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Abstract

In this study, the super droplet-method (SDM) is used in large-eddy simulations of an isolated cumulus congestus observed

during the 1995 Small Cumulus Microphysics Study field project in order to investigate the intra-cloud variability associated

with entrainment and mixing. The SDM is a Lagrangian particle-based method for cloud microphysics that provides droplet size

distributions (DSD) coupled to the simulated cloud-scale dynamics. The authors show that sensitivity to the spatial resolution

and the initial number of particles is larger, and sensitivity to the initial conditions is smaller, when the order of the DSD

moment is smaller. Through the use of simulations with reliable statistics, microphysical variability is investigated at scales of

100 m that can be considered well resolved in both the numerical simulations and in-situ aircraft observations. Large spatial

variability in cloudy volumes is shown to be strongly affected by entrainment. Mean values of the adiabatic fraction (AF),

cloud droplet number concentration, and the cubed ratio of the mean volume radius and the effective radius (k) agree well

with observations in the middle and upper cloud layers. Moreover, the AF and k values are found to be positively correlated,

and the reduction of the mean volume radius scaled by its adiabatic value with the decrease of the mean droplet concentration

scaled by its adiabatic value is found to be smaller than the theoretical prediction of homogeneous mixing. The latter supports

the notion of inhomogeneous mixing due to entrainment.
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ABSTRACT: In this study, the super droplet-method (SDM) is used in large-eddy simulations of an isolated cumulus congestus observed
during the 1995 Small Cumulus Microphysics Study field project in order to investigate the intra-cloud variability associated with
entrainment and mixing. The SDM is a Lagrangian particle-based method for cloud microphysics that provides droplet size distributions
(DSD) coupled to the simulated cloud-scale dynamics. The authors show that sensitivity to the spatial resolution and the initial number of
particles is larger, and sensitivity to the initial conditions is smaller, when the order of the DSD moment is smaller. Through the use of
simulations with reliable statistics, microphysical variability is investigated at scales of ∼ 100m that can be considered well resolved in both
the numerical simulations and in-situ aircraft observations. Large spatial variability in cloudy volumes is shown to be strongly affected
by entrainment. Mean values of the adiabatic fraction (AF), cloud droplet number concentration, and the cubed ratio of the mean volume
radius and the effective radius (𝑘) agree well with observations in the middle and upper cloud layers. Moreover, the AF and 𝑘 values are
found to be positively correlated, and the reduction of the mean volume radius scaled by its adiabatic value with the decrease of the mean
droplet concentration scaled by its adiabatic value is found to be smaller than the theoretical prediction of homogeneous mixing. The latter
supports the notion of inhomogeneous mixing due to entrainment.

1. Introduction

In meteorology and climatology, one of the challenges
related to clouds is understanding interactions over a wide
range of spatial scales. Warm clouds are composed of
a tremendous number of microscale water droplets. They
can grow into large droplets in a short time by condensation
and collisions depending on the surrounding environment
(Siebert et al. 2006). At the same time, macroscopic cloud
properties drive the large-scale circulation and affect the
global radiation budget (Held et al. 2007). Accurate predic-
tion of the droplet size distribution (DSD) can reduce un-
certainty of weather and climate prediction (Stevens et al.
2005).
The effect of entrainment and mixing on the DSD de-

pends on the ratio of the phase change time scale and the
turbulent mixing time scale. When dry air flows into a
cloud and rapidly mixes with the cloudy air, all droplets
are exposed to the same subsaturation, and the DSD shifts
to smaller sizes. The cloud droplet number concentration
(CDNC) can decrease because small water droplets in the
cloud evaporate preferentially. This regime is referred to
as homogeneous mixing. On the other hand, if the evap-
oration time scale is smaller than the turbulence mixing
time scale, the water droplets near the cloud–clear air in-
terface evaporate completely without affecting the droplets
away from the interface, which in turn reduces the CDNC.
When such an air parcel is in an upward flow, the DSD

Corresponding author: Toshiki Matsushima,
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shifts towards larger sizes due to the increase in the water
vapor available for each droplet (Baker et al. 1980). In
this regime, the mixing is referred to as inhomogeneous.
Furthermore, when the cloud condensation nuclei (CCN)
entrained into the cloud are newly activated, the DSD tends
towards smaller sizes. The effects of turbulence also vary
depending on the spatio-temporal evolution of cumulus-
scale dynamics causing spatial variations of the DSD and
its statistics (Arabas et al. 2009; Brenguier et al. 2011).
The flow inside clouds is turbulent. Such turbulence

is considered to be a key factor for DSD prediction (Bo-
denschatz et al. 2010). Because of turbulent mixing and
entrainment, temperature and water vapor fluctuate widely
in clouds, in turn causing supersaturation fluctuations (e.g.
Siebert and Shaw 2017). If droplets at a certain position
inside a cloud display a large variety of growth histories
because of these fluctuations, a broader DSD may result.
This mechanism was initially proposed by Cooper (1989)
and later called eddy-hopping by Grabowski and Wang
(2013).
Lasher-Trapp et al. (2005) (hereinafter referred to as

L05) showed for the first time that such a mechanism in-
deed contributes to the DSD width. They first simulated
the cloud using a single-moment bulk cloud microphysics
model. Then, using the simulated flow, they computed
multiple backward trajectories reaching a selected location
inside the cloud and assigned a Lagrangian parcel model to
each of these trajectories. Each Lagrangian parcel model
solved the condensational growth of droplets inside a par-
cel. The DSD at the location was computed as the ensem-
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ble means of the droplet radius in the Lagrangian parcels.
However, mixing between the parcels was not considered
until they reached the same location and the mixing inside
and outside the parcels was parameterized. Because the
method did not provide a prognostic DSD across the entire
cloud, it is difficult to compare the DSDs to those obtained
by observation in a reliable way.
These problems can be resolved using the super-droplet

method (SDM), a Lagrangian cloud microphysical scheme
developed by Shima et al. (2009). In the SDM, a large
ensemble of actual water droplets is represented as one
super-droplet (SD). SDs are coupled to the dynamics and
thermodynamics resolved by a large-eddy simulation, and
the evolution of the properties of each SD is calculated
along its trajectory. Using this method, it is possible to
predict the DSD within a model grid box, including the in-
fluence of entrainment and turbulent mixing. Compared to
a conventional bulkmethod, more complicatedDSDs, such
as multimodal distributions, can be represented using the
SDM. In addition, the Lagrangian method eliminates the
impact of numerical diffusion on the DSD shape as com-
pared to the bin method (Morrison et al. 2018; Grabowski
et al. 2019; Grabowski 2020a,b). The SDM also has the
advantage of traceability that is similar to the Lagrangian
parcel models (Heus et al. 2008; Yamaguchi and Randall
2012). The validity and physical performance of the SDM
have been examined by idealized numerical simulations
applying model setups from the Rain in Cumulus over the
Ocean field campaign (RICO) (Arabas and Shima 2013),
and from the Barbados Oceanographic andMeteorological
Experiment (BOMEX) case (Sato et al. 2017, 2018). Their
main focus was on comparing simulations among different
model configurations, investigating grid convergence, and
comparing with a double-moment bulk scheme.
The purpose of this study is to investigate the validity of

the SDM by applying sensitivity simulations, comparing
simulation results to observations, and considering cloud
microphysical variability driven by entrainment and mix-
ing. While microphysical variability at the grid scale has
been investigated by Arabas and Shima (2013), we fo-
cus on spatial scales that correspond to well-resolved flow
features. In this study, we exclude fluctuations due to un-
resolved subgrid-scale features considered in Grabowski
and Abade (2017); Abade et al. (2018) and include only
the impact of spatially resolved flow scales. Our numerical
simulations are similar to Lasher-Trapp et al. (2001) (L01
hereinafter) and L05 using the SDM. The target case is
the isolated cumulus congestus cloud observed on 22 July
during the Small Cumulus Microphysics Study (SCMS)
field campaign. The microphysical variability of the se-
lected case was estimated from aircraft and X-band radar
observations; we apply those data for model validation and
comparison.
The remainder of the paper is organized as follows: Sec-

tion 2reviews observations from the SCMS field campaign

that will be used in subsequent comparisons with our sim-
ulation results. Section 3 describes the numerical model,
presents the governing equations, and discusses design of
numerical simulations. We also present a technique to
analyze SD statistics by applying the kernel density esti-
mation method. Results of our large-eddy simulations of
the cumulus congestus cloud are discussed in section 4.
Here, we examine the sensitivity of the simulated cloud
dynamics and microphysics to the spatial resolution, the
initial number of SDs, and the initial conditions. We also
compare the simulated DSD statistics and their spatial vari-
ability to the observed values and show their relationship
to microphysical parameters related to entrainment and
mixing. Future prospects for grid convergence and en-
trainment/mixing studies are discussed in section 5. A
summary is provided in section 6.

