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Abstract

In atmospheric modeling, superparameterization has gained popularity as a technique to improve cloud and convection repre-

sentations in large scale models by coupling them locally to cloud-resolving models. We show how the different representations

of cloud water in the local and the global models in superparameterization lead to a suppression of cloud advection and ulti-

mately to a systematic underrepresentation of the cloud amount in the large scale model. We demonstrate this phenomenon

in a regional superparameterization experiment with the global model OpenIFS coupled to the local model DALES (the Dutch

Atmospheric Large Eddy Simulation), as well as in an idealized setup, where the large-scale model is replaced by a simple

advection scheme. To mitigate the problem of suppressed cloud advection, we propose a scheme where the spatial variability

of the local model’s total water content is enhanced in order to achieve the correct cloud condensate amount.
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Movie S1. A comparison of three simulations, showing a simplified superparameteriza-

tion setup where the large-scale model consists of only advection. A single wide domain

(top), superparameterization with four coupled models (middle), and superparameteriza-

tion with variability coupling (bottom). The initial state contains a bubble of air with

added humidity, which forms a single cloud. With regular superparameterization, the

cloud is not advected between the domains. With the addition of variability coupling,

clouds are advected between the domains, however their shapes are not preserved. This

movie shows the same simulations as in figures 5–7 in the main text.

Movie S2. A comparison of three simulations over Barbados. Regular non-

superparameterized OpenIFS (top), superparameterized OpenIFS (middle), and super-

parameterized OpenIFS with the addition of variability coupling (bottom). In the usual

form of superparameterization (middle) clouds are not easily advected into the superpa-

rameterized domain. Variability coupling (bottom) increases the amount of cloud con-

densate in the small-scale models. This movie shows the same simulations as in figures 1,

3, and 8 in the main text.
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Key Points:11
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Abstract17

In atmospheric modeling, superparameterization has gained popularity as a technique to18

improve cloud and convection representations in large scale models by coupling them lo-19

cally to cloud-resolving models. We show how the different representations of cloud water20

in the local and the global models in superparameterization lead to a suppression of cloud21

advection and ultimately to a systematic underrepresentation of the cloud amount in the large22

scale model. We demonstrate this phenomenon in a regional superparameterization experi-23

ment with the global model OpenIFS coupled to the local model DALES (the Dutch Atmo-24

spheric Large Eddy Simulation), as well as in an idealized setup, where the large-scale model25

is replaced by a simple advection scheme. As a starting point for mitigating the problem of26

suppressed cloud advection, we propose a scheme where the spatial variability of the local27

model’s total water content is enhanced in order to match the global model’s cloud conden-28

sate amount. The proposed scheme enhances the cloud condensate amount in the test cases,29

however a large discrepancy remains, caused by rapid dissipation of the clouds added by the30

proposed scheme.31

Plain Language Summary32

In this article we investigate a technique called superparameterization for improving33

how global weather and climate models represent clouds and convection. In current oper-34

ational global weather and climate models, the resolution is limited to 10–100 km by com-35

putational resources. This is not sufficient to resolve cloud and convective processes. The36

effect of these processes must then be approximated by so-called parameterizations. Super-37

parameterization uses another, local atmospheric model with a higher resolution, nested in-38

side the columns of the global model, to evaluate the effects of clouds and convection. By39

analysing results from a superparameterized simulation, we show that superparameterization40

as it is generally implemented suppresses advection of existing clouds from one grid column41

to another in the global model, leading to a severe underestimation of the amount of shallow42

clouds. The suppression occurs because the global and local models represent clouds in dif-43

ferent ways, and the commonly used superparameterization scheme does not communicate44

the full cloud information from the global model to the local one. Adding such a coupling of45

the cloud information to the superparameterization scheme partially improves the advection46

of clouds. The remaining discrepancies indicate that there are still missing processes in the47

superparameterized representation of boundary layer clouds.48

1 Introduction49

Many of the systematic biases and uncertainties in conventional general circulation50

models (GCMs) can be attributed to the highly parameterized representation of clouds, tur-51

bulence and convection. It is even questionable whether these biases will be eliminated un-52

less resolutions of GCMs become fine enough for these processes to be numerically resolved.53

As pointed out by Arakawa et al. [2011, 2016] there are essentially two possible routes to-54

ward such global large eddy models (GLEMs).55

Route 1 follows the traditional approach of continuously refining the resolution until56

clouds, convection and turbulence are sufficiently resolved. This requires scale aware param-57

eterizations for these processes that are gradually switched off with increasing resolution in a58

physically consistent manner. Alternatively one can make large jumps in the used resolution59

so certain parameterizations can be switched off abruptly. At present, a horizontal resolu-60

tion of around 1 km is the highest possible resolution for subseasonal global simulations of61

the atmosphere [Stevens et al., 2019a; Satoh et al., 2019]. For such storm resolving resolu-62

tions, the general belief is that deep moist convective overturning is sufficiently well resolved63

to the extent that any additional deep convection parameterization will deteriorate the skill64

of the simulation. Obviously, at these storm resolving resolutions there is still a turbulence65

