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Abstract

In this paper, the effect of the rolling and damping values on the macro friction coefficient have been investigated. The

introduction of the viscous rolling relaxation induces a friction weakening. Hence, it has been highlighted that this element can

act against the angular spring and decreases the sample stiffness. This influence must be considered to not overestimate the

toughness of a fault.
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Abstract

In this paper, the effect of the rolling and damping values on
the macro friction coefficient have been investigated. The introduc-
tion of the viscous rolling relaxation induces a friction weakening.
Hence, it has been highlighted that this element can act against
the angular spring and decreases the sample stiffness. This influence
must be considered to not overestimate the toughness of a fault.

Keywords: Discrete element method, Rolling parameter, Fault friction,
Granular materials

1 Introduction

If the focus is made on the damage slip zone of a fault, it appears the rock
mass is pulverized and can be considered as a granular material [1], [2]. The
global behavior observed at the macro scale is a result of interactions at the
micro-scale.
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2 DEM of a fault reveals that viscous rolling relaxation controls friction weakening

The Discrete Element Method has been designed to consider those inter-
actions between grains [3]. Even if the simplest model is a linear one [4], [5],
contact laws can be easily modified [6]: (i) considering the grain crushing [7],
[8], (ii) investigating the effect of the pressure solution [9], [10], [11], (iii) explor-
ing the effect of the healing [12], [13], (iv) appreciating the influence of the
cohesion in the matter [14], [15], [16] or (v) the cohesion induced by the pore
fluid [17], [18] for examples. Also, it allows some to focus on the temperature
influence. Hence, it appears the pressurization of the pore fluid [19], [20] and
the melting [21], [22] are main phenomena during large crustal events.

Our work is motivated by previous experiments made on antigorite [23].
The main goal is to assess the influence on global behavior of contact laws and
parameters values. Even if different relevant outputs for dense granular flows
are reviewed by the French research group Groupement de Recherche Milieux
Divisés (GDR MiDi) [24], we are focused in this paper on the macro friction
coefficient at steady state.

We are going to explore the influence of the rolling resistance model. Exper-
imental results [25], [26], and numerical ones [27], [28], [29] have highlighted
that grains rolling has a real impact on the sample behavior. A lot of rolling
models have been formulated [30], [31]. But it appears the most accurate is an
elastic-plastic spring dashpot model [32], [33]. From this formulation, a lot of
investigations have been done about the angular spring parameter. For exam-
ples: (i) the rolling helps the formation of shear bands and decrease the sample
strength [34], [35], [36], [37] or (ii) the stress-dilatancy curves are modified
[38], [39], [40], [41]. It appears that the rolling resistance comes from friction
[42], [43] and roughness [44], [45], [46]. Even if superquadric particles allow
to approximate the shape, those simulations represent an enormous computa-
tional cost. Because of this fact, some geometric laws about the rolling friction
have been developed [47], [48]. Thanks to that simulations can keep using
round particles with a rolling resistance (from an equivalent shape).

On other hand, the angular damping influence is not well known. Hence, it
is not considered in most of the DEM simulations. It appears this parameter is
used more for stability reasons [30], [32] than physical meaning. Nevertheless,
Jiang has formulated a link between the rolling and the normal dampings [49].
But it was under the assumption of a geometrically derived kinematical model.

We decided to realize in this paper a parametric study over the rolling and
the damping parameters to understand better their influence on the macro
friction coefficient of a shearing fault.

2 Theory and formulation

The Discrete Element Model (DEM) is an approach developed by Cundall &
Strack [3] to simulate granular materials at the particles level. The foundation
of this method is to consider inside the material the individual particles and
their interactions explicitly. Newton’s laws defined at equations 1 and 2 help
to compute the motion of the grain.
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m
∂vi
∂t

= m× gi +
∑

fi (1)

I × ρ
∂ωi

∂t
=

∑
ϵijkfjRk +

∑
Mi (2)

where m is the particle mass, I the moment of inertia, g is the gravity
acceleration, f the contact forces, M the contact moments, r the radius.

