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Abstract

Surface water is the most readily accessible water resource and provides an array of ecosystem services, but is stressed by

changes in climate, land cover, and population size. Understanding drivers of surface water dynamics in space and time is key

to better managing our water resources. However, few studies estimating changes in surface water account for climate and

anthropogenic drivers both independently and together. We used 19 years (2000-2018) of the newly developed Dynamic Surface

Water Extent Landsat Science Product in concert with time series of precipitation, temperature, land cover, and population

size to statistically model maximum seasonal percent surface water area as a function of climate and anthropogenic drivers in

the Southeastern U.S. We fitted three statistical models (linear mixed effects, random forests, and mixed effects random forests)

and three groups of explanatory variables (climate, anthropogenic, and their combination) to assess the accuracy of estimating

percent surface water area at the watershed scale with different drivers. We found that anthropogenic drivers accounted for

approximately 37% more of the variance in the percent surface water area than the climate variables. The combination of

variables in the mixed effects random forest model produced the smallest mean percent errors (mean -0.17%) and the highest

explained variance (R2 0.99). Our results indicate that anthropogenic drivers have greater influence when estimating percent

surface water area than climate drivers, suggesting that water management practices and land use policies can be highly effective

tools in controlling surface water variations in the Southeastern U.S.
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Key Points:

• We developed top-down data-driven models to estimate percent surface
water area based on Landsat imagery and climate and human drivers.

• Compared to estimates based on climate and human drivers independently,
combining them reduces percent surface water estimation error.

• Natural land cover was the most influential explanatory variable to esti-
mate percent surface water area of our climate and human variables.

Abstract

Surface water is the most readily accessible water resource and provides an array
of ecosystem services, but is stressed by changes in climate, land cover, and pop-
ulation size. Understanding drivers of surface water dynamics in space and time
is key to better managing our water resources. However, few studies estimating
changes in surface water account for climate and anthropogenic drivers both
independently and together. We used 19 years (2000-2018) of the newly devel-
oped Dynamic Surface Water Extent Landsat Science Product in concert with
time series of precipitation, temperature, land cover, and population size to sta-
tistically model maximum seasonal percent surface water area as a function of
climate and anthropogenic drivers in the Southeastern U.S. We fitted three sta-
tistical models (linear mixed effects, random forests, and mixed effects random
forests) and three groups of explanatory variables (climate, anthropogenic, and
their combination) to assess the accuracy of estimating percent surface water
area at the watershed scale with different drivers. We found that anthropogenic
drivers accounted for approximately 37% more of the variance in the percent
surface water area than the climate variables. The combination of variables
in the mixed effects random forest model produced the smallest mean percent
errors (mean -0.17%) and the highest explained variance (R2 0.99). Our results
indicate that anthropogenic drivers have greater influence when estimating per-
cent surface water area than climate drivers, suggesting that water management
practices and land use policies can be highly effective tools in controlling surface
water variations in the Southeastern U.S.

Plain Language Summary

People and the environment rely on water to exist and thrive, especially water
on the Earth’s surface because that is the easiest place to get it. The amount of
surface water and where it is located is changing with the climate and changes in
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people’s water use, and our need for it is increasing. In order to plan ahead for
future water needs, we need to better understand how the climate and people are
changing surface water patterns both separately and together. To help improve
our understanding of these changes, we modeled the amount of surface water
three different ways. First, modeled based on climate data (like temperature and
precipitation); second, based on human data (like land use and population); and
third, based on both climate and human data together. We found that we could
best model the amount surface water if we used both climate and human data
together, and that human data can explain a lot of the changes in the amount
of surface water. These results mean that we can work to control changes in
the amount of surface water by controlling human actions through planning and
policies.

1 Introduction

Water is one of, if not the, most valuable resources in the world. The inland
distribution of water is naturally dynamic over time and space with changes in
climate and land use and land cover (LULC) influencing these dynamics (Palmer
et al., 2008; Tulbure & Broich, 2019; Vörösmarty et al., 2010). These changes
can increase water stress and heighten tensions in already strained relationships,
such as those between rural, agriculture-based regions and urban centers (Flörke
et al., 2018). In some areas, water scarcity and intense irrigation can and have
even led to armed conflicts and civil wars, the civil war in Syria being a recent
and powerful example (Iceland, 2017; Müller et al., 2016). In the Southeastern
United States (U.S.), the increased water demand of the Atlanta metropolitan
area has led to legal disputes between Georgia, Alabama, and Florida (Jordan,
2001).

Climate change is altering the patterns of rainfall across the globe (Dai, 2013),
and warming is increasing the growing length of the agricultural growing season
(Kunkel et al., 2004). Globally, the largest anthropogenic use of land is agricul-
ture (Foley et al., 2005) and it has long been recognized as a major driver of
environmental change (Lark et al., 2017; Turner et al., 2007). There is potential
for longer growing seasons to increase water stress, particularly when agricul-
tural and urban areas are competing for the same water resources (Flörke et al.,
2018). For example, in 2015, the majority of total water resources (surface and
groundwater) across the U.S. were used for crop irrigation (Dieter et al., 2018).
While climate models project an increase in precipitation in the Southeast, they
also predict a greater increase in evaporation leading to a net decrease in water
resources in the region (Duan et al., 2017; Ferguson et al., 2018). Additionally,
climate models project increases in extreme rainfall events (Carter et al., 2018;
Keellings & Engström, 2019) and in the precipitation from and intensity of trop-
ical cyclones (Karl et al., 2009; Kossin et al., 2017). These storms paired with
increases in impervious surface area in the Southeastern U.S. can lead to major
flooding events (Carter et al., 2018).

Rapid economic development, urban growth, and population growth increase
water demand (Jeong et al., 2015; Piao et al., 2010; Vörösmarty et al., 2010;
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Wada et al., 2017), and surface water resources are the most easily accessible
water source for humans to utilize, both in urban and agricultural areas (Human
Appropriation of Renewable Fresh Water, 1996). Surface water resources are
essential to a region’s economic and urban development (Veldkamp et al., 2017),
and they are impacted by both climate and anthropogenic drivers (Vörösmarty
et al., 2000; Zeng et al., 2020). Understanding the spatiotemporal patterns of
surface water dynamics is the first step in addressing water scarcity issues and
important for developing inter- and intra-state water management policies to
provide local and regional resiliency (Engström et al., 2021).

Two common approaches for quantifying surface water dynamics have been hy-
drological models or data-driven models, with the former increasingly becoming
the focus of regional and large-scale hydrological models (Sood & Smakhtin,
2015; Wada et al., 2017); however, incorporating human activities into such
models continues to be a major challenge (Vörösmarty et al., 2010; Wada et al.,
2017). Large scale process-based, hydrological models have grown in complexity
and sophistication, but they still need substantial improvement in simulating
anthropogenic interactions with the environment and their impacts on water sys-
tems (Clark et al., 2017; Nazemi & Wheater, 2015; Pokhrel et al., 2016; Wada
et al., 2017). Many of these models do not account for human drivers such
as population density and LULC change or intensity (Hostetler & Alder, 2016;
Thrasher et al., 2013; Wada et al., 2017). Using data-driven approaches, we are
beginning to quantify the spatiotemporal distributions of surface water dynam-
ics with climate and anthropogenic drivers independently and synergistically (L.
Li et al., 2019; Tulbure & Broich, 2019; Xu et al., 2019).

Recently, hydrological analyses of large areas have been trending toward more
data-driven empirical approaches, because satellite imagery is the only way to
assess water systematically over large spatial and temporal scales (Palazzoli &
Ceola, 2020; Pekel et al., 2016; Perin et al., 2021; Tulbure & Broich, 2019;
Wada et al., 2017; Walker et al., 2020). Surface-water-specific datasets derived
from moderate resolution (30m, Landsat) satellite imagery over 30-40 years are
a relatively new development at the regional (Tulbure et al., 2016; Tulbure &
Broich, 2013), national (Jones, 2015, 2019), and global scales (Pekel et al., 2016;
Pickens et al., 2020). The spatial and temporal scale of these surface water
datasets, and the similar spatial and temporal scales of LULC (the Cropland
Data Layer, CDL; “CropScape - NASS CDL Program”), population (LandScan;
Rose et al., 2020), and climate data (Gridded Surface Meteorological dataset;
Abatzoglou, 2013), enable us to tackle the critical task of assessing the impact
of climate and anthropogenic drivers on surface water. Previous research in a
dryland region indicated that the combination of human and climate drivers is
more impactful than climate drivers alone on estimating surface water change
(Tulbure & Broich, 2019). Another study showed that urban areas growth
correlate with surface water loss across the globe (Palazzoli & Ceola, 2020).