2. Small Cumulus Microphysics Study

In this section, we review the observational study of the
SCMS field campaign based on Knight and Miller (1998);
Hudson and Yum (2001); Brenguier et al. (2011) and L01,
the results of which are used for comparison with the nu-
merical simulations described in section 4. The SCMS
field campaign took place from July to August 1995 near
Cape Canaveral, Florida. Airborne and radar observations
of cloud microphysical properties were collected target-
ing cumulus clouds. During this period, the direction of
the lower tropospheric winds was slowly evolving, with
westerly winds from the continent until July 25, followed
by easterly winds from the ocean between July 26 and
August 11, and back to westerly winds thereafter. CCN
was sampled outside the clouds using the airborne in-
stantaneous CCN spectrometer. The mean and standard
deviation of the CCN number concentration at 1% super-
saturation was 1411 ± 388cm−3 for the westerly winds,
and 359± 142cm−3 for the easterly winds. The observed
CDNCwas also evolving over time in response to the CCN
concentration changes. During the 11-day period, droplets
with diameters between approximately 5 and 38 𝜇m were
sampled using an aircraft equipped with a Fast Forward
Scattering Spectrometer Probe (Fast-FSSP) collecting data
at 10Hz (Brenguier et al. 1998). Since the speed of an air-
craft is approximately 100ms−1, a single sample can be
regarded as representing statistics along an approximately
10m flight path. The average CDNC varied in the range of
120–329cm−3.
Given the available information from the SCMS, we set

the target day for our numerical simulations as 22 July, as
in L01 and L05. On that day, the wind direction was about
to change from westerly to easterly, and the averaged CCN
at 1% supersaturation was approximately 1000±700cm−3.
Table 1 shows the statistics obtained from the aircraft ob-
servations. In addition to statistics for the target day, the
maximum, minimum, and mean values during the entire
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Table 1. Cloud microphysical characteristics during the SCMS field
campaign (cited from Brenguier et al. 2011). The minimum, maximum,
and mean values during the period are listed in the min, max, and mean
rows, respectively.

〈𝑁 〉 ± 𝜎𝑁 [cm−3] 〈𝑘 〉 ± 𝜎𝑘 𝑘∗ 〈AF〉

22/07/1995 294±243 0.825±0.060 0.692 0.213
min 120 0.802 0.692 0.213
max 329 0.867 0.805 0.447
mean 217 0.831 0.753 0.306

SCMS field campaign are provided in order to confirm the
relative degree of consistency between the observations
and the numerical simulations described in section 4. In
the table, 𝑁 is the CDNC; 〈𝑁〉 and 𝜎𝑁 are the mean and
standard deviation of the local CDNC, respectively. The
parameter 𝑘 , the cubed ratio of the mean volume radius 𝑟𝑣
and the effective radius 𝑟𝑒, that is, 𝑘 = 𝑟3𝑣/𝑟3𝑒, was originally
introduced by Martin et al. (1994). 〈𝑘〉 and 𝜎𝑘 represent
the mean and standard deviation of their local values, re-
spectively. Although 𝑘 depends on the DSD shape (e.g.,
its skewness), typically the change in 𝑘 is largely due to the
change of the relative standard deviation. 𝑘∗ is the cubed
ratio of the mean volume radius and the mean effective
radius for the entire cloud defined using horizontally and
vertically averaged DSD moments. The adiabatic fraction
(AF) is the ratio of the liquid water content (LWC) to the
adiabatic LWC, and 〈AF〉 is the average value of the lo-
cal adiabatic fraction. The CDNC observed on 22 July
was relatively high compared to other days because the air
mass origin on that day was from the continent. Since
the observed AF is the smallest on 22 July, the dilution
by entrainment of environmental dry air is considered to
be stronger than in the other cases. We note for our later
comparisons with the observations that Brenguier et al.
(2011) found 𝑘 to have a positive trend against AF (Fig. 3
in their paper). They also found that the relationship holds
between 〈AF〉 and 〈𝑘〉 (Fig. 4 in their paper). Such a rela-
tionship implies that the variability of 𝑘 is strongly related
to the entrainment and mixing.
Our target case for numerical simulations is the rela-

tively isolated cumulus congestus observed around 1512
UTC (L01, L05). The cloud top evolved from 2km to 5km
from 1512 UTC to 1540 UTC. The radar reflectivity factor
observed by the X-band radar increased from −15dBZ to
10dBZ in 14 minutes from 1512 UTC. (Note that the un-
certainty of the radar reflectivity factor is 2dBZ to 3dBZ.)
The regionwith radar reflectivity larger than 0dBZwas ini-
tially observed above 3.4km height, and it later descended
to 1.0km height as a precipitation shaft. Figure 1 shows
the skew-T log-P diagram of the sounding obtained close
to where the cumulus congestus cloud was observed (cf.
Fig. 1 in L01). At approximately 4.5km height, there is a
dry air mass with low dew point temperatures. The tem-
perature is below 0 ◦C above the altitude of approximately

Fig. 1. Skew-T log-P diagram of the sounding taken on 22 July
at 1545 UTC near Orlando. The constant temperature and dew point
lines are indicated by the black and cyan dotted lines, respectively. The
dry and moist adiabats are indicated by the green and orange lines,
respectively. Temperature and dew point are shown by the black and
blue lines, respectively. The red line shows temperature when the air
parcel is adiabatically lifted.

5.05km, close to themaximum cloud-top height. The level
of neutral buoyancy is higher than the observed cloud-top
height (approximately 13km), suggesting that the effect of
entrainment on the cloud dynamics is large.

3. Methods

a. Numerical Methods

SCALE-RM (Nishizawa et al. 2015; Sato et al. 2015)
was used as the numerical model in this study. SCALE-
RM adopts the fully compressible nonhydrostatic equa-
tions for the atmospheric flow in a Cartesian coordinate
system (𝑥, 𝑦, 𝑧), where 𝑥, 𝑦, 𝑧 are the eastward, northward,
and upward directions, respectively. The model’s dynami-
cal core applies a finite volume method using an Arakawa
C-grid. SDM (Shima et al. 2009) was used as the cloud
microphysical scheme. A Smagorinsky-Lilly type scheme
including stratification effects (Brown et al. 1994) was used
as the subgrid-scale (SGS) turbulence scheme.
In the SDM, each SD has a set of attributes to represent

droplet characteristics that include droplet position, radius,
mass of the solute aerosol, and multiplicity. The latter rep-
resents the number of real droplets in each SD. The pro-
cesses describing time evolution of each SD include advec-
tion, activation/condensation, and collision-coalescence.
The advection of each SD is computed assuming that the
SDmoves with the terminal velocity relative to wind veloc-
ity. The activation/condensation is represented by assum-
ing that the SD radius 𝑅 changes according to the Köhler
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theory:

𝑅
𝑑𝑅

𝑑𝑡
=

1
𝐹𝑘 +𝐹𝑑

[
𝑆− 𝑎(𝑇)

𝑅
+ 𝑏(𝑀)

𝑅3

]
, (1)

where 𝑀 is the dry aerosols mass, 𝑇 is the temperature,
𝑆 is the supersaturation, 𝑡 is time, and 𝐹𝑘 and 𝐹𝑑 de-
pend on the heat conductivity and the vapor diffusivity,
respectively. The term 𝑎/𝑅 represents the curvature ef-
fect, with 𝑎 being a function of temperature. The term
𝑏/𝑅3 represents the solute effect, where 𝑏 depends on the
dissolved aerosol mass 𝑀 . When a droplet is in equilib-
rium (𝑑𝑅/𝑑𝑡 = 0), the equilibrium relative humidity RH is
expressed as RHeq/100 = 1+ 𝑎/𝑅− 𝑏/𝑅3. RHeq takes its
maximum at the critical radius 𝑅𝑐:

𝑅𝑐 (𝑇,𝑀) =
√︂
3𝑏
𝑎
. (2)

We define an unactivated aerosol particle (i.e., a haze
droplet) as a droplet whose radius 𝑅 is less than 𝑅𝑐 cal-
culated with the temperature at the position of the droplet,
as in Abade et al. (2018). Eq. (1) also represents the
hysteresis around the equilibrium state (Arabas and Shima
2017), which can be important for microphysical processes
related to entrainment/detrainment. Collision and coales-
cence are approximated using a Monte Carlo scheme to
reduce computational cost (Shima et al. 2009).
The SDs within a cell interact with the cell-averaged at-

mospheric variables by the mass, momentum, and heat
conservation laws. While the SGS turbulence mixing
model is used for the atmospheric flow, the SGS stochas-
tic turbulent mixing and stochastic activation/condensation
models for SDs, such as Grabowski and Abade (2017) or
Abade et al. (2018), are not used in this study.

