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Abstract

In his seminal paper on solution of the infiltration equation, Philip (1957) proposed a gravity time, tgrav, to estimate practical

convergence time of his infinite time series expansion, TSE. The parameter tgrav refers to a point in time where infiltration is

dominated equally by capillarity and gravity derived from the first two (dominant) terms of the TSE expansion. Evidence that

higher order TSE terms describe the infiltration process better for longer times. Since the conceptual definition of tgrav is valid

regardless of the infiltration model used, we opted to reformulate tgrav using the analytic approximation proposed by Parlange

et al. (1982) valid for all times. In addition to the roles of soil sorptivity (S) and saturated (K s) and initial (K i) hydraulic

conductivities, we explored effects of a soil specific shape parameter β on the behavior of tgrav. We show that the reformulated

tgrav (notably tgrav= F (β) Sˆ2/(K s - K i)ˆ2 where F (β) is a β-dependent function) is about 3 times larger than the classical

tgrav given by tgrav, Philip= Sˆ2/(K s - K i)ˆ2. The differences between original tgrav, Philip and the revised tgrav increase for

fine textured soils. Results show that the proposed tgrav is a better indicator for convergence time than tgrav, Philip. For

attainment of the steady-state infiltration, both time parameters are suitable for coarse-textured soils, but not for fine-textured

soils for which tgrav is too conservative and tgrav, Philip too short. Using tgrav will improve predictions of the soil hydraulic

parameters (particularly K s) from infiltration data as compared to tgrav, Philip.
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• A new formulation for infiltration characteristic time, tgrav, is provided.
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• The reformulated tgrav seems to be a better criterion for convergence time
of Philip’s truncated infiltration equations.

• The usage of reformulated tgrav improves predictions of soil hydraulic pa-
rameters.

Abstract

In his seminal paper on solution of the infiltration equation, Philip (1957) pro-
posed a gravity time, tgrav, to estimate practical convergence time of his infinite
time series expansion, TSE. The parameter tgrav refers to a point in time where
infiltration is dominated equally by capillarity and gravity derived from the
first two (dominant) terms of the TSE expansion. Evidence suggests that the
applicability of the truncated two-term equation of Philip has time limit re-
quiring higher order TSE terms to better describe the infiltration process for
times exceeding that limit. Since the conceptual definition of tgrav is valid re-
gardless of the infiltration model used, we opted to reformulate tgrav using the
analytic approximation proposed by Parlange et al. (1982) valid for all times.
In addition to the roles of soil sorptivity (S) and saturated (Ks) and initial
(K i) hydraulic conductivities, we explored effects of a soil specific shape param-
eter � on the behavior of tgrav. We show that the reformulated tgrav (notably
𝑡grav = 𝐹(𝛽) 𝑆2

(𝐾𝑠−𝐾𝑖)2, where F(�) is a �-dependent function) is about 3 times

larger than the classical tgrav given by 𝑡𝑔𝑟𝑎𝑣, Philip = 𝑆2

(𝐾𝑠−𝐾𝑖)2 . The differences
between original tgrav, Philip and the revised tgrav increase for fine textured soils
thus affecting the time needed to attain steady-state infiltration and the use of
infiltration for inferring soil hydraulic properties. Results show that the pro-
posed tgrav is a better indicator for convergence time than tgrav, Philip. For
attainment of the steady-state infiltration, both time parameters are suitable
for coarse-textured soils, but not for fine-textured soils for which tgrav is too con-
servative and tgrav, Philip too short. Using tgrav will improve predictions of the
soil hydraulic parameters (particularly Ks) from infiltration data as compared
to tgrav, Philip.

Keywords: Convergence time, Hydraulic conductivity, Infiltration, Sorptivity,
Steady state

Introduction
Infiltration is a key hydrological process in the partitioning rainfall reaching the
land surface into water entering the soil profile and the portion that ponds and
runoffs. Infiltration and runoff trigger various secondary processes including
erosion (e.g., Assouline and Ben-Hur, 2006; Garrote and Bras, 1995; Poesen
and Valentin, 2003), changes in stream flow and flooding events (e.g., Garrote
and Bras, 1995), landslides and debris flows on hillslopes (e.g., Iverson, 2000;
Lehmann and Or, 2012), water available to vegetation (e.g., Verhoef and Egea,
2013) and affect exchange of water and energy between the soil and atmosphere
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(Kim et al., 2017; MacDonald et al., 2018). Knowledge about infiltration is of
high relevance for various scientific disciplines. A recent comprehensive review
of Vereecken et al. (2019) highlights the importance of infiltration processes at
scales ranging from the Pedon to global.

In general, the infiltration process can be described by solving the Richards
(1931) equation when the relationships between soil water content, matrix po-
tential, and hydraulic conductivity are defined explicitly. Alternatively, direct
measurement of actual infiltration provides a convenient field approach to deter-
mine such soil hydraulic parameters as the sorptivity and the saturated hydraulic
conductivity (Ross et al., 1996). Sorptivity (S) expresses the capacity of a soil
to absorb and release water by capillarity, while the saturated hydraulic con-
ductivity (Ks) reflects the ability of a soil to transmit water under the influence
of gravity.

The time series expansion (TSE) introduced by Philip (1957), as a unique so-
lution of the Richards equation, remains a widely used model for 1D ponded
infiltration. Although, the TSE comprises an infinite series of different compo-
nents, generally only the first two terms are being used in practice, with the
higher-order terms in the infinite time series (as well as the sum and conver-
gence criteria, a given time that the I(t) function converges to the measured
infiltration curve for all time shorter than that) requiring a more systematic
analysis. In order to analyze the convergence of the TSE, Philip (1957) intro-
duced a characteristic time termed gravity time, tgrav, at which gravity begins
to dominate infiltration over capillarity. Philip (1957) assumed tgrav to be a
practical measure for the time range of useful convergence of the TSE. Hereby,
tgrav was simply formulated in terms of S and ΔK = Ks - K i, where K i is the
hydraulic conductivity at the initial (prior the infiltration) soil water content,
�i. Although not mentioned explicitly by Philip (1957), one may infer that only
two first terms of the TSE are used to formulate tgrav. The definition of tgrav
is then explicit since the first term of the infiltration equation represents the
effects of capillarity, and the second term the effects of gravity.