Because of rapid LULC changes and climate variability, studying the spatial and
temporal dynamics of surface water and its drivers can provide new insights into
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preparation and responses to droughts and floods. To assess the combined ef-
fects of climate and anthropogenic drivers of surface water extent over decades
at a regional scale, in this study, we used three statistical models—linear mixed
effect models (LMMs), random forest regression (RF) models, and mixed effect
random forest (MERF) models to estimate seasonal percent surface water area
from 2000-2018 using three different sets of explanatory variables—climate, an-
thropogenic, and combination. The specific objectives of this study are to: (1)
compare the influence of climate drivers, anthropogenic drivers, and their com-
bination on estimating seasonal percent surface water area in the Southeastern
U.S., a region that has experienced severe water stress and flooding, across three
statistical models and assess model performances; and (2) determine which vari-
ables are most important in estimating percent surface water area across all
models.

2 Data and Methods

2.1 Study Area

The Southeastern U.S. outlined by Environmental Protection Agency (EPA)
Region 4 encompasses eight states: Alabama, Florida, Georgia, Kentucky, Mis-
sissippi, North Carolina, South Carolina, and Tennessee (upper left map, Fig.
1). The region is comprised of 14 level III Ecoregions, with the Southeastern
Plains accounting for the majority of the land cover (U.S. Environmental Pro-
tection Agency, 2004). It includes 310 8-digit hydrologic unit code watersheds
(hereafter, “HUCs” or “watersheds”), which we used as our unit of aggregation
(right map, Fig. 1), across four water resource regions. The South Atlantic
Gulf and Tennessee water resource regions account for approximately 64% (199)
and 10% (32) of our total 310 HUCs, respectively (lower left map, Fig. 1).
The HUCs of three of the four water resource regions are not entirely contained
within our study region (Tennessee: 32/32, South Atlantic Gulf: 199/204, Lower
Mississippi 34/82, Ohio 45/120; lower left map, Fig. 1). The entire study area
is approximately 1,087,370 km2, the average watershed is approximately 3,500
km2, the largest is 11,790 km2, and the smallest is 180 km2.

The Southeastern U.S., our study area for this work, has experienced the most
LULC change of any region in the country (Homer et al., 2020; Sleeter et al.,
2018), and much of this change is from agriculture or forest to urban area as
southern cities experience rapid growth (Sanchez et al., 2020; Sleeter et al.,
2018; Terando et al., 2014). It has also experienced the largest population
growth rate of any region in the U.S. (Terando et al., 2014). This trend is
expected to continue with an estimated 24% increase over the next 20 years,
4% higher than the national average (McManamay et al., 2019; University of
Virginia Weldon Cooper Center, 2018). Additionally, it is heavily car-dependent,
lending itself to low-density, sprawling urban growth and increasing the amount
of impervious surface area (McManamay et al., 2019; Terando et al., 2014).
These factors can exacerbate the effects of climate change by increasing the
urban heat island effect and leading to more severe flooding (McManamay et
al., 2019; Walsh et al., 2005). Many of the larger urban areas in the region,
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i.e. Atlanta and Knoxville, get their public water supply mainly from surface
water sources (McManamay et al., 2019). Because urban areas tend to draw on
resources from their surrounding areas, urban water stress can lead to regional
and even inter-state legal conflicts, as has happened when Atlanta experienced
water shortages (McManamay et al., 2019; Missimer et al., 2014). The region
is also expected to see an increase in the intensity of hurricanes in the future
and a related increase in natural disaster associated vulnerabilities (Allen et al.,
2016; Emanuel et al., 2013; Pielke et al., 2008).

Figure 1. Our study area (outlined in cyan) is comprised of the 310 HUCs
covering the Southeastern U.S. EPA Region 4, shown in dark grey in the upper
left map of the U.S. The HUC 02 water resource regions are outlined in black
in all three maps.

The Southeastern U.S. is currently a humid subtropical region (Alnahit et al.,
2020; Hernandez-Ochoa & Asseng, 2018; Ingram et al., 2012) dominated by
temperate forests including the longleaf and loblolly-shortleaf pine ecosystems
(Foster et al., 2019; Matusick et al., 2020). There is a latitudinal gradient in
temperature (Alnahit et al., 2020), with the average maximum temperatures
increasing with a decrease in latitude and ranging from 17.31 to 29.60 °C. Over
the next 30 years, summer apparent temperatures—an approximation of a per-
son’s experience of temperature based on temperature, wind speed, and relative
humidity (Steadman, 1984)—across the region are expected to increase by 2.4 to
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4.1 °C, mirroring the current, tropical climate, summer apparent temperatures
of southern Florida (Diem et al., 2017). From 1985 to 2019, the average daily
maximum and minimum temperatures were 23.34 and 10.90 °C, respectively, at
the HUC scale (Table 1). The average annual precipitation at the watershed
scale over the 34-year time period is 1345.39 mm (Table 1) and fluctuates with
the phases of the El Niño Southern Oscillation (Mourtzinis et al., 2016).

On average, at the watershed scale throughout our time period (2000-2018)
natural land cover was the dominant land cover type (74.52%; Table 1) of the
three land cover classes (natural, agricultural, and intensive) we defined using
the National Land Cover Dataset (NLCD; Homer et al., 2015; Yang et al., 2018)
and the Cropland Data Layer (“CropScape - NASS CDL Program”). Each
watershed across the region and over all 19 years contained developed land,
while not every instance of a watershed had agricultural land cover (Table 1).
However, agricultural land cover was the second largest land cover class on
average (9.78%; Table 1). Overall, the average percent of natural land cover in
a watershed is decreasing, with 60% of HUCs having lost more than 1% of their
natural land cover between 2000 and 2018 and 14 having lost more than 5%.
The average percentages of intensive and agricultural land cover in a watershed
are both increasing, with a more than 1% increase of intensive land cover across
approximately 26% of HUCs and of agricultural land for approximately 34% of
HUCs between 2000 and 2018.

Table 1. Distribution of Explanatory Variables across the 310 8-digit HUCs
(watersheds)

@ >p(- 14) * >p(- 14) * >p(- 14) * >p(- 14) * >p(- 14) * >p(- 14) * >p(-
14) * >p(- 14) * @

Variable

& Mean & Standard deviation & Minimum & 25th Percentile & 50th Percentile
& 75th Percentile & Maximum

Maximum Temp (°C)

&

23.34

&

2.73

&

17.31

&

21.25
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&

23.46

&

25.32

&

29.60

Minimum Temp (°C)

&

10.90

&

3.00

&

5.02

&

8.69

&

10.76

&

12.70

&

20.88

Precipitation (mm)

& 1345.39 &

139.12

&

1076.45

&

7



1230.17

&

1342.35

&

1434.43

&

1731.50

Natural Land Cover (%)

&

74.52

&

18.63

&

2.71

&

67.20

&

80.23

&

88.39

&

95.48

Agriculture Land Cover (%)

&

9.78

&

13.46
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&

0.00

&

0.76

&

3.96

&

13.86

&

80.17

Intensive Land Cover (%)

&

8.97

&

6.41

&

0.94

&

5.22

&

7.03

&

10.66

&

61.45

Pop. Density (People/km2)

&
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55.52

&

78.22

&

0.5647

&

17.15

&

29.60

&

62.55

&

677.96

2.2 Surface Water Data

We used the USGS Earth Resources Observation Center Landsat Level 3 Dy-
namic Surface Water Extent (DSWE) Science Product (U.S. Geological Survey,
2019b) to calculate seasonal surface water area for each year in each HUC across
our study area and time period (2000-2018). DSWE is a relatively new, high
temporal (approximately 8 days) and moderate spatial resolution (30 m), long-
term (1984–present) terrestrial surface water inundation dataset derived from
the U.S. Landsat Analysis Ready Data (ARD) Surface Reflectance product in
the Albers Equal Area projection (Jones, 2015, 2019; U.S. Geological Survey,
2019a). Landsat ARD is comprised of the most geometrically accurate data
from Landsat 4-5 TM, Landsat 7 ETM+, and Landsat 8 OLI (U.S. Geological
Survey, 2019a). DSWE has been freely accessible since 2019 on the USGS Earth
Explorer data portal (https://earthexplorer.usgs.gov/; U.S. Geological Survey,
2019b). The DSWE product was validated to ensure the DSWE algorithm’s ac-
curacy in detecting partial surface water and inundation in vegetated wetlands
(Jones, 2015, 2019). Jones (2015) detected no temporal trend in the DSWE
algorithm performance and no bias as a function of hydrologic conditions, sup-
porting the use of DSWE for long-term surface water inundation monitoring
for trend analyses over time. The overall agreement rate between DSWE clas-
sifications and gage inundation states was 77% across over 3,500 observations
(Jones, 2019). While the DSWE dataset was developed using Landsat imagery
from across the U.S., the DSWE model (an inundation algorithm) inputs were
designed to be applied globally (i.e. not requiring scene-based training data;
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Jones, 2015, 2019). For this study we used the interpreted layer with mask
applied (INWM; U.S. Geological Survey, 2019b) of the DSWE product. The
INWM layer classifies pixels into seven groups assigned via pixel value: 0-not
water; 1-water – high confidence; 2-water – moderate confidence; 3-potential
wetland; 4-water or wetland low confidence; 9-cloud, cloud shadow, or snow;
255-not available, fill. These categories are based on the results of five tests
of water and vegetation indices (Jones, 2019; U.S. Geological Survey, 2019a).
The high confidence water classification has been independently shown to have
>80% overall accuracy assessed across a set of randomly sampled and manually
interpreted pixels over multiple years (Soulard et al., 2020).

