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Abstract

This paper introduces a comprehensive C++ software package, HatchFrac, for stochastic modelling of fracture networks in two

and three dimensions. Two main methods, the inverse CDF method and acceptance-rejection method, are applied to generate

random variables from the stochastic distributions commonly used in discrete fracture network (DFN) modelling. The multilayer

per-ceptron (MLP) machine learning approach, combined with the inverse CDF method, is implemented to generate random

variables following any sampling distribution. To make the code faster, we extend the Newman-Ziff to determine clusters in

the fracture networks. When combined with the block method, the Ziff algorithm improves the coding efficiency significantly.

The software generates the T-type fracture intersections in the network, which can be used in applications involving fracture

growth or incorporating geomechanics. We introduce three applications of HatchFrac that demonstrate the versatility of our

software: percolation analysis, fracture intensity analysis, and flow and connectivity analysis.
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Abstract

This paper introduces a comprehensive C++ software package, HatchFrac,

for stochastic modelling of fracture networks in two and three dimensions. Two

main methods, the inverse CDF method and acceptance–rejection method, are

applied to generate random variables from the stochastic distributions com-

monly used in discrete fracture network (DFN) modelling. The multilayer per-

ceptron (MLP) machine learning approach, combined with the inverse CDF

method, is implemented to generate random variables following any sampling

distribution. To make the code faster, we extend the Newman–Ziff to deter-

mine clusters in the fracture networks. When combined with the block method,

the Ziff algorithm improves the coding efficiency significantly. The software

generates the T-type fracture intersections in the network, which can be used

in applications involving fracture growth or incorporating geomechanics. We

introduce three applications of HatchFrac that demonstrate the versatility

of our software: percolation analysis, fracture intensity analysis, and flow and

connectivity analysis.

1. Introduction1

Fractures such as joints, faults, pressure solution seams, and deformation2

bands are ubiquitous in crustal rocks. Natural fractures usually comprise com-3
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plex networks, and they vary in size over scales ranging from microns to hun-4

dreds of kilometres [1, 2]. Throughout this wide range of scales, fracture net-5

works dominate the geomechanical and hydrological behavior of subsurface rocks6

and play an essential role in many engineering fields, e.g., in hydrology, waste7

disposal, earthquake physics, and water, petroleum and geothermal reservoir8

exploitation [3, 4, 5, 6, 7, 8]. The fracture shapes are complex and irregular9

because of the anisotropic and heterogeneous characteristics of rocks and the10

complex geomechanical environments. Natural fractures have complex rough11

surfaces [9, 10]. The tortuosity of the flow paths in a fracture and the stress12

impact on fractures are also important for the flow in fractures[11]. Complex13

geometric shapes and dynamic variability of fractures make it very difficult to14

characterize fracture networks in detail. A practical alternative is the discrete15

fracture network (DFN) modelling method, where important geometrical and16

topological structures of fracture systems are preserved.17

A “discrete fracture network” (DFN) refers to a computational model that18

explicitly represents the geometrical properties of individual fractures, mainly19

their orientations, sizes, positions, shapes, and apertures [12]. This modeling20

method was first applied to characterize and simulate flow and transport in21

natural fractures for the emerging high-level nuclear waste repository studies22

in the U.S. and Sweden in the 1970s and 1980s. Over the last four decades,23

DFN modeling has been extensively applied in different engineering fields. Bour24

and Davy [13], Robinson [14], Andresen et al. [15], Wilcock [16], De Dreuzy25

et al. [17], Baecher et al. [18] and many others have implemented the DFN26

approach to simulate fractures and fracture networks in two- or three-dimensions27

(2D or 3D) to investigate their percolation properties or topological structures.28

However, detailed information about how to construct the fracture network is29

usually not available from their papers. A few commercial software applications30
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can construct fracture networks in 2D and 3D, like FracMan from Golder31

Associates [19] or Petrel package from Schlumberger [20]. Because of their32

“closed source” strategy, end users cannot improve the underlying algorithms33

to fulfill specific research requirements. Alghalandis [21] developed open-source34

software in the Matlab environment. The powerful Matlab function libraries35

and toolboxes make the programming simpler. Nonetheless, as a high-level36

programming language, Matlab cannot deal with hundreds of thousands or37

millions of fractures, especially in 3D. Furthermore, specific functions, such as38

the cluster-checks, are hard to vectorize, and Matlab is slow in processing the39

“for loops” and “if statements.”40

In this paper, we present an efficient fracture network modelling package im-41

plemented in a C++ environment. The paper is organized as follows: Section42

2 introduces basic concepts used in constructing a fracture network, including43

the fracture shapes, different stochastic distributions applied to describe frac-44

ture geometries, the intersection analysis, cluster analysis, and fracture growth45

analysis. Section 3 applies the software to percolation analysis, fracture density46

analysis, and flow and connectivity analysis. Appendix A provides advanced47

procedures to generate random variables following different stochastic distribu-48

tions.49

2. Basics of fracture networks50

In this section we discuss basic concepts and algorithms for generating frac-51

ture networks in 2D and 3D.52

2.1. Fracture shape53

Complex geometric shapes and their dynamic variations make it almost im-54

possible to characterize fracture networks in detail. Practically, a line segment55

is often used to represent a single fracture in 2D space [13, 14, 15, 21]. In 3D56
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space, several simple geometrical shapes are proposed to avoid excessive com-57

plexity. The Random Disk Model proposed by Baecher et al. [18] is widely58

adopted as the starting point due to its simplicity. The disk shape is applied59

in DFN modeling software, e.g., FracMan and rock mechanics software, e.g.,60

Itasca. Elliptic, square or rectangular shapes are also commonly used in DFN61

modeling [16, 17, 21].62

As Jing and Stephansson [22] pointed out, the significance of the fracture63

shape decreases with an increase in the fracture population size. In Hatch-64

Frac, we choose to use a random convex polygon with four vertices to repre-65

sent a single fracture in 3D space. A random polygon preserves some degree of66

irregularity compared with a disk, and it can easily be converted to an ellipse67

or other polygon shapes by adding a few more vertexes and minor adjustments68

to the coordinates. Also, the intersection analysis of convex polygons is much69

easier than that for ellipses, which we discuss in the intersection analysis below.70

