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Abstract

A key step in model development is selection of an appropriate representational system, including both the representation of
what is observed (the data), and the formal mathematical structure used to construct the input-state-output mapping. These
choices are critical, because they completely determine the questions we can ask, the nature of the analyses and inferences we
can perform, and the answers that we can obtain. Accordingly, a representation that is suitable for one kind of investigation
might be limited in its ability to support some other kind.

Arguably, how different representational approaches affect what we can learn from data is poorly understood. This paper ex-
plores three complementary representational strategies as vehicles for understanding how catchment-scale hydrological processes
vary across hydro-geo-climatologically diverse Chile. Specifically, we test a lumped water-balance model (GR4J), a data-based
dynamical systems model (LSTM), and a data-based regression-tree model (Random Forest). Insights were obtained regarding
system memory encoded in data, spatial transferability by use of surrogate attributes, and informational deficiencies of the
dataset that limit our ability to learn an adequate input-output relationship. As expected, each approach exhibits specific
strengths, with LSTM providing the best characterization of dynamics, GR4J being the most robust under informationally
deficient conditions, and RF being most supportive of interpretation.

Overall, the complementary nature of the three approaches suggests the value of adopting a multi-representational framework in

order to more fully extract information from the data. Our results show that a multi-representational approach better supports

the goals of prediction, understanding, and scientific discovery in Hydrology.
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KEY POINTS 
• The representation underlying a model pre-determines what can be learned, which 

argues for a flexible approach to scientific investigation. 
• By employing multiple representational approaches, we improve our chances of 

properly understanding the underlying Data Generation Process. 
• Such an approach helped in understanding how to model precipitation-streamflow 

response across hydro-geo-climatologically diverse Chile.    
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ABSTRACT 

A key step in model development is selection of an appropriate representational system, 
including both the representation of what is observed (the data), and the formal mathematical 
structure used to construct the input-state-output mapping. These choices are critical, because 
they completely determine the questions we can ask, the nature of the analyses and inferences 
we can perform, and the answers that we can obtain. Accordingly, a representation that is 
suitable for one kind of investigation might be limited in its ability to support some other 
kind.  

Arguably, how different representational approaches affect what we can learn from data is 
poorly understood. This paper explores three complementary representational strategies as 
vehicles for understanding how catchment-scale hydrological processes vary across hydro-
geo-climatologically diverse Chile. Specifically, we test a lumped water-balance model 
(GR4J), a data-based dynamical systems model (LSTM), and a data-based regression-tree 
model (Random Forest). Insights were obtained regarding system memory encoded in data, 
spatial transferability by use of surrogate attributes, and informational deficiencies of the 
dataset that limit our ability to learn an adequate input-output relationship. As expected, each 
approach exhibits specific strengths, with LSTM providing the best characterization of 
dynamics, GR4J being the most robust under informationally deficient conditions, and RF 
being most supportive of interpretation.  
Overall, the complementary nature of the three approaches suggests the value of adopting a 
multi-representational framework in order to more fully extract information from the data. 
Our results show that a multi-representational approach better supports the goals of 
prediction, understanding, and scientific discovery in Hydrology. 
 

PLAIN LANGUAGE SUMMARY 
The representations we use when analyzing data and modeling systems completely determine 
the questions we can ask, the nature of the analyses and inferences we can perform, and the 
answers that we can obtain. So, any given modeling approach may be highly suitable for 
learning certain things about a system but be completely unsuitable for learning other things. 
To explore how different representational approaches can affect what we can learn from data, 
we explore how three complementary modeling approaches (one lumped water balance and 
two machine-learning methods) can support an improved understanding of how catchment-
scale hydrological processes vary across the diverse hydro-geo-climatology of Chile. Each 
approach was found to exhibit specific strengths, and interesting insights were obtained 
regarding system memory, attributes that correlate with transferability across different 
regions, and informational deficiencies of the available dataset. Overall, this study suggests 
the value of adopting a general multi-representational framework to better support prediction, 
understanding and scientific discovery in the Earth and Environmental Sciences. 
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1 INTRODUCTION 1 