Beside the question that whether tgrav is a correct indicator for convergence time
of Philip’s TSE and its truncated forms, a precise determination of tgrav itself
is of great importance. A limitation of the two-term infiltration approximation,
as used to formulate the tgrav, is that it cannot be used for long infiltration
times. Several studies indicate that the higher-order TSE terms can describe the
infiltration process much better the two-term equation in some soils (Kutílek and
Krejca, 1987; Rahmati et al., 2019; 2020). On the other hand, conceptually, tgrav
that marks when 50% of the cumulative infiltration is dominated by capillarity
offers a generalizable alternative concept in the sense that it is valid regardless
of the number of terms included in the infiltration equation as well as regardless
of the used model. A possible improvement when reformulating tgrav could
be usage of an infiltration model without any time constraints. An attractive
approach for this is the analytic approximation provided by Parlange et al.
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(1982)1 and which we will refer to as AAP in the subsequent. This is because
their formulation is 1) widely adopted due to its physical basis; 2) valid for
the entire infiltration process (Haverkamp et al., 1994; Parlange et al., 1982);
and 3) closely approximates the complete TSE expansion (Moret‐Fernández et
al., 2020; Rahmati et al., 2019; 2020), thus enabling users to determine which
component reflects the capillary or gravity effects on infiltration (Rahmati et al.,
2020). In addition to S and ΔK, the AAP formulation includes a soil specific
shape parameter � that also impacts infiltration. Therefore, we seek to broaden
the formulation of tgrav by considering all three variables S, ΔK, and � as used in
the AAP formulation so that the general features of the cumulative infiltration
curve can be captured for different soils.

Adding terms to the TSE based tgrav formulation reflects the persistent effects of
capillarity at relatively long infiltration times where the infiltration is dominated
by gravity. If the two-term TSE infiltration equation is used, the first term is
purely capillary driven and the second term driven by gravity (Lassabatere et al.,
2006; Philip and Farrell, 1964, among others). However, the role of higher-order
TSE terms, whether capillary- or gravity-driven, remains controversial, primar-
ily because they contain ratios of Ks

n-1/Sn-2 (with n = 1, 2, …, ∞). For example,
Rahmati et al. (2020, 2021) analyzed the contributions of the higher order TSE
terms under the premise that the role of gravity increases with increasing infil-
tration time. They concluded that although the higher-order terms still include
the capillary parameter S, the terms remain largely controlled by gravity. A
characteristic of the TSE is that all higher terms (those beyond the first two)
have negligible impact on the onset of infiltration, whereas their contribution
increases with increasing infiltration time. Since S is a capillary parameter, an
important question arises about the role of S in the higher order TSE terms,
and whether these terms mainly reflect gravity. A simple answer to this ques-
tion can be found in the mathematical form of the infinite series in terms of �
as derived by Philip (1957). The series contains the variables S and Ks for all
infiltration times, but with significantly diminishing contributions of S beyond
the first (absorption) term. Also, Philip’s solution of the Richards (1931) equa-
tion involves a perturbation of the exact absorption case without gravity, while
also considering uniform soil properties and initial soil water content. These
premises are often violated since the advancing infiltration front may reach lay-
ers with different water retention and hydraulic conductivities, thereby affecting
physically and mathematically the infiltration rate at the surface. From a phys-
ical perspective, gravity will dominate the flow at late infiltration times, and
hence one may expect then vertically downward gravity-driven saturated flow
(Waechter and Philip, 1985). However, by neglecting capillary, no information
on the transition from near-dryness to near-saturation in regions below the in-

1[] - The analytic approximation of Parlange et al. (1982) has been referred to as “quasi-
exact implicit formulation of Haverkamp et al. (1994)” by several authors. While Haverkamp
et al. (1994) have introduced useful refinements to the original expression of Parlange et al.
(1982), in line with scientific convention, the expression (and modification thereof) should be
referred to as the Parlange et al. (1982) equation, like the attribution made by Haverkamp et
al. (1994).
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filtration front will be obtained. As correctly stated by Waechter and Philip
(1985), this is a “physically interesting and practically important limit of flows
strongly dominated by gravity, with capillary effects weak but nonzero”.

Because of the above ambiguities in the expression of tgrav, this study aims to
clarify the definition of the characteristic infiltration time. Specific objectives
are: 1) to reformulate the infiltration characteristic time tgrav using the AAP
formulation (Parlange et al., 1982), 2) to study its relation to the classical tgrav
introduced by Philip (1957), hereafter denoted as tgrav, Philip, and 3) to discuss
potential applications of this soil property.

1.

Theoretical Development
(a)

Philip’s infiltration theory
Based on an exact solution of the Richards (1931) equation, Philip (1957) de-
rived the following expression for the 1D ponded infiltration rate, known as
Philip’s time series expansion (TSE):

𝐼(𝑡) = 𝐴1𝑡 1
2 + (𝐴2 + 𝐾𝑖) 𝑡 + ∑∞

𝑛=3 𝐴𝑛𝑡 𝑛
2 (1)

where I(t) denote the cumulative infiltration [L] at a given time t [T] and A1 to
A∞ [L/Tn/2] are coefficients of the infinite time series:

𝐴𝑛 ≥ 𝐾𝑛−1
𝑠

𝑆𝑛−2 , 𝑛 = 1, 2, … , ∞ (2)

Philip (1957) showed that A1 is equal to the sorptivity S, while A2 is propor-
tional to Ks, suggesting that 𝐴2 = 𝑐𝐾𝑠, where c is a constant equal to 1/2, 2/3,
and 0.38 depending upon the selected model (i.e., linearized, �-function, and/or
nonlinear).