We used a pixel-based analysis to calculate the surface water area for each
HUC in the region for each season (beginning March 1, June 1, September 1,
and December 1 with winter including January and February from the following
calendar year) from 2000-2018. To aggregate the DSWE INWM layer by season,
we stacked each ARD raster tile for a season within a year, of which there was an
average of 20. For each season, we calculated each pixel’s frequency of ”water–
high confidence”, any classification of water (values 1–4), ”not water”, ”cloud,
cloud shadow, and snow”, and the percent of high confidence water out of all
times a value other than cloud or no data was recorded. We recorded each of
these seasonal frequency counts and the percentage of high confidence water as
bands in an output raster.

We then used the zonal_stats function from the rasterstats module (Perry, 2020)
in Python (Python Software Foundation, https://www.python.org) to calculate,
within each HUC, the number of pixels from our aggregated DSWE where the
percent of high confidence water values was greater than or equal to 25%. In
other words, we counted the number of pixels within each HUC that had been
classified as high confidence water in the DSWE algorithm (Jones, 2019) at
least 25% of the time they were able to be classified (i.e., not covered by clouds)
during their respective year and season. Because the number of viable pixel
values at the pixel level varies even more than the number of Landsat scenes in
a tile per season (mean 19.9, standard deviation 6.7), we set our threshold as a
percentage rather than a specific number of pixels classified as high confidence
water. We chose 25% in order to reduce some of the artifacts from cloud shadows
that are present in the DSWE high confidence water class, while maximizing the
extent of the surface water detected (i.e., capturing flood events) in the DSWE
dataset. We completed these summations by concurrently calculating for each
ARD tile the number of pixels within each HUC that met our threshold and
then summing together each of these tile-specific HUC values. To calculate the
percentage of each HUC that was covered in surface water, we converted the
pixel count to square kilometers (multiplied by 0.0009) and divided the resulting
surface water area by the total area (km2) of the HUC.

2.3 Climate Data

To account for potential climate drivers of surface water, we calculated the
standardized seasonal anomalies of three climate related variables—maximum
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temperature, minimum temperature, and precipitation—for each season in each
year of our timescale (2000-2018). We obtained and processed these data in
Google Earth Engine (GEE) where the Gridded Surface Meteorological (GRID-
MET) dataset from the University of Idaho (Abatzoglou, 2013), a long-term
(1979 to present) daily time series of moderate (4 km) spatial resolution climate
data, was freely available. The dataset was validated with a direct compar-
ison to station observations from four weather station networks (Abatzoglou,
2013). For the contiguous U.S., minimum and maximum daily gridded temper-
ature both had median correlations of 0.97 and daily gridded precipitation had
a median correlation of 0.74 (Abatzoglou, 2013). When compared to five other
gridded weather datasets, Blankenau et al. (2020) found that GRIDMET had
the smallest median station bias (+0.54 °C), the highest median station corre-
lation (0.87), and the smallest variability error for near-surface air temperature
among the long-term datasets (beginning before 2015).

We used the GRIDMET dataset to calculate pixel-based standardized seasonal
anomalies (Eq. 1) in GEE for each of our climate variables. For each season
(i) per year (j), we calculated the standardized seasonal anomaly (SSAij). We
first subtracted the average daily climate value of the season and year (𝑥ij; e.g.
precipitation for the spring of 2018) from the seasonal long-term (spring 1985
through winter 2018) average (𝑥𝑖; e.g. average spring precipitation). We used
the same three-month seasons defined for processing the DSWE data, and then
divided the difference by the seasonal long-term (1985-2018) standard deviation
(𝜎𝑖; e.g. standard deviation of spring precipitations).

SSAij = 𝑥ij − 𝑥𝑖
𝜎𝑖

(1)

Lastly, we summarized these pixel-based anomalies in GEE by calculating their
average across all pixels within each HUC to get the average HUC-level stan-
dardized seasonal anomaly for each season and year. The GEE function we
applied (image.ReduceRegions() with ee.Reducer.mean()) includes pixels on the
edge of the polygon if at least 0.5% of the pixel is within the polygon (Google
Earth Engine, 2021). When calculating the mean, these edge pixel values are
weighted based on the fraction of the pixel that is within the polygon (Google
Earth Engine, 2021).

2.4 Anthropogenic Data

As proxies for anthropogenic drivers of surface water change from 2000-2018,
we used LULC data derived from the U.S. Department of Agriculture National
Agricultural Statistics Services (NASS) Cropland Data Layer (“CropScape -
NASS CDL Program”) and population density data from LandScan produced
by Oak Ridge National Laboratory (Rose et al., 2020). Because the CDL was
not available at the conterminous U.S. level until 2008 (Lark et al., 2017), we
used the 2001 and 2006 components of the NLCD2016 database (Homer et al.,
2020) to calculate our LULC variables from 2000 to 2007. Unlike the climate
and DSWE data, the anthropogenic data have a yearly scale.
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The CDL is available annually at a 30 m spatial resolution with the expressed
purpose of quantifying crop types around the middle of the year (Lark et al.,
2017). It uses NLCD data as part of its training data, specifically for the non-
crop land cover types (Lark et al., 2017). The crop classification accuracies
for major crops (i.e., corn, cotton, rice, soy beans, and wheat) are generally
over 90%, and the accuracy of the layers have increased over time (Lark et al.,
2017). The CDL has a slight negative bias (i.e., underestimating cropland),
but this bias has been decreasing since 2008 (Lark et al., 2017). To improve
the accuracies of both crop and non-crop classifications, Lark et al. (2017) rec-
ommended consolidating classifications, observing an overall accuracy of 91.8%
when conducting a direct (pixel-level) change assessment on consolidated CDL
classes.

The NLCD has a 30 m spatial resolution and a temporal resolution of approx-
imately 5 years with the purpose of recording long-term land cover at the con-
terminous U.S. scale (Yang et al., 2018). The NLCD2016 database had a Level
II (16 land cover classes) overall accuracy of 83.7% for 2001 and 83.6% for 2006
(Wickham et al., 2021). The standard error for both years was 0.5. For Level I
(8 land cover classes), the NLCD2016 database had an overall accuracy of 89.2%
and a standard error of 0.5 for both 2001 and 2006 (Wickham et al., 2021). The
Level I land cover classes are combinations of Level II classes and the improved
overall accuracy supports Lark et al. (2017)’s recommendation of consolidating
land cover classifications to improve accuracy. Class consolidation is also rec-
ommended for when comparing to or using in combination with other datasets
(Lark et al., 2015, 2017).

The three classes to which we consolidated the CDL and NLCD land cover
classes were agricultural, natural, and intensive land use. To combine the land
cover classes for 2008-2018, we ran a reclassification function on the CDL in
GEE at the pixel-level for each year, based on the CDL crop and non-crop class
memberships outlined in Lark et al. (2017; Table S1). For 2000 through 2007,
we similarly reclassified the 2001 and 2006 NLCD data into our three categories
(Table S2). For each year, we calculated the proportion of each land cover class
within each HUC by dividing the area of the land cover classified pixels by
the total area in the HUC. We then calculated a weighted average of the 2001
and 2006 NLCD and the 2008 CDL proportions to span 2000-2007 (Table S3).
Because these data are at a yearly temporal scale, each season within a year
was assigned the same proportions of land cover classes.

The LandScan dataset, derived from a dasymetric model based on satellite ob-
servations (Allen et al., 2016; Bhaduri et al., 2007), provides annual ambient
population data from 2000 to 2019 (with the next year’s data published annu-
ally) at approximately 1km resolution (Rose et al., 2020). An early version of
LandScan used U.S. census counts to validate the model, finding that approxi-
mately 87% of the LandScan population corresponded with county census data
in the Southwestern U.S. (Dobson et al., 2000). The spatial accuracy of Land-
Scan has improved since the 2000 dataset as technological advances (i.e., light
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detection and ranging—LiDAR—building footprints) have improved the qual-
ity, accuracy, and validity of its model inputs (McKee et al., 2015). We started
our models at the first year of population data availability (2000), rather than
the first year of DSWE data, because we wanted to directly compare models
using different groups of explanatory variables.