1.1 The Problem of Selecting an Appropriate Representational System 2 

[1] When developing any dynamical systems model, be it conceptual or data-based, a key 3 
step is the selection of an appropriate representational system. This step includes two aspects: 4 
(1) the choice of system inputs (driving variables) and boundary conditions relevant to 5 
predicting the dynamical evolution of the system states and outputs, and (2) the formal 6 
mathematical/algorithmic structure used to construct the input-output (or input-state-output) 7 
mappings that are hypothesized to characterize the system (Gupta et al, 2012; Gharari et al, 8 
2021).  9 

[2] In hydrology, as in other environmental disciplines, the selection of system inputs and 10 
boundary conditions determines the nature and quality of the information that can be brought 11 
to bear on the prediction problem – without adequate and informationally relevant data, the 12 
task of predicting the system outputs is doomed from the outset. Having done so, the 13 
mathematical/algorithmic representational system selected for constructing the input-output 14 
mapping is critical, because it completely determines the questions we can ask, the nature of 15 
the analyses and inferences we can perform, and the answers that we can obtain.  16 

[3] For example, a dynamical process-resolved (often called physically-based) catchment-17 
scale hydrological model is typically constructed to answer questions such as “what kind and 18 
magnitude of streamflow response can we expect to see when a specific catchment system is 19 
perturbed by a certain sequence of rainfall (and temperature) inputs”. If a mass/energy-20 
conserving spatially-lumped bucket-type state-space representation is implemented, then one 21 
may be able to obtain insights into aggregate catchment-scale soil moisture storage variations 22 
(and their vertical distribution in the soil zone), whereas a spatially-distributed finite-23 
element/difference representation may be used to infer the dynamic evolution of soil-24 
moisture (and other state-variables and fluxes) in three-dimensional space.  Such models 25 
focus on preserving and tracking “mass and energy (sometimes also momentum) flows” 26 
through the system.   27 

[4] On the other hand, if a data-based machine-learning type of representation is 28 
implemented, then the focus is on preserving and tracking “information flows” through the 29 
system. In this case, the model may not be as well suited (as a process-resolved 30 
representation) to inferring state variables such as “soil moisture” or fluxes such as 31 
“percolation, recharge and interflow” that are constrained (by physics) to obey conservation 32 
principles, unless appropriate regularization constraints are also implemented.   33 

[5] In summary, the representational structure (of both the data and the model) selected for 34 
the analysis imposes strong constraints on the questions we can ask, the results we can get, 35 
and the inferences we can reasonably hope to perform. Consequently, we can expect, a priori, 36 
that different representational strategies may provide different perspectives on the factors and 37 
processes governing the generation of system behaviors.  38 

1.2 Models as Complementary Perspectives on Reality 39 

[6] For any given application, it can be challenging to determine what the most appropriate 40 
model structure might be. In hydrology, as in other fields, this situation has led to the 41 
availability of a very large variety of models, each based on different assumptions (and even 42 
philosophies), and often having been tested under different (sometimes very specific) 43 



manuscript submitted to Water Resources Research 

conditions. This diversity of modeling approaches brings to mind the classic story of the 44 
“blind people and the elephant” where each person’s interpretation of what constitutes an 45 
“elephant” is based on their experience being limited to some very specific aspect of the 46 
animal, while also being limited by their ability to map that experience onto their previous 47 
knowledge (i.e., they are limited by what they can “recognize”).  48 

[7] Given that any model is a “relevant simplified representation” of the world, where the 49 
simplifications typically reflect personal biases and preferences, it is quite possible for there 50 
to be as many viable “representations” to choose from as there are people working on a given 51 
problem. In practice, however, only some of these viable representations will tend to perform 52 
well (when evaluated against data), thereby considerably decreasing the number of 53 
potentially suitable options. Nevertheless, it can remain difficult to identify a single “best” 54 
model, since many different representations can be found to exhibit similar levels of 55 
performance (Clark et al, 2011).  56 