Philip (1957) also determined the time domain validity of his TSE formulation.
By comparing the time and geometric series equations, he found that the series
solution should converge to the measured infiltration curve for 𝑡 < ( 𝑆

𝐴2
)2
. After

noting that in most cases K i/Ks « 1 and 𝐴2 ≈ 1
2 (𝐾𝑠 − 𝐾𝑖), Philip (1957)

concluded that the convergence time could be defined as 𝑡 < 4𝑡grav, Philip. Using
S, Ks, and K i, he approximated tgrav,Philip as:

5



𝑡𝑔𝑟𝑎𝑣, 𝑃ℎ𝑖𝑙𝑖𝑝 = ( 𝑆
𝐾𝑠−𝐾𝑖

)2
(3)

For initially dry soil conditions such that Ki can be neglected, the above equation
simplifies to:

𝑡𝑔𝑟𝑎𝑣, 𝑃ℎ𝑖𝑙𝑖𝑝 = ( 𝑆
𝐾𝑠

)2
(4)

Philip (1957) furthermore showed that the condition 𝑡 < 4𝑡grav, Philip was too
conservative and that the factor 4 could be replaced by a smaller value. Nom-
inally, 𝑡 ≤ 𝑡grav, Philip expresses the practical convergence time for the TSE.
Similarly as Eq. (4), Philip and Farrell (1964) defined the infiltration character-
istic length, Igrav, Philip, as:

𝐼𝑔𝑟𝑎𝑣, 𝑃ℎ𝑖𝑙𝑖𝑝 = 𝑆2
𝐾𝑠−𝐾𝑖

𝐾𝑖≈0
→ 𝐼𝑔𝑟𝑎𝑣, 𝑃ℎ𝑖𝑙𝑖𝑝 = 𝑆2

𝐾𝑠
(5)

Parlange’s analytical solution of the infiltration equation
Equation (3) holds subject to the approximate time constraint that an attractive
approach to overcome the time constraint is through comparisons with AAP.
The APP solution, which is valid for all times and gives an accurate estimate of
the cumulative infiltration, can be expanded also in three-term (3T) or higher
approximations, from which a more reliable estimate of tgrav can be derived.
We first provide the background of the AAP as summarized by Rahmati et al.
(2020).

The AAP cumulative infiltration solution (Parlange et al., 1982) which is rede-
fined by Haverkamp et al. (1994) is given by:

2�𝐾2

𝑆2 𝑡 = 2
1−𝛽

�𝐾(𝐼−𝐾𝑖𝑡)
𝑆2 − 1

1−𝛽 ln [ 1
𝛽 exp{ 2𝛽�𝐾(𝐼−𝐾𝑖𝑡)

𝑆2 } + 𝛽−1
𝛽 ] (6)

where � is a soil-dependent dimensionless integral shape parameter, usually fixed
at 0.6 (default value). Fuentes et al. (1992) demonstrated that the shape
parameter � is related to the soil hydraulic functions by:

𝛽 = 2 − 2 ∫𝜃𝑠
𝜃𝑖

( 𝐾−𝐾𝑖
𝐾𝑠−𝐾𝑖

)( 𝜃𝑠−𝜃𝑖
𝜃−𝜃𝑖

)𝐷(𝜃)d�

∫𝜃𝑠
𝜃𝑖

𝐷(𝜃)d�
(7)
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where �s is the saturated volumetric water content (L3L-3), �i is the initial water
content (L3L-3), and D(�) is the soil water diffusivity. For initially dry soils
(with K i ~ 0), the AAP solution reduces to:

2𝐾2
𝑠

𝑆2 𝑡 = 2
1−𝛽

𝐾𝑠
𝑆2 𝐼 − 1

1−𝛽 ln [ 1
𝛽 exp ( 2𝛽𝐾𝑠

𝑆2 𝐼) + 𝛽−1
𝛽 ] (8)

A simplified two-term (2T) approximate expansion of the Eq. (8) was proposed
by Haverkamp et al. (1994) to describe the transient state valid for short to
intermediate infiltration times. The expansion is identical to Philip (1957) two-
term equation:

𝐼(𝑡) = 𝑐(1)𝑡 1
2 + 𝑐(2)𝑡 (9)

where

𝑐(1) = 𝑆 (10)

𝑐(2) = 2−𝛽
3 𝐾𝑠

Additional expansions were proposed by Rahmati et al. (2019) using three
terms (3T), by Moret‐Fernández et al. (2020) considering four terms (4T), and
Rahmati et al. (2020) using five terms (5T), i.e.,

𝐼(𝑡) = 𝑐(1)𝑡 1
2 + 𝑐(2)𝑡 + 𝑐(3)𝑡 3

2 (11)

𝐼(𝑡) = 𝑐(1)𝑡 1
2 + 𝑐(2)𝑡 + 𝑐(3)𝑡 3

2 + 𝑐(4)𝑡2 (12)
𝐼(𝑡) = 𝑐(1)𝑡 1

2 + 𝑐(2)𝑡 + 𝑐(3)𝑡 3
2 + 𝑐(4)𝑡2 + 𝑐(5)𝑡 5

2 (13)

where c(3) to c(5) are defined as:

𝑐(3) = 1
9 (𝛽2 − 𝛽 + 1) 𝐾2

𝑠
𝑆

𝑐(4) = 2
135 (𝛽 − 2)(𝛽 + 1)(1 − 2𝛽) 𝐾3

𝑠
𝑆2 (14)

𝑐(5) = 1
270 (𝛽2 − 𝛽 + 1)2 𝐾4

𝑠
𝑆3

Exact implicit formulation of the characteristic time tgrav

According to the basic definition of tgrav, one can rewrite the TSE (Eq. 1) at
time equal to tgrav (Rahmati et al., 2020) as:

7



1
2 𝐼grav = 𝑆𝑡

1
2grav (15)

where Igrav is the cumulative infiltration at time tgrav, also known as the infil-
tration characteristic length. Igrav in Eq. (15) can be computed immediately by
evaluating Eq. (1) at time tgrav. Since Philip’s TSE is not clearly defined when
using a limited number of terms, we consider it more robust to reformulate tgrav
by making use of AAP solution, which is valid for entire infiltration time. To
do this, Eq. (6) is redefined in terms of t = tgrav by substituting Igrav from Eq.
(15) into Eq. (6) to give:

2�𝐾2

𝑆2 𝑡grav = 2
1−𝛽

�𝐾(2𝑆𝑡
1
2grav−𝐾𝑖𝑡grav)

𝑆2 − 1
1−𝛽 ln⎡⎢

⎣
1
𝛽 exp

⎧{
⎨{⎩

2𝛽�𝐾(2𝑆𝑡
1
2grav−𝐾𝑖𝑡grav)
𝑆2

⎫}
⎬}⎭

+ 𝛽−1
𝛽

⎤⎥
⎦

(16)

Assuming that Ks, S, K i, and � are known, this equation can be solved analyt-
ically for tgrav using MATLAB, Mathematica, Python, or some other software
package. An alternative is to use the definition of the characteristic time (Eq.
15) where capillary and gravity have the same effect on infiltration. Values of
tgrav can be then determined easily immediately by numerically computing IAP
and finding the root of the equation:

𝐼AAP(𝑡grav) − 2𝑆𝑡1/2
grav = 0 (17)

As an alternative, a computationally more effective scaling procedure as pro-
posed by Varado et al. (2006) and further developed by Lassabatere et al.
(2009) can be used. For this purpose, we scale the cumulative infiltration, I(t),
and time, t, by:

𝐼(𝑡) = 𝑆2
2�𝐾 𝐼∗ (𝑡∗) + 𝐾𝑖t (18)

𝑡 = 𝑆2

2�𝐾2 𝑡∗

Rewriting the above equations for t = tgrav yields:

𝐼 (𝑡grav) = 𝑆2
2�𝐾 𝐼∗ (𝑡∗

grav) + 𝑆2𝐾𝑖
2�𝐾2 𝑡∗

grav (19)

𝑡grav = 𝑆2

2�𝐾2 𝑡∗
grav

where 𝑡∗
grav is the scaled tgrav parameters, and 𝐼∗ (𝑡∗

grav) corresponds to the

8



scaled cumulative infiltration at 𝑡∗
grav. Substitution of the above expressions

into Eq. (16) leads to:

𝑡∗
grav = 1

1−𝛽 (2√2𝑡∗
grav − 𝐾𝑖

�𝐾 𝑡∗
grav) − 1

1−𝛽 ln [ 1
𝛽 exp{𝛽 (2√2𝑡∗

grav − 𝐾𝑖
�𝐾 𝑡∗

grav)} + 𝛽−1
𝛽 ] (20)

Several functions for the hydraulic conductivity could be used in Eq. (20). In
this study we used the Mualem-van Genuchten (MvG) model (Mualem, 1976;
van Genuchten, 1980) for Ki given by:

𝐾(𝑆𝑒)
𝐾𝑠

= 𝑆1/2
𝑒 [1 − (1 − 𝑆1/𝑚

𝑒 )
𝑚

]
2

, 𝑆𝑒 = 𝜃−𝜃𝑟
𝜃𝑠−𝜃𝑟

(21)

where K(Se) is soil hydraulic conductivity at effective saturation (Se), or alter-
natively at given soil water content �, m is a model parameter, and �s and �r are
the saturated and residual water contents (L3 L-3), respectively.

Substitution of Eq. (21) into Eq. (20) gives:

𝑡∗
grav = 1

1−𝛽 (2√2𝑡∗
grav − 𝛿𝑡∗

grav) − 1
1−𝛽 ln [ 1

𝛽 exp{𝛽 (2√2𝑡∗
grav − 𝛿𝑡∗

grav)} + 𝛽−1
𝛽 ] (22)

where � is a coefficient accounting for the effects of initial soil water content and
the parameter m on 𝑡∗

grav:

𝛿 =
𝑆1/2

𝑒,𝑖 [1−(1−𝑆1/𝑚
𝑒,𝑖 )

𝑚
]

2

1−𝑆1/2
𝑒,𝑖 [1−(1−𝑆1/𝑚

𝑒,𝑖 )
𝑚

]
2 , 0 ≤ 𝛿 < 1 (23)

Equation (22) is identical to Eq. (16), except that Ks, K i, and S are eliminated
to lead to a more generalized definition of from where we can view as a function
of the infiltration-related soil variable � and the functional coefficient � given by:

𝑡∗
grav = 𝑐(𝛽, 𝛿) (24)

The function c(�, �) is to be obtained from Eq. (22) by numerical resolution
using a root-finding algorithm. Finally, the dimensional tgrav can be recovered
immediately from Eq. (18) to yield:
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𝑡grav = 𝐹(𝛽, 𝛿) ( 𝑆
�𝐾 )2

(25)

where F(�, �) defines a functional relationship depending on � and �:

𝐹(𝛽, 𝛿) = 𝑐(𝛽,𝛿)
2 (26)

For an initially dry soil (lim𝑆𝑒,𝑖→0 𝛿 = 0), one can simply set � = 0. Eq. (22)
then simplifies to:

𝑡∗
grav = 1

1−𝛽 (2√2𝑡∗
grav − 𝑙𝑛 [ 1

𝛽 exp{2𝛽√2𝑡∗
grav} + 𝛽−1

𝛽 ]) (27)

In this case, can be viewed as a function of � only. Eq. (25) can then be simplified
also by setting K i = 0:

𝑡grav = 𝐹(𝛽, 𝛿 = 0) ( 𝑆
𝐾𝑠

)2 = 𝐹(𝛽) ( 𝑆
𝐾𝑠

)2
(28)

By having tgrav reformulated, one can simply use Eq. (15) to compute the
infiltration characteristic length by:

𝐼grav = 2√𝐹(𝛽, 𝛿) 𝑆2
�𝐾

K𝑖≈ 0
→ 𝐼grav = 2√𝐹(𝛽) 𝑆2

𝐾𝑠
(29)

Approximate explicit expression of the characteristic time
tgrav

Although formally it is possible to numerically evaluate the functional relation-
ship F(�), the equation might be too impractical for many applications. We use,
therefore, alternatively the 3T approximation to obtain an explicit formulation
for F(�) and consequently for tgrav. Calculating Igrav at time tgrav using the 3T
approximation (Eq. 11), and substituting it in Eq. (15), yields:

𝑆 = 1
2

𝑆𝑡
1
2grav+ 2−𝛽

3 𝐾𝑠𝑡grav+ 1
9 (𝛽2−𝛽+1) 𝐾2𝑠

𝑆 𝑡
3
2grav

𝑡
1
2grav

(30)

In this expression, the initial value of the hydraulic conductivity, Ki, is neglected,
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meaning that the expression should be considered only for initially dry soils.
Simplifying and rearranging Eq. (30) results in a quadratic equation, where
√𝑡grav represents an unknown, and Ks, S, and � represent knowns:

−𝑆 + 2−𝛽
3 𝐾𝑠𝑡

1
2grav + 1

9 (𝛽2 − 𝛽 + 1) 𝐾2
𝑠

𝑆 𝑡grav = 0 (31)

Solving Eq. (31) for √𝑡grav in terms of its positive root results in the following
expression:

𝐹(𝛽) = ( 3
2

√5𝛽2−8𝛽+8−(2−𝛽)
(𝛽2−𝛽+1) )

2
(32)

which shows that F(�) now explicitly depends on �.