2.2. Stochastic distributions of main fracture geometries71

It is impossible to map the full extent of all fractures present in a subsurface72

formation in three dimensions. However, we can develop statistics on frac-73

ture orientations, intensities, apertures and lengths based on the measurements74

from outcrops or well-logs [23]. Constrained by these statistical properties, a75

stochastic fracture network can be constructed. The basic geometrical proper-76

ties required to describe a single fracture are its shape (in 3D), length (in 2D),77

orientation, aperture, and position of the fracture center.78

Different distributions are implemented to characterize the main geomet-79

ric properties of the fracture network [24]. Exponential, gamma, log-normal80

and power-law distributions have been proposed to describe fracture lengths81

[25, 26, 27, 28, 29, 30]. Field observations and analog experiments suggest preva-82

lence of power-law distribution [31, 32, 13, 33, 24]. Log-normal and power-law83

4



distributions are used to describe the aperture variations [34, 35, 36]. Walmann84

et al. [37], Olson [38], Renshaw and Park [39], Bai et al. [40] found that there is85

a scaling relation between the aperture and length of fractures. The orientation86

of fractures is usually described by a von Mises–Fisher distribution [41, 42, 43].87

From analyzing a collection of outcrop maps, we find that most fracture net-88

works in outcrop maps have their concentration parameter κ < 3[23].89

Two methods are commonly used to generate observations from a partic-90

ular distribution in statistics. These are the inverse CDF method and the91

acceptance–rejection method[44]. Appendix A contains a detailed derivation92

on how to apply those methods to generate variables following the aforemen-93

tioned stochastic distributions. C++ code is also available online (https:94

//data.mendeley.com/datasets/zhs97tsdry/1).95

Spatial distributions to characterize the positions of fracture centers are more96

complex. For simplicity, uniform spatial density distribution is commonly ap-97

plied to describe the positions of fracture centers [13, 45, 46, 47, 48]. However,98

realistic fracture networks rarely have uniformly distributed centers. Darcel99

et al. [49] studied the connectivity of fracture networks with the fracture center100

positions following a fractal spatial density distribution that brings clustering101

effects and might be closer to reality[50, 23]. A multiplicative cascade process102

[51, 52, 53] is applied to generate a fractal spatial density distribution of frac-103

ture centers. In 2D, if the fractal dimension is 2, the fractal spatial density104

distribution reduces to a uniform distribution. If the dimension is smaller than105

2, there will be fracture clustering. Similarly, in 3D, the corresponding limiting106

dimension for uniform fracture distribution is 3. Fig. 1 shows sketch maps of107

the fractal and uniform spatial density distributions in 2D and 3D, respectively.108

109
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D=2.0 D=1.5

D=3.0 D=2.5

Clustering

Figure 1: 50,000 2D/3D spatial points follow a uniform (Left) or a fractal spatial density
distribution (Right) with the fractal dimension D = 1.5/2.5 .

2.3. Machining learning for any sampling distribution110

Continuous statistic distribution is an approximation of the sampling dis-111

tribution from measurements. In some circumstances, a single continuous dis-112

tribution is insufficient to fit the finite data, and we may want to generate113

random variables directly from a finite frequency histogram. Machine learning114

or artificial neural network [54, 55, 56] is a good option to do the regression115

and interpolation from finite samples. Multilayer perceptron (MLP) is a feed-116

forward artificial neural network class that consists of at least three layers of117

nodes: an input layer, a hidden layer, and an output layer. This method is easy118

to implement and able to fit any sampling distribution within a given tolerance.119
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The backpropagation method is applied to train the data [57] with a nonlinear120

Sigmoid function as the activation function.121

In this research, we recommend the MLP structure with five or six layers122

depending on the complexity of the histogram and four to six nodes in each123

hidden layer. The input nodes are fed with training data from measurements.124

Afterwards, the inverse CDF method is applied to generate a random variable125

following the sampling distribution. To sample from a distribution p(x), we can126

sample u uniformly on [0, 1] and calculate127

x = φ−1
x (u), (1)128

where p(x) and φ−1
x are the probability and inverse cumulative distribution129

function. The inverse of the cumulative distribution function φ−1
x is not available130

because of the unknown p(x) of the sampling distribution. Instead, we can131

implement a forward method to obtains x as the root of φ(x) − u = 0 with a132

numerical method (i.e., bisection method). The cumulative distribution function133

φ(x) is a monotonically increasing function that guarantees a unique solution134

for x. An example of generating random variables from a sampling distribution135

is shown in Fig. 2. By applying the MLP method, we can generate variables136

following any sampling distribution. The C++ code for an MLP algorithm can137

also be found online ( https://data.mendeley.com/datasets/zhs97tsdry/138

1).139

2.4. Intersection analysis140

Connectivity is a fundamental feature of fracture networks, and an important141

measure for assessing flow transport through fractures [59]. Common methods142

adopted to investigate the connectivity of fracture networks include percola-143

tion theory [14, 45, 13, 60, 33], connectivity function method [61, 62, 63] and144