[8] Returning to the metaphor of the “blind people and the elephant”, rather than asking 57 
which of the representations is (somehow) “the best”, one might instead consider whether 58 
the multiple complementary perspectives offered by the different representations can provide 59 
information that can be used to develop a better overall understanding of the system under 60 
investigation. By taking a multi-representational perspective, within which each 61 
interpretation of the system is deemed to be valuable (in at least some partial sense that 62 
contributes to a more complete overall point of view), we can hope to make progress towards 63 
uncovering the “real” nature of the underlying Data Generation Process (DGP).  64 

1.3 The Potential Offered by Lumped Water Balance Modeling 65 

[9] Lumped water balance models, that are structurally and behaviorally isomorphic to the 66 
system, are the mainstay of how understanding is developed in science in a very simplified 67 
(conceptual) representation. Such representations enable theoretical prior knowledge (such 68 
as conservation and thermodynamic principles) to be imposed as physical constraints on the 69 
allowable input-state-output trajectories of a system.  70 

[10] The development of such models is structured as a sequence of conditional hypotheses, 71 
beginning with the governing conservation laws, and proceeding through the specification of 72 
the system architecture, process parameterization equations, and property-to-parameter 73 
relationships; see extensive discussion in Gharari et al (2021). Different choices at each stage 74 
of development can give rise to different “compound hypotheses”; for examples of modular 75 
modeling systems in hydrology, see (Fenicia et al, 2011; Clark et al, 2015; Craig et al, 76 
2020). This facilitates a multi-hypothesis approach to scientific investigation (Clark et al, 77 
2011), in which each model represents a point within a hypothesis space that is strongly 78 
constrained by physics, assumptions, and prior knowledge.   79 

[11] The strength of this representational approach is the ability to constrain discovery to 80 
model structures that are consistent with physical principles.  An important consequence is 81 
that “meaning” can be ascribed to the various components, fluxes, and state variables of the 82 
model, making it possible to transfer understanding between locations, and to generalize to 83 
classes of systems that share similar representational properties. 84 

[12] However, this strength can become a weakness when, by imposing strong priors, we 85 
limit the ability of the model to learn explicitly and directly from data, and to discover things 86 
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that are inconsistent with the space of hypotheses explicitly covered by the priors (Gharari 87 
et al 2021). 88 

1.4 The Potential Offered by Machine Learning (ML) 89 

[13] Conversely, due to its ability to extract complex relationships from large datasets, 90 
Machine Learning (ML) has gained a reputation for being able to help address some of the 91 
most challenging tasks in science, particularly where theoretical understanding is lacking or 92 
is weak. Recently, applications to hydrology have demonstrated excellent results in different 93 
areas. To mention just a few, Long-Short Term Memory networks were successfully applied 94 
to large-scale streamflow prediction (Kratzert et al, 2018), to a long record for one catchment 95 
(Hu et al, 2018), to the estimation of water table depth for five agricultural areas (Zhang et 96 
al, 2018), and to 5-day-ahead prediction (Sudriani et al, 2019).  97 

[14] Overall, the power of ML-based representations arises from their theoretical and 98 
practical ability to approximate any input-state-output mapping to an arbitrarily high degree 99 
of accuracy, given sufficient data. Consequently, ML has emerged as a powerful 100 
complement/alternative to the hypotheses-driven process-based approach to hydrological 101 
modeling. However, as with the lumped water balance approach, each ML 102 
algorithm/approach is based on a different mathematical perspective about how to represent 103 
the structures underlying a given data set, and/or on how to represent and extract information 104 
contained in the data. Accordingly, when different ML algorithms are applied to a given data 105 
set, each is (also) likely to provide a different and, in general, complementary perspective on 106 
the underlying nature of the DGP. By understanding how different ML algorithms represent 107 
and extract information from data, we can seek to understand the particular value offered by 108 
each perspective and exploit it to obtain a more comprehensive picture of the underlying 109 
system. 110 