Figure 2. The overall methods workflow to estimate seasonal percent surface
water area from 2000-2018 across the HUCs in the study area using a total of 9
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models: three statistical models (LMM, RF, and MERF) each with three sets
of explanatory variables (climate, anthropogenic, and combination).

2.5 Model Descriptions

We used three different statistical models to estimate the seasonal percent of sur-
face water area across the 310 HUCs in the Southeast. To meet the assumptions
of these models—all of which are built on linear regression—and to ensure ease
of interpretation, we first centered and standardized the independent variables
(Harrison et al., 2018; Hox et al., 2010). Additionally, to satisfy the assumption
of the normality of the dependent variable (i.e., percent surface water) we log-
transformed the percent surface water after adding a small constant (10−6) to
all observations in order to preserve the very rare instance (< 0.02%) of a HUC
surface water percentage of 0.

To compare the importance of climate and anthropogenic drivers in estimat-
ing surface water, we ran each of the three statistical models—LMM, RF, and
MERF—with different sets of independent variables (Fig. 2). For the climate
models, we used maximum temperature, minimum temperature, and precipita-
tion anomaly variables. For the anthropogenic models, we used the proportions
of agricultural, natural, and intensive land cover as well as population density.
For the combination models, which accounted for both climate and anthro-
pogenic drivers, we used all of the variables in the climate and anthropogenic
models.

2.5.1 Linear Mixed Effect Models

Linear mixed effect models (Eq. 2) are a powerful extension of linear regression
that can control for different types of clustering within the data by modeling
them as random effects, also known as grouping factors (Harrison et al., 2018;
Hox et al., 2010; Schielzeth & Nakagawa, 2012). These grouping factors help
explain randomness in the variability of the response variable (Harrison et al.,
2018). Possible grouping factors we considered were HUCs, seasons, and years,
as well as years nested within seasons and seasons nested within years. Possible
fixed effects, or explanatory variables, we considered the climate variables used
in the climate and combination models and the anthropogenic variables used in
the anthropogenic and combination models (Table 1).

To determine what fixed and random effects for which we should control, we
ran a backward stepwise selection process beginning with all considered fixed
and random effects (Fig. 2). We found that the HUCs were the most dominant
grouping factor, and second were the nested random effects of the years within
the seasons. Minimum temperature standardized seasonal anomaly did not
significantly contribute to the climate or combination model (p > 0.05 for both
models). Additionally, population density did not significantly contribute to
either the anthropogenic or combination model (p > 0.05 for both). It was
also highly correlated with intensive land use (Pearson Correlation 0.94; Fig.
S1), indicating intensive land use can be used as a proxy for population density.
Both non-significantly contributing variables were removed from the models. We
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then ran all of our LMMs with the HUC random effects crossed with the nested
year within season random effects. We were then able to separate the variance
in percent surface water area explained by the fixed effects (the marginal R2)
and the variance explained by the full model (conditional R2; Harrison et al.,
2018; Schielzeth & Nakagawa, 2012; Tulbure & Broich, 2019), which aided in
our comparison of the different categories of models. We also calculated the
overall correlation (R2) between our estimated and observed percent surface
water areas, as well as the mean percent error (MPE) at the HUC level, for
each model with a different set of explanatory variables (climate, anthropogenic,
and their combination; Fig. 2). Because we centered and standardized our
explanatory variables, we were able to use regression coefficients (�’s) to assess
their importance and relationships in the LMMs.

Three models with different sets of explanatory variables were run using the
lmer4 library in R (Bates et al., 2015) and the conditional and marginal R2

values for each model were calculated using the MuMIn library (Barton, 2009).
We followed the structure of a random intercept linear mixed effects model (Eq.
2), where 𝑦 is a matrix of the response variable (percent surface water area), 𝑋
is a matrix of the fixed effects (the variables for each of our model categories),
𝛽 is a matrix of the regression coefficients of the fixed effect variables that is
calculated by the model, 𝑍 is a matrix of the grouping variables (HUCs crossed
with the nested year/season), 𝑢 is the complement to 𝛽, and 𝜖 is a matrix of the
residuals (Introduction to Linear Mixed Models, 2020).

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝜖 (2)

2.5.2 Random Forest Regression

Random forests are a popular machine learning model based on an ensemble
of regression trees for classification or regression and produce an assessment of
variable importance (Breiman, 2001; Grömping, 2009). These regression trees
are built with a random sample, with replacement, of data from the full dataset
and each decision, or split, within each tree is based on a random sample of
features, or dependent variables (Breiman, 2001; Grömping, 2009). Each indi-
vidual regression tree produces its own prediction of the independent variable,
but it is unstable and can be overfit to its subset of data. A random forest is
composed of a large number of regression trees, and the final prediction values
of the independent variable for the full random forest are the average of their
predicted values from the individual trees (Breiman, 2001; Grömping, 2009).
Random forests converge and improve in accuracy as the number of regression
trees increases (Strong Law of Large Numbers) and limit overfitting (Law of
Large Numbers; Breiman, 2001).

In our study, we randomly split the data into a testing and a training dataset,
with 80% of the data used for training and the remaining 20% used for test-
ing. For each category of model, we generated a random forest consisting of
1000 regression trees using the “scikit-learn” ensemble “RandomForestRegres-
sor” module in Python (Pedregosa et al., 2011). To assess our random forest
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models, we calculated the out of bag R2 (Table S4), which measures the cor-
relation of predicted variables to expected variables for observations not used
to generate a regression tree (Grömping, 2009). We also calculated the R2 of
the testing and training data as well as of the full dataset, and we calculated
the MPE at the HUC level for each category of model. Lastly, we obtained the
feature importance, or Gini importance, for each of the explanatory variables
used in each RF model.

2.5.3 Mixed Effects Random Forest

The mixed effects random forest (MERF) method combines the power of con-
trolling for clustered data exemplified by the LMMs with the power of the
ensemble of regression trees from RFs (Dey, 2017; Hajjem et al., 2014). The
MERF method is similar to the RF, however in MERF the regression trees
are replaced with mixed-effects regression trees, that account for the random
effects (Hajjem et al., 2014). Hajjem et al. (2014) defined the MERF method
by incorporating regression trees into the general form of LMMs (Eq. 2, Eq. 3).

𝑦𝑖 = 𝑓 (𝑋𝑖) + 𝑍𝑖𝑏𝑖 + 𝜖𝑖 (3)

In Equation 3, the function 𝑓() represents the RF applied to the fixed effects
covariates, 𝑋, within each cluster, 𝑖. The second term, 𝑍𝑖𝑏𝑖, which is similar to
the second term, Zu, in Equation 2 where 𝑍𝑖 is a matrix of the random effects
covariates for cluster 𝑖, accounts for the randomness added by the grouping
factors and is assumed to be linear. They assume that between-cluster observa-
tions are independent and that 𝑏𝑖, the unknown vector of random effects, and 𝜖𝑖,
the vector of errors, are independent and normally distributed. These last two
variables are fitted iteratively using an expectation-maximization algorithm un-
til convergence, monitored by computing a generalized log-likelihood criterion.
For a more detailed explanation of the MERF method, please see Dey (2017)
and Hajjem et al. (2014).

To remain consistent with our methods for the RF models, we again split the
data into training and testing datasets, 80% and 20% respectively, and set each
RF (𝑓()) to have 1000 regression trees. We generated the MERF models for
each model category in Python using the “merf” package in the “merf” module
(Manifold Inc., 2020), using the “scikit-learn RandomForestRegressor” as the
fixed effects estimator. We set the number of iterations for the expectation-
maximization algorithm to 200 for each MERF model. In the MERF models,
we designated the random effects as the HUCs crossed with the seasons, and we
used the same fixed effects as described in Section 2.5.1. Similar to our previous
statistical models, we calculated the R2 for the testing and training datasets as
well as the full dataset and the MPE at the HUC level for each MERF model.

For the RF and MERF models, we calculated the Shapely Additive exPlanation
(SHAP) values to determine the importance and relationship of each explanatory
variable in each machine learning model (Lundberg & Lee, 2017). The SHAP
values quantify the contributions of the explanatory variables in the models.
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The sum of the SHAP values for each variable is equal to the difference between
the prediction of the model and the null model.