Test data for validation
The expressions above were obtained by using the AAP expansion. However,
when evaluating their AAP based model, Parlange et al. (1982) made sev-
eral assumptions that may not apply to real-world cases. Especially their pro-
posed relation between � and the hydraulic curves of the soil (see equation 6 in
Haverkamp et al., 1994) seems problematic. For this reason we validated the
proposed expressions of F(�) against synthetic infiltration data generated with
the HYDRUS-1D software (Šimůnek et al., 2008, 2016). We used for this the
hydraulic properties of 12 USDA soil textural classes (Table 1) as compiled by
Carsel and Parrish (1988). The employed data are provided as supplemental
material by Rahmati et al. (2020, 2021). Table 2 summarizes settings that were
used for the HYDRUS-1D simulations. Readers are also referred to Rahmati et
al. (2020, 2021) for details of the simulations.

Table 1. Soil hydraulic parameters of the van Genuchten (1980) (MvG) model
for the soil water retention and hydraulic conductivity functions for 12 USDA
textural classes as compiled by Carsel and Parrish (1988). The sorptivity (S)
data were obtained from horizontal infiltration simulations by Rahmati et al.
(2020). The MvG tortuosity parameter l for the hydraulic conductivity was
fixed at 0.5 as used by van Genuchten (1980). Initial water contents �i being
modeled for initial water pressure head of 10000 cm were taken from Rahmati
et al. (2020, 2021).

Parameters �r �s �i � n m Ks S �
(cm3 cm-3) (cm-1) (cm h-1) (cm h-1/2)

Clay 0.068 0.380 0.271 0.008 1.09 0.083 0.20 1.02 1.92
Clay loam 0.095 0.410 0.150 0.019 1.31 0.237 0.26 1.46 1.58
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Parameters �r �s �i � n m Ks S �
Loam 0.078 0.430 0.088 0.036 1.56 0.359 1.04 2.20 1.27
Loamy sand 0.057 0.410 0.057 0.124 2.28 0.561 14.6 6.22 0.80
Sand 0.045 0.430 0.045 0.145 2.68 0.627 29.7 9.23 0.60
Sandy clay 0.100 0.380 0.170 0.027 1.23 0.187 0.12 0.79 1.70
Sandy clay loam 0.100 0.390 0.111 0.059 1.48 0.324 1.31 1.61 1.36
Sandy loam 0.065 0.410 0.066 0.075 1.89 0.471 4.42 3.84 0.99
Silt 0.034 0.460 0.090 0.016 1.37 0.270 0.25 1.35 1.50
Silt loam 0.067 0.450 0.104 0.020 1.41 0.291 0.45 1.66 1.44
Silt clay 0.070 0.360 0.266 0.005 1.09 0.083 0.02 0.35 1.92
Silty clay loam 0.089 0.430 0.197 0.010 1.23 0.187 0.07 0.53 1.70

�s, �r, and �i are the saturated, residual, and initial water contents; �,
n, and m are parameters of the van Genuchten (1980) soil hydraulic
model; Ks is the saturated hydraulic conductivity; S is the soil sorp-
tivity; � is an infiltration constant defined by Parlange et al. (1982)
and formulated by Fuentes et al. (1992).

Table 2. Parameters and conditions used for the HYDRUS-1D simulations to
generate the synthetic infiltration data (adopted from Rahmati et al., 2020,
2021).

@ >p(- 2) * >p(- 2) * @ Simulation settings & Applied condition
Soil Profile depth & 200 cm
Upper boundary condition & Zero-pressure head
Lower boundary condition & Free drainage
Node Numbers for discretization & 401 non-equidistant (lower spacing to the
top)
Simulation time & 24 hours
Internal interpolation tables & Disabled
Hydraulic model &

if n > 1.2

& MvG

if n < 1.2

& Modified MvG with an air-entry value of -2 cm

n is a parameter in the van Genuchten (1980), MvG, soil hydraulic
functions.
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Results and Discussion
Functional relationship of F(�, �) and tgrav

Figure 1 illustrates the variations of the functional F(�, �), as well as of tgrav
(reformulated tgrav obtained for the AAP solution when � � 0) and tgrav, Philip
for the twelve USDA soil classes examined. Results indicate that tgrav varies
between 15 minutes for sand and 996 hours for silty clay, with an average of
138 ± 80 hours over all soil classes. Excluding silty clay from the analysis, the
range of tgrav gets narrower by varying between 15 minutes for sand and 183
hours for silty clay loam, with an average of 60 ± 19 hours. A clear trend can
be detected with lower tgrav values for the coarser textures. This agrees with
the physics of the flow processes involved in that lower soil capillary forces and
higher flow rates are to be expected for the more coarse-textured soils with their
larger pores.

Similarly to tgrav, Figure 1 shows that F(�, �) varies between 2.59 and 3.25,
with the finer soil textural classes exhibiting higher F(�, �) values. These results
indicate that the reformulated tgrav is approximately 2.59 to 3.25 times (with a
mean value of 3.1) higher than tgrav, Philip, since 𝑡grav = 𝐹(𝛽, 𝛿) × 𝑡𝑔𝑟𝑎𝑣, 𝑃ℎ𝑖𝑙𝑖𝑝.
This probably also impacts the interpretation of infiltration data to be presented
later in Section 3.5.

Figure 1. Variation in the functional relationship F(�, �) and reformulated and
classical characteristic times (tgrav [h]) for the twelve USDA soil textural classes.
Note that soils are ranked based on their texture and no function is defined for
them.

Next, the relationships between F(�, �) versus � and � were analyzed. As can
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be seen from the results in Fig. 2, F(�, �) increases linearly with �, having a
slope of 0.47 (R2 = 0.95). On the other hand, F(�, �) increases nonlinearly with
increasing �, as expressed by a power law with an exponent of 0.011 (R2 = 0.50).
The curved line shows that changes in � near its lower bound have far greater
effects on F(�, �) than at higher values when � > 0.1. This is discussed in more
detail next by also considering the dependency of � on m and Se,i.