1.5 Objectives and Scope of this Paper 111 

[15] The objective of this paper is to explore how a multi-representational approach can help 112 
to extract relevant information from a dataset, with a view to improving prediction, 113 
understanding, and discovery.  Our specific goal is to use such an approach to develop an 114 
understanding of catchment hydrology across the hydro-geo-climatologically diverse extent 115 
of Chile. Rather than the traditional strategy of implementing a single pre-selected 116 
computational model code to the entire country, or perhaps a different model code to 117 
hydrologically different parts of the country, we implement three complementary 118 
representational approaches (model structures) across the entirety of Chile.  These include a 119 
a lumped water-balance model (based in a physical understanding of watershed behavior) 120 
and two machine learning models (based on information extracted from historical 121 
observations). Our focus is on understanding the strengths and weaknesses associated with 122 
each representational approach, and on exploring the potential richness of inferences that a 123 
multi-representational approach can support. 124 

[16] In the next section, we introduce the problem of catchment-scale hydrological 125 
forecasting in the context of the particular hydro-geo-climatology of Chile.  Section 3 will 126 
discuss the study methodology. The study results are presented in Section 4.  Finally, we 127 
provide a discussion and some thoughts about the implications of this work in Section 5.  To 128 
be clear, this study should be considered to be exploratory, with a view to improving our 129 
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understanding of how a multi-representational approach can be exploited in the service of 130 
enhanced scientific discovery. 131 

2 THE CHALLENGE OF STREAMFLOW PREDICTION ACROSS 132 
HYDROLOGICALLY DIVERSE CHILE 133 

[17] Prediction of streamflow at national scales is challenging, due to the multitude of 134 
relevant factors that can vary simultaneously across time and space. In particular, the ability 135 
of hydrological models to generalize can be poor in regions where the spatial variability of 136 
dynamical forcings and static attributes is large (Malone et al., 2015). This is especially 137 
relevant to Chile, which is characterized by tremendous geo-hydro-climatic variability, both 138 
along its 4,270 km (2,653 mi) North-South extent and also from East to West (Figure 1). At 139 
one extreme, Northern Chile is home to the driest desert in the world, containing regions 140 
where no precipitation has been recorded for more than 25 years. At the other extreme, more 141 
than 5000 mm/year of precipitation has been recorded in parts of the south, where there are 142 
also permanent icefields.  143 

[18] Bordered by the Pacific Ocean to the West and Argentina to the East, the country 144 
averages just 175 km (109 mi) in width, while the North-South running Andes Mountain 145 
range rises to the highest elevation in South America (6,959 m or 22,831 ft). Moreover, a 146 
second mountain range, with lower elevations, runs parallel to the coast along almost the 147 
entire country. Owing to the high elevations of the mountain ranges, precipitation in the 148 
headwater catchments occurs mainly as snow, due to which the corresponding streamflow 149 
peak will appear many days or even weeks after the precipitation event. In contrast, where 150 
liquid precipitation occurs in catchments with high slopes, the times of concentration can be 151 
shorter than one day. Other factors, including the variability of forest fraction, degree of 152 
human intervention, and valleys created between the two mountains range, are also strongly 153 
related to the availability of water in the long term. 154 

[19] This immense variability in geo-hydro-climatic conditions poses a considerable 155 
challenge for any modeling system, and especially for lumped water balance representations 156 
where the model structure must be selected in advance. As such, Chile presents a perfect 157 
opportunity to explore the possibility of developing modeling techniques that can deal with 158 
large geo-hydro-climatic variability, and even exploit it to achieve better model performance.  159 

3 STUDY METHODOLOGY 160 

[20] This section presents and discusses our study methodology, including the dataset used 161 
(section 3.1), three representational methods used (section 3.2), and issues related to the 162 
experimental design (section 3.3).  163 