Considering two particles with radii R1 and R2, the interaction between
particles is computed only if the distance δ between grains verifies equation 3.

δ < R1 +R2 (3)

Once contact is detected between grains 1 and 2, interactions (force and
moment) are computed from relative motions ∆u and ∆ω with equations 4
and 5.

∆ui = u1
i − u2

i + ϵijk
(
r1j θ

1
k − r2j θ

2
k

)
(4)

∆ωi = ω1
i − ω2

i (5)

where u is the particle displacement, θ the angular displacement and ω the
angular velocity of the grain.

The contact models between cohesionless particles obey the Hertz contact
theory [50]. Normal, tangential and rolling models are shown at figure 1 and
formulated at equations 6 and 7. Some details about Hertz laws are given at
equation 8. A lot of rolling models could be applied to our case but we decide
to use an elastic-plastic spring-dashpot model because it is the most accurate
choice [30].

Fig. 1 The contact between two particles obeys to normal, tangential and rolling elastic-
plastic spring-dashpot laws.

f = fn + ft
fn = kn∆n − γnvn The normal force
ft = kt∆t − γtvt The tangentiel force
ft ≤ µpfn

(6)
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The tangential displacement ∆t is computed by integrating the relative
tangential velocity at the contact point over time.

M = Mk +Md

Mk
t+∆t = Mk

t − kr∆θr
Mˆk –t+∆t˝ ≤ Mm = µrR

∗fn

Md
t+∆t =

{
−Cr

.

θr if Mˆk–t+∆t˝ < Mm

0 if Mˆk –t+∆t˝ = Mm

(7)

kn = 4
3Y

∗√R∗∆n

γn = −2
√

5
6β

√
Snm∗ ≥ 0

kt = 8G∗√R∗∆n

γt = −2
√

5
6β

√
Stm∗ ≥ 0

Sn = 2Y ∗√R∗∆n

St = 8G∗√R∗∆n

β = ln(e)√
ln2(e)+π2

1
Y ∗ = 1−ν12

Y 1 + 1−ν22

Y 2

1
G∗ = 2(2−ν1)(1+ν1)

Y 1 + 2(2−ν2)(1+ν2)
Y 2

1
R∗ = 1

R1 + 1
R2

1
m∗ = 1

m1 + 1
m2

kr = 2, 25knµ
2
rR

∗2

Cr = ηrC
crit
r

Ccrit
r = 2

√
Irkr

Ir =
(

1
I1+m1R12

+ 1
I2+m2R22

)−1

(8)

3 Numerical model

The simulation setup is illustrated at figure 2. The box is a 0, 004m×0, 006m×
0, 0024m region. Faces x and z are under periodic conditions. The gravity is
not considered because its effect stays negligible under the vertical pressure
applied.

Fig. 2 The simulation box with triangle plates and periodic faces.
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The simulation, made by the open-source software LIGGGHTS [51], is in
several steps illustrated at figure 3:

1. The box, bottom and top triangle plates are created.
2. 2500 particles are generated following the distribution presented in table 1

equivalent to the one used by Morgan [13].
3. Top plate applies vertical stress of 10 MPa by moving following the y axis.

This plate is free to move vertically to verify this confining and allow volume
change.

4. The sample is sheared by moving the bottom plate at the speed of 100 µm/s
until 100% strain. This step is then repeated at the speed of 300 and 1000
µm/s.

Fig. 3 The simulation is in multiple steps : creation of the box and particles, application
of the normal force and shearing.

Radius Percentage Number of particles
R1 = 0, 2mm
R2 = 0, 15mm
R3 = 0, 1mm

14%
29%
57%

2500

Table 1 Distribution used described by discrete radius, percentage of the mass and total
number of grains.

