4-896.6; 897.6-897.8; 902-8-903.2; 906.5-907.0; 907.7-908.9; 

910.1-910.4; 910.6-910.8; 911.2-911.3; 914.5-915.0 cm-1 
Retrieved species (target + 
interfering) 

Profile retrieval: C5H8, H2O, NH3 
Scaling of the a priori profile: CO2, HNO3, H2

18O, C2H4, CCl2F2, 
F142b, solar CO 

Spectroscopic parameters C5H8: pseudo line list by G. Toon (JPL): 
https://mark4sun.jpl.nasa.gov/pseudo.html, constructed from the 
cross-sections of Brauer et al. (2014). 
H2O, H2

18O: from Toth (2003), available at 
http://mark4sun.jpl.nasa.gov/data/spec/H2O/RAToth_H2O.tar 
NH3, HNO3, C2H4: HITRAN 2012 
CO2: HITRAN 2008 
CCl2F2, F142b: pseudo line list by G. Toon (JPL) 
Solar CO: updated from Hase et al. (2010), see SFIT4v09.4.4 
package. 

A priori profiles of atmospheric 
species 

H2O, H2
18O: 6-hourly profiles from NCEP  

Other species: climatology from WACCM v4 model 
P, T profiles  6-hourly profiles from NCEP 
Regularization  Tikhonov L1 regularization (Tikhonov, 1963; see also Vigouroux et 

al., 2012 for application to FTIR); a-value = 50, 5, and 0.1 for C5H8, 
H2O and NH3, respectively. 

Uncertainties  Random: 7% (3.4 ×1014 molec/cm2); Systematic: 21% 
 714 