b. Experimental Setup

The basic settings of the numerical simulations, such
as the computational domain size, the sounding, and how
to add fluxes that initiate the isolated cumulus cloud, are
based on L01 and L05. The main difference is that we
spin up boundary layer turbulence before proceeding to
the isolated cumulus forcing as in L01 and L05 (Grabowski
2020b).
The computational domain is 10× 10× 8 km3 box for

the 𝑥,𝑦, and 𝑧 directions. The sounding of the SCMS field
campaign on 22 July at 1545 UTC is used as the reference
profile. Since the 0 ◦C level is at approximately 5.05km,
considering only warm-cloud processes would be appro-
priate if the simulated maximum cloud-top height is not
much higher than this. For the lateral boundaries, doubly
periodic conditions are imposed on the atmospheric vari-
ables and positions of the SDs. For the vertical direction,
the Rayleigh damping is imposed above 7km height on
atmospheric variables. SDs crossing the lower boundary
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Fig. 2. Dependence of cumulative number of activated CCN on
the critical supersaturation computed with fixed temperature of 𝑇 =

293.15K (black line). Green and blue dashed lines indicate the averaged
CCN near cloud-base for the continental and maritime flight cases in the
SCMS field campaign, respectively (plotted by Fig. 2 in Hudson and
Yum 2001). Red line indicates 𝑁 = 1114.0𝑆0.77 [cm−3 ].

due to gravitational sedimentation are removed. Spatially
uniform surface fluxes for potential temperature and water
vapor are added for spin-up time, and then domain-centered
Gaussian shape fluxes are added (Grabowski 2020b).
Initial conditions include a random perturbation of

0.01K for the potential temperature and of 2.5 ×
10−5 kgkg−1 for the specific humidity. SDs are initially
randomly distributed in the physical space. The multiplic-
ity of each SD is determined in such away that the resulting
probability density distribution of each SD is constant. We
set the CCN distribution as the sum of two log-normal
distributions of ammonium-bisulfate with geometric mean
radii of 0.03 and 0.14𝜇m and geometric standard devia-
tions of 1.28 and 1.75, respectively, as in VanZanten et al.
(2011). The CCN number concentration is taken as 11
times higher than in VanZanten et al. (2011) for each mode
to represent more polluted CCN conditions on that day.
The number concentrations are 990cm−3 and 165cm−3,
respectively, for the two modes. Unlike L01 and L05, we
do not include any ultra-giant aerosols. Figure 2 shows
the cloud base CCN spectrum, which is a function of the
critical supersaturation, computed using the temperature
around the cloud base, and the observed CCN spectrum.
The CCN spectrum in the present setting has the inter-
mediate properties of the maritime and continental CCN
spectra, and is similar to the one used in L05.
Sensitivity simulations were conducted to investigate

the impact of spatial resolution, the initial average num-
ber of SDs in a cell, and small variations in the initial
conditions (i.e., applying an ensemble of simulations) on
cloud dynamical and microphysical statistics. The numer-
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Table 2. List of configurations for the numerical simulations. The columns show the case label, spatial resolution, SD number density and
initial number of SDs in a cell, number of ensemble members, time interval of tracer advection (Δ𝑡) and physical process (Δ𝑡phy), and time interval
of dynamical process (Δ𝑡dyn).

Case Δ𝑥 = Δ𝑦 = Δ𝑧 [m] SD density [cm−3] (number of SDs) # of ensemble members Δ𝑡 = Δ𝑡mphy [s] Δ𝑡dyn [s]

R50-SD32 50 2.56×10−10 (32) 12 0.1 0.1
R25-SD32 25 2.048×10−9 (32) 2 0.1 0.05
R12-SD32 12.5 1.6384×10−8 (32) 2 0.1 0.025
R50-SD128 50 1.024×10−9 (128) 2 0.1 0.1
R50-SD256 50 2.048×10−9 (256) 2 0.1 0.1
R25-SD256 25 1.6384×10−8 (256) 2 0.1 0.05

ical configurations are listed in Table 2. Here, for exam-
ple, the case in which resolution is 50m and the average
number of SDs per cell is 32 is denoted as R50-SD32.
Assuming that convection is sufficiently resolved, we con-
sider the spatial resolution range of 50–12.5m. Increasing
the resolution in this range improves the representation of
boundary layer turbulence and thermals within a cloud. In
previous studies, Sato et al. (2017, 2018) performed large-
eddy simulations of the BOMEX case using the SDM and
spatial resolutions within the range of 100–6.25m. They
showed that quantities related to the cloud dynamics, such
as the cloud cover and the liquid water path, converge with
12.5m, and argue that grid convergence of these quanti-
ties is achieved when the roll convection in the boundary
layer becomes well resolved. Airborne radar observations
(Damiani et al. 2006) showed the existence of coherent
structures in clouds, thermals and vortex rings, with di-
ameters in the range of 200–600m. Assuming that these
scales also apply in our case, and the smallest spatial scale
capable of representing an eddy is 6–8 times the grid length
(Skamarock 2004), coherent structures are expected to be-
come well resolved once the grid length is in the range of
30–100m. Even with such a high resolution, supersatu-
ration profiles near the cloud base may remain unresolved
(Grabowski and Jarecka 2015). However, since using an
anisotropic grid with a higher vertical resolution distorts
the nature of the turbulent flow (Nishizawa et al. 2015), an
isotropic grid is used in this study.
There is no theoretical basis for setting the number of

SDs to obtain converged statistics for the DSD. In Arabas
and Shima (2013), sensitivity simulations using 8 to 512
SDs per grid cell have been performed for the RICO case.
In Fig. 6 of that paper, the global DSD converges with
32/cell. In Figs. 2 to 4 of that paper, however, the 45–55th
percentile range of the local DSD spectral width becomes
larger if the initial number of SDs exceeds 128 per cell.
Hence, we take the initial number of SDs in the range of 32
to 256 per cell for the sensitivity simulations. In the case
of R12-SD32, for example, the average number of droplets
represented by one SD is approximately 7.05×1010.
An ensemble approach is applied to investigate the un-

certainty originating from the chaotic and transient behav-

ior of cloud dynamics and microphysics. Ensemble mem-
bers are generated by applying different sets of random
numbers for the initial temperature and humidity perturba-
tions as well as for the initial SD positions. Twelve ensem-
ble members are included in the R50-SD32 simulations,
while only two members are used in all the others.
The time step for cloud microphysics calculations

Δ𝑡mphys is chosen as smaller than the advection time scale,
evaporation time scale, and phase relaxation time scale.
These are estimated using the spatial resolution and the
simulated CDNC and mean radius. Δ𝑡mphys is also selected
to ensure that its ratio to the time step in dynamics Δ𝑡dyn is
less than 10 (Sato et al. 2015). In each experiment, the time
integration is performed for 1 hour for the spin-up to pro-
duce the boundary layer turbulence, and for another 1 hour
to produce the cumulus congestus cloud. The atmospheric
variables are stored every 10 seconds for the analysis. To
limit disk storage, only SDs satisfying 𝑅 ≥ 𝑅𝑐 are stored
in the same time interval.

c. Representation of the Droplet Size Distribution

To investigate intra-cloudmicrophysical spatial variabil-
ity in section 4, we here introduce the DSD function and
its statistics. The DSD function at (𝑥, 𝑦, 𝑧) is expressed as
the sum of the contribution of number density 𝜉𝑝/Δ3 (𝜉𝑝
is the multiplicity and Δ is the model grid length) of each
SD at (𝑋𝑝 ,𝑌𝑝 , 𝑍𝑝) (𝑝 is the SD index) from all SDs:

𝑓 (𝑟, 𝑥, 𝑦, 𝑧;Δ) =
∑︁
𝑝

𝜉𝑝

Δ3
𝛿(𝑅𝑝 − 𝑟)·

1
ℎ3
𝐾

(
𝑋𝑝 − 𝑥
ℎ

)
𝐾

(
𝑌𝑝 − 𝑦
ℎ

)
𝐾

(
𝑍𝑝 − 𝑧
ℎ

)
(3)

This formulation is based on the kernel density estimation
for spatial directions, where 𝐾 (𝑠) is the kernel and ℎ is the
bandwidth. For a simple treatment of the double periodic
boundary condition in the horizontal direction, we extend
the SD data points to the outside of the computational
domain over a few grid points (∼ ℎ/Δ) by applying the
periodic boundary conditions, while considering the SD
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position point only in the computational domain. The ker-
nel 𝐾 (𝑠) is defined in an unbounded domain and satisfies
the condition that its integral over the unbounded domain
is unity. Then, the 𝑛-th moment of the DSD function is
obtained by integrating the DSD with the weight 𝑟𝑛 over
cubed domain of volume Δ3 centered at (𝑥, 𝑦, 𝑧):

𝑀𝑛 (𝑥, 𝑦, 𝑧;Δ) =∫ 𝑥+Δ/2

𝑥−Δ/2

∫ 𝑦+Δ/2

𝑦−Δ/2

∫ 𝑧+Δ/2

𝑧−Δ/2

∫ ∞

0
𝑓 (𝑟, 𝑥 ′, 𝑦′, 𝑧′)𝑟𝑛𝑑𝑟𝑑𝑥 ′𝑑𝑦′𝑑𝑧′.