The different parameters needed for the DEM simulation are presented in
table 2. We can notice the time step dt must verify the Rayleigh condition
[50], [52], [53] defined at equation 9.

dtR = π × r ×
√

ρ/G

0, 1631× ν + 0, 8766
(9)

With every computing test, the main problem is the running time. The time
step dt must be selected considering the number of particles, the computing
power, the stability of the simulation and the time scale of the test. In our
case, we are looking for a 102 seconds term [54]. If we include the default value
into equation 9 the time step is around 10−8 second and the running time
skyrockets. To answer this we can easily change the density ρ and the shear
modulus G. We will see those parameters are included in two dimensionless
numbers defined at the equation 10: the contact stiffness number κ [55], [56],
[57] and the inertial number I [24], [56].
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Variable Short Name Value
Simulation variables

Time step dt 1, 5e−6 s
Height of the sample h 0, 005 m
Shear rate γ′ = vshear/h 2− 6− 20%

Contact stiffness num-
ber

κ =
(

Y
P (1−ν2)

)2/3
400

Inertial number I = γ′d
√

ρ/P 10−6 − 10−5

Mechanical variables
Density ρ 2000000 kg/m3

Youngs modulus Y 70GPa
Poissons ratio ν 0, 3
Restitution coefficient e 1
Rolling friction coeffi-
cient

µr 0− 0, 25− 0, 5− 0, 75− 1

Rolling viscous damp-
ing coefficient

ηr 0− 0, 25− 0, 5− 0, 75

Friction coefficient µp 0, 5
Table 2 DEM parameters.

κ =
(

Y
P (1−ν2)

)2/3

The contact stiffness number

I = γ′d50
√

ρ/P The inertial number
(10)

Where γ′ = vshear/h is the shear rate, h is the height of the sample during
the shear and d50 the mean diameter.

It appears the constitutive law is sensitive to κ because grains are not rigid
enough (κ ≤ 104) [55]. By this fact, it becomes not possible to change the
Young modulus Y (and so the shear modulus G). The inertial number I repre-
sents the behavior of the grains, which can be associated with solids, liquids or
gases [58]. This dimensionless parameter does not affect the constitutive law
if the flow regime is at critical state (I ≤ 10−3) [24], [56]. In conclusion, the
density ρ can be modified, if we stay under the condition I ≤ 10−3, to increase
the time step and solve our computing problem.

4 Results and discussion

A parametric study has been done on the rolling friction coefficient µr and the
rolling viscous damping coefficient ηr. As figure 4 shows, the macro friction
coefficient is plotted following the shear strain. This coefficient µ is computed
by considering µ = Fy/Fx, where Fy (resp. Fx) is the component following
the y-axis (resp. x-axis) of the force applied on the top plate. Because of the
granular aspect, there is a lot of oscillation. To reduce this noise, at least
3 simulations are run by a set of parameters (µr, ηr) and a mean curve is
computed. Moreover, only the steady-state is considered and an average value
is estimated.

The comparison of the macro friction coefficient with different parameters
set is highlighted at figures 5, 6, 7. It appears there is an increase of the
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Fig. 4 Example of µ-γ curve (dotted lines mark the different velocity steps 100 - 300 - 1000
µm/s).

fault friction coefficient with the rolling resistance µr until a critical point
depending on the rolling damping ηr. This reduction of the stiffness with the
rolling damping is not easy to understand at the first point. The larger is
the damping, the stiffer should be the system. Two main questions should be
answered: why does the friction coefficient decrease with the rolling resistance
if there is damping? Why is the reduction larger with the damping value?