–2–



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

parameterization required as well as some parameterized representation of boundary layer66

cloudiness and shallow cumulus convection.67

Route 2 makes use of a “multi-scale modeling framework” (MMF). In its original68

form, deep moist convection parameterization was replaced (or “superparameterized”) by a69

2D storm resolving model (2D SRM) in each cell of a GCM [Grabowski and Smolarkiewicz,70

1999; Grabowski, 2001; Randall et al., 2003; Khairoutdinov et al., 2005; Tao et al., 2009].71

More recently, the use of a 3D large eddy model as a superparameterization (SP) for clouds,72

convection and turbulence has been proposed [Grabowski, 2016; Parishani et al., 2017;73

Jansson et al., 2019]. This approach has the advantage that most of the small scale dynamics74

and cloud microphysics is well represented while the GCM can still be formulated in an ef-75

ficient hydrostatic manner. Further computational advantages of this approach over a GLEM76

are discussed in Grabowski [2016]. Because the use of a 3D large eddy model as a super-77

parameterization on a global scale is computationally not yet feasible, Jansson et al. [2019]78

implemented the possibility of using a 3D Large Eddy Model (LEM) on a regional scale in79

the global Integrated Forecasting System (IFS) of the ECMWF [Malardel et al., 2016; Spar-80

row et al., 2021]. This implies that a number of grid cells in the IFS can be selected to be81

superparameterized while the remaining part of the IFS will use the conventional parameter-82

izations for clouds, convection and turbulence. In the study by Jansson et al. [2019] the im-83

plementation of the Dutch Atmospheric Large Eddy Simulation (DALES, Heus et al. [2010])84

model as a superparameterization into the IFS was documented, along with a case study of85

local shallow cumulus convection over land to demonstrate the potential of this approach.86

Despite the many advantages, the MMF does not come without problems. One draw-87

back of this approach is that the communication between LEMs embedded in neighboring88

GCM columns can only occur through the GCM, primarily through advection of the vari-89

ables in the GCM. Therefore it is not possible in the superparameterized framework to ad-90

vect a spatial structure, as resolved by a local LEM, to a neighboring GCM grid column —91

only the mean state of a GCM grid column can be advected to a neighboring column. In92

other words, compared to a global LEM, the MMF introduces a scale break as it does not93

allow structures, or even variability, to grow upscale to scales beyond the size of the GCM94

grid size. The same scale cutoff is naturally present in a GCM, where processes on scales95

smaller than the grid size are parameterized. Superparameterization should be viewed as96

an attempt for a better and model-informed parameterization, rather than a substitute for a97

global LEM. Chern et al. [2020] evaluates biases in the size of rain events simulated in the98

Goddard MMF, caused by the size constraint imposed by the cloud-resolving model. On the99

other hand, other phenomena such as mesoscale convective systems and tropical cyclones100

have been shown to be able to grow across the scales of the two models when simulated with101

SP [Pritchard et al., 2011; Tulich, 2015; Lin et al., 2022].102

Another related but more severe drawback of the MMF follows from the fact that while103

most GCMs carry separate prognostic variables for the water vapor and the water in the con-104

densed phase, this is not the case for the local LEM. Most local models use the total water105

specific humidity 𝑞𝑡 , i.e the sum of water vapor and the condensed water, as a prognostic106

variable. This implies that while the GCM separately advects the amount of condensed water107

and water vapor from one grid cell to a neighboring one, the local LEM of the neighboring108

cell is incapable of digesting this information and can only take the sum of the advected va-109

por and condensed water as input.110

As will be demonstrated in detail, this implies that a cloud which is advected to a neigh-111

boring grid column by the GCM will be directly diluted and dissipated in the local LEM112

of the neighbouring column. This dissipation of advected subgrid clouds, such as cumu-113

lus types, is likely a general problem in all published studies of superparameterizations that114

make use of SRMs with total water specific humidity as a prognostic variable. Marine shal-115

low cumulus is an abundant cloud type, with important but not precisely known climate feed-116

back properties [Bony and Dufresne, 2005; Bony et al., 2020].117
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In short, the main purpose of this paper is i) to show that most superparameterizations118

as they are used today dissipate most of the advected cloud condensate of sub-grid-scale119

clouds, leading to strong underestimation of cloud condensate and ii) to explore a simple120

solution by coupling the appropriate variance of humidity between GCM grid cells that are121

commensurate with the advected cloud condensate.122

The paper is organised as follows. In section 2, we analyse the SP procedure and its123

consequences for cloud advection. As an example, we show a regional SP simulation with124

the LEMs located over the subtropical Northern Atlantic Ocean, in the vicinity of Barbados.125

The example shows almost complete suppression of cloud advection into the superparame-126

terized region. In section 3 we propose an extension of the SP scheme with a procedure to127

adjust the small-scale variability in the local models, in order to better preserve the cloud128

condensate. In section 4 we present an idealized SP experiment where the large-scale model129

consists of only advection, to demonstrate the lack of cloud advection in SP and to see the130

impact of the variability coupling scheme in a simple setup. The effects of the variability131

coupling procedure on the full Barbados simulation is evaluated in section 5. In the conclud-132

ing section 6 we discuss the impact of the cloud advection issue on SP experiments.133

2 Suppressed cloud advection in superparameterization134

In this section, we show that a SP scheme can lead to suppressed advection of cloud135

condensate in the large-scale model.136

2.1 Superparameterized Barbados experiment137

Figure 1. A superparameterized simulation over Barbados on 2013-12-15 at 9:30 UTC, showing that in-
coming clouds in the large-scale (purple) model do not easily advect into the superparameterized region (blue
boxes). The right hand-image shows a magnification of the eastern (upwind) part of the SP region.