3.1 Dataset 164 

[21] For the purposes of this study, we will use mainly the information provided by the 165 
catchment-scale CAMELS-CL dataset (Alvarez-Garreton et al, 2018). This dataset includes 166 
11 variables and 105 categorical and numerical attributes for 516 Chilean catchments. For 167 
model development and evaluation, we selected 322 catchments selected to span the country 168 
and to have a minimum streamflow record length of 7 years. The literature suggests that 2-3 169 
water-years of daily data represents a minimum record length for calibration of conceptual 170 
process-resolved models (Gupta and Sorooshian 1985) while around 8-10 years may be 171 
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required to ensure some degree of stability with respect to the estimated model (Vrugt et al., 172 
2006). On balance, therefore, 7 years represents a reasonable tradeoff between the availability 173 
of the model development and spatial representation of catchments. Note also that the time-174 
periods of model development data selected for each catchment are not necessarily identical 175 
or even overlapping, they simply represent whatever is available for those catchments. More 176 
details on how the data were selected and partitioned appear in De la Fuente (2021).  177 

3.2 Representations Examined 178 

[22] To develop an improved understanding of the nature of catchment-scale hydrology at 179 
the national scale across Chile we will use a multi-representational approach.  Clearly, this 180 
approach must be consistent with the available data (Section 3.1). With this in mind, we 181 
chose to investigate three complementary representational strategies – one being a lumped 182 
water balance model, and the other two being ML-based modeling strategies. While 183 
additional representational strategies could also have been included, these three arguably 184 
represent sufficiently different approaches to extracting information from data to support the 185 
objectives of this study. 186 

[23] For the lumped water balance model, we chose the GR4J dynamical systems model 187 
(Perrin et al, 2003), due to its relative parsimony and the reports of good performance in 188 
other studies (Kunnath-Poovakka & Eldho, 2019; Sezen & Partal, 2019; Pagano et al., 189 
2010), and because the catchment-scale data required for its implementation is available (see 190 
Appendix Table A-2). For the ML-based modeling strategies, we selected the LSTM network 191 
(Hochreiter & Schmidhuber, 1997) and the RF regression-tree algorithm (Breiman, 2001).  192 
Further details about these modeling strategies are provided below.  193 

3.2.1 The GR4J Lumped Water Balance Representation 194 

[24] The GR4J model is a parsimonious lumped water balance (process-based) 195 
representation of daily time-step spatially-lumped catchment-scale hydrology, whose input-196 
state-output behavior can be controlled by adjusting four tunable parameters (Figure 2a). 197 
GR4J is the outcome of several studies that evaluated a variety of model structures having 198 
various levels of complexity, using data from 429 catchments with differing geo-hydro-199 
climatic conditions. While more complex representational structures are available, such as 200 
GR5J (Le Moine, 2008) and GR6J (Pushpalatha et al, 2011, CemaNeige; Valéry, 2010), 201 
GR4J provides a relatively simple representative of this class of models, and a search for the 202 
“best” such model for Chile is not part of the scope of this study. 203 

[25] Importantly, the GR4J representation seems well suited to application across Chile for 204 
several reasons, including the fact that it contains a flow path without storage that gives it the 205 
ability to simulate the very rapid precipitation-streamflow response that is characteristic of 206 
the steep surface slopes that occur across portions of Chile. Further, it has the desirable 207 
feature that it includes a parameter that can be tuned to permit the model to either “import” 208 
or “export” water into its main routing storage tank to enable the model to better match the 209 
input-output behavior of the system as expressed by the observed time-series data.  210 

[26] As such the GR4J model serves as a kind of lumped water balance benchmark against 211 
which the ML-based representations can be compared (no pre-existing benchmark model 212 
calibrated across the entire country exists). Following the traditional approach, the 213 
parameters of the GR4J model are tuned (calibrated) “locally” to be specific to each 214 
catchment.  This is in contrast to the ML-based approaches (see below) where the parameters 215 
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(network weights and/or biases) are tuned “globally” to represent all catchments across the 216 
study domain (in our case the entire country of Chile).  Because GR4J is calibrated locally, 217 
it can be considered to represent a performance benchmark that one would want a globally-218 
tuned data-based ML approach to be able to exceed, particularly when requiring the model 219 
to generalize well (i.e., to perform well on catchments that are withheld from the model 220 
development data set).  For more details on the structure of the GR4J model, please see Perrin 221 
et al (2003). 222 