3 Results

3.1 Driver Influence and Model Assessment

Overall, we found that the MERF model using a combination of climate and
anthropogenic drivers provided the best estimates of seasonal percent surface
water area across our study area and per season per year time scale, from 2000 to
2018. Of all nine models, the combination MERF model had the smallest range
of HUC MPE (-5.30% to 0.90%, bottom right map, Fig. 3). The combination
MERF model also had the largest percent of HUCs with an MPE between -1%
and 1% (95.81%), the smallest magnitude median HUC MPE (-0.06%), and the
smallest magnitude mean MPE (-0.17%; Figs. 3 and 4). The climate RF model
performed the worst, with the largest range of HUC MPEs (-1268.60%, 23.50%,
middle left, Fig. 3 and fourth boxplot from the top, Fig. 4). The climate
RF model also had the largest percent of HUCs with MPE < -1% (41.94%),
underestimating percent surface water area, and the largest percent of HUCs
with MPE > 1% (43.87%), overestimating surface water area (middle left, Fig.
3 and fourth boxplot from the top, Fig. 4). The combination models for each
statistical model had the smallest magnitude median of HUC MPE between the
model types (LMM: -0.11%, RF: -0.16%, MERF: -0.06%; Fig. 4). The LMM
and MERF models, which account for random effects, had smaller magnitude
median HUC MPE across all model types compared to RF (Fig. 4). All MERF
models, regardless of set of explanatory variables, had smaller magnitude median
MPEs than LMM or RF models (Fig. 4).
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Figure 3. Overall Mean Percent Error at the HUC level for all 9 models.
Orange to red HUCs indicate an underestimation of percent surface water area
with the magnitude of the underestimation increasing with the hue. Light blue
to dark blue HUCs indicate an overestimation of percent surface water area with
the magnitude of the overestimation increasing with the hue.

The explanatory power of anthropogenic drivers was greater than that of climate
drivers and approximately equal to that of the combination of climate and an-
thropogenic drivers, according to our LMM results. We directly compared the
amount of variance explained by the fixed effects using the marginal R2. The
explanatory variables, or fixed effects, of the climate LMM accounted for <1%
of the variance in the model (Climate R2m, Table 2), indicating that most of
the variance in climate LMM was found between HUCs, seasons, and years.
In contrast, the anthropogenic and combination LMM explanatory variables
explained approximately 37% of the model variance (Anthropogenic and Com-
bination R2m, Table 2). In LMMs, anthropogenic drivers account for 37.31%
more of the variance in the percent surface water area than climate drivers,
when the variances between HUCs, seasons, and years (random effects) are all
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controlled. For each of the models, the fixed and random effects combined
explained >95% of the total variance (Climate R2c, Table 2).

Table 2. Marginal and Conditional R2 for the LMM models

Climate Anthropogenic Combination
R2m 0.0006 0.3737 0.3731
R2c 0.9723 0.9639 0.9641

Overall, the distribution of the HUC MPEs suggests that the most accurate
model category is the combination model, which uses both climate and anthro-
pogenic drivers, and generally the anthropogenic models are more accurate than
the climate models. For both the LMMs and the RF models, the magnitude
of the median HUC MPE was the smallest for the combination models and the
largest for the climate models (Fig. 4). For the MERF models, the magnitude
of the median HUC mean percent error was the largest for the anthropogenic
model (-0.08%; Fig. 4) and smallest for the combination model (-0.05%; Fig.
4). For both the RF and MERF models, the ranges of HUC MPEs were largest
for the climate models and smallest for the combination models (Figs. 3 and
4). For the LMMs, the distribution of HUC MPEs stayed consistent with mini-
mum, mean, and median statistics all varying <1% for all three model categories;
however, the maximum HUC MPE varied more with the largest from the an-
thropogenic model (13.70%) and the smallest for the climate model (0%; Fig.
4).

Figure 4. Boxplots of the mean percent error at the HUC level for all 9 models.
The full range of MPEs, excluding those in climate RF <-55%, are shown on the
left. The distribution of MPEs between -1.5 and 1.5 (red bounding box on both
left and right) are shown on the right. The individual HUC MPEs (transparent
grey dots) are shown on both left and right.
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3.2 Spatial Distribution of Mean Percent Errors

The MPEs were not uniformly spatially distributed across the four water re-
source regions (Figs. 1 and 3). Excluding the climate RF model, a large majority
(>80%) of HUCs for each model had MPEs between -1% and 1%; however, the
MPEs varied between the water resource regions (Fig. 3). For the Lower Mis-
sissippi water resource region, only the MERF models had a majority (>50%)
of HUCs with MPEs between -1% and 1% and none had more than 80% of
HUCs with MPEs in that range. These are the smallest proportions of HUCs
with MPE between -1% and 1% across the 4 water resource regions, meaning
the Lower Mississippi water resource region had the largest magnitudes of error
(Fig. 3). The Tennessee and South Atlantic Gulf water resource regions had
over 90% of HUCs with MPEs between -1% and 1% across all models exclud-
ing the climate RF model. The Ohio water resource region had between 70%
and 94% of HUCs with MPEs within this range for each model not including
the climate RF model. Only the climate and combination MERF models had
more than 90% of HUCs with MPEs between -1% and 1% for the Ohio water
resource region. For each water resource region and in total, the combination
MERF model had the most HUCs with MPE between -1% and 1% across all
water resource regions (79.4% for the Lower Mississippi, 93.3% for the Ohio,
98.49% for the Atlantic, 100% for the Tennessee, and 95.8% in total; bottom
row, right column, Fig. 3). The climate RF model had the smallest proportion
of HUCs with MPE between -1% and 1% (0% for the Lower Mississippi, 3.5%
for the Atlantic, 4.4% for the Ohio, and 6.3% for the Tennessee; middle row,
left column, Fig. 3).

Most models underestimated the percentage of surface water area across all
water resource regions, with very few HUCs having a MPE >1% (Figs. 3 and
4), overestimating the percent surface water area. The climate RF model was
the exception. It had the highest proportion of MPEs >1% across all water
resource regions (between 37% and 50%) and 43.9% of HUCs overall (middle
row, Fig. 3). All LMM and MERF models had less than 2% of HUCs with
MPEs >1% across all water resource regions (Figs. 3 and 4). The climate
RF also underestimated the percent surface water area, HUCs with MPE <-
1%, the most across all water resource regions (between 28% and 50%) and
41.9% of HUCs overall (middle row, Fig. 3). Excluding the climate RF model,
less than 15% of HUCs for each model had MPE <-1% across the study area.
However, underestimation of surface water was not evenly distributed across
the water resource regions. In the Lower Mississippi water resource region, all
LMM and RF models excluding the combination RF model had greater than or
equal to 50% of HUCs with MPE <-1% and only the MERF models had less
than one third of HUCs with MPEs <-1%. The Ohio water resource region had
less than 30% of HUCs with MPE <-1% with climate and combination MERF
models with less than 10% of HUCs in this range. The Tennessee and Southern
Atlantic Gulf water resource regions have less than 10% of HUCs with MPE
<-1%, excluding the climate RF model. The combination MERF model had the
smallest percentage of HUCs with MPE <-1% for each water resource region
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(between 0% and 21%) and across the whole study area (4.2%).

3.3 Variable Importance

Overall, the percent of natural land cover was the most influential variable across
all statistical models (Fig. 5). The anthropogenic variables had higher feature
importance’s than the climate variables in the combination models. Because
we used seasonal standardized anomalies, these results mean that centered and
standardized anthropogenic variables had a stronger influence on estimating
percent seasonal surface water area than centered and standardized climate
anomalies (not the raw average seasonal precipitation or temperature data). As
discussed in the previous two sections, the combination models were better (i.e.,
had the smallest error) than the climate and anthropogenic-only models

Despite anthropogenic variables having higher feature importance than climate
variables, the latter were still found to be significant in estimating percent sur-
face water area in both climate-only and combination models. In our LMM
variable selection for the climate-only and combination models, both the pre-
cipitation and maximum temperature anomalies had a significant effect on the
estimation of percent surface water area (p < 0.01). Seasonal precipitation
anomaly had a positive impact on the estimate of percent surface water area
across the LMM and MERF statistical models with both climate-only and a
combination of climate and anthropogenic explanatory variables. In the cli-
mate and combination LMM and MERF models, precipitation anomaly had a
larger influence on estimating precent surface water change than seasonal maxi-
mum temperature anomaly (Fig. 5 left and right). For all models using climate
data, seasonal maximum temperature anomaly had a negative relationship with
the percent surface water area.

Figure 5. Absolute values of mean SHAP values for the MERF models with
different sets of explanatory variables. From left to right: climate variables,
anthropogenic variables, and both climate and anthropogenic variables.