7
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Figure 2: An example of generating random variables that follow a discrete sampling distribu-
tion. The green points are the frequency data of the fault segment lengths from de Joussineau
and Aydin [58]’s paper. The red curve is the fit achieved with the MLP method. The blue bars
are 10,000 data points generated through the inverse CDF method (the frequency is properly
scaled down to fit the curve).

intersection relationship analysis [35, 64]. The intersections between fractures145

are essential to analyze connectivity of a fracture network. In 2D fracture net-146

works, the function of checking intersections between two nonparallel fractures147

is straightforward, and two steps are sufficient.148

1. Check the intersection of two lines on which two fractures lie and get the149

intersection point if these lines intersect.150

2. Check whether the intersection point belongs to the two fractures simul-151

taneously.152

To check the intersection between nonparallel 3D fractures is more complex153

because of the irregular polygon geometry. We can resolve this problem into sub-154

problems and check the intersection between a line and a plane. The pseudocode155

for checking intersections between two 3D fractures is listed below.156
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Algorithm 1: Intersection of 3D fractures
Data: Fracture A and B

Result: Check the intersection between two 3D fractures

begin

for Each edge of Fracture A do
Check the intersection between the line and the plane where the edge and

Fracture B belong;

Record the intersection point if they intersect;
end

for Each edge of Fracture B do
Check the intersection between the line and the plane where the edge and

Fracture A belong;

Record the intersection point if they intersect;
end

if There is at least one intersection point belonging to both Fracture A and B

then
Return true;

else
Return false;

end

end

157

The intersection functions for 2D and 3D fractures have the same complexity158

of O(1), while the 3D intersection function has a few more steps than the 2D159

one.160

2.5. Efficient cluster analysis161

A connected fracture network is the pathway of the fluid flow in low per-162

meability formations. Therefore, a cluster-check algorithm is necessary to find163

clusters of intersecting fractures. The Hoshen–Kopelman algorithm [65] and164

its enhancements [66, 67] are widely used to check clusters in bond or site165

percolation problems, and in nonlattice environments. However, the Hoshen–166

Kopelman algorithm is a variation on the depth-first search and has a complexity167

of O(N2 lnN). This algorithm is inefficient in dealing with a large number of168

fractures. In 2001, Newman and Ziff proposed a fast Monte Carlo algorithm169
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[68]. Their algorithm can be implemented to check clusters in both bond or site170

percolation with a complexity of O(N).171

We extended the Newman–Ziff algorithm to label clusters in 2D and 3D172

fracture networks and sped up the code. The intersection function needs to be173

implemented for all pairs of fractures, and it involves N2 calls, where N is the174

number of fractures [46]. To further enhance the computational efficiency of the175

software, we divide the domain into smaller blocks with the size of Bs in 2D176

and 3D networks (the domain considered here is a square in 2D and a cube in177

3D). Each fracture in the domain has an array to record the indices of blocks178

that fracture occupies. When we check the intersections for a given fracture,179

denoted as fracture A, only fractures that share the same blocks with fracture180

A should be checked for intersections. Most fractures in the domain are not181

checked for intersections, which saves a lot of computational time. The size of182

the block should be chosen wisely, because an unsuitable value can increase the183

computational time. It turns out selecting ten to twenty per cent of the system184

size as the block size yields good performance.185

The fracture network is generated by adding fractures one by one until it186

fulfills a given stop criterion, such as reaching a predefined fracture intensity or187

a spanning cluster across the domain. Therefore, the cluster-check algorithm188

is employed whenever a new fracture is added. Each fracture has a value of189

“pointer to root” (PTR), and the default value is -1. If the PTR value is negative,190

it means that the corresponding fracture is the root fracture of a cluster, and191

the absolute value of PTR refers to the number of fractures in that cluster. If the192

PTR value is positive, the value of PTR points to the index of the root fracture.193

For example, if the nth fracture A has a PTR value of -1, it means that fracture194

A is an isolated fracture and there is no fracture intersecting fracture A. If nth
195

fracture A has a PTR value of -15 and the mth fracture B has a PTR value of n,196

10



it indicates that fracture A is the root fracture of a cluster, and the cluster has197

15 fractures directly or indirectly connected to fracture A. Fracture B is one of198

the fractures in the cluster because its PTR value is n (the index of fracture A).199

The pseudocode of the cluster-check algorithm that integrates the Newman–Ziff200

algorithm and block method is listed below:201
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Algorithm 2: Cluster-Check algorithm
Data: Fractures,cFracture, FractureNum, Allblocknumber,Fractureblock, PTR

Result: Check the cluster and label all fractures

begin
Step 1: Find all fractures that share at least one block with cFracture;

Step 2: Remove duplicate fractures in Step 1;

for Each fracture i found in Step 2 do
Check the intersection between the fracture i and cFracture;

if Fracture i intersects cFracture then
Record the index of fracture i in an array, denoted as

IntersectionIndex;

Record the length of IntersectionIndex as countintersect;
end

end

if countintersect == 1 /* Only one fracture intersects cFracture */

then
root = FindRoot(PTR, IntersectionIndex[0]);

PTR[FractureNum] = root;

PTR[root] = PTR[root] - 1;/* Add one fracture in this cluster */

else if countintersect > 1 then

for Each fracture i in IntersectionIndex do
root[i] = FindRoot(PTR, IntersectionIndex[i]);

end

Remove duplicate roots in the array root;

Record the size of the array root as countroot;

for Each root fracture i in the array root do
Num = Num + PTR[root[i]];