Fig. 5 vshear = 100µm/s

Figures 8, 9, 10, 11 help to understand the behavior. It shows the rotation
of particle (in red) during four different cases. We can notice that the fewer
rotations there are, the stiffer the system will be. It appears the number of
rolling particle increases with the rolling resistance, see figures 8, 9 and 10. The
decrease of the friction coefficient is explained by particles rolling. Moreover,
it is shown at figures 9 and 11 that damping increases the number of rolling
particles and so the friction coefficient is reduced.
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Fig. 6 vshear = 300µm/s

Fig. 7 vshear = 1000µm/s

Fig. 8 µr = 0, 25 and ηr = 0, 5

A focus on the model equations must be done at relation 11 to understand
better those observations (the input rolling parameters are emphasized in red).
First, it appears the increment of the spring ∆Mk

r depends on µ2
r while the

plastic limit µrR
∗Fn depends only on µr. There is a square factor between

those values. Thus, this plastic limit, and so grain rolling, is reached easier
with a larger rolling resistance µr for a same angular displacement θr.
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Fig. 9 µr = 0, 50 and ηr = 0, 5

Fig. 10 µr = 1 and ηr = 0, 5

Fig. 11 µr = 0, 5 and ηr = 0

Mr = Mk
r +Md

r

Mˆk –r,t+∆t˝ ≤ µrR
∗Fn

∆Mk
r = −2, 25knµr

2R∗2∆θr

Md
r,t+∆t =

{
−2ηrµr

√
2, 25Irkn

.

θr if Mˆk –r,t+∆t˝ < µrR
∗Fn

0 if Mˆk –r,t+∆t˝ = µrR
∗Fn

(11)
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Concerning the damping, it avoids the variation of the angular position

(
.

θr → 0) during the elastic phase. As we have seen before, the main part of
the sample is at the plastic phase and particles roll. So, it is as the damping
acts in opposition of the angular spring, keeping grain into the plastic phase.
We can notice that we have decided in this paper to shut down the damping
moment when the angular plastic limit is reached (see equation 11).

In this way, we can understand better the reduction of the friction coeffi-
cient with the rolling stiffness µr if damping is active. We can notice there is
no decrease but an increase of the friction coefficient in the case of no damp-
ing. In absence of this one, the angular spring can act normally. The larger is
the rolling parameter, the stiffer is the global sample.

Figures 12, 13, 14, 15 highlight the shearing speed influence on the system.
It is the same results as before but plotted in another way. It appears there
is no speed effect visible in most simulations as the friction coefficient keeps
the same value. It is not surprising that no speed effects are spotted because
there are no other parameters except the damping parameter which depends
on speed or time. A speed influence is nevertheless noticed for cases where the
friction coefficient starts to decrease with rolling resistance (for example the
case µr = 0, 5 and ηr = 0, 5 at figure 14). As shown at figure 9, few particles (in
orange or in white) are still not rolling during this critical step. The damping
value is not large enough to cancel the effect of the spring and few grains are
in the elastic phase. The damping creates so in this case a speed influence. If
the damping value is larger, we have seen particles tend to be all in the plastic
phase. If it is lower, the damping is negligible or null. In both cases, the speed
effect disappears.

Fig. 12 ηr = 0

5 Conclusion

In this paper, we have considered granular materials into a plane shear con-
figuration to investigate the effect of the rolling resistance and damping on
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Fig. 13 ηr = 0.25

Fig. 14 ηr = 0.5

Fig. 15 ηr = 0.75

the macroscopic friction coefficient. Thank numerical DEM simulations, the
relation between those parameters becomes clearer. It appears :

1. In the no damping case, the sample stiffness increases with the rolling
resistance.
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2. The consideration of the rolling damping introduces a critical point. For a
constant damping value, the sample stiffness increases the rolling parameter
until this critical point is reached. Then, the stiffness starts to decrease
until a residual value. Hence, the damping tend to act against the spring
and grains roll.

3. No visible speed effects have been highlighted except at critical point. For
the same rolling resistance value : (i) When the damping parameter is not
large enough, the angular spring is the main element and no speed depen-
dency is spotted, (ii) when the damping parameter is too large, all grains
are in the plastic phase (roll) and the residual value is reached and (iii)
when the damping parameter is at critical value, there is no main element
in the rolling model, speed dependency occurs.
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[57] Roux, Jean Noël and Chevoir, François (2010) Analyse dimensionnelle et
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