138

139

140

We demonstrate this lack of cloud advection in an experiment with the regional SP of141

OpenIFS with DALES [Jansson et al., 2019], with the SP region located over Barbados, as142

shown in figure 1. This case has a wind from the east which brings clouds into the superpa-143

rameterized region. The IFS model, initialized from ERA5 as in Jansson et al. [2019], shows144

only shallow clouds entering the SP region, cloud base varies between 500m and 800m,145

while the cloud top varies between 1.4 and 3 km during the simulation (this can be seen be-146

low in figure 11 showing vertical profiles of cloud condensate in selected grid points). In the147

experiments shown here, IFS was operating at an effective horizontal resolution of 40 km148

(T511L91 grid). The DALES domains cover 12.8 × 12.8 km with a horizontal resolution of149
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200 m. The DALES domains are 5 km high, with a vertical resolution of 20 m. Further de-150

tails are given in [Jansson et al., 2019]. A satellite image of the same area is shown in figure151

2.152

The region features persistent shallow cumulus clouds transported by the trade winds,153

with cloud patterns and cloud organizations occurring on widely different length scales. It154

is an interesting test case for SP, in particular to investigate how well SP represents cloud or-155

ganization. The time and the location were chosen to coincide with the NARVAL [Stevens156

et al., 2019b] observation campaign. The location is also part of the recent EUREC4A cam-157

paign [Bony et al., 2017; Stevens et al., 2021].158

DALES on its own, like several other atmospheric LEMs, has been evaluated under159

similar conditions - subtropical marine shallow cumulus convection. See for example the160

LES model intercomparison studies for the the non-precipitating BOMEX and ATEX cases161

[Siebesma et al., 2003; Stevens et al., 2001] and the precipitating RICO case [vanZanten162

et al., 2011].163

60˚W 59˚W 58˚W 57˚W61˚W

14˚N

13˚N

Figure 2. Satellite image from Terra/MODIS over the same region as figure 1, on 2013-12-15 13:55 UTC.164

Figure 3 shows the liquid water path and total water path in the GCM from the SP sim-165

ulation mentioned above, compared to a corresponding simulation without SP, i.e. using the166

standard OpenIFS. The SP columns show virtually no clouds as opposed to the neighboring167

columns. The figure shows that the total water path in the two simulations are similar, while168

the liquid water path is markedly lower in the SP columns.169

We will argue that the reason for the lack of clouds in the SP columns is because ad-177

vection of clouds into the SP columns is suppressed by the SP coupling.178

This cloud suppression issue is especially visible in a regional SP model where the179

global model contains both superparameterized and regular columns next to each other as180

illustrated in Fig. 3. The problem is not, however, restricted to regional superparameteriza-181

tions but can be expected also in uniformly superparameterized models.182

2.2 Model coupling in superparameterization183

For the physical model coupling between a LEM or another local model and some184

or all columns of a GCM, we have followed the same approach as described by Grabowski185

[2004]. Since this coupling plays a crucial role in the cloud suppression, we briefly review186

the procedure here.187
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No SP

SP

Figure 3. Comparing dynamics of the liquid water path and total water path in standard OpenIFS (top)
and an SP setup (bottom), in a simulation over Barbados. Superparameterized grid columns are marked with
blue dots. The wind is from the east, advecting clouds in to the superparameterized regions. In the normal
superparameterization, there is a hole in the cloud cover (seen in the liquid water path (LWP, left) over the
superparameterized region, compared to standard OpenIFS. The total water path (TWP, right) is similar be-
tween the two simulations, and does not show different behaviour in the superparameterized columns. The
simulation was initialized on 2013-12-15 at 00 UTC, the image shows the state at 09:30.

170

171

172

173

174

175

176

The general idea is that for each coupled variable, a forcing is introduced, which keeps188

the states of the two models consistent with each other,189

Φ(𝑋,𝑌, 𝑍, 𝑡) = ⟨𝜙(𝑥, 𝑦, 𝑧, 𝑡)⟩. (1)

The brackets ⟨·⟩ here denote a spatial average over the LEM domain in the horizontal di-190

rections. Capital letters denote variables in the GCM, small letters denote variables used in191

the LEM. Φ and 𝜙 here may represent any of the prognostic variables. The details of the re-192

gional SP setup used here are given in Jansson et al. [2019]; we here give the coupling equa-193

tions for reference.194

The GCM first performs a single time step from time 𝑇 to 𝑇 +Δ𝑇 , after which the LEM195

is evolved over the same time interval, in multiple smaller time steps of length Δ𝑡. Before196

the time evolution of each model, forcings are calculated based on the difference between the197

most recently obtained states of the two models, chosen such as to keep equation (1) satis-198

fied. The coupling and the time stepping of the system are described in the following 4 steps.199