PTR[j] = root[0];

for Each fracture j in Fractures do

if PTR[j] == root[i] then
PTR[j] = root[0];

/* Merge all clusters into the first cluster */

end

end

end

PTR[FractureNum] = root[0];

PTR[root[0]] = Num − 1;

else
cFracture is an isolated fracture;

end

end

202
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In the input argument, Fractures is a set of fractures including all pre-203

vious fractures and the current fracture; cFracture is the current fracture;204

FractureNum is the index of the current fracture; Allblocknubmer is a matrix205

with (L/Bs)2 rows in 2D and (L/Bs)3 rows in 3D. Each row represents a block206

and records the indices of fractures in that block. Fractureblock is an array to207

record the indexes of blocks that the current fracture occupies; PTR is an array208

to record the PTR value of each fracture in Fractures. The FindRoot(PTR, i)209

is a recursive function used to find the index of the root fracture of the cluster210

where fracture i belongs. If fracture i itself is the root fracture, it will return211

the index of fracture i. The pseudocode of FindRoot is listed below:212

Algorithm 3: FindRoot function
Data: PTR, i

Result: Find the root fracture of the cluster where fracture i belongs

begin

if PTR[i] < 0 then
return i;

else
return (FindRoot(PTR, PTR[i]));

end

end

213

By combining the Newman–Ziff algorithm with the block method, the ef-214

ficiency of the fracture cluster check algorithm is significantly improved. Fig.215

3 shows the computational time of generating fractures and calls to the inter-216

section function (tested on a PC: CPU one core,2.8 GHz, RAM 16 GB). The217

testing network has a system size of 100, and the block size is 20. The fractures218

have a constant length of 1, and uniformly distributed orientations and posi-219

tions of fracture centers. It is worthwhile to notice that it is faster to generate220

150,000 fractures in 3D rather than in 2D shown in Fig. 3 (a). With the same221

number of fractures and system size, 3D fractures are distributed in a volume222

compared with 2D fractures distributed in an area. The fracture intensity in223
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each 3D block is smaller, and fewer calls to the intersection function are needed224

in the 3D case, which reduces the computational time. Since we implement the225

same cluster-check algorithm in both 2D and 3D fracture networks, and the in-226

tersection functions have the same O(1) complexity in 2D and 3D, constructing227

3D fracture networks is more memory-consuming, but not much more computa-228

tionally expensive than 2D fracture networks. Fig. 3(b) reflects similar scaling229

slopes for both 2D and 3D fracture networks. Figs. 4 and 5 depict sketch maps
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Figure 3: Left: computation time vs the number of fractures; Right: computation time vs the
number of calls of the most time-consuming intersection function, in both 2D and 3D fracture
networks. The timings include fracture and network generation, cluster checks and labelling.

230

of fracture networks in 2D and 3D spaces.231

2.6. Fracture growth and T-type intersection232

The processes above produce fractures exhibiting only X-type intersections233

(i.e., fractures cross one another) but not T-type intersections (i.e., one fracture234

terminates on another). T-type intersections are commonly observed in outcrops235

[23], and they help to enhance connectivity for a given fracture intensity because236

they reduce the number of dead-ends in the system [69]. To mimic the T-237

type intersections in the fracture network, the growth of fractures should be238

considered. Davy et al. [70, 71] modelled the fracture networks with T-type239

intersections and investigated fracture scaling characteristics. In Davy et al.240
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Clustering

Fractal Uniform

Figure 4: 2D fracture networks. The red line segments form the connected spanning cluster.
The green line segments correspond to all other local connected clusters. In both networks,
fracture orientations follow a uniform distribution, lengths obey a power-law distribution,
and the fracture apertures are constant. The left network has fracture center positions that
follow a fractal spatial density distribution with the fractal dimension of 1.5, and in the right
network, the fracture centers follow a uniform distribution.

Fractal Uniform

Figure 5: 3D fracture networks. The red polygons form the connected spanning cluster. The
green polygons correspond to all other local connected clusters. In both networks, fracture
orientations follow a uniform distribution, lengths obey a power-law distribution, and the
fracture apertures are constant. The left network has fracture center positions that follow a
fractal spatial density distribution with the fractal dimension of 2.5, and in the right network,
the fracture centers follow a uniform distribution.

[71]’s paper, they discussed three steps to simulate the growth of fractures in241

2D, which are nucleation, growth, and arrest. Similar concepts are adopted in242
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this paper to construct a fracture growth model in 2D and 3D spaces.243

Preexisting depositional and mechanical weaknesses, such as crystal dislo-244

cation, grain boundaries, pores, microcracks, bedding planes, can reduce the245

tensile and shear strength of rocks and trigger tensile or shear fractures under246

applied stresses [72, 73]. The weaknesses that initiate fracture growth are called247

nuclei. The physics underlying the formation of nuclei, the rate of nucleation248

and the spatial and orientation distribution of nuclei is possibly related to stress249

condition and thermal activation [74, 75, 76]. To make the simulation practical,250

the nuclei are assumed to be uniformly distributed in both orientations and251

positions, and the nucleation rate is constant. It is straightforward to extend252

the spatial distribution and nucleation rate to a more realistic scenario if the253

nucleation mechanism can be stated in a specific mathematical format.254

Fracture propagation in the subcritical regime is stable and quantifiable. The255

crack tip velocity is found to follow a power-law distribution [77, 78, 79, 80].256

v = dl/dt = A( KI

KIC
)
n

, (2)257

where KI is the opening-mode stress intensity factor at the fracture tip; KIC is258