(4)

Using Eq. (4), the cloud droplet number concentration 𝑁 ,
the integral radius 𝐼, the light extinction 𝜎ext in the geo-
metric optics approximation, and the liquid water content
𝐿 at (𝑥, 𝑦, 𝑧) are expressed as follows:

𝑁 (𝑥, 𝑦, 𝑧;Δ) = 𝑀0, (5)
𝐼 (𝑥, 𝑦, 𝑧;Δ) = 𝑀1, (6)

𝜎𝑒𝑥𝑡 (𝑥, 𝑦, 𝑧;Δ) = 2𝜋𝑀2, (7)

𝐿 (𝑥, 𝑦, 𝑧;Δ) = 4
3
𝜋𝜌𝑤𝑀3 (8)

where 𝜌𝑤 is the density of water. Similarly, the mean
radius 𝑟𝑚, mean volume radius 𝑟𝑣 , the standard deviation
of the radius 𝜎𝑟 , and 𝑘 are expressed as follows:

𝑟𝑚 (𝑥, 𝑦, 𝑧;Δ) = 𝑀1/𝑀0, (9)

𝑟𝑣 (𝑥, 𝑦, 𝑧;Δ) = (𝑀3/𝑀0)
1
3 , (10)

𝜎𝑟 (𝑥, 𝑦, 𝑧;Δ) =
√︃
𝑀2/𝑀0− (𝑀1/𝑀0)2, (11)

𝑘 (𝑥, 𝑦, 𝑧;Δ) = 𝑀32/(𝑀0𝑀
2
3 ). (12)

Since Eqs. (5)–(8) are linear expressions of the moment,
statistics for the cloud can be obtained by using volume
averages for Eqs. (5)–(8). On the other hand, another
expression is required to define the cloud statistics of Eqs.
(9)–(12) since they include nonlinear moment combina-
tions. For example, the cubed ratio of the mean volume
radius to the effective radius for the cloud can be defined
through the volume integral of the appropriate moments:

𝑘𝑉 =

(∫
V
𝑀2𝑑𝑉

)3(∫
V
𝑀0𝑑𝑉

) (∫
V
𝑀3𝑑𝑉

)2 . (13)

It should be stressed that 𝑘𝑉 is different from the volume
average of 𝑘 .
Kernel 𝐾 (𝑠) needs to be specified to compute Eq. (3).

The simplest kernel is the delta function kernel; that is,
𝐾 (𝑠) = 𝛿(𝑠) and ℎ = Δ. Such a kernel is used during model
execution, assigning droplet properties to appropriate grid
cells. However, for our analysis, we use the Epanechnikov

kernel, which is a kernel with greater smoothing:

𝐾 (𝑠) =
{
3
4
(
1− 𝑠2

)
|𝑠 | ≤ 1

0 |𝑠 | ≥ 1
. (14)

Here, we chose kernel width 2ℎ = 6Δ based on validation
tests which is to be described in preparing manuscript to
focus on the properly resolved microphysical scale. This
restricts the spatial scale for variability to a value larger
than 6Δ.

4. Results

a. Validation

In order to validate the results of our numerical simu-
lations, we investigated the sensitivity of cloud dynamical
and microphysical quantities over the entire cloud to the
spatial resolution, the initial number of SDs, and the initial
conditions.

1) Cloud dynamics

We begin with an example of the time evolution of cloud
dynamics after the spin-up process. Figure 3 shows the
time evolution of the liquid water mixing ratio rendered by
volume in the highest resolution R12-SD32 experiment.
Since the horizontally uniform fluxes are given during
the initial hour, small clouds develop sparsely above the
boundary layer until 𝑡 = 3600s (Fig. 3a). The fluxes are
then switched to have a Gaussian form, triggering strong
convection. Around 𝑡 = 4800s, a larger cumulus cloud de-
velops near the center of the horizontal domain (Fig. 3b).
Eventually, the cumulus cloud evolves into a congestus
(Fig. 3c) and reaches its maximum height around 𝑡 = 6800s
(Fig. 3d). Between this time and the end of the integration,
the cumulus is in its decaying phase. In Figs. 3c and d, the
cauliflower-like structures associated with convective ther-
mals are well resolved. Although we do not use the SGS
turbulent mixing scheme for the droplets, Fig. 3d clearly
shows the diluted and sparse pattern of the liquid water
mixing ratio on the side wall of the cloud by detrainment.
Some drizzle drops are generated during the mature and
decaying phases; however, they evaporate before reaching
the cloud base and are not visible in Fig. 3d.
We next document the sensitivity of cloud dynamical

quantities. To find the levels where the cloud exists, we
derive the cloud fraction as the ratio of the number of
cloudy grid cells (𝑁 ≥ 50cm−3) to the number of all grid
cells at a given level. The bottom and top levels with
the cloud fraction becoming zero define the cloud base
and cloud top, respectively. Their evolutions are shown
in Fig. 4a. Figure 4b shows the time evolution of the
cloud cover defined as the fraction of cloudy columns in
the computational domain (a cloudy column is a column
with at least one cloudy grid cell). As already seen in the
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(a) C = 3600s (b) C = 4800s

(c) C = 6000s (d) C = 6800s

Fig. 3. Snapshots of liquid water mixing ratio field in R12-SD32 at (a) 𝑡 = 3600s, (b) 𝑡 = 4800s, (c) 𝑡 = 6000s and (d) 𝑡 = 6800s. Opacity is set
as constant at 0.15 to visualize cloud dynamics on a cloud-clear air interface. The light source is positioned far above the ground from the center
of the domain to visualize shadows on the ground for characterizing the cloud fraction.

R12-SD32 case, the low-level clouds first appear during
the spin-up process during 0s ≤ 𝑡 ≤ 3600s for each case
(Fig. 4a). The cloud-top height of the low-level clouds is
similar for each case, but the cloud cover is different. In the
simulations with 50m grid length, the cloud cover reaches
a maximum of around 0.1 for 𝑡 around 3400s, and then
decreases to below 0.02 at 𝑡 ∼ 4500s. However, in sim-
ulations with horizontal resolutions higher than 25m, the
cloud covers gradually increase until 𝑡 ∼ 4200s (Fig. 4b).
The unique behavior of the cloud cover in the 50m grid
length cases originates from a delay in the turbulence de-
velopment during the first hour spin-up and an increase of
water vapor near the boundary layer top triggering strong
water vapor flux for a short time (not shown). During
3600s < 𝑡 < 4800s, the cumulus clouds near the center
of the horizontal domain evolve gradually (Fig. 4a). The
cloud cover tends to increase as the resolution increases
(Fig. 4b). As time progresses (𝑡 > 4800s), the cumulus
clouds evolve into a single large cumulus congestus cloud
(Fig. 4a). The cloud cover increases monotonically with
time, and the differences between various spatial resolu-
tions arguably reflect different flow realizations (Fig. 4b).
The same applies to other cloud properties shown in Fig. 4.
Since the maximum cloud-top heights in the L01 and L05
simulations and in the observations are within the range of
5000–5350m, the results of this study agree well with pre-
vious investigations. It takes approximately 20–35minutes
for the cloud top to increase from 2000m to its maximum
height, which is slower than in the previous studies. How-

ever, since the spin-up process is different from that in L01
and L05, one might expect that the time required for the
cloud to reach its maximum vertical extent is different.
Figure 4c shows the time series of the volume-averaged