(i) Given the state of both models at time 𝑇 , represented by Φ(𝑇) for any of the GCM200

variables and 𝜙(𝑇) for the corresponding LEM variable, the forcing 𝐹Φ on the vari-201
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Coupled variables
OpenIFS direction DALES description

𝑈, 𝑉 ↔ 𝑢, 𝑣 horizontal velocity
T ↔ 𝜃𝑙 temperature / liquid water potential temperature

𝑄𝑉 +𝑄𝐿 +𝑄𝐼 → 𝑞𝑡 specific total humidity
𝑄𝑉 ← 𝑞𝑡 − 𝑞𝑐 specific water vapor humidity

𝑄𝐿 , 𝑄𝐼 ← 𝑞𝑐 specific condensed water humidity
𝐴 ← 𝑎 cloud fraction

Table 1. Summary of the coupling of OpenIFS and DALES. 𝑈 and 𝑉 are horizontal velocities, T is the
temperature in OpenIFS, and 𝜃𝑙 is the liquid water potential temperature in DALES. 𝑄𝑉 , 𝑄𝐿 and 𝑄𝐼 are
the specific water vapor, cloud liquid, and cloud ice amounts in OpenIFS, while 𝑞𝑡 and 𝑞𝑐 are the specific
total water and cloud condensate amounts in DALES. The cloud fraction 𝐴 is coupled only from DALES to
OpenIFS.

211

212

213

214

215

able Φ in the GCM is calculated as202

𝐹Φ (𝑇) =
⟨𝜙(𝑇)⟩ −Φ(𝑇)

Δ𝑇
. (2)

(ii) Time-step the GCM203

Φ(𝑇 + Δ𝑇) = Φ(𝑇) + Δ𝑇
[
𝐴Φ (𝑇) + 𝑆Φ (𝑇) + 𝐹Φ (𝑇)

]
, (3)

where 𝐴Φ (𝑇) represents advection terms and 𝑆Φ (𝑇) represents source terms for the204

variable Φ during the step from 𝑇 to 𝑇 + Δ𝑇 .205

(iii) Now the forcing on 𝜙 in the LEM is calculated as206

𝑓𝜙 (𝑇) =
Φ(𝑇 + Δ𝑇) − ⟨𝜙(𝑇)⟩

Δ𝑇
. (4)

(iv) and finally the time-step the LEM is executed as207

𝜙(𝑇 + Δ𝑇) = 𝜙(𝑇) +
𝑇+Δ𝑇∑︁
𝑡=𝑇

Δ𝑡
[
𝑎𝜙 (𝑡) + 𝑠𝜙 (𝑡) + 𝑓𝜙 (𝑇)

]
. (5)

The sums over 𝑡 here represent evolving the LEM over several time steps, with 𝑎𝜙 (𝑡)208

denoting advection terms and 𝑠𝜙 (𝑡) denoting source terms for 𝜙.209

2.3 Coupling of DALES and OpenIFS210

The SP of OpenIFS with DALES s formulated with couplings of variables for the hor-216

izontal wind velocities, temperature, and humidity. A summary the coupling is provided in217

table 1. While OpenIFS uses the regular temperature T as a variable, DALES is formulated218

using the liquid water potential temperature 𝜃𝑙 ,219

𝜃𝑙 ≈
T

Π(𝑝) −
𝐿

𝑐𝑝𝑑Π(𝑝)
𝑞𝑐 . (6)

where 𝑞𝑐 is the specific cloud condensed water content and 𝑐𝑝𝑑 ≈ 1004 J/kg K is the specific220

heat of dry air at constant pressure. The Exner function Π(𝑝) is defined as221

Π(𝑝) =
(
𝑝

𝑝0

)𝑅𝑑/𝑐𝑝𝑑
, (7)

where 𝐿 ≈ 2.5 · 106 J/kg is the latent heat of water vaporization, and 𝑅𝑑 ≈ 287.04 J/kg K is222

the gas constant for dry air.223
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2.4 Representation of clouds and small-scale variability224

In this section we will show how the different representations of clouds in the GCM225

and the LEM lead to an insufficient coupling of cloud quantities in SP and reduced advection226

of existing clouds into SP columns.227

While the SP coupling described above conserves the amount of water in the system,228

it does not conserve the amount of condensed water. In global atmospheric models, the hori-229

zontal extent of a grid column is typically tens of kilometers, large enough to host numerous230

clouds. GCMs keep track of the amount of water vapor 𝑄𝑉 , liquid water 𝑄𝐿 , and ice water231

𝑄𝐼 in each grid cell, along with the cloud-fraction 𝐴 indicating that only a fraction of the232

grid cell is cloudy while the rest remains unsaturated.233

LEMs on the other hand, generally assume that the grid cells are either uniformly234

cloudy or unsaturated. Therefore cloud condensation only occurs if the grid cell is super-235

saturated by an all-or-nothing procedure. This allows the use of total specific humidity 𝑞𝑡 , i.e236

the sum of condensed water and water vapor, as a prognostic variable from which the con-237

densed water is only determined diagnostically. Virtually all atmospheric LEMs (e.g. SAM238

Khairoutdinov et al. [2005], DALES Heus et al. [2010], PALM [Maronga et al., 2015], Mi-239

croHH [van Heerwaarden et al., 2017], NICAM and SCALE [Tomita, 2008], and UCLALES240

