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Abstract

An intermediate complexity moist General Circulation Model is used to investigate the factor(s) controlling the magnitude of the

surface impact from Southern Hemisphere springtime ozone depletion. In contrast to previous idealized studies, a model with

full radiation is used, which allows focus on the full range of feedbacks between incoming ultraviolet radiation and temperature

variations. In addition, the model can be run with a varied representation of the surface, from a zonally uniform aquaplanet to

a highly realistic configuration. The model captures the positive Southern Annular Mode response to ozone depletion evident

in observations and comprehensive models in December through February. It is shown that while synoptic waves dominate the

long-term poleward jet shift, the initial response includes changes in planetary waves which simultaneously moderate the polar

cap cooling (i.e., a negative feedback), but also constitute nearly half of the initial momentum flux response that shifts the jet

polewards. Enhanced ultraviolet absorption at the surface due to the ozone hole drives an additional negative feedback on the

poleward jet shift. The net effect is that stationary waves and surface radiative effects weaken the circulation response to ozone

depletion, and also delay the response until summer rather than spring when ozone depletion peaks.
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ABSTRACT

The main body documents some aspects of the response when an ozone hole

is placed in the Northern Hemisphere, and the supplement shows more. The

supplement also shows the response when the jet latitude is pushed poleward

for the AQUA80 configuration.
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FIG. 1. As in Figure 6 of the main text but for a jet latitude 7◦ further poleward achieved by imposing a

north-south gradient in midlatitude ocean heat transport following equation A8 of Garfinkel et al. (2020).
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FIG. 2. Zonal-mean responses for NH ozone hole.
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