All of the percent land cover classes (natural, agricultural, and intensive) had
a significant effect on the estimation of percent surface water area (p < 0.01)
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for both the anthropogenic-only and combination LMMs. All three of these ex-
planatory variables had a negative relationship with estimating percent surface
water change across all three statistical models for both anthropogenic-only and
combination explanatory variables (Fig. 5 middle and right). For each of these
models, the percent of natural land cover was consistently the most influential,
followed by percent of agricultural land cover, and percent intensive land cover
(Fig. 5 middle and right). We found that for each of the statistical models with
both climate and anthropogenic explanatory variables, all the anthropogenic
variables had higher variable importance than either of the climate variables
(Fig. 5 right).

3.4 HUC Example

We selected a HUC in the center of our study area to illustrate the results of
each of our models (Fig. 6). This HUC is one of Georgia’s main watersheds and
includes part of the metropolitan Atlanta area as well as Lake Lanier, a reservoir
that supplies water to the area. The impact of the major droughts from 2000-
2018 can be noticed in the observed percent surface water area (blue points
in scatterplots, Fig. 6). The 2006–2009 drought was the longest duration of
continuous drought in Georgia during this time (National Integrated Drought
Information Systems), and we can see the steady decrease in percent surface
water area (blue points in scatterplots, Fig. 6). We can also observe a shorter,
but severe drought in 2011 and 2012 (blue points in scatterplots, Fig. 6).

The LMMs of each category estimate the percent of surface water almost iden-
tically, regardless of the independent variables (top row of scatterplots, Fig. 6).
We also see that, except for the climate RF model, the percent error range is
larger for the LMMs than for any other model (top row of boxplots, Fig. 6).
We see that the climate RF model is consistently underestimating surface water,
which is highlighted in the distribution of the percent errors (middle left scat-
terplot and middle right boxplot, Fig. 6). We also see that the anthropogenic
RF model estimates do not capture the seasonality of the percent surface wa-
ter, because the anthropogenic variables do not have seasonal differences. The
seasonality of the climate variables likely helps reduce the range of the percent
errors in the combination RF model. Overall, the MERF models have the small-
est range of percent errors when compared with the other statistical models, by
category (top row of boxplots, Fig. 6). Despite an outlier in the summer of
2004, which appears in both the climate and combination MERF models, the
combination MERF model has the most compact distribution of percent errors,
making it the model with the smallest amount of error for the watershed.

These graphs highlight how we are able to accurately estimate the percent sur-
face water area for each season in a year at the HUC level using these different
categories and statistical models. They highlight some of the limitations of each
model, as well as the ability of these models to capture small changes in percent
surface water area between seasons.
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Figure 6. An example of model outputs at the HUC level. The HUC in question
(03130001) is highlighted in red on the map in the upper right corner. This
particular HUC contains part of Atlanta and Lake Lanier. The row of boxplots
at the top show the distribution of the percent errors (y-axis) for each statistical
model (x-axis) and category of model (column). The column of boxplots on the
right shows the distribution of percent errors (y-axis) for each statistical model
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(row) and category of model (x-axis). The 9 scatterplots show the observed
percent surface water area in blue and the estimated percent surface water area
in colors and shapes relative to the category and statistical model used. Climate
models are all shown in green, anthropogenic models are all shown in red, and
the combination models are shown in purple. Square points indicate LMMs,
triangles indicate RFs, and non-blue circles indicate MERFs.

4 Discussion

The novelty of this study is to use top-down data-driven models to assess how
different climate and anthropogenic drivers affect the variability of surface water
in a region of the U.S. experiencing more LULC change and population growth
than any other in the country (McManamay et al., 2019; Terando et al., 2014).
The Southeastern U.S. is also experiencing increasingly severe hurricanes and
dry periods (Allen et al., 2016; Emanuel et al., 2013; Pielke et al., 2008) leading
to billions of dollars in recovery costs (Smith, 2020) and legal conflicts between
states (McManamay et al., 2019; Missimer et al., 2014). These models can help
identify areas where land use and water management practices, which are easier
to regulate than climate change, are crucial to mitigating and/or adapting to
water stress. Understanding the dynamics of surface water in this region can
also help decision makers prepare for different water stresses, from either drier or
wetter periods. This knowledge can be particularly effective in an area where a
large portion of counties are listed under the highest level of social vulnerability
in the Centers for Disease Control’s 2016 Social Vulnerability Index (Flanagan
et al., 2011).

4.1 Spatial Distribution of Model Surface Water Under-/Over- Estimations
Across Water Resource Regions

We found that MPEs were not evenly distributed across the water resource
regions. The Lower Mississippi water resource region is the region that had
the largest range of MPEs across its HUCs and consistently underestimated
the percent surface water area in the HUCs (Fig. 3). The regional economy
in the Lower Mississippi is driven by agricultural production (Alhassan et al.,
2019). To reduce crop stress and optimize crop yields using less cropland area,
farmers rely on irrigation from groundwater and/or surface water (Massey et
al., 2017; Yasarer et al., 2020). The amount of irrigation in the region has
increased (Yasarer et al., 2020) and may have enabled an increase in planting
corn, which is a water-demanding crop (Smidt et al., 2016). Increased irrigation,
groundwater or surface water, can lead to streamflow depletion (Killian et al.,
2019), decreased baseflow, and more frequent low flow conditions (Yasarer et
al., 2020). All of these impacts of irrigation, and the increase in irrigation
throughout the region, can contribute to changes in surface water area.

Building dams and reservoirs has been the main response to the growing water
needs for domestic, industrial, and irrigation purposes in urban and agricultural
areas (Altinbilek, 2002; Hubacek et al., 2009). These dams and reservoirs are
the primary source of the increase in surface water across the globe (Pekel et al.,
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2016). According to the US Army Corps of Engineers’ Inventory of Dams, there
are 24,222 dams in our study region (US Army Corps of Engineers). Of the
dams with completion dates, 708 were built in the region after 2000, 1,759 were
completed between 1985 and 2000, and 13,254 were built before 1985. In the
Lower Mississippi water resource region, 163 dams have been built since 2000,
the largest proportional increase (4.69%) of all the water resource regions in
our study area. There are also 8,501 dams without recorded completion dates.
Small water bodies, such as small reservoirs, have higher fluctuation in surface
water than larger water bodies in both seasons of high rain and of increased
drought risk (Zeng et al., 2020; Zou et al., 2017). Zeng et al. 2020 found that
building dams and reservoirs helped explain permanent surface water increases
in their study area. It is likely that dam construction in our study area impacted
surface water area. Because the number of dams in this area has increased over
time, it could help explain why our models skew toward underestimating surface
water area across the HUCs (Figs. 3 and 4).

4.2 Drivers of Surface Water

Our work leverages three robust statistical methods, unlike other studies that
have modeled surface water change with climate and human variables (Xu et al.,
2019; Zeng et al., 2020). Similar studies have been able to assess the importance
of explanatory variables to estimating surface water but have not captured the
fluctuations in surface water at the seasonal level (Zeng et al., 2020). There
can be strong variability in surface water between seasons (Pekel et al., 2016),
which can adversely impact models that do not account for these variabilities
(Zeng et al., 2020). We found significant differences in seasonal variability of
surface water, which led us to using seasons as a grouping factor in our LMMs
and MERF models. Controlling for the variance in seasonality likely improved
our models.

While many studies focus on the impacts of climate change on water resources
(Xu et al, 2019), we assessed the impact of climate and anthropogenic drivers
independently and in combination. We found that anthropogenic drivers were
more influential in estimating percent surface water area than climate drivers
in our study region. Our findings are supported by similar studies identifying
forested and urban land cover as the most important variables in estimating
permanent surface water in the Northeast and Loess Plateau in China (Zeng
et al. 2020), identifying increased water management from an expansion of
agricultural area as the major source of lake volume decline in Urmia Lake in
northwestern Iran (Chaudhari et al., 2018), and finding that drastic changes
in vegetation cover changes the patterns of surface water in Canada (Egginton
et al., 2014). Our finding that natural land cover, which is mainly composed
of forested land cover, was the most important variable of all our climate and
anthropogenic variables, supports other studies that found that surface water
is significantly correlated with forested vegetation (Caldwell et al., 2016; Liu et
al., 2020; Wei et al., 2017; Zeng et al., 2020).