[Stevens et al., 2005]) use 𝑞𝑡 as a prognostic variable.241

In SP schemes, the 𝑞𝑡 variable of the LEM is forced towards the total specific humidity242

of the global model, see table 1. If 𝑞𝑡 increases above its saturation value, clouds will form243

in the LEM. However, GCM grid cells containing both clouds and unsaturated air are usually244

unsaturated on average, and as a result the LEM will be forced towards a cloud-free state,245

even though the GCM column contains clouds.246

It is difficult to couple the amount of cloud condensed water in the same way as the247

other coupled quantities in a SP setup, as it is not a prognostic variable in the LEM but di-248

agnosed from the local total specific humidity for each cell and time step. The amount of249

clouds in the LEM thus depends on fluctuations in state variables in the horizontal direction,250

which is a degree of freedom that so far is left uncoupled in SP schemes. In other words,251

the information contained in the GCM variables 𝑄𝐿 and 𝑄𝐼 is not transferred to the LEM in252

a standard SP scheme, since the LEM does not have corresponding prognostic variables to253

couple with these quantities.254

Since clouds consist of local regions with higher humidity and/or lower temperature255

than their surroundings, we suggest that a way to control the cloudiness of the LEM is to256

nudge not just the horizontal average of the variables (as usually done in SP) but also the257

magnitude of their fluctuations from the average, in order to match the cloud-related vari-258

ables of the large-scale model. This can be done in a way that leaves the fundamental rela-259

tion (1) unchanged. A method to do so is described in section 3.260

Note that even without adjusting the horizontal fluctuations, the LEM can generate261

clouds through convection if the conditions are favorable. The difficulties described above262

appear only when existing clouds in the global model should be advected into a model col-263

umn with an embedded LEM, which happens to be cloud-free.264

3 Variability coupling procedure265

In order to couple the cloud water content of the LEM with the global model, we pro-266

pose an extension to the SP coupling scheme to influence not just the horizontal averages but267

also the horizontal variability. In particular, by changing the amplitude of the fluctuations of268

the total specific humidity in each horizontal grid plane, the condensed water amounts there269

will be influenced. We here consider clouds where the condensate consists of water only. If270

the fluctuations are adjusted without altering the horizontal average, this scheme is still com-271
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patible with the superparameterization procedure. In other words, our proposed humidity272

variability coupling scheme amounts to re-distributing the total water content of each hori-273

zontal layer in the LEM, in such a way that the condensed water content matches the value274

from the GCM for each layer.275

This adjustment scheme is in the spirit of the traditional SP formulation, where the two276

models are forced towards each other during each time step. Our scheme extends this idea to277

the condensed water content, which the traditional scheme doesn’t couple from the GCM to278

the LEM. Coupling cloud condensate information in the other direction, from the LEM to the279

GCM, is easily handled: the forcing on the GCM can be derived from the diagnosed specific280

condensed water humidity 𝑞𝑐 of the LEM.281

3.1 Humidity variability282

There are many ways to adjust the total humidity field - any perturbation which leaves287

the horizontal average unchanged, and does not introduce negative humidity values could be288

considered. We choose to scale the amplitude of existing variations in each horizontal layer.289

In this way, we do not have to specify the length scales of the variability we add, but merely290

amplify the existing variability, as illustrated in figure 4. Let 𝑞𝑡 be the total humidity, and291

𝑞sat the saturation humidity for each cell in the LEM. The condensed water humidity is then

original humidity qt

adjusted humidity qt*

saturation 
humidity qsat

clouds

mean〈qt〉

log wave number k

log spectral 
power 

saturation 
humidity qsat

mean〈qt〉

horizontal
spatial coordinate

k–5/3

original humidity qt

adjusted humidity qt*

Figure 4. Illustration of the variability coupling procedure. Cells where 𝑞𝑡 is above 𝑞sat are saturated, and
contribute to the condensed water content. The condensed water amount in each horizontal slab is controlled
by adjusting the amplitude of the 𝑞𝑡 fluctuations around the mean ⟨𝑞𝑡 ⟩. This procedure preserves the shape
(typically a −5/3 slope) of the humidity power spectrum.

283

284

285

286
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𝑞𝑐 = max[0, 𝑞𝑡 − 𝑞sat (𝑝,T)] . (8)

The modified 𝑞𝑡 field can be written as292

𝑞∗𝑡 = 𝛽(𝑞𝑡 − ⟨𝑞𝑡 ⟩) + ⟨𝑞𝑡 ⟩ (9)

where 𝛽 is a scaling factor, chosen separately for each horizontal layer. If 𝛽 = 0 all varia-293

tions of 𝑞𝑡 around its mean are removed, if 𝛽 < 1 the variability of 𝑞𝑡 is decreased, if 𝛽 = 1294