LWC for the cloudy grid cells. Since the cloud-top height
(Fig. 4a), as well as the volume-averaged LWC (Fig. 4c),
fluctuates significantly in each experiment, the ensemble
means of the time-and volume-averaged LWC for the pe-
riod between 𝑡 = 6000s and 7200s for each case are also
shown in the right panel of Fig. 4c. The variation of the
time- and volume-averaged LWC is approximately 1.1–
1.4gm−3. Since the ensemble means of the time-averaged
LWC for each case are within the variability range of the
R50-SD32 ensemble, the impact of the spatial resolution
and SDs number is not clear. Figure 4d shows the time se-
ries of the 99.5th percentile LWC for the cloudy grid cell,
together with the time-averaged ensemble means. The
ensemble means are approximately 5gm−3 and are con-
sistent with the maximum value of the LWC in L01 and
L05 (> 5gm−3). In Fig. 4d, the ensemble means of the
time-averaged 99.5th percentile LWC for each SD32 case
are within the variability range of the R50-SD32 ensem-
ble. However, the R50-SD128 and R50-SD256 ensemble
means are not within the variability range of the R50-SD32
ensemble, and the range tends to decrease as the number
of SDs increases. Since the variability range for the R50-
SD32 ensemble and the difference between the ensemble
mean for R50-SD128 and R50-SD256 cases are approxi-
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Fig. 4. Time evolutions of (a) cloud-base height and cloud-top height, (b) cloud cover, (c) volume mean LWC (left panel), and (d) 99.5th
percentile LWC (left panel) for one member from each configuration. Ensemble mean, minimum, and maximum of the time-averaged statistics
from 𝑡 = 6000s to 7200s for each configuration are shown in right panel of (c) and (d). Vertical lines show the minimum to maximum range of the
ensembles. Filled circles and crosses indicate ensemble means.

mately the same, it can be argued that the time-averaged
99.5th percentile LWC is converged with 128 SDs per cell.

2) Cloud microphysics

The microphysical sensitivity of the simulated cloud
can be assessed using the moments of the DSD and 𝑘 .
Figure 5a shows the time series of the volume-averaged
CDNC for the cloudy grid cell. During the developing
phase of the cumulus congestus cloud (4200s < 𝑡 < 6000s),
the volume-averaged CDNC tends to increase significantly
in each simulation, while the temporal changes during
2400s < 𝑡 < 5400s and 6000s < 𝑡 < 7200s are relatively
small. The ensemble means of the time- and volume-
averaged CDNC for the period from 𝑡 = 6000s to 7200s
are also shown in Fig. 5a. In each simulation, the volume-
averaged CDNC changes moderately with time, and the
variation of the time- and volume-averagedCDNC is small.
For instance, the variability range for the R50-SD32 en-
semble is approximately 30cm−3. The ensemble mean of
the time- and volume-averaged CDNC tends to decrease
as the number of SDs increases. Since the CDNC vari-
ability range of the R50-SD32 ensemble and the difference
between ensemble means for the R50-SD128 and R50-
SD256 ensembles are approximately the same, it can be

argued that the time- and volume-averaged CDNC is con-
verged with 128 SDs per cell. On the other hand, the
ensemble mean of the time- and volume-averaged CDNC
tends to increase as the spatial resolution increases, and it
is not converged with the grid length down to 12.5m.
Figure 5b shows the time series of the volume-averaged

integral radius for the cloudy grid cells and ensemble
means of the time- and volume-averaged integral radius for
each case. The variability range of the time- and volume-
averaged integral radius for R50-SD32 is approximately
500m−2. The ensemble of time- and volume-averaged
integral radius tends to decrease as the number of SDs in-
creases, and it tends to increase as the spatial resolution in-
creases. The differences of the ensemble mean of the time-
and volume-averaged integral radius between R50-SD128
and R50-SD256 and between R25-SD32 and R12-SD32
are smaller than the variability range of the R50-SD32 en-
semble. Thus, it seems that the time- and volume-averaged
integral radius is convergedwith 25m and 128 SDs per cell.
Figure 5c shows the time series of the volume-averaged
light extinction for the cloudy grid cells. Since the dif-
ference of the time- and volume-averaged light extinction
between R50-SD128 and R50-SD256 is smaller than the
variability for the R50-SD32 ensemble, it can be argued
again that the time- and volume-averaged light extinction
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Fig. 5. Time evolutions of (a) the volume mean CDNC, (b) the volume mean integral radius, (c) the volume mean light extinction, and (d) the
𝑘𝑉 for one member from each configuration. Ensemble mean, minimum, and maximum of the time-averaged statistics from 𝑡 = 6000s to 7200s
for each configuration are shown in the right panel. The vertical lines show the minimum to maximum ranges of the ensembles. Filled circles and
crosses indicate ensemble means.

is also converged with 128 SDs per cell. The ensemble
means of the time- and volume-averaged light extinction
are within the variability range of the R50-SD32 ensem-
ble. From these results, it appears that the lower the order
of the DSD moment, the smaller the variation within the
ensembles, and the higher the order of the DSD moment,
the smaller the sensitivity to the spatial resolution and the
number of SDs.
We next compare the cloud microphysical quantities

from the sensitivity simulations with the observations. As
shown in Table 1, observations of the average and vari-
ability range of the local CDNC are available. Because
the DSD moments averaged over the entire cloud involve
volume integrals similar to Eq. 4, the simulated volume-
averaged moments can be compared with the average mo-
ments obtained locally in the observations. However, the
statistics obtained from the observations are for the cloud
observed at different times. In Fig. 5a, the CDNC tends
to be larger than the observed CDNC for 𝑡 > 4800s. The
difference between the time- and volume-averaged CDNC
for R50-SD128, R50-SD256, and R25-SD256, and the
observed CDNC is approximately 150cm−3. Such a dif-
ference may be considered large. However, since the CCN
number concentration in L05 and in this study has a differ-
ence of up to 300cm−3 at critical supersaturation smaller

than 1% (Fig. 2), it follows that the difference between the
ensemble mean of the time- and volume-averaged CDNC
and the observed CDNC is within the uncertainty range.
Figure 5d shows 𝑘𝑉 for the cloudy grid cells and the en-
semble means of the time-averaged 𝑘𝑉 . Since the 𝑘𝑉
becomes identical to 𝑘∗ if the cloud is vertically uniform,
𝑘𝑉 can be roughly compared with 𝑘∗. The 𝑘𝑉 does not
fluctuatemuch over time and generally takes a value around
𝑘𝑉 = 0.75. The ensemble mean of the time-averaged 𝑘𝑉
tends to decrease as the spatial resolution increases, and it
increases as the number of SDs increases. This implies that
the impact of CDNC in the denominator of Eq. (13) has
the largest impact on 𝑘𝑉 . Although the ensemble means of
the time-averaged 𝑘𝑉 for each ensemble are larger than the
value 𝑘∗ = 0.692 obtained in the 22 July observations, it is
about the same as the mean value of 𝑘∗ = 0.753 simulated
with grid lengths equal to or smaller than 25m.

b. Intra-cloud microphysical variability

Based on the results of the sensitivity simulations in sec-
tion 4a, we selected a proper experiment to investigate the
cloud microphysical variability related to turbulent eddies.
For this purpose, we chose an experiment with relatively
good convergence for the average characteristics of cloud
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dynamics and microphysics (LWC, CDNC, 𝑟𝑣 ), a measure
of cloud water dilution (AF), and an index related to the
DSD (𝑘). Because LWC has little dependence on the spa-
tial resolution and is converged with 128 SDs per cell, it
is sufficient to take 128 SDs per cell for LWC and AF. Al-
though the CDNC and light extinction are not converged
with a grid length down to 12.5m, they are converged with
128/cell. For this reason, statistical error and bias for the
CDNC, 𝑟𝑣 , and 𝑘 are reduced if the initial number of SDs
is 128 per cell or more. Thus, we use a simulation from the
R25-SD256 set that has a statistically sufficient number of
SDs and a relatively high spatial resolution.