the opening-mode fracture toughness; A is the proportionality constant; and n259

is the subcritical fracture growth index, which varies widely depending on rock260

type and environmental conditions.261

For the arrest criteria, it is reasonable to assume that large fractures inhibit262

the growth of smaller ones in their vicinity [31, 25], while the reverse is not263

likely to occur. The arrest condition in a 2D fracture network has two degrees264

of freedom. A fracture stops growing at a tip when it intersects the first large265

fracture at this tip. The other tip continues to grow until it intersects the second266

large fracture. For a 3D fracture network, the arrest criteria are more complex267

because of the random polygon shape. The growth of a 3D fracture is realized268
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by multiplying the coordinates with a scaling function, and the scaling factor is269

based on the velocity model. The scaling transformation is implemented on each270

non-intersecting vertex of the fracture. Once a vertex intersects a larger fracture,271

the vertex is replaced by the intersecting line segment and stops growing. We272

consider two modes of growth/stop models, which are shown in Fig. 6. In mode273

1, the fracture stops growing when the two vertices on the longest diagonal line274

(BD) intersect large fractures (F1 and F2). In mode 2, the fracture stops growing275

when any three vertices of a fracture intersect larger fractures (F1, F2 and F3276

). Figs. 7 and 8 illustrate fracture growth in 2D and 3D fracture networks.277

An explicit visualization of 3D fracture networks is difficult, and we only show278

the growth process of one fracture (green fracture) to illustrate the algorithm.279

The boundary plane is regarded as an infinitely large fracture, and the fracture280

tip stops growing when it intersects a boundary plane. The pseudocode of the

Figure 6: Illustration of two different arrest rules in 3D fracture networks. (Left) Mode 1.
(Right) Mode 2. Fracture is modeled by a convex polygon with four vertices A, B, C, D.
Fracture F1, F2, F3 are fixed. Mode 1 and 2 depict the growing fracture in two different stages.
Light purple represents the first stage where the fracture is still growing; light red represents
the second stage corresponding to the point where the fracture stops growing. In mode 1, the
fracture stops growing when the two vertices on the longer diagonal line (BD) intersect large
fractures F1 and F2. In mode 2, the fracture stops growing when three vertices intersect large
fractures F1, F2 and F3.

281

growth process for a given number of nuclei is listed below.282
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Algorithm 4: Fracture growth algorithm

begin
Initialization: Generate N nuclei;

Initialization: t=0;

while Not all N fractures are arrested do
t=t+1;

for int i = 0; i < N ; i+ + do

if Fracture i is not arrested then
Check intersections with all other fractures;

/* Block method is applied to reduce computational time

here */

if Arrest criteria fulfilled for Fracture i then
Fracture i is marked as arrested;

else
Fracture i grows;

/* Only non-intersecting verticesgrow; */

/* Intersecting verticesare replaced with the

intersection line segment and fixed; */

end

end

end

end

end

283

T-type

X-type

(a) (b) (c)

Time increases

Figure 7: Illustration of fracture growth in a 2D fracture network. The sub-figure (c) is the
last time step where all fractures stop growing. The T-type and X-type intersections are
marked in the figure. Red line segments represent the preexisting old fractures. Green lines
are the fractures growing from the initial nuclei.
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Time increases

(a) (b) (c)

Figure 8: Illustration of fracture growth in a 3D fracture network. The sub-figure (c) is the
last time step at which all fractures stop growing. Red polygons represent the preexisting old
fractures. The green polygon is the fracture that grows from the initial nucleus. To better
visualize the process, only a few red polygons and one green polygon are shown.

3. Applications284

In this section, we present three applications of HatchFrac to demonstrate285

its utility. Each application is extended to a full research paper. A brief intro-286

duction and conclusions are presented here. The C++ code for generating 2D287

and 3D fracture networks and simulating the fracture growth process is available288

online (https://data.mendeley.com/datasets/zhs97tsdry/1).289

3.1. Percolation analysis [81]290

Percolation theory is widely used to analyze the connectivity of fracture291

networks. The percolation parameters commonly used to characterize fracture292

networks are the total excluded area Atex, total self-determined area Atsd, and293

the number of intersections per fracture Ipf . The formulas to calculate Atex,294

Atsd, Ipf in discrete fracture networks are listed in Eqs. (3) to (5).295

Atex = 1
(N − 1)A

N∑
i=1

N∑
j=1 6=i

LiLj | sin(θi − θj) |, (3)

296

Atsd =
∑N
i=1 L

2
i

A
, (4)
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Ipf = NIn
N

, (5)

where N is the total number of fractures in the fracture network, A is the area297

of the domain, Li is the length of ith fracture, θi is the orientation angle of ith298

fracture, andNIn is the total number of intersections. These three quantities are299

percolation parameters for the constant-length fracture networks, but no one has300

investigated them in complex fracture networks. We investigate the variability301

of these three quantities in three types of fracture networks, in which fracture302

lengths follow a power-law distribution, fracture orientations follow a uniform303

distribution, and fracture center positions follow either a uniform distribution304

(type 1 and 2) or a fractal spatial density distribution (type 3). A sketch map305

of the three types of fracture networks is shown in Fig. 9.

L

Type 1

L

2L

Type 2

L

Type 3

Figure 9: Sketch map of three types of fracture networks. The red line segments denote the
connected spanning cluster, and the green line segments are not connected to the spanning
cluster.