Figure 2- Variation in the functional relationship F(�, �) versus � (a) and � (b)
for the twelve USDA soil textural classes. The F(�, �) values are computed for
an initial water pressure head of 10000 cm.
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F(�, �) vs. F(�)
The effect of � on tgrav was explored by comparing F(�, �) and F(�), with F(�)
being equal to F(�, �) when � is set to zero, i.e., F(�) = F(�, � = 0). Our analysis
found a power function between F(�, �) and � as shown in Fig. 2, with a very
low values for the exponent, i.e., 0.0108. That shows that � had a very small
influence and that setting � = 0 did not lead to any changes in the F(�, �) values
and consequently also not in tgrav. By setting � = 0 one will also obtain the
same results for both cases as shown in Fig. 1, which may be a consequence
of the � values being very close to zero for all examined soil classes, except for
clay and silty clay and to a lesser extent also silty clay loam (Fig. 3). It is also
likely, that the power function found between F(�, �) and � (Fig. 2) represents
the indirect effects of � on F(�, �) since a relationship exists between � and the
soil hydraulic parameters.

Figure 3- Variation in the functional coefficient � among the twelve USDA soil
textural classes. The � values are obtained for an initial water pressure head of
10000 cm.

To examine this effect in more detail, the surface response function between �
and m and/or Se,i was explored (Fig. 4), whereby all parameters were allowed
to vary within a physically meaningful range. MvG m values were allowed
to vary between 0 and 0.7, the latter corresponding to the highest n value
(here m = 1-1/n) among the studied soil classes. We note here that smaller m
values generally correspond to more fine-textured soils involving broader pore-
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and particle-size distributions, while higher m values correspond to more coarse
textured soils. The value of Se,i was varied between 0 and 0.9, but without Se,i
values higher than 0.9 since infiltration rates may be less when a soil initially is
nearly saturated. As can be seen from Fig. 4, � is close to zero for all soils when
Se,i is less than 0.6. In the case of medium- and fine-textured soils (with m � 0.4),
� is even close to zero over the complete range of Se,i values. Figure 4 therefore
clearly indicates that � will have considerable effect on F(�, �), and consequently
on tgrav, only when infiltration will occur in coarse textured soils at a relatively
high degree of saturation (e.g., Se,i > 0.7) at the start of the infiltration process.
The latter condition seldom occurs in nature since coarse-textured soils usually
are drained fast after saturation. We are hence confident that ignoring � in our
formulation will not impact the overall predictions. Consequently, we use F(�,
�=0) whenever the AAP solution for tgrav is used or discussed, and for simplicity
use from here on only the term F(�) throughout the text.
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Figure 4- Surface response function for � with respect to changes in the initial
saturation degree of soils (Se,i), and the parameter m in van Genuchten (1980)
water retention model.

Implicit vs. explicit solutions of tgrav

Still needed is a verification that the much simpler explicit solutions given by
Eq. (32) provide accurate approximations of the implicit solutions of tgrav as
given by Eq. (22). Figure 5 shows variations in F(�) versus � for the twelve soil
textural classes when using AAP and the 3T, 4T and 5T expansions. In the case
of 4T and 5T expansions, the F(�) is solved using the same methodology defined
in Eq. (17). In the case of implicit solution of tgrav, F(�) was always higher than
2.6 for all textural classes, with F(�) linearly increasing with increasing �. In
contrast, a second-order polynomial trend between F(�) and � is present when
the 3T explicit solution is used, with a maximum of about 3.6 in F(�) when
� values were about 1.3, and lower F(�) elsewhere. A similar trend as for the
implicit solution of tgrav, albeit with a smaller slope, existed between F(�) and �
when the 4T expansion was used. The 5T approximate expansion also showed a
second-order polynomial trend between F(�) and �, but less nonlinear and with
mostly a negative slope.

Figure 5- Variations in the function F(�) versus � for the twelve USDA soil
textural classes.

Figure 5 indicates that the approximate expansions are relatively far away from
the implicit solution of tgrav, especially at long infiltration times, with the F(�)
values showing that the reformulated equation for tgrav is 2.69 to 3.25 times
larger than the classical tgrav model given by Eq. (3). We conclude that the
expansions will never be valid for steady-state infiltration, regardless of the
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number of terms considered. Since tgrav identifies the shift between the relative
weights of capillary and gravity, the expansions may still be valid depending
on their divergence. It is important to emphasize here that the expansions to
approximate the AAP are only valid if 𝐼 ≪ 𝑆2

(2𝐾𝑠𝛽) . Using more terms make
the expansion hence more precise inside the range of validity, but this will not
extend the range in terms of total infiltration amount or total time. Using the
simplified equations outside of this range will generate large errors, and possibly
even larger ones when including more terms in the approximation.

The above results indicate that precise calculations of tgrav require the use of
Parlange’s AAP solution. However, we explored this more directly comparing
the obtained tgrav values from both implicit and explicit solutions. Figure 6
shows the expected differences in tgrav between the implicit and explicit solutions.
We excluded the 4T and 5T expansions since they are more complicated to solve
and still inaccurate compared to AAP implicit solution (especially for large
values �). We also excluded the silty clay soil textural class from presentation
since it has a tgrav value of about 1000 h, about three orders of magnitude higher
than most of the other soils leading to ambiguous results. The results plotted
in Fig. 6 show that the differences between implicit and explicit solutions are
very smaller than what expected from F(�) comparisons. To check the null
hypothesis that the pairwise difference between data vectors has a mean equal
to zero, a paired-sample t-Test at a probability of p < 0.05 was performed.
The results indicates that the differences in the tgrav values are statistically
insignificant. Therefore, given that the implicit solution is time-consuming and
complicated, application of the explicit formulation is to be recommended for
practical problems.

Figure 6- Variations in the soil characteristic time, tgrav, determined using the
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implicit and explicit solutions (based on the three terms) of tgrav for the exam-
ined soil textural classes. Results for silty clay were not shown because of its
extremely high tgrav value.

Influence of � on tgrav

Given the fact that � is very difficult to estimate and its value has little effect
on 1D infiltration (e.g., Latorre et al., 2018; Rahmati et al., 2020), we analyzed
the effect of � on tgrav using a constant � of 0.6 as suggested by Haverkamp
et al. (1994) versus soil-dependent � according to Eq. (7). In this section we
limit ourselves to the explicit solution only since the implicit solution would give
essentially the same results, as discussed in previous section (Fig. 6). As can be
seen from Fig. 7, a constant � value of 0.6 does not represent tgrav very well for
the 12 USDA soil classes. A paired-sample t-Test at p < 0.05 showed that our
null hypothesis that the pairwise difference between data vectors has a mean
equal to zero is to be rejected, meaning that the differences between tgrav values
are statistically significant for many of the soil textural classes. Assuming a
constant � of 0.6 seems to be applicable only for coarse-textured soils such as
sand and loamy sand.