1) Spatial variability

We first investigate the spatial fluctuations of the cloud
microphysics. Since cloud dynamics is transient, we use
snapshots of the R25-SD256 simulation for the devel-
oping (𝑡 = 6000s), maturing (𝑡 = 6240s), and decaying
(𝑡 = 6480s) stages. To show the average characteristics
together with quantities related to dilution, we introduce a
transfer function that projects the variables onto the HSL
(hue/saturation/lightness) color space. For a quantity rep-
resenting the average characteristics of cloudmicrophysics,
we select the LWC and project 𝑟𝑣 onto the hue space. Be-
cause the lightness and saturation affect the image of di-
lution, we project AF onto the lightness space and 𝑘 onto
the lightness and saturation space. With such a projec-
tion, LWC and AF, or 𝑟𝑣 and 𝑘 , can be represented as
a single figure. Figure 6 shows snapshots of the LWC-
AF, CDNC/𝑁𝑎, and 𝑟𝑣 -𝑘 . For a later comparison with
the observations, water droplets with diameters only in
the range of 5.2–38.4𝜇m, corresponding to the Fast-FSSP
range, are used to compute cloud microphysical quantities.
The AF is computed using the local LWC and adiabatic
LWC, where the adiabatic LWC is defined as the LWC of
an air parcel lifted by a reversible adiabatic process from
𝑧 = 1000m near the cloud base. The initial parcel tempera-
ture and water vapor mixing ratio are taken as horizontally
weighted averages of the model output, with the weight
proportional to exp(−4𝑟2/𝜎2

𝐹
), where 𝑟 is a horizontal

distance from center of the domain and 𝜎𝐹 = 1700m. Fi-
nally, the cloud base adiabatic droplet concentration 𝑁𝑎

is selected as 1000cm−3. Note that, in contrast to AF,
the CDNC within the adiabatic parcel depends at the as-
sumed parcel’s updraft speedwhen crossing the cloud base.
This is because the updraft, together with CCN character-
istics, determines the maximum supersaturation the parcel
reaches near the cloud base and thus the separation between
activated and unactivated CCN. The adiabatic CDNC 𝑁𝑎

was selected based on the maximum CDNC at the cloud
base in the numerical simulations presented here.
Figure 6a shows that the LWC at the cloud core increases

with height for 𝑧 < 2500m. There is a large spatial variation
and dilution of LWC due to entrainment for 𝑧 > 2500m.

Figure 6a also shows AF spatial variations corresponding
to the dilution of LWC. For example, the AF is large at
(𝑥, 𝑧) = (5000,2000)m at the cloud core, whereas it is
small at (𝑥, 𝑧) = (5500,2000)m at the cloud side wall and
also small at (𝑥, 𝑧) = (5000,3500)m in the upper part of
the cloud. Figure 6b documents large spatial variations
of the CDNC. The CDNC reaches its maximum at the
cloud core above the cloud base where the updraft is the
strongest. In addition to large spatial fluctuations at the
side wall and in the upper layers of the cloud, Fig. 6b also
shows that there is spatial variation at the cloud core due to
turbulent fluctuations. The reduction of the CDNC against
its adiabatic prediction 𝑁𝑎 is mainly at the side wall of the
cloud. Figure 6c shows that 𝑟𝑣 increases with height for
𝑧 < 2500m with large spatial variations near the side wall
and for 𝑧 > 2500m. Figure 6c shows that 𝑘 is large in the
middle of the cloud core and is reduced for 𝑧 > 2500m.
The dilution pattern of the LWC and CDNC affects the

variability of 𝑘 and 𝑟𝑣 as shown in Fig. 6. For instance,
in the nearly adiabatic cloud core where the AF is large
(e.g., at (𝑥, 𝑧) = (5000,2000)m), 𝑘 is large as well. On the
other hand, near the cloud side wall and at the upper cloud
layers where AF is small (e.g., at (𝑥, 𝑧) = (5500,2000),
and (5000,3500)m, respectively), 𝑘 is also small. This
suggests that the spatial patterns of AF and 𝑘 are posi-
tively correlated. In addition, 𝑟𝑣 decreases with decreasing
CDNC at 𝑧 = 2500, while 𝑟𝑣 does not decrease substan-
tially with decreasing CDNC at 𝑧 = 4000. These patterns
between the CDNC and 𝑟𝑣 show qualitative differences of
mixing-induced variability depending on the location.

2) Frequency analysis

To investigate the evolution of cloud microphysical vari-
ations, Fig. 7 shows profiles of the AF, CDNC, and 𝑘 fre-
quency distributions. In the lowest kilometer of the cloud
depth, the maximum AF frequency distribution is close
to 1 and the mean is around 0.6. Although AF frequen-
cies close to 1 are small in the upper layers, there exist
cloudy grid cells with relatively small cloud water dilu-
tions (AF∼ 0.975). AF has modes (i.e., local peaks) close
to 0 that are in response to the dilution caused by entrain-
ment. The frequency of the modes near 0 increases as the
cloud evolves towards the decaying stage (𝑡 = 6480s). The
mean AF decreases with height, in agreement with numer-
ous previous shallow and congestus cumulus observations,
starting with Warner (1955). As time progresses (𝑡 = 6240
and 6480s), entrainment leads to a decrease in AF, and AF
fluctuates between 0.2 and 0.4 above 𝑧 > 2500m.
An adiabatic CDNC that decreases from the cloud base

due to the expansion of rising air parcels is also shown
in Fig. 7. The maximum CDNC agrees well with the
adiabatic value. The distribution of CDNC has a mode
around 600–800cm−3 and a mode around 50cm−3 that
comes from entrainment. (Note that cloudy grid cells with
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Fig. 6. Snapshots of the (a) LWC-AF, (b) CDNC-CDNC/𝑁𝑎 , and (c) 𝑟𝑣 -𝑘 on the plane 𝑦 = 5000m at 𝑡 = 6240s for the R25-SD256 case. Here,
𝑁𝑎 is an adiabatic prediction of the CDNC defined as 1000𝜌(𝑧)/𝜌(𝑧cbase) [cm−3 ], where 𝜌 is the horizontally averaged total density profile and
𝑧cbase is the cloud base height.
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Fig. 7. Frequency distributions of the AF, CDNC, and 𝑘 for 𝑡 = 6000s, 𝑡 = 6240s and 𝑡 = 6480s. Distributions are normalized so that the
integral of frequency at each height level is 1. Bin sizes for AF, CDNC, and 𝑘 are 0.025, 50cm−3, and 0.025, respectively. The white solid and
dashed lines in the AF and CDNC panels at each time show the mean values calculated using the cloudy grid cells (𝑁 > 50cm−3) and grid cells
(𝑁 > 0cm−3), respectively. The black solid lines in the AF and CDNC panels show the adiabatic prediction of the AF and CDNC (𝑁𝑎). The white
solid lines in the 𝑘 panel show the mean values and the mean plus/minus standard deviation values calculated using the activated droplets that lie
in the Fast-FSSP measurement range. The black dotted lines in each panel show AF = 0.213, CDNC = 294±243cm−3, and 𝑘 = 0.0825±0.060.

𝑁 < 50cm−3 are not used in the frequency distribution

analysis.) Similarly to the AF, frequencies around 𝑁 =

50cm−3 increase as the cloud evolves. The horizontal

CDNC average is nearly constant with height.

The distribution of 𝑘 has a mode close to 1 in the lowest
kilometer of the cloud depth. In the upper layers of the
cloud, the distribution of 𝑘 has a maximum around 0.8–
0.9. This agrees with the spatial variation pattern of 𝑘
shown in Fig. 6c. The horizontal average of 𝑘 in the cloud
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Fig. 8. Frequency distributions of the radius mean and standard deviation for 𝑡 = 6000s, 𝑡 = 6240s, and 𝑡 = 6480s. The distributions are
normalized so that the integral of the frequency at each height level is 1. Bin sizes for the radius mean and standard deviation are 0.5𝜇m and
0.1𝜇m, respectively. The white solid lines in each panel show the medians of the frequency distributions.

tends to decreases above 𝑧 > 2500m and oscillate within
0.76–0.92.
As mentioned in section 2, AF, CDNC, and 𝑘 have refer-

ence values obtained fromobservation (see Table 1). These
are plotted as black dotted lines in Fig. 7. We can compare
the mean and variability of the microphysical variables
with the observations statistically. To compute the mean
values at each height level, we need to set a threshold
value to eliminate small CDNC cloudy samples. This is
because cloudy cells may not contain a sufficient number
of SDs to compute spectral width (Arabas et al. 2009).
In Arabas et al. (2009) and Arabas and Shima (2013), a
threshold 𝑁 = 20cm−3 was set. In this case, since the num-
ber of the droplets comprising an SD isapproximately 11
times larger than Arabas and Shima (2013), we should use
a larger threshold than is used in their study to roughly
match the number of SDs in a cell. We set a threshold of
𝑁 = 50cm−3 and compared the mean values of AF, CDNC,
and 𝑘 with the observations. However, since the distribu-
tions of AF and CDNC for each height level are not normal
distributions and the frequency of the modes around 0 is
relatively high, the mean values of AF and CDNC would
appear to be sensitive to the threshold. For this reason, as
a reference for the sensitivity of the mean values, we also