306

We show that in type 1 and type 2 fracture networks, these three quantities307

are percolation parameters only when the power-law exponent is larger than308

3.5. In type 3 fracture networks, none of the three quantities is percolation309

parameters. We also investigated 18 outcrop fracture maps and found that the310

cm-scale and m-scale maps are closest to type 3 fracture networks. The outcrop311
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fractures cluster and have lengths that follow a power-law distribution with the312

exponent ranging from 2 to 3.313

3.2. Fracture intensity analysis [82]314

3D intensity parameters of fracture networks cannot be measured directly315

and are usually correlated with the lower dimensionality intensity parameters,316

such as P21, P10. Through generating 3D fracture networks and conducting317

1D, 2D and 3D measurements on the networks, we performed a comprehensive318

correlation analysis between lower dimensionality measures, P10, P20, P21, I2D319

(total number of intersections per unit area) and higher dimensionality ones,320

P30, P32, I3D (total number of intersections per unit volume). We also correlate321

cube samples and underlying fracture networks that represent cores or tunnels.322

The fracture networks are constrained by geomechanics principles and outcrop323

data to make them geologically meaningful. Four types of joints are generated,324

and the corresponding distributions are summarized in Table 1. A sketch map

Table 1: Distributions of each type of joints

Type of joints Probabilitya Center position Strike Dip Length

1 0.02 Uniformb von Mises–Fisher
(µ = 90◦, κ = 300) 90◦ 2L

2 0.02 Uniform von Mises–Fisher
(µ = 0◦, κ = 300) 90◦ Power-lawe

(Lmax = L, a = 3)

3 0.72 Uniform dN60◦E, S60◦E 90◦ Power-law
(Lmax = L, a = 2.5)

4 0.24 Fractalc Uniform
([0, 2π])

Uniform
([0, 2π])

Power-law
(Lmax = L, a = 3)

a probability of generation.
b uniform spatial distribution.
c fractal spatial density distribution with the fractal dimension of 2.5 in this research.
d dihedral angles equal to 60◦ and angle bisectors are parallel to σ1.
e Lmax is the maximum length of the fracture; a is the exponent of the power-law distribution.

325

of the 3D fracture network and the sampling methods is shown in Fig. 10.326

We show that the orientation of fracture samples impacts correlations be-327

tween the 2D and 3D parameters, and samples parallel to the principal stresses328

yield better correlations. 3D intensity parameters, P30, I3D, and P32 can be329

predicted from 2D or small cube samples. However, 1D intensity P10 does not330
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NN

Scanline sample Cross-section sample Cube sample

Figure 10: A sketch map illustrating different samples in the fracture network. The blue and
green polygons represent the type 1 and type 2 tension joints. The red polygons represent the
type 3 conjugate shear joints (microfaults). The cyan polygons represent the type 4 random
shear joints (microfaults). The sampling lines, planes and cubes are black. The orientations of
the maximum and minimum principal stress σ1, σ3 are north-south and east-west, respectively.

have a strong correlation with 3D intensity parameters. The size of the cube331

samples should be larger than 10 per cent of the original size to capture the332

main structural information. Furthermore, the minimum number of samples to333

reach a good correlation from 2D and cube samples are 20 and 60, respectively.334

3.3. Flow and connectivity analysis [59]335

In low permeability formations, connectivity of fractures determines the336

overall hydraulic diffusivity of the formation and measures the potential for337

fluid flow through their network [64, 13, 84, 85]. Through generating stochastic338

fracture networks and converting each fracture network to its graph representa-339

tion, we utilize a topological concept—global efficiency—to evaluate the impact340

of geometry and topology of fractures networks on the connectivity. The main341

geometrical properties of the stochastic fracture networks considered include342

fracture lengths, orientations, apertures, positions of fracture centers. Six thou-343

sand different realizations have been generated to characterize these properties344

in each fracture network. Sketch maps of 2D and 3D fracture networks are345

shown in Figs. 4 and 5. The graph representations of 2D and 3D fracture net-346

works depicted in Figs. 11 and 12. By removing the noncontributing nodes and347

links (dead-ends) in the graph, we preserve the relevant topological structure of348
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Figure 11: Graph representation of each fracture network in Fig.4. The blue points are the
nodes including the start and end points of all fractures and all intersection points. The red
line segments are the links between nodes.

Figure 12: Graph representations of 3D fracture networks. The fractures in the left network
follow a fractal spatial density distribution with the fractal dimension of 2.5. The right
network has uniformly distributed fractures. The blue polygons are small fractures, and the
red polygons are large fractures. The green points represent fracture centroids and intersection
points. The yellow line segments are the links between the nodes.

the network, while reducing computational time significantly. Furthermore, it349

is more efficient to calculate flow using node-link formalism [86, 87, 88], rather350

than to solve it directly with the finite difference or finite element methods.351

As a result, we find that the reduced fracture networks, consisting of the352

least resistant paths from inlet nodes (fractures) to all outlet nodes, contribute353

to the majority of fluid flow. Demonstration of the pressure head in reference354
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and reduced 2D and 3D fracture networks are shown in Fig. 13. We use them

20 18 16 14 12 10 8 6 4 2 0

m

(a) (b)

(c) (d)

Figure 13: The hydraulic head distributions in the reference (a,b) and reduced (c,d) fracture
networks. The constant pressure boundary condition is set on the domain, where the hydraulic
head on the left edge in 2D and left face in 3D is 20 meters, and all other edges in 2D and
faces in 3D have a hydraulic head of 0 meters.