3.2.2 The LSTM ML-based Representation 223 

[27] The LSTM model (Figure 2b) is a fully connected Recurrent Neural Network (RNN) 224 
with the ability to learn from the past. The recurrence feature is akin to that of the tank-like 225 
components of physically-based catchment models, but where the nature of the relationships 226 
between inputs, state variables, and outputs is learned from the data. The structure of an RNN 227 
is based on the linear superposition of non-linear basis functions (known as activation 228 
functions), which enables the network to closely match the nature of the true relationships 229 
that underlie the data.  230 

[28] The LSTM-based representation is somewhat more complicated than the traditional 231 
RNN because additional components (called gates, or gating functions) are used to 232 
contextually control how the flow of input, output, and previous state information affects the 233 
network response at each time step. In this sense, the LSTM cell-states can be thought of as 234 
non-linear extensions of the classic linear reservoir component commonly used for 235 
hydrological modeling (see Table 1). As such, the LSTM can be interpreted as a 236 
representation of Dynamic Information Storage, where the gating functions act as 237 
contextually variable resistances to the flows of different kinds of information. For more 238 
detail about the equations used in the LSTM model, please refer to Kratzert et al. (2018).  239 

[29] By drawing an analogy with the linear reservoir (Table 1), it is possible to interpret each 240 
of the functions and components in the LSTM. The function g(x,h) computes a linear 241 
combination of inputs and outputs, adds a bias term, and then non-linearly transforms the 242 
result onto the range [-1, 1] using the hyperbolic tangent equation. The quantity c(t) can be 243 
understood as an informational “state variable” of the system, where the information carried 244 
by c(t) is contextually updated based on the values of weights f(t) and i(t) applied to the past 245 
storage information and drivers, respectively. Whereas the linear reservoir computes the 246 
output as a constant proportion of the storage S(t), the LSTM defines this proportion 247 
dynamically through the gating function o(t). In summary, the gating functions f(t), i(t), and 248 
o(t) act as dynamic amplification factors that can take on values between ]0,1[ controlled by 249 
a sigmoid-shaped activation function. Meanwhile, the variables g(t) and c(t) represent 250 
different informational representations of the input, output, and storage, normalized using the 251 
hyperbolic tangent function to take on values between ]-1.1[. 252 

[30] Due to the isomorphic relationship of the LSTM to the linear reservoir, it becomes 253 
possible for the structure of the GR4J model to be emulated using an LSTM. However, 254 
because the LSTM can exploit the information provided by inputs beyond precipitation and 255 
potential evapotranspiration, it becomes more difficult to apply physically-based 256 
interpretations to the behaviors of its state variables.     257 
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3.2.3 The RF-based Representation 258 

[31] The RF is a regression-tree methodology (Figure 2c) that adopts the classic strategy of 259 
“divide and conquer” to construct an approximation of the input-output mapping expressed 260 
by the data. The RF algorithm searches for an “optimal” partitioning of the input space, that 261 
maximizes the similarity within each output cluster that represents a leaf of the decision tree. 262 
The similarity measure used is the weighted average dispersion of the outputs within a 263 
cluster, where dispersion is measured as the sum of squared deviations from the mean of the 264 
cluster members (L2 norm).  It is typically assumed that the input-space partition resulting 265 
in the smallest average dispersion, weighted by the number of elements, is best. This process 266 
is repeated within each partition until a prespecified minimum number of elements remains 267 
within a subset, and/or until a predefined number of splits have been conducted. 268 