show the mean values of AF and CDNC using a threshold
of 𝑁 = 0cm−3. The mean values of AF are larger than
the observed value at 𝑡 = 6000s, but agree well with the
observed values at 𝑡 = 6240s and 𝑡 = 6480s and 𝑧 ∼ 2500m
and 𝑧 ∼ 4000m. The mean values of the CDNC also are
in good agreement with the mean value of the observation
at 𝑡 = 6240,6480s and 𝑧 ∼ 2500,4000m. The mean values
of 𝑘 in the clouds agree fairly well with the observation
above 𝑧 > 2500m during 6000s < 𝑡 < 6480s. Moreover,
the mean values of 𝑘 plus/minus standard deviations are in
good agreement with observation above 𝑧 > 2500m. Al-
though our results do not yet reach grid convergence, the
fact that the simulated AF, CDNC, and 𝑘 agree with the
observations encourages some confidence in the simulated
droplet spectra.
For the DSD statistics, Fig. 8 shows frequency distribu-

tions of the mean radius 𝑟𝑚 and the droplet radius standard
deviation. The mean radius 𝑟𝑚 increases with height and
its distribution is relatively narrow in the lowest kilometer
or so. The distribution broadens due to entrainment above
𝑧 > 2500m. The distribution of the droplet standard de-
viation has two modes in the lowest cloud layers, one that
decreases with height and one that increases with height
from around 1 𝜇m just above the cloud base. Themode that
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decreases with height likely represents the classical nar-
rowing of the droplet spectrum due to the parabolic droplet
growth (i.e., larger droplets increasing their radius slower
compared to the smaller droplets). This corresponds to the
mode of the 𝑘 distribution that increases with height just
above the cloud base as shown in Fig. 7. In the upper lay-
ers, the averaged standard deviation increases with height,
reaching values from 3 to 4𝜇m at 𝑡 = 6240,6480s.

3) Microphysics – entrainment relation

In order to investigate the relation between the micro-
physical variables and cloud dilution for the resolved scale,
Fig. 9 shows a two-dimensional probability density func-
tion of AF-𝑘 at 𝑡 = 6480s. There are two modes evident
in the diagram: one at (AF, 𝑘) ∼ (0.05,0.825) and one at
(AF, 𝑘) ∼ (0.975,0.975). The first mode corresponds to
cloudy volumes near the cloud edge where the cloud is
strongly diluted by entrainment. The second mode corre-
sponds to the region of the adiabatic core where AF and 𝑘
are large, as shown in Fig. 6. To investigate whether the
variation of 𝑘 can be predicted by AF, we perform a quan-
tile regression (Koenker and Bassett Jr 1978). The 𝜏-th
quantile regression is obtained by minimizing the sum of
the sample loss function 𝜌𝜏 (𝑦) = (𝜏−1𝑦<0)𝑦, referred to as
the tilted absolute value function, where 𝜏 ∈ (0,1), 𝑦 is the
sample error, and 1𝑦<0 is the indicator function equal to 1 if
𝑦 < 0 and 0 otherwise. Quantile regression has advantages
over the least squares method in that it does not assume
a normal distribution for the errors, and it is more robust
and flexible for prediction. Figure 9 also shows a quantile
regression for 𝑘 , the predictor variable, applying AF as
the explanatory variable. The 0.5 quantile regression is
approximated as 𝑘 = 0.176AF+ 0.798. The slopes of the
0.25 and 0.75 quantile regressions are nearly the same as
for the 𝜏 = 0.5 case; the intercepts differ by approximately
0.05. Since the 0.25–0.75 quantile regressions cover a
large probability region when AF < 0.4, the decrease of
𝑘 related to spectral broadening is well explained by the
decrease of AF associated with entrainment. The slope of
the quantile regression decreases as 𝜏 increases. The width
between the 0.1 and 0.9 quantile regressions for AF = 1 is
approximately 0.075, while the width for AF = 0 is about
0.2. Thus, the prediction of 𝑘 by AF becomes more uncer-
tain as AF decreases.
Figure 10 shows the two-dimensional probability den-

sity function of the simulated CDNC and mean volume
radius relative to their adiabatic values. The diagram was
originally proposed by Burnet and Brenguier (2007) and
is referred to as a mixing diagram. Since mixing regimes
can be inferred from the variability of the CDNC and 𝑟𝑣
using a mixing diagram, this type of diagram has been
used in observational (Lehmann et al. 2009) and mod-
eling studies (Jarecka et al. 2013). In Fig. 10, the ex-
tremely inhomogeneous mixing regime is characterized as

𝑟3𝑣/𝑟3𝑣𝑎 = 1 because fast droplet evaporation at the cloud
– clear air interfaces during turbulent stirring reduces the
droplet number concentrations, keeping the mean volume
radius unchanged. The homogeneous mixing regime is
theoretically predicted as follows: Environmental dry air
is entrained by thermals that have a cauliflower-like struc-
ture, as shown in Fig. 3. We assume that the source of
the entrained dry air is the lateral interface of the clouds
at 𝑧 > 2500m, where the dilution of cloud water is appar-
ent in Fig. 6 and Fig. 7, and consider mixing between the
adiabatic parcel and only a one-point source from the envi-
ronment. We linearly mix the CDNC, equivalent potential
temperature, and cloudwater mixing ratio computed by the
adiabatic parcel model with those from the environment at
the same height, applying a range of mixing fractions, and
evaporate cloud water until saturation conditions are met.
The decrease of 𝑟𝑣 is computed using the environmental
air mixing fraction and the diluted LWC. In Fig. 10, the
homogeneous mixing regime is shown for 𝑧 = 3500m and
environmental dry air of RH = 65%.
The probability density lies in the region where AF ≤ 1

and CDNC/𝑁𝑎 ≤ 1 with reference to the adiabatically pre-
dicted value (AF =CDNC/𝑁𝑎 = 𝑟

3
𝑣/𝑟3𝑣𝑎 = 1). However, 𝑟𝑣

is not restricted by the adiabatic predictions and extends
to 𝑟3𝑣/𝑟3𝑣𝑎 > 1. This is because the adiabatic CDNC, 𝑁𝑎,
is not uniquely determined, as mentioned previously. In
fact, in the observations discussed in Burnet and Brenguier
(2007), 𝑁𝑎 was assumed to be the highest droplet concen-
tration observed at the cloud penetration level. Here, we
assume 𝑁𝑎 is equal to 1000 cm−3 at the cloud base and
adjust it to the analysis height, as shown by the solid black
lines in the middle panels of Fig. 7. The area surrounded
by white lines along AF ∼ 0.9 corresponds to the spatial
variations of the nearly adiabatic core of the cloud, with
the CDNC varying due to the cloud base updraft strength
affecting CCN activation (see the middle panel of Fig. 6).
With a CDNC lower than 𝑁𝑎, the ratio 𝑟3𝑣/𝑟3𝑣𝑎 reaches val-
ues larger than 1. The portion of the diagram showing the
strong impact of entrainment is enclosed by the magenta
line (25% highest frequency region), with the maximum
near (CDNC/𝑁𝑎, 𝑟

3
𝑣/𝑟3𝑣𝑎) ∼ (0.1,0.6). The 25% highest

frequency region represents a combination of either an
inhomogeneous or homogeneous mixing line starting at
around CDNC/𝑁𝑎 ∼ 0.7.
The spatial scales of the entrainment-mixing events re-

solved in model simulations (∼ 150m) are an order of
magnitude larger than the droplet statistics observed by the
Fast-FSSP. However, a rough comparison between model
results and typical observations is possible. The pattern for
AF-𝑘 in Fig. 9 qualitatively agrees with the observational
study by Brenguier et al. (2011) that shows a positive cor-
relation between the AF and 𝑘 for cumulus observed on 6
August in the SCMS field campaign. The 25% highest fre-
quency region for CDNC/𝑁𝑎-𝑟3𝑣/𝑟3𝑣𝑎 in Fig. 9 also agrees
relatively well with Fig. 8b and 8c in Burnet and Brenguier
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(2007), which show mixing diagrams for observations on
6 and 10 August in the SCMS field campaign.
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Fig. 9. Two-dimensional probability density function for the adi-
abatic fraction AF and 𝑘 for cloudy grid cells (𝑁 > 50cm−3) above
𝑧 > 1500m at 𝑡 = 6480s in R25-SD256. The cyan, magenta, yellow,
red, and green lines show quantile regressions for objective variable 𝑘
and predicted variable AF, with quantiles 𝜏 = 0.1, 0.25, 0.5, 0.75, and
0.9, respectively.
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Fig. 10. Two-dimensional probability density function for the CDNC
and cubed volume mean radius relative to their adiabatic value (𝑟va and
𝑁𝑎 , respectively) for cloudy grid cells (𝑁 > 50cm−3) above 𝑧 > 1500m
at 𝑡 = 6480s in R25-SD256. 𝑁𝑎 (𝑧) = 1000𝜌(𝑧)/𝜌(𝑧cbase) [cm−3 ],
where 𝜌 is the horizontally averaged total density profile and 𝑧cbase is
a cloud base height. The gray contour lines of the AF (the product of
𝑟3𝑣/𝑟3va and CDNC/𝑁𝑎) are plotted by 0.1 interval for reference. The
areas surrounded by a magenta/white line are the 25%/50% highest
frequency regions. The homogeneous/inhomogeneous mixing line is
plotted as a yellow dashed/dotted-dashed line.