𝑞𝑡 is left unchanged, and for 𝛽 > 1 the variability is amplified. This scaling leaves the av-295

erage of 𝑞𝑡 unchanged. A consequence of this manner of adjusting the variability is that the296

spatial Fourier spectrum of the 𝑞𝑡 -field retains its shape, only the amplitude is changed. An-297

other choice we make here is to keep the temperature T in each grid cell unchanged while298

adjusting 𝑞𝑡 , which requires adjusting the liquid water potential temperature 𝜃𝑙 . This choice,299

which is further discussed below, has an important consequence for the coupling procedure,300

namely that the saturation humidity 𝑞sat in each grid cell, which depends on temperature and301

pressure, remains unchanged during the adjustment.302

Next we determine 𝛽 so that the average condensed water humidity 𝑞𝑐 in the horizontal303

layer matches the condensed water humidity 𝑄𝐶 = 𝑄𝐿 +𝑄𝐼 of the GCM,304

𝑄𝐶 = ⟨𝑞𝑐 (𝛽)⟩ =
〈

max[0, 𝑞∗𝑡 (𝛽) − 𝑞sat]
〉
. (10)

Combining equations (9) and (10) gives305

𝑄𝐶 =

〈
max

[
0, 𝛽𝑞𝑡 + (1 − 𝛽)⟨𝑞𝑡 ⟩ − 𝑞sat

]〉
. (11)

The max operator makes this equation difficult to handle analytically, so we solve it numeri-306

cally for each horizontal layer. If 𝑄𝐶 > ⟨𝑞𝑙⟩, we obtain a 𝛽 > 1 and the LES 𝑞𝑡 variability307

and the cloud amount is increased, if 𝑄𝐶 < ⟨𝑞𝑙⟩, 𝛽 < 1 and the LES cloud amount is de-308

creased.309

3.2 Maintaining a constant temperature while coupling humidity310

In determining the variability scaling 𝛽 above, it was assumed that 𝑞sat remains un-311

changed as 𝛽 is varied. Since 𝑞sat is a function of temperature and pressure, this assumption312

holds if the temperature remains constant as 𝛽 is varied, as pressure is assumed to be a func-313

tion only of height. In order to keep the temperature T constant while adjusting 𝑞𝑐, 𝜃𝑙 has to314

be adjusted as well.315

Δ𝜃𝑙 = −
𝐿

𝑐𝑝𝑑Π(𝑝)
Δ𝑞𝑐, (12)

where Δ𝑞𝑐 is the change in cloud condensate caused by the change in 𝑞𝑡 .316

Also for physical reasons it is preferable to adjust the humidity while keeping the tem-317

perature constant. In cloud parameterization schemes, it is generally assumed that variability318

in humidity is decisive for cloud formation, while variability in temperature plays a minor319

role [Price and Wood, 2002]. When adjusting the variability of the humidity, we change the320

condensed water content of the local model. There is no latent heat or temperature change321

associated with this re-distribution, in the same way as advection of clouds from one grid cell322

to another leaves the temperature unaffected.323

If one makes a different choice here, to for example keep 𝜃𝑙 constant during the ad-324

justment, the following issues should be noted. The temperature-dependence of 𝑞sat must325

be considered while solving equation (11). Otherwise the adjustment scheme will add less326

clouds than intended, because 𝑞𝑡 increases with the addition of cloud condensate. Allowing327

T to change in the adjustment affects the buoyancy of the newly added clouds, which may in328

turn affect their lifetime. Adjusting variability at constant T adds less buoyancy to the new329

clouds than adjusting at constant 𝜃𝑙 .330
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3.3 Implementation details331

While the coupling tendencies on the local models in an SP setup are generally applied332

gradually over time, we have implemented the variability changes instantly at every time step333

of the large-scale model. One reason for this is that the small-scale fields move due to ad-334

vection over the course of one large-scale time step, which means that the tendencies need335

to move as well in order to achieve the desired final structure. Also with an instant adjust-336

ment, it is easier to verify that the procedure actually achieves the correct cloud condensate337

amounts.338

Some practical issues in the adjustment procedure need to be handled:339

1) Equation (11) for 𝛽 may give an unreasonably large 𝛽 as the solution. As this can340

make the local model unstable, we restrict 𝛽 to the range 0 . . . 5. The permissible range of341

𝛽 is typically exceeded when large-scale advection would add clouds above the boundary342

layer, where the local model has a small variability in the horizontal direction. In this case,343

we add white noise to 𝑞𝑡 , again with the amplitude selected to give the desired amount of344

cloud condensate.345

2) 𝑞𝑡 is not allowed to become negative in the adjustment. We have found that when346

limiting 𝛽 as above, the procedure does not cause negative 𝑞𝑡 values. As a precaution, one347

can set negative 𝑞𝑡 values to 0, and adjust the other cells in the same horizontal layer to con-348

serve the total mass of water.349

3) If 𝑄𝐶 = 0, 𝛽 is not uniquely determined. If 𝑞𝑐 is also 0, we set 𝛽 = 1, implying no350

variability adjustment. If 𝑞𝑐 > 0 we nudge the layer towards just below saturation i.e. 𝛽 < 1351

but as large as possible.352

4) With OpenIFS as the global model, sometimes 𝑄𝐶 is positive but tiny, on the order353

of 10−12 kg/kg. We choose to ignore condensed water humidities < 10−9 kg/kg, when they354

would result in a nudge towards more variability.355

The choices in 3) and 4) seem less critical than the rest in our experience, our motiva-356

tion is to make the smallest possible intervention in the case where the size of the required357

variability adjustment is not uniquely defined.358

4 Advection and variability coupling in a simplified SP setup359

To illustrate the problems with cloud advection in SP as well as the solutions and limi-360

tations provided by the proposed humidity variability coupling scheme, we show a simplified361