355

to replace the original fracture networks and reduce computational time in most356

cases. 3D fracture networks usually have higher global efficiency than 2D frac-357

ture networks because they have better connectivity. All geometrical properties358

impact the connectivity of a fracture system. Aperture distribution strongly359

affects the global efficiency of a fracture network, and its influence is more sig-360

nificant when large fractures dominate the system. Fracture clustering lowers361

global efficiency in both 2D and 3D fracture networks. Global efficiency of 2D362
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and 3D fracture networks also decreases with the increasing exponent of the363

power-law distribution of fracture lengths, which means that the connectivity364

of the system decreases with an increasing number of small fractures. Real-365

istic fracture networks, composed of several sets of fractures with constrained366

preferred orientations, share all the characteristics we have considered with the367

stochastic fracture networks in this work.368

4. Conclusions369

We detailed the procedures and algorithms of DFN modeling. In partic-370

ular, we explained the choices of fracture shapes, the stochastic distributions371

that describe fracture geometries, the methods of generating random variables372

following given distributions, the intersection analysis, clustering analysis, and373

the fracture growth algorithm. We combined the MLP method with the inverse374

CDF method to generate random variables following any sampling distribution.375

By extending the Newman–Ziff algorithm to fracture networks and combining376

it with the block method, we significantly enhanced the efficiency of our soft-377

ware. Fracture growth algorithm can generate T-type intersections and can378

be further extended to investigate dynamic fracture growth problems that in-379

corporate geomechanics. Three applications of the HatchFrac software in380

percolation analysis, intensity analysis, and flow and connectivity analysis were381

introduced to show the versatility of our software.382
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Appendix A. Generating variables following different distributions648

In this section, we introduce detailed procedures to generate random vari-649

ables following a power-law, exponential, log-normal, gamma, and von Mises–650

Fisher distribution. Two main methods are introduced: the inverse CDFmethod651

and the acceptance–rejection method. The C++ code for generating these dis-652

tributions are available online (https://data.mendeley.com/datasets/zhs97tsdry/653

1).654

The inverse CDF method for generating a random sample is premised on655

the fact that a continuous cumulative distribution function, φ, is a one-to-one656

mapping of the CDF domain into the interval (0,1). Therefore, if u is a random657

variable uniformly distributed on (0,1), then x = φ−1(u) has the distribution658

p(x), where p(x) is the corresponding probability distribution of φ. The inverse659

CDF method’s key point is to calculate the inverse of the cumulative distribu-660

tion function, which we can derive for power-law, exponential and log-normal661

distribution. In the following section, we derive the procedures to generate ran-662

dom variables following the three aforementioned distributions by applying the663

inverse CDF method. We also derive the truncated version for each of them664

since the real fracture parameters are finite and fall in a truncated range.665

Appendix A.1. Power-law distribution (truncated)666

If a random variable x (x ≥ 0) follows a power-law distribution, the proba-667

bility distribution function is668

p(x) = αx−a (A.1)

The cumulative distribution function is669

φ(x) =
∫ x

0
p(x)dx = α

1− ax
1−a (A.2)
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Apply the inverse CDF method, which assumes the cumulative distribution670

function φ(x) is a random variable, u, uniformly distributed in [0,1], and we can671

get the random variable following a power-law distribution672

x =
( (1− a)

α
u
) 1

1−a (A.3)

If the random variable follows a truncated power-law distribution, which673

means the xmin and xmax are known, we have the following probability distri-674

bution function according to conditional probability675

p(x | truncated) = p(x, truncated)
p(truncated) (A.4)

Therefore, we obtain the cumulative distribution function of the truncated676

power-law distribution as677

φ(x | truncated) =
∫ x

xmin

p(x)dx
/∫ xmax

xmin

p(x)dx = φ(x)− φ(xmin)
φ(xmax)− φ(xmin) (A.5)

Applying the idea of the inverse CDF method, in which φ(x | truncated) is a678

random variable, ut, uniformly distributed on [0, 1], we can have the random679

variable x follow a truncated power-law distribution.680

x =
( (1− a)

α
u
) 1

1−a (A.6)

where u is replaced with681

u =
(
φ(xmax)− φ(xmin)

)
× ut + φ(xmin) (A.7)

where φ(x) is shown in Eq. A.2.682
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Appendix A.2. Exponential law (truncated)683

The same steps derived before can be applied in generating variables follow-684

ing an exponential distribution as well, which is listed hereafter:685

1. The probability distribution of exponential distribution686

p(x) = λe−λx (A.8)

2. The corresponding cumulative distribution function687

φ(x) = 1− e−λx (A.9)

3. Apply the inverse CDF method, and assume that u is a random variable688

uniformly distributed on [0,1].689

x = ln(1− u)
−λ

(A.10)

4. Replace u with Eq. A.11, to obtain a random variable following a truncated690

exponential distribution.691

u =
(
φ(xmax)− φ(xmin)

)
× ut + φ(xmin) (A.11)

where φ(x) is shown in Eq. A.9 and ut is a random variable uniformly692

distributed on [0,1].693

Appendix A.3. Log-normal distribution(truncated)694

If a random variable x follows a log-normal distribution, which means ln(x)695

follows a normal distribution N(µ, σ2). The same steps apply.696
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1. The probability distribution of log-normal distribution697

p(x | µ, σ2) = 1
x
√

2πσ2
e
−( ln(x)−µ√

2σ
)2

(A.12)

2. The corresponding cumulative distribution function698

φ(x) =
∫ x

−∞
p(x | µ, σ2) = 1

2 [1 + erf( ln(x)− µ
σ
√

2
)] (A.13)

where erf() is the error function699

erf(x) = 2√
π

∫ x

0
e−t

2
dt (A.14)