5. Discussion

In this study, we investigated microphysical variability
at the ∼ 100m spatial scale. Because the microphysical
observations of the SCMS field campaign were performed
at the∼ 10m scale (i.e., 10 Hz data for an aircraft flying at a
speed of approximately 100 ms−1), there is still a scale gap
between our numerical simulations and the observations.
The reason for selecting a spatial scale of 6Δ in contrast to
previous studies that applied Δ such as Arabas and Shima
(2013) is based on the dynamics of effective resolution.
Some of the aspects of higher resolution simulations are
discussed below.
The convergence of cloud microphysical quantities

based on the sensitivity simulations is one of the aspects
meriting discussion. Our results show that the sensitivity
to the spatial resolution and to the initial number of SDs
for the 𝑛-th DSD moment increases as 𝑛 becomes small.
We also remind the reader that the contribution of the 𝑛-th
moment for an SD in Eqs. (3) and (4) is approximated as
𝜉/Δ3𝑅𝑛. From these considerations, we can assume that
themajor contribution of the sensitivity and ensemble vari-
ance of the mean characteristics of the 𝑛-th DSD moment
is 𝜉 and 𝑅, respectively, and the variance becomes larger
as non-positive integer 𝑛 becomes larger. Since Grabowski
and Jarecka (2015) showed that the CDNC converges at a
grid length of several meters, we estimate that grid conver-
gence of all DSD moments, i.e., the global DSD, will be
reached at a grid length of several meters.
The second aspect relates to the entrainment-mixing

regime for the set of R25-SD256 simulations. The mix-
ing regime is considered to be determined by the ratio
of two time scales, the eddy-turnover time scale and the
microphysical reaction time scale, the latter being either
the droplet evaporation time scale or the phase relaxation
time scale. (See, for instance, Lehmann et al. (2009).)
We estimate these time scales since they are critical for
the variability shown in Fig. 10. Eddy turnover time
scale 𝜏eddy = (𝐿2/𝜖)1/3 (𝐿: length scale, 𝜖 : eddy dissi-
pation rate) for R25-SD256 is estimated as 𝜏eddy = 282s
for 𝐿 = 150m and 𝜖 = 0.001m2s−3. The evaporation time

scale 𝜏evap ≡ 𝑅
(
𝑑𝑅
𝑑𝑡

)−1
for RH = 65% and 𝑅 = 10𝜇m at

𝑧 = 3500m is estimated as 𝜏evap ∼ 2.5s. Finally, the phase
relaxation time scale in R25-SD256 is estimated as ap-
proximately 1s for the time- and volume averaged-integral
radius of approximately 3500m−2. Since the evaporation
and phase relaxation time scales are much smaller than the
eddy turnover time scale, mixing for the 150m scale is es-
timated to be inhomogeneous. Indeed, Fig. 10 shows that
the variability of 𝑟𝑣/𝑟𝑣𝑎 is small, while the variability of
CDNC/𝑁𝑎 is large, which suggests that entrained dry air
does not affect droplets inside clouds, while droplets near
the cloud interface evaporate.
The eddy turnover time does not fall below the evap-

oration and phase relaxation time scale unless the spatial
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resolution is reduced to sub-meter scales and/or the turbu-
lence intensity is much larger than assumed here. How-
ever, the simulated mixing regime is expected to be robust
for spatial resolutions in the 10m–100m range even for
extreme turbulence intensities. In addition, although the
DSD numerical convergence with respect to the spatial
resolution is not reached with 12.5m grid length, some
of the obtained results, such as 𝑘 above the middle cloud
layers, agree reasonably well with the observations. For
that reason, important features of the large-scale variability
driven by entrainment and mixing in the simulated cloud
are qualitatively well represented.
In this study, we did not investigate the resolution de-

pendence of the microphysical parameters or their spatial
variability. Such study is left for future work, as it is
important to understand the advantages of the SDM over
conventional bulk and bin models. Although we did not
discuss the kernel averaging method in this paper, prelim-
inary results show that 𝑘 is positively biased without the
kernel (i.e., when calculating 𝑘 at the grid scale), and some
averaging is important to correct the positive bias. Details
of these results will be reported in the future.

6. Summary

The purpose of this study was to investigate the intra-
cloud variability of the DSD statistics at spatial scales
resolved by large-eddy simulations applying the super-
droplet method (SDM) and targeting the isolated cumulus
congestus cloud observed in the 1995 SCMS field cam-
paign (Lasher-Trapp et al. 2001, 2005). We first investi-
gated the sensitivity of cloud dynamical and microphysical
quantities to the spatial resolution, the initial average num-
ber of SDs in a cell, and the initial conditions. Cloud
dynamical quantities such as the cloud top and cloud base
height and LWCwere not sensitive to the spatial resolution
and initial average number of droplets in a cell, although
the behavior of the boundary layer clouds during the spin-
up period was different when a 50m horizontal grid length
was applied as compared to higher resolution simulations.
For the DSD moments, the variation between ensembles
was smaller for moments of a smaller order. In contrast,
sensitivity to the spatial resolution and to the initial num-
ber of SDs in a cell was larger for moments of a smaller
order. The time- and volume-averaged LWC and CDNC
are converged with an initial average SD number of 128
per cell, and LWC and extinction factor are converged with
a grid length of 12.5m. We also attempted to validate
the simulated cloud system statistics by comparing them to
observations. The time- and volume-averaged CDNC and
time-averaged 𝑘𝑣 were larger than observed; however, the
errors of the CDNC were within the uncertainty bounds of
the initial CCN concentrations.

Based on the sensitivity analysis, the intra-cloud micro-
physics variability was investigated for one of the simula-
tions with 25m grid length and 256 SDs per cell (i.e., from
the R25-SD256 ensemble). That ensemble was considered
to be the most appropriate from the numerical convergence
point of view. The distributions of AF and CDNC have one
mode (i.e., a local maximum) around the adiabatic values
and a second mode around small values in response to the
dilution by entrainment. The cubed ratio of the mean vol-
ume radius and the effective radius, 𝑘 , is distributed around
0.8–0.9 in the upper cloud layers. We compared the mean
values of AF, CDNC, and 𝑘 with observation using cloudy
samples where CDNC > 50cm−3. As a result, the mean
values of AF and CDNC agreed well with observations
above 𝑧 > 2500m in the maturing and decaying stages of
the clouds. Moreover, the mean values of 𝑘 and its stan-
dard deviation agreed fairly well with observations. These
results provide a degree of reliability for the dynamically
constrained DSD in our simulations. For the impact of
entrainment on the DSD statistics, the mean radius distri-
butions were broadened above 𝑧 > 2500m, and the mean
radius standard deviation was 3–4𝜇m in the upper cloud
layers.
Finally we investigated the relationship between micro-

physical variables and cloud dilution for the resolved scale
(150m). The two-dimensional probability density function
of AF and 𝑘 shows that 𝑘 decreases as AF decreases, from
𝑘 ∼ 1 for AF∼ 1 to 𝑘 between 0.75 and 0.85 for AF∼ 0.1.
To explain the linear relation between AF and 𝑘 , we used
a quantile regression of 𝑘 with AF as the explanatory vari-
able and found a positive slope. The probability density
distribution of the CDNC versus the mean volume radius
relative to their adiabatic values (i.e., the mixing diagram)
showed that the model-simulated changes seem consistent
with the theoretical prediction of inhomogeneous mixing.
Such prediction is consistent with the turbulent mixing
time scale estimated to be much larger than the micro-
physics time scale for the spatial scales resolved by the
numerical model. Although with the analysis presented
here there is still a scale gap between simulation and ob-
servation (∼ 100m versus ∼ 10m), a comparison of our
results with the observational studies of (Burnet and Bren-
guier 2007; Brenguier et al. 2011) shows relatively good
agreement for the microphysics and the way in which they
are affected by entrainment. Consequently, we argue that
the larger-scale microphysical variability is qualitatively
well represented by the SDM.
By applying a prescribed kernel to spatially averaged

model results, the present study focuses on the volume
mean statistics and their comparison with observed values
as opposed to exploring the sensitivity of microphysical
variability to the spatial resolution. We leave for future
study an investigation of microphysical sensitivity to spa-
tial resolution with an increase in the effective spatial res-
olution to ∼ 10m, as in the in-situ aircraft observations.
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