[32] The RF implements a piecewise-constant approximation of a complex continuous input-269 
output mapping, where for each new split, we look for the minimum difference between the 270 
cluster means (predictions) and their corresponding target values (output data). To avoid this 271 
deterministic process becoming highly biased by the specific data sample used to construct 272 
the decision tree, the RF approach uses a random sample (selected with replacement) from 273 
the data set to construct each decision tree and repeats the process multiple times to generate 274 
a “forest” (ensemble) of decision trees. The use of randomized ensembles helps to reduce 275 
overfitting, while randomness in the input selection helps to improve the accuracy of the 276 
classifier and regressor algorithm (Breiman, 2001). The final prediction is generated as the 277 
average prediction made by each of the trees in the forest. From the perspective of 278 
interpretability, it is easy to examine each input-space split associated with the model 279 
predictions, making it relatively easy to understand the steps connecting the input to the 280 
outputs, without the need to track any intermediate variables or states. 281 

[33] Another issue is related to the nature of the problem. Because streamflow is the result 282 
of complex processes within a Dynamical Environmental System, knowledge of the system 283 
state can be very important for characterizing how the system will respond to new inputs 284 
given past conditions. In other words, the streamflow on a specific day is not just the result 285 
of what happens on that day but also depends on what has happened in the past. Moreover, 286 
the history of a catchment can be understood in terms of different time scales, such that the 287 
current streamflow response is related to both what happened recently (short-term memory) 288 
and what has happened in the past months or even years (long-term memory), due to 289 
persistence in the behavior of the system. These two kinds of memory are not explicitly 290 
represented by the structure of the RF. Accordingly, it is the responsibility of the modeler to 291 
ensure that the input data contain variables that provide such memory-related information 292 
that can be used by the RF in place of state variables to track both the short-term and long-293 
term dynamics of the system. This feature can be interpreted as both a “pro” and a “con” of 294 
the RF approach; it is pro in the sense that it allows the modeler to exert better control over 295 
the model by injecting physical understanding, while it is a con because it imposes higher 296 
demands in the form of data preprocessing. 297 

[34] The ML-based RF and lumped water balance GR4J representations are harder to 298 
compare (than the LSTM and GR4J representations) because of RF’s lack of state variables 299 
that mediate between the inputs and outputs, and because of the piecewise-constant nature of 300 
the RF representation. However, this does not mean that memory and dynamics are not 301 
considered by the RF, because state variables can be thought of as representing the aggregate 302 
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effects of an infinite number of past system inputs.  Accordingly, provided that the RF is fed 303 
with a sufficiently long history of past system inputs, the representation can learn to construct 304 
input-space splits that emulate those that would have resulted from the tracking of state 305 
variable information.  306 

3.3 Experimental Design 307 

[35] The main challenge to creating a unified model development methodology is that each 308 
of the three representational strategies has different conceptual, mathematical, and coding 309 
characteristics, and therefore different structures and processes of implementation, that must 310 
be followed to obtain an operational model. It is, therefore, impossible to implement an 311 
entirely uniform methodology for model development. Accordingly, we followed the 312 
reasonable approach of implementing the recommended best model development practices 313 
for each representational type and compare the results so obtained. However, the overall 314 
methodology conforms to a common framework, so as to enable comparative analysis. 315 
Accordingly, all comparisons are based on the use of the same data and performance metrics 316 
for model development and evaluation. 317 

[36] Appendix A1.1 discusses how we partitioned the data into , that was done using three 318 
periods for the purposes of model calibration, selection, and evaluation, consistent with the 319 
ML literature. The Appendices A1.2 and A1.3 summarize the variables and attributes used in 320 
model development. Appendix A1.4 discusses how the warm-up period used for both GR4J 321 
and LSTM was selected. Appendix A1.5 discusses the process of parameter/hyperparameter 322 
selection for each model. Appendices A1.6 and A1.7 describe the metrics and algorithms 323 
used, and Appendix A1.8 describes how the out-of-sample testing dataset was generated. 324 

4 EXPERIMENTAL RESULTS 325 

[37] In keeping with the objectives of this paper, our analysis pays special attention to how 326 
the different representational approaches can be used to make inferences regarding various 327 
characteristics of the hydrological processes that underlie the data. Accordingly, this section 328 
consists of two parts.  In section 4.1 we investigate issues of overall understanding and/or 329 
discovery, such as system memory and feature importance, enabled by the multi-330 
representational approach.  In section 4.2 we investigate how the different models 331 
constructed using the different representational approaches performed in terms of the ability 332 
to generalize in space and time.  333 