SP setup where the large-scale model consists of only (upwind) advection of the prognostic362

variables, with a fixed large-scale wind. We construct this model as a realization of the fol-363

lowing thought experiment: consider an SP simulation where a single LEM contains a cloud364

but has an average humidity below saturation, and ask if or how this cloud can be advected365

into an LEM at a neighboring grid point. This model provides a simple setting to illustrate366

the cloud advection problem in SP and to see how the variability coupling approach mitigates367

the problem.368

The ideal behavior in this experiment is shown in figure 5 with a single wide LEM. A373

superparameterized version is shown in figure 6, with four LEMs placed side by side. The374

LEMs are initialized with vertical profiles from the BOMEX case included with the DALES375

model. The left-most LEM is perturbed with a bubble of moist air, chosen to develop into376

a single cloud. There is a uniform wind to the right, advecting the cloud. The figure shows377

snapshots of the liquid water path and total water path in both simulations. In this experi-378

ment, the wind is 10 m/s to the east, the DALES domains are 2.5 × 2.5 km in the horizontal379

direction with a 100 m resolution, and 5 km high with a 40 m resolution in the vertical. The380

initial bubble perturbation of 𝑞𝑡 in the left-most LEM has a Gaussian shape with standard381
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Figure 5. A moist-bubble experiment with a single large-eddy simulation domain. The plots show the

liquid water path and total water path.

369

370

Figure 6. A superparameterized moist-bubble experiment with four small-scale domains and where the

large-scale model consists of advection only.

371

372
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Figure 10. East–west profiles of low cloud cover and liquid water path for the three Barbados simulations:
no SP, SP, and SP with variability coupling. The data is averaged over 8h (04–12 UTC) and over the north–
south extent of the SP domain. The SP domain is indicated with a blue background. The low cloud cover
measure is from OpenIFS and is defined as the cloud cover between the surface and the height of 80% of the
surface pressure (roughly 2 km). SP = superparameterization.

443

444

445

446

447

SP domain). Panel B shows the case of variability coupling, while C is without variability440

coupling. The same phenomenon can be seen in the animations S1 and S2, where the cloud441

fields get noticeably brighter at the coupling time steps and then fade away again.442

6 Discussion and conclusions454

We have used DALES as a superparameterization in the IFS for a region over the sub-455

tropical Atlantic Ocean that is dominated by shallow cumulus convection. When DALES is456

coupled in the traditional way, as described in Sections 2.2 and 2.3, the cloud amount in the457

superparameterized region is strongly underestimated both in cloud cover as well as in liquid458

water content. One possible cause for this underestimation of cloud amount that has been hy-459

pothesised in this study is the use of moist conserved prognostic variables by DALES, such460

as the total specific humidity 𝑞𝑡 , rather than the liquid water and the water vapor separately.461

As a result any changes of the cloud liquid water in the IFS, for instance by advection, has to462

be passed on to DALES via 𝑞𝑡 . In practice this means that the liquid water from the IFS is463

distributed uniformly as an increment of 𝑞𝑡 for all gridpoints in the LEM. Since the LEM464

is usually only partially cloudy this effectively implies that most of the liquid water from465

the IFS is added as water vapor to the LEM unsaturated gridpoints. To illustrate this prob-466

lem we have analysed in Section 4 an evolving single cloudy updraft that is advected from467

West to East in an unsaturated environment. When superparameterizing this case, it is easy468

to observe and understand that the liquid water advected out of the cloud-containing LEM469
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Figure 11. Vertical profiles of cloud liquid water in the superparameterized simulations. A) The non-
superparameterized column just upwind (to the east) of the middle row of the SP domain. B) The middle row,
easternmost LES of the SP domain, with variability coupling. C) The same LES, without variability coupling.
In panel B, the time steps of the GCM, 15 minutes apart, show up as sharp features due to the variability
adjustment of the total humidity. Note that panel A has a different color scale with higher cloud condensate
amounts.

448

449

450

451

452

453

to its neighbouring LEM ends up as water vapor in the neighbouring LEM. We then antic-470

ipated that this problem also shows up in any other superparameterized model system that471

use CRMs with moist conserved variables such as for instance SAM [Khairoutdinov et al.,472

2005].473

In Section 3 we propose an alternative approach that allows the communication of the474

advected liquid water between the IFS to the LEM. In doing so it is important to realise that475

liquid water in a partially cloudy atmosphere is the result of spatial variability of the total476

water specific humidity, where the condensed water is merely the result of the positive fluc-477

tuations in the total water that exceed saturation. Therefore it is proposed to include the ad-478

vected liquid water from the IFS into the LEM by increasing the variability of 𝑞𝑡 accord-479

ingly. In doing so we have imposed two extra constraints: i) the added moisture variability480

should not change the domain averaged total water specific humidity and ii) the added vari-481

ability should not have a preferred length scale, i.e. variability has to be added equally at all482

spatial length scales. A simple procedure that fulfills all these conditions is given by Eq. (9)483

where the scaling factor 𝛽 has to be chosen such that the increased moisture variability pre-484

cisely provides the desired liquid water change as dictated by the IFS.485

Unfortunately the improvement due to this humidity variability coupling is only marginal,486

both for the Barbados experiment as well as for the the idealised bubble experiment. In both487

cases the LEM diffuses the added variability away within the time step of the large scale488

model. As a result, the more downstream LEMs receive ever smaller amounts of liquid wa-489

ter by advection which explains why the improvement of proposed modification deteriorates490

strongly in the more downstream LEMs.491

So why does the humidity variability coupling give such a marginal improvement?492