The relationships of our climate variables, positive for precipitation anomalies
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and negative for maximum temperature anomalies (Fig. 5), to percent surface
water is similar to what other studies have found (Liu et al., 2020; Lockaby et
al., 2013; Tulbure & Broich, 2019). In contrast to our findings, Xu et al, 2019
found that climate change had a greater impact on water retention than land
cover change in the Upper Yangtze River Basin in western China. However, they
used a process-based model and used land cover to calculate evapotranspiration
as a proxy for anthropogenic drivers (Xu et al., 2019). We used data-driven
models that empirically incorporated land cover. Similar to our results, Xu et al.
(2019) found that both climate and land cover change were impactful on water
retention, and they found that the impacts of each vary significantly across their
study region. They and others have also concluded that adjusting land cover can
be used as an effective and direct way to mitigate the impacts of climate change
(Xu et al., 2019; Zeng et al., 2020). Water resource management can impact
everything from urban water supply to irrigation to ecosystem services (Hester
& Larson, 2016; Jeong et al., 2015; Liu et al., 2020; Xu et al., 2019; Yasarer et
al., 2020). Additionally, other research across the globe (the Turbio river sub-
basin in Mexico, the Murray Darling Basin in Australia, and the Northeast and
Loess Plateau in China, respectively; Orozco et al., 2020; Tulbure and Broich,
2019; and Zeng et al., 2020) found that land cover had a larger impact on water
resources than climate variables.

The negative relationship of our most influential variable, natural land cover,
to percent surface water supports the results of other studies (Liu et al., 2020;
Lockaby et al., 2013; Tulbure & Broich, 2019). There are conflicting accounts
on whether forestation increases or decreases streamflow and surface water re-
sources, indicating that there are likely other factors at play (Zeng et al., 2020;
Zhang et al., 2017; Zhang & Wei, 2021). Researchers are currently working
to understand how forest change effects water supply (Zhang & Wei, 2021), so
studies on changes to water supply in heavily forested areas undergoing large
land cover/land use change are highly relevant. Zhang et al. (2017) found that
forestation reduced streamflow more often in semiarid and arid regions while
these reductions were less pronounced in humid subtropical and tropical area.
Other studies have indicated that increases in forest area can reduce runoff
and help restore groundwater, thereby stabilizing the variability in surface wa-
ter (Biao et al., 2010; Caldwell et al., 2014; C. Li et al., 2020; Zhang & Wei,
2021). Specifically, studies in the Southeastern US, Mexico, and China found
that natural land cover diminishes runoff and improves water quality (Liu et al.,
2020; Orozco et al., 2020; Zeng et al., 2020). Less variability in surface water
in response to natural land cover supports the negative relationship we found
between percent natural land cover and percent surface water area. Addition-
ally, the negative relationship could be because both variables are a proportion
in each HUC. For one to be larger, the other would have to be smaller. It is
possible that natural land cover is the most influential fixed effect because it
is the dominant land cover type in our study area (Fig. 1). However, because
we centered and normalized our independent variables, this should have less
influence.
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Land use and land cover change plays a large role in surface water dynamics (Liu
et al., 2020; Orozco et al., 2020; Tulbure & Broich, 2019; Xu et al., 2019). Zhou
et al., 2021 also found that land use, especially agricultural activities within a
watershed, impact surface water area. Orozco et al. (2020) found that urban
centers and agricultural areas have the greatest water vulnerability, and that
climate and land use change impacts this vulnerability. Our results showed that
across statistical models, anthropogenic drivers (i.e., land use) improved model
estimates of percent surface water by decreasing the magnitudes of HUC MPEs.

4.3 Climate RF Model

With the exception of the climate RF model, we were able to estimate percent
surface water area accurately (Figs. 3 and 4). While we could have added com-
plexity to the LMM and MERF models using random slopes as well as random
intercepts to account for the grouping factors, they performed accurately with-
out the added complexity and the tradeoffs with model interpretability. Across
all nine models, only the climate RF model had an R2 <0.95. The combina-
tion MERF model had the highest R2 at 0.995. The RF models are limited
in comparison to the LMM and MERF models because they do not control for
variance explained by differences between HUCs, seasons, or years. Because we
see the largest distribution of HUC MPEs for the climate RF model (Figs. 3
and 4) and the lowest R2 value for the climate RF model, we can infer that for
the climate models, the grouping factors are just as if not more important than
the climate variables. This result is supported by our findings in the LMMs
where the variance explained by the climate variables for the climate model was
<1% (marginal R2; Table 2) and the variance explained by the random effects
was 97.17% (difference between conditional and marginal R2).

4.4 Climate RF Model

Uncertainty is present in all of the datasets we used, which can lead to model-
ing errors. The climate data is at a coarser spatial scale than the surface water
or land cover data. Because we aggregated all the data to the HUC scale, we
assume that the precipitation and temperature anomalies will be reasonably
captured; however, a finer scale of climate data could yield more accurate re-
sults. To improve our capture of anthropogenic drivers, future work could add
irrigation data, which would change according to the seasons. At this time how-
ever, and to the best of our knowledge, a spatially explicit seasonal record of
irrigation does not exist for our study area. In addition to irrigation data, fu-
ture work consisting of adding explanatory variables (Liang et al., 2019; Tulbure
& Broich, 2019) to improve our understanding of the driver categories should
consider including soil type, soil moisture, slope, elevation, stream gauge data,
and time-lag factors such as precipitation or surface water area from the pro-
ceeding season (Heimhuber et al., 2017; Liang et al., 2019; Tulbure & Broich,
2019; Walker et al., 2020). Another limitation and avenue for future work is
the distinction between natural and man-made/modified surface water bodies.
The DSWE dataset does not distinguish between the two, but there is some
evidence that these water features exhibit different patterns of variability and
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are impacted differently by climate and anthropogenic forces (Poff et al., 2007),
and therefore disentangling them should be a focus of future work.

Moreover, increasing the types of machine learning techniques to compare data-
driven models (Liang et al., 2019), and expanding the combination MERF model
into projection models based on different future climate scenarios (Orozco et al.,
2020) represent promising future directions of this work. Such machine learn-
ing models include K-Nearest Neighbor, Support Vector Machine-Non Linear,
and Deep Feed Neural Networks–each of which have different strengths and
weaknesses (Liang et al., 2019). Expanding the combination MERF model into
projection models using data for different Representative Concentration Path-
way and Shared Socioeconomic Pathways could increase the potential impact of
these top-down data-driven models of surface water (Duan et al., 2019; Orozco
et al., 2020; Vepraskas et al., 2020) when used for predicting the impact of
future climate and land use on surface water resources.

5 Conclusions

Incorporating anthropogenic drivers with climate drivers to model surface wa-
ter using top-down data-driven models expands our ability to assess surface
water dynamics. In this study, we used climate and anthropogenic variables
to develop nine different models to estimate percent surface water at the HUC
level. Our climate-only models used precipitation and temperature variables,
our anthropogenic-only models used land cover variables, and our combination
models used all the climate and anthropogenic variables. We found that be-
tween climate and anthropogenic drivers, the latter is more influential and that
when used together, they yield more accurate results. We also found that the
MERF model, a combination of the LMM and RF models, produced better
percent surface water estimates than either the LMMs or RF models. Lastly,
we found that the percent of natural land cover was the overall most important
explanatory variable in estimating the percent surface water.

Our time period covered both large droughts and hurricane seasons, highlight-
ing that our data-driven models can be reasonably applied to a wide range of
environmental variability for this region. The results of this study emphasize
the role of land cover in estimating surface water, indicating that LULC man-
agement practices can be used to limit or adapt to future drought or flooding
events. Additional research can be done to develop these models into projections
to help local decision makers adapt to future environmental variability.
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Introduction  

The figure and tables in this document are meant to provide additional, more specific 

information regarding the methods and model validation reported in the main article. 

The data used for these figures and tables includes the Dynamic Surface Water Extent 

(DSWE) data product from the U.S. Geological Survey (USGS; Jones, 2015, 2019), Gridded 

Surface Meteorological (GRIDMET) dataset from the University of Idaho (Abatzoglou, 

2013), the Cropland Data Layer (CDL) dataset from the U.S. Department of Agriculture 



 

 

2 

 

National Agricultural Statistics Services (“CropScape - NASS CDL Program”), the National 

Land Cover Dataset from the USGS (Homer et al., 2020), and LandScan data produced by 

Oak Ridge National Laboratory (Rose et al., 2020).  

The data have been processed such that satellite-derived surface water data (DSWE) 

were aggregated as total maximum percent surface water area seasonally at the 

watershed scale for 2000-2018. Gridded daily climate data (GRIDMET) were aggregated 

to seasonal anomalies at the watershed (8-digit Hydrological Unit Code) scale for 2000-

2018. Land cover data were reclassified (CDL and NLCD, specific reclassifications outlined 

in Tables S1 and S2), combined (Table S3), and aggregated annually at the watershed 

scale for 2000-2018. Population data (LandScan) were aggregated annually in 

conjunction with watershed area to population density data at the watershed scale for 

2000-2018.  