3. Apply the inverse CDF method, and assume that u is a random variable700

uniformly distributed on [0,1].701

x = exp
(
erf−1(2× u− 1)× σ

√
2 + µ

)
(A.15)

where erf−1() is the inverse function of the error function.702

4. Replace u with Eq. A.16, we can have a random variable following a703

truncated log-normal distribution.704

u =
(
φ(xmax)− φ(xmin)

)
× ut + φ(xmin) (A.16)

where φ(x) is shown in Eq. A.13 and ut is a random variable uniformly705

distributed on [0,1].706

Note that the expectation and variance of a log-normal distribution are different707

from µ and σ2.708

Instead, the mean is709

E(x) = eµ+σ2
2 (A.17)
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and the variance is710

V (x) = (eσ
2
− 1)(e2µ+σ2

) (A.18)

Therefore, if the random variable x has a mean and variance A and B respec-711

tively, the corresponding µ and σ2 in a log-normal distribution are712

σ2 = ln(eln(B)−2 ln(A) + 1) = ln( B
A2 + 1) (A.19)

713

µ = ln(A)− 1
2σ

2 (A.20)

For a gamma distribution and von Mises–Fisher distribution discussed below,714

the inverse of the cumulative distribution function is difficult to obtain, and the715

inverse CDF method is not applicable. The acceptance–rejection method is ef-716

fective in dealing with this complex situation. The logic behind the acceptance–717

rejection method is to find a simpler distribution, s(x), if the original distribu-718

tion p(x) is too complex and ensure that s(x) > p(x). Then we generate a ran-719

dom variable x′ following the simper distribution s(x) and a random number u720

uniformly distributed on [0,1]. If u ≤ p(x′)/s(x′), accept x = x′, otherwise reject721

x′ and regenerate x′ and u. The key for the acceptance–rejection method is to722

find a proper distribution s(x) that is close to p(x) so that the acceptance rate723

will be high and the method will be efficient. The optimal distribution function724

is the supremum function of p(x) theoretically. However, it is difficult to achieve725

the supremum function in most cases. Generating random variables following a726

gamma distribution and von Mises-Fisher distribution itself is a research prob-727

lem. We are not going to propose new methods to realize the generation. In-728

stead, we will introduce a few efficient and stable methods and provide the C++729

program for them (https://data.mendeley.com/datasets/zhs97tsdry/1).730
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Appendix A.4. Gamma distribution731

The choice of a suitable distribution function s(x) for the gamma law dis-732

tribution is nontrivial. If a random variable follows a gamma law distribution,733

the corresponding probability distribution function is734

p(x | α, β) = βαxα−1e−βx

Γ(α) (A.21)

where α is a shape parameter and β is a rate parameter, and its inverse is a scale735

parameter. The gamma distribution has a scaling characteristic, which means736

if x follows a gamma distribution, x ∼ Γ(α, β), then cx also follows a gamma737

distribution with a rate factor equal to β/c, cx ∼ Γ(α, β/c). Therefore, we can738

always generate a random variable following a Γ(α, 1) and then multiply the739

variable with 1/β to make the variable follow the distribution Γ(α, β). When740

the shape parameter α ≤ 1, we adopt the method proposed by Kundu and741

Gupta [89]. It has a lower rejection probability than the popular Ahrens-Dieter742

or Best method. For α > 1, we adopt the approach proposed by Martino and743

Luengo [90], which uses another gamma density as the replacement distribution.744

It turns out to be simple and extremely efficient. Interested readers can find745

the details of the method in the papers mentioned, and the program is available746

online.747

Appendix A.5. von Mises–Fisher distribution748

If a random D-dimensional vector ~x follows a von Mises–Fisher distribution,749

the corresponding probability distribution function is:750

p(~x | ~µ, κ) = CD exp(κ~µT~x) (A.22)
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where CD(κ) is751

CD(κ) = κD/2−1

2πD/2ID/2−1(κ)
(A.23)

where Iν denotes the modified Bessel function of the first kind of the order ν.752

The parameters ~µ and κ are the mean direction and concentration parameters,753

respectively. κ controls the concentration degree of the distribution around the754

mean direction ~µ. When κ = 0, the von Mises–Fisher distribution degenerates755

to a uniform distribution. When κ is large, the distribution becomes very con-756

centrated around the angle ~µ.757

In our software, we only consider the vector ~x in 2D or 3D spaces. In two758

dimensional cases, the distribution becomes von Mises distribution, which is a759

probability distribution on the unit circle. When κ is large, the distribution is760

close to a normal distribution, and 1/κ is analogous to σ2. We adopted the761

program proposed by Berens et al. [91], which is the algorithm used in the762

MATLAB toolbox, CircStat. In three dimensional cases, this distribution is763

also called the Fisher distribution and is a probability distribution on the unit764

sphere. We adopt the method proposed by Kurz and Hanebeck [92], which765

can be used to generate von Mises–Fisher distribution for any number of di-766

mensions. However, we consider the special case of D = 3, where we can use767

the inverse CDF method instead of the acceptance–rejection method. Since the768

inverse CDF method is analytical, it is much more efficient than the acceptance–769

rejection method. Interested readers can find the details of the method in the770

papers mentioned, and the program is available online. To obtain the rotation771

matrix concerning the default mean direction, a C++ template library special-772

ized for linear algebra, Eigen[93], is used to implement the QR decomposition.773

An example of von Mises–Fisher distribution on the unit sphere with different774

values of κ is shown in Fig. A.14.775
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Figure A.14: Illustration of the von Mises–Fisher distribution on a unit sphere. The mean
direction of the red and blue dots is (1,0,0), and the mean direction of the green dots is
(0,0,1). κ controls the concentration degree of the distribution. The larger the κ, the more
concentrated the distribution is.
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