And is it not possible to avoid the need for introducing the variability coupling in first place?493
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One might be tempted to answer the last question positively by using a LEM that employs494

liquid water and ice as prognostic variables and couple these to the IFS in the same man-495

ner as the other prognostic quantities. However, in that case the advected liquid water into496

the local LEM will be uniformly distributed over the horizontal grid of the LEM. As a result497

all the advected liquid water in the unsaturated grid points will evaporate almost instanta-498

neously. So also in the case of using a LEM with prognostic cloud condensate, dedicated499

choices need to be made how to spatially distribute the advected liquid water into the local500

LEM. The Goddard multiscale modeling framework [Tao et al., 2009; Chern et al., 2016,501

2020] for instance, is using a LEM with prognostic cloud condensate. In their framework the502

large scale advected cloud condensate is only added to saturated grid points of the LEM and503

proportionally to the already existing cloud amount in each grid point, very similar to the hu-504

midity variance coupling proposed in this study. So the use of prognostic cloud condensate505

in the local LEM requires similar redistribution choices as in the present case where we use a506

LEM with moist conserved variables.507

This leaves us with the question why the SP so strongly underestimates the cloud con-508

densate, even when the humidity variability coupling is in place. We can think of at least509

two reasons. First, it is well possible the parameterized convection outside the SP region re-510

sults in mean thermodynamic profiles that are too stable for a local LEM to generate moist511

convection and clouds. Although the local LEMs are only active inside the SP region where512

convection parameterization is switched off, we verified that the SP grid cells directly neigh-513

bouring the upstream parameterized grid cells have very similar vertical thermodynamic514

structures as their parameterized grid point neighbours. So it is well possible that these ther-515

modynamic structures support parameterized clouds but not necessarily resolved clouds.516

In that case the added liquid water in the SP grid cells will be largely evaporated by the lo-517

cal thermodynamics of the LEM within the IFS timestep. A second reason is related to the518

(in)capability of the LEMs to represent the observed cloud structures (see figure 2) that have519

spatial scales well beyond the domain size of the local LEMs. These large mesoscale cloud520

structures are the rule rather than the exception [Stevens et al., 2020]. The employment of a521

local LEM with periodic boundary conditions and a rather small domain size of only 12.8522

km will only show up as spatially unorganised sample of saturated updrafts with possibly a523

resulting cloud fraction much lower than the actual observed mesoscale cloud structure. Or-524

ganised cloud structures in this region associated with cold pools, aka ’gravel’, have been525

shown be the most abundant type of organisation [Bony et al., 2020] but are only faithfully526

simulated by LEMs with domains larger than 25 km [Seifert and Heus, 2013]. Furthermore527

shallow cumulus convection such as observed during ATEX where the clouds are topped by528

spreading anvils below a sharp inversion are difficult to simulate consistently by LEMs and529

depend strongly on the used vertical resolution [Stevens et al., 2001]. These outflow struc-530

tures for which now the name ’flowers’ has been coined [Stevens et al., 2020] are frequently531

observed structures over the subtropical Atlantic ocean.532

Likely, both proposed mechanisms are responsible for the observed cloud dissipation.533

One way to find out which is the most dominant process is to conduct a very large eddy sim-534

ulation over a domain at least as large as the SP region indicated in figure 1 as a benchmark535

using periodic boundary conditions. Repeating the simulation by dividing it up as a collec-536

tion of smaller LEMs coupled in the same spirit as the bubble experiment and comparing the537

results of the large domain simulation and the SP-version over the same domain should allow538

to reveal the error in the cloud amount of the small LEMs due to their incapability of repre-539

senting the mesoscale organisation. Such a Big Brother experiment might also be instructive540

for testing the realism of exascale high resolution SP enterprises on GPUs [Hannah et al.,541

2020].542

Finally, one may also wonder whether the negative cloud bias in the SP region would543

also show up in "stand-alone" Large Eddy Simulations that are forced with dynamical advec-544

tive tendencies from a large scale model rather than with the nudging procedure explained545

in section 2.2. The answer to this question is yes when it concerns errors and biases related546
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to domain size and resolution. It is more difficult to answer whether driving the LEM with547

large scale tendencies would be more accurate than forcing it with the nudging process. Us-548

ing large scale tendencies rather than nudging to thermodynamics profiles with too short549

timescales has the advantage that one avoids the risk of imposing profiles that are never in550

quasi-equilibrium with the smaller scale turbulence state. The risk of imposing only advec-551

tive large scale tendencies on the other hand is that LEM might give a more realistic response552

but related to a large scale state that has drifted away from the desired large scale state.553
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