DSWE has been shown to have approximately 80% accuracy, with some reports of cloud 

shadow anomalies and artifacts contributing to small errors (Jones, 2015, 2019; Soulard 

et al., 2020; Walker et al., 2020). GRIDMET data have been shown to have a small station 

bias (+0.54 °C; Blankenau et al., 2020). The CDL has a slightly negative bias and an 

accuracy of > 90% for major crops (Lark et al., 2017). The NLCD has an overall accuracy 

of > 80% and a standard error of 0.5 (Wickham et al., 2021). LandScan data has been 

validated with county census data and found to have an accuracy of > 85% (Dobson et 

al., 2000). 
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Figure S1. Correlation of all potential fixed effects tested for the climate, anthropogenic, 

and combination linear mixed effect models. Axes are fixed effect variable names. 

MAX_TMP, MIN_TMP, and PRECIP indicate maximum temperature anomaly, minimum 

temperature anomaly, and precipitation anomaly, respectively. PR_AG, PR_INT, and 

PR_NAT indicate the percentages of agricultural, intensive, and natural land cover/land 

use, respectively. PR_POP indicates population density. Each variable was centered and 

standardized before correlation was assessed. Darker purple indicates higher correlation, 

lighter blue indicates less correlation. 
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Cropland Data Layer Reclassification 
 

Value Description Reclass   Value Description Reclass  

1 Corn Crop   83 Water NA  

2 Cotton Crop   87 Wetlands Natural  

3 Rice Crop   88 Non ag/Undefined Natural  

4 Sorghum Crop   92 Aquaculture Crop  

5 Soybeans Crop   111 Open Water Crop  

6 Sunflower Crop   112 Perennial Ice/Snow Crop  

10 Peanuts Crop   121 Developed/Open Space Intensive  

11 Tobacco Crop   122 Developed/Low Intensity Intensive  

12 Sweet Corn Crop   123 Developed/Med Intensity Intensive  

13 Pop or Orn Corn Crop   124 Developed/High Intensity Intensive  

14 Mint Crop   131 Barren Intensive  

21 Barley Crop   141 Deciduous Forest Natural  

22 Durum Wheat Crop   142 Evergreen Forest Natural  

23 Spring Wheat Crop   143 Mixed Forest Natural  

24 Winter Wheat Crop   152 Shrubland Natural  

25 Other Small Grains Crop   176 Grassland/Pasture Natural  

26 

Double Crop Winter 

Wheat/Soybeans Crop   190 Woody Wetlands Natural 
 

27 Rye Crop   195 Herbaceous Wetlands Natural  

28 Oats Crop   204 Pistachios Crop  

29 Millet Crop   205 Triticale Crop  

30 Speltz Crop   206 Carrots Crop 
 

31 Canola Crop   207 Asparagus Crop  

32 Flaxseed Crop   208 Garlic Crop  

33 Safflower Crop   209 Cantaloupes Crop  

34 Rape Seed Crop   210 Prunes Crop  

35 Mustard Crop   211 Olives Crop  

36 Alfalfa Crop   212 Oranges Crop  

37 Other Hay/Non Alfalfa Natural   213 Honeydew Melons Crop  

38 Camelina Crop   214 Broccoli Crop  

39 Buckwheat Crop   215 Avocados Crop  

41 Sugarbeets Crop   216 Peppers Crop  

42 Dry Beans Crop   217 Pomegranates Crop  

43 Potatoes Crop   218 Nectarines Crop  

44 Other Crops Crop   219 Greens Crop  

45 Sugarcane Crop   220 Plums Crop  

46 Sweet Potatoes Crop   221 Strawberries Crop  

47 Misc Vegs & Fruits Crop   222 Squash Crop  

48 Watermelons Crop   223 Apricots Crop  

49 Onions Crop   224 Vetch Crop  

50 Cucumbers Crop   225 

Double Crop Winter 

Wheat/Corn Crop 
 

51 Chickpeas Crop   226 Double Crop Oats/Corn Crop  

52 Lentils Crop   227 Lettuce Crop  
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53 Peas Crop   228 

Double Crop 

Triticale/Corn Crop 
 

54 Tomatoes Crop   229 Pumpkins Crop  

55 Cranberries Crop   230 

Double Crop 

Lettuce/Durum Wht Crop 
 

56 Hops Crop   231 

Double Crop 

Lettuce/Cantaloupe Crop 
 

57 Herbs Crop   232 

Double Crop 

Lettuce/Cotton Crop 
 

58 Clover/Wildflowers Natural   233 

Double Crop 

Lettuce/Barley Crop 
 

59 Sod/Grass Seed Crop   234 

Double Crop Durum 

Wheat/Sorghum Crop 
 

60 Switchgrass Natural   235 

Double Crop 

Barley/Sorghum Crop 
 

61 Fallow/Idle Cropland Crop   236 

Double Crop Winter 

Wheat/Sorghum Crop 
 

63 Forest Natural   237 Double Crop Barley/Corn Crop  

64 Shrubland Natural   238 

Double Crop Winter 

Wheat/Cotton Crop 
 

65 Barren Intensive   239 

Double Crop 

Soybeans/Cotton Crop 
 

66 Cherries Crop   240 

Double Crop 

Soybeans/Oats Crop 
 

67 Peaches Crop   241 

Double Crop 

Corn/Soybeans Crop 
 

68 Apples Crop   242 Blueberries Crop  

69 Grapes Crop   243 Cabbage Crop  

70 Christmas Trees Crop   244 Cauliflower Crop  

71 Other Tree Crops Crop   245 Celery Crop  

72 Citrus Crop   246 Radishes Crop  

74 Pecans Crop   247 Turnips Crop  

75 Almonds Crop   248 Eggplants Crop  

76 Walnuts Crop   249 Gourds Crop  

77 Pears Crop   250 Cranberries Crop  

81 Clouds/No Data Crop   254 

Double Crop 

Barley/Soybeans Crop 
 

82 Developed Intensive         
 

Table S1. Cropland Data Layer Reclassification. 
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National Land Cover Dataset 

Reclassification  

 
Value Description Reclass  

11 Open water NA  

12 Perennial ice/snow NA  

21 Developed, open space Intensive  

22 Developed, low intensity Intensive  

23 Developed, medium intensity Intensive  

24 Developed high intensity Intensive  

31 Barren land (rock/sand/clay) Intensive  

41 Deciduous forest Natural  

42 Evergreen forest Natural  

43 Mixed forest Natural  

51 Dwarf scrub Natural  

52 Shrub/scrub Natural  

71 Grassland/herbaceous Natural  

72 Sedge/herbaceous Natural  

73 Lichens: Alaska only  Natural  

74 Moss: Alaska only  Natural  

81 Pasture/hay Natural  

82 Cultivated crops Crop  

90 Woody wetlands Natural  

95 Emergent herbaceous wetlands Natural  

Table S2. National Land Cover Dataset Reclassification. 
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Year Equation 

2000 𝐿𝐶𝐿𝑈2000 = 𝑁𝐿𝐶𝐷2001 

2001 𝐿𝐶𝐿𝑈2001 = 𝑁𝐿𝐶𝐷2001 

2002 𝐿𝐶𝐿𝑈2002 = 0.8 (𝑁𝐿𝐶𝐷2001) + 0.2 (𝑁𝐿𝐶𝐷2006) 

2003 𝐿𝐶𝐿𝑈2003 = 0.4 (𝑁𝐿𝐶𝐷2001) + 0.6 (𝑁𝐿𝐶𝐷2006) 

2004 𝐿𝐶𝐿𝑈2004 = 0.6 (𝑁𝐿𝐶𝐷2001) + 0.4 (𝑁𝐿𝐶𝐷2006) 

2005 𝐿𝐶𝐿𝑈2005 = 0.2 (𝑁𝐿𝐶𝐷2001) + 0.8 (𝑁𝐿𝐶𝐷2006) 

2006 𝐿𝐶𝐿𝑈2006 = 𝑁𝐿𝐶𝐷2006 

2007 𝐿𝐶𝐿𝑈2007 = 0.5 (𝑁𝐿𝐶𝐷2006) + 0.5 (𝐶𝐷𝐿2008) 

Table S3. Land Cover Equations 2000-2007 Using NLCD and CDL. 

 

 

 

  Training R2 Testing R2 OOB 

R
F

 

Climate 0.846 -0.131 -0.140 

Anthropogenic 0.974 0.945 0.950 

Combination 0.994 0.948 0.953 

M
E

R
F

 Climate 0.982 0.997 NA 

Anthropogenic 0.989 0.980 NA 

Combination 0.998 0.982 NA 

Table S4. Training and Testing R2 and Out Of Bag Scores for RF and MERF Models. 

 