Figure 7- Soil characteristic times, tgrav, determined using the explicit solution
assuming soil dependent � values (Eq. 7) as well as a constant value of 0.6 as
suggested by Haverkamp et al. (1994). Silty clay was excluded from the plot
because of its unreasonably high tgrav value leading to misrepresentation of the
chart. The inset shows differences between the two approaches for coarser soils.
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Application of tgrav

Many studies previously have used tgrav from different perspectives. Philip
(1957) himself used the parameter (denoted here as tgrav, Philip) as a priory in-
dicator to determine the convergence time of his TSE solution. We therefore
briefly explored if tgrav and tgrav, Philip accurately represented the convergence
times of Philip’s TSE solution and/or the approximate expansions by analyz-
ing 1D simulated infiltration curves obtained with the HYDRUS-1D software.
Results are shown in Fig. 8 for the 12 soil textural classes. Included in Fig. 8
is steady-state infiltration curves obtained with Haverkamp et al. (1994) long
term equation where the 3D term is set to zero to fit the 1D infiltration as it
was included for this purpose (see equation 4 in Haverkamp et al., 1994):

𝐼ssi(𝑡) = 𝐾𝑠𝑡 + ln( 1
𝛽 )𝑆2

2(𝐾𝑠−𝐾𝑖)(1−𝛽) (33)

As can be seen from the results in Fig. 8, tgrav, Philip was not a good convergence
indicator for the HYDRUS-1D curves as well as all TSE approximations, being
very late to determine a valid time domain for its safe use. Interestingly, Fig. 8
shows that in nearly all cases, Philip’s 2T equation diverged from the simulated
data already at small infiltration times, thus suggesting that his approach should
be used with caution, especially for late infiltration times. The 3T equation
serves represented infiltration well, even at later times when its curve started
to diverge from the simulated HYDRUS-1D curves. The reformulated tgrav
furthermore seemed to serve as a good indicator for the convergence time of the
3T equation.

Another interesting feature of Fig. 8 is that 4T and 5T approximate expan-
sions produced infiltration rates which increasingly deviated from the simulated
curves as well as the 3T solution. We discussed this before and then we prevent
ourselves expending more on this.

Ross et al. (1996) previously used tgrav, Philip and Igrav, Philip to scale times
(𝑡∗ = 2𝑡

𝑡𝑔𝑟𝑎𝑣, 𝑃ℎ𝑖𝑙𝑖𝑝
) and cumulative infiltration rates (𝐼∗ = 2𝐼

𝐼𝑔𝑟𝑎𝑣, 𝑃ℎ𝑖𝑙𝑖𝑝
) to ob-

tain a dimensionless implicit analytical equation for infiltration. Their equation
could be used to determine dimensionless parameters of the normalized soil wa-
ter retention and hydraulic conductivity functions. Using re-formulated tgrav
and Igrav values instead of tgrav, Philip and Igrav, Philip to scale the infiltration
data would produce then different scaling factors and indirectly lead to different
predictions of the hydraulic parameters. While beyond the scope of our current
study, this topic should be analyzed in future research.
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Figure 8- Simulated infiltration curves obtained with HYDRUS-1D and the
approximate 2T, 3T 4T and 5T expansions as obtained for the 4 out of 12
USDA soil textural classes (a: clay, b: loam, c: silt, and d: sand). Also shown
is the steady-state infiltration curve of Haverkamp et al. (1994) matched to the
latest simulation data. The red and blue dots show the relationships between
convergence time of Philip’s time series expansion (TSE) and the reformulated
tgrav and classical tgrav, Philip characteristic times.

In a study comparing the accuracy of Ks data obtained using positive-head
tension infiltrometer and single-ring pressure infiltrometer techniques relative
to classical undisturbed soil core measurements, Reynolds et al. (2000) used
tgrav, Philip as an index of the time at which steady-state infiltration would be
reached. We briefly evaluated if the reformulated tgrav or tgrav, Philip represented
the time to reach steady-state infiltration well. For this, we used the Haverkamp
et al. (1994) steady-state infiltration equation (Eq. 33) first to calculate steady-
state infiltration (I ssi) for all of our test data. In a second step, a 1st order
polynomial was fitted to the I ssi-t data. Keeping the slope of the fitted polyno-
mial unchanged, the intercept was recalibrated using the last datapoint of the
calculated curve to ensure that the recalibrated steady-state line fitted the late
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infiltration times well. Steady-state infiltration was assumed to be reached when
the numerically simulated Hydrus-1D cumulative infiltration became identical
to the recalibrated steady-state infiltration data based on Eq. (33). Results in
Fig. 9 show that for coarse textured soils, tgrav, Philip and tgrav both served as a
good indicator to determine the time when steady-state infiltration is reached.
However, tgrav of the fine-textured soils was too conservative (much to the right
of the tangent departure point), whereas tgrav, Philip often was located to the left
indicating too early times for steady-state infiltration. It seems that some in
between tgrav and tgrav, Philip would capture the time to steady-state infiltration
more accurately. In the case of intermediate soil textures (loam, silt, silty clay,
and silty clay loam), both criteria seemed to fall beyond the time when steady-
state is reached, and therefore, neither tgrav, Philip nor tgrav would then be good
measures to define the time when steady-state infiltration will be reached.

Figure 9- Relationships between the time to reach steady-state infiltration and
the reformulated tgrav and classical tgrav, Philip characteristic times for the 4 out
of 12 USDA soil classes (a: clay, b: loam, c: silt, and d: sand). Simulated data
were based on HYDRUS-1D simulations.

Using a Beerkan Estimation of Soil Transfer (BEST) method, Lassabatere et al.
(2006) further used tgrav, Philip to determine the maximum time, tmax, for which
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transient expressions as well as the S and Ks predictions are considered valid.
For this, they used the following equation tmax:

𝑡max = 1
4(1−𝐵)2 𝑡𝑔𝑟𝑎𝑣, 𝑃ℎ𝑖𝑙𝑖𝑝 (34)

where B is a constant. Considering that the reformulated tgrav improves the
estimation of the maximum time, using it in the BEST method may result in
different accuracies for the S and Ks predictions.

Rahmati et al. (2020) also showed that inferring soil hydraulic properties (S and
Ks) from infiltration data works best when the infiltration data are measured
until tgrav is reached, whereby tgrav was determined using similar concepts as in
this paper. The authors furthermore showed that infiltration measurements for
durations shorter than tgrav could lead to significant errors in the predictions,
particularly when estimating Ks. Their results similarly indicate that infiltra-
tion measurement to be long enough for robust interpretations during practical
measurement campaigns, especially for field studies.

Conclusions
Studying the infiltration process by which water enters the soil surface, nobody
can ignore the seminal paper of Philip (1957) through which a time series ex-
pansion (TSE) for cumulative infiltration is provided. However, Philip (1957)
has used gravity time, tgrav, to determine the convergence time of his TSE. He
introduced tgrav to be a time when the effect of gravity on infiltration is ex-
pected to be as great as that of capillarity, and formulated this parameter in
terms of sorptivity (S) as well as the saturated (Ks), and initial (K i) hydraulic
conductivities (𝑡𝑔𝑟𝑎𝑣, Philip = 𝑆2

(𝐾𝑠−𝐾𝑖)2 ) using the two first terms of his TSE.
Regardless of whether tgrav serves as a good indicator for the convergence time
of Philip’s TSE and/or its approximate expansions, it is of great interest to
reformulate tgrav using all possible terms of TSE or another general infiltration
formulation which is valid for entire infiltration times. This because the higher
order terms in the TSE are known to exert a significant impact on infiltration,
with the truncated two-term equation of Philip failing to describe infiltration
appropriately at especially longer times. On the other hand, theoretically, tgrav
is a general concept being valid regardless of the infiltration model that is being
used. For these reasons we reformulated tgrav to be 𝑡grav = 𝐹(𝛽) 𝑆2

(𝐾𝑠−𝐾𝑖)2 using
the Analytic Approximation (AAP) of Parlange et al. (1982) which has no time
constraints. Using AAP made it possible to explore the effects of the fourth
parameter (a soil specific shape parameter �) on tgrav in addition to S, Ks, and
K i. The effects of � on tgrav are exerted in the form of a functional relationship
F(�). We provided both implicit and explicit solutions for F(�) and then exam-
ined the effects of � (both constant and soil-dependent) and initial soil moisture
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conditions on F(�), and consequently on tgrav. Finally, we examined the use of
the classical tgrav, Philip as well as reformulated tgrav on the plausibility of these
two parameters to serve as convergence criteria for Philip’s TSE approach and
its approximate expansions, and as a criterion for determining the time when
steady state infiltration is reached. We also discussed the possible accuracy
of the inferred soil hydraulic properties when classical and reformulated tgrav
definitions are considered. Based on the results, following conclusions can be
drawn:

• The reformulated tgrav is 2.59 to 3.25 times (𝐹(𝛽) = 3.1) larger
than the classical tgrav. Difference between the classical and
reformulated tgrav parameters seem to be much higher in the
case of fine-textured soils.

• Practically, a linear relationship exists between F(�) and �, with
higher � values leading to higher F(�) values.

• The initial soil moisture content did not cause any changes in
F(�) and consequently also not in tgrav, thus showing that for
nearly all soil saturation degrees and soil types, K i can be set
to zero with little or no effects on the results.

• Although the differences between the implicit and explicit solu-
tions of F(�) were considerable, final calculations of tgrav showed
statistically no significant differences. Since the implicit solution
is time-consuming and complicated, the explicit formulation is
hence recommended for practical applications.

• Usage of a constant value of 0.6 for � as suggested by Haverkamp
et al. (1994), resulted in erroneous tgrav values compared to soil
dependent � values. We therefore strongly suggest avoiding using
the constant � for practical implications.

• The reformulated tgrav appeared to be a better indicator for
the convergence time of Philip’s TSE and its 3T approximation
compared to classical tgrav, Philip.

• The reformulated and classical tgrav expressions were both
found to be suitable for the time when steady state infiltration
is reached in coarse-textured soils. However, both performed
poorly when applied to fine-textured soils, for which the
reformulated tgrav was too conservative and tgrav, Philip too
short.

• The reformulated tgrav will lead to far more accurate predictions
of the soil hydraulic parameters (particularly Ks) from infiltra-
tion data as compared to tgrav, Philip.
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Figures Captions:

Figure 1. Variation in the functional relationship F(�, �) and reformulated and
classical characteristic times (tgrav [h]) for the twelve USDA soil textural classes.
Note that soils are ranked based on their texture and no function is defined for
them.
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Figure 2- Variation in the functional relationship F(�, �) versus � (a) and � (b)
for the twelve USDA soil textural classes. The F(�, �) values are computed for
an initial water pressure head of 10000 cm.

Figure 3- Variation in the functional coefficient � among the twelve USDA soil
textural classes. The � values are obtained for an initial water pressure head of
10000 cm.

Figure 4- Surface response function for � with respect to changes in the initial
saturation degree of soils (Se,i), and the parameter m in van Genuchten (1980)
water retention model.

Figure 5- Variations in the function F(�) versus � for the twelve USDA soil
textural classes.

Figure 6- Variations in the soil characteristic time, tgrav, determined using the
implicit and explicit solutions (based on the three terms) of tgrav for the exam-
ined soil textural classes. Results for silty clay were not shown because of its
extremely high tgrav value.

Figure 7- Soil characteristic times, tgrav, determined using the explicit solution
assuming soil dependent � values (Eq. 7) as well as a constant value of 0.6 as
suggested by Haverkamp et al. (1994). Silty clay was excluded from the plot
because of its unreasonably high tgrav value leading to misrepresentation of the
chart. The inset shows differences between the two approaches for coarser soils.

Figure 8- Simulated infiltration curves obtained with HYDRUS-1D and the
approximate 2T, 3T 4T and 5T expansions as obtained for the 4 out of 12
USDA soil textural classes (a: clay, b: loam, c: silt, and d: sand). Also shown
is the steady-state infiltration curve of Haverkamp et al. (1994) matched to the
latest simulation data. The red and blue dots show the relationships between
convergence time of Philip’s time series expansion (TSE) and the reformulated
tgrav and classical tgrav, Philip characteristic times.

Figure 9- Relationships between the time to reach steady-state infiltration and
the reformulated tgrav and classical tgrav, Philip characteristic times for the 4 out
of 12 USDA soil classes (a: clay, b: loam, c: silt, and d: sand). Simulated data
were based on HYDRUS-1D simulations.
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