4.1 Understanding Enabled by the Multi-Representational Approach    334 

[38] Each representational approach responds differently to the fluxes of information through 335 
the system, and that response can provide useful insights into the characteristics of the 336 
system. This happens because each time that the representation assimilates a new piece of 337 
information, it updates its internal structure/parameters, which can be understood as learning 338 
about changes in the internal state of the system. Therefore, the final “learned” version of 339 
the representation (the trained model) encapsulates a considerable amount of information that 340 
can be subject to analysis. Here, we investigate how data skewness, system memory, and the 341 
relative importance of surrogate variables provide insights into the underlying nature of the 342 
DGP.  343 
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4.1.1 The Box-Cox Transformation Parameter 344 

[39] The Box-Cox power transformation 𝑌 = #𝑦! − 1'/𝜆 is commonly used in statistical 345 
analysis (Box and Cox, 1964) to account for skewness in the data (represented here by 𝑦). If 346 
𝜆 = 1 the variable 𝑌 has essentially the same distributional properties as 𝑦 (no transformation 347 
beyond a shift of origin), while by setting 𝜆 to be smaller or larger than 1.0, the skewness of 348 
𝑌 can be reduced or increased, respectively, relative to 𝑦. In hydrology, strong skewness of 349 
the streamflow distribution (corresponding to values of 𝜆 → 0) is indicative of precipitation 350 
being the main driver of system dynamics, while weak streamflow skewness may indicate 351 
the dominance of groundwater, snowmelt, or other processes that act as low-pass filters in 352 
the generation of streamflow dynamics. 353 

[40] In our implementation of the GR4J model, the 𝜆 parameter was allowed to vary with 354 
location to allow the model development process to account for the hydro-geo-climatic 355 
variability of skewness in the streamflow data. Figure 3 presents the distribution of spatially-356 
varying ‘optimal' 𝜆 values obtained for the 322 catchments in the model development dataset.  357 
While the optimized 𝜆 values vary across the full range tested (0.00 to 2.00), a high 358 
concentration (~35%) of values fall in the first bin (𝜆~0), consistent with the traditional use 359 
of a logarithmic transformation when calibrating daily-time-step models in hydrology 360 
(Hassan & Hassan, 2021). This result is consistent with the large range of possible 361 
streamflow values that can occur across Chile, where streamflow can vary over several orders 362 
of magnitude in catchments that respond quickly to intense precipitation events. In contrast, 363 
~10% of the catchments are associated with 𝜆 > 1, where very little variability in the range 364 
of streamflow magnitudes can be found (e.g., where precipitation-runoff is weak, or where 365 
baseflow tends to be the dominant streamflow generating mechanism).  366 

[41] In the implementations of the LSTM and RF models, single values of lambda were 367 
applied across the entire country. Figures 4a and b present cumulative density functions 368 
(CDF) of KGEss metric performance (Gupta et al 2009, Knoben et al 2019; see definitions 369 
in Appendix A1.7) computed over the selection period (validation), for different choices of 370 
lambda. For each CDF, we report the area under the curve to serve as guidance for selecting 371 
the best value of lambda (treated as a hyperparameter), where smaller areas correspond to 372 
better overall performance. In contrast with GR4J, where the average value of 𝜆 is close to 373 
zero, Figure 4a indicates that better performance of the RF model is obtained with 𝜆 close 374 
to one, which corresponds to not applying a transformation to the streamflow data. This 375 
makes sense in retrospect, because when the decision tree splits the data into different clusters 376 
it is inherently able to account for skewness, and so the addition of a transformation does not 377 
necessarily provide any significant additional value to the model development process (note 378 
the relatively weak dependence of performance on 𝜆). Based on this observation, when 379 
developing the RF model, we fixed the value to 𝜆 = 1 (corresponding to no transformation) 380 
and report only results obtained using this value. 381 

[42] Note that when implementing the LSTM, we obtained better results (Figure 4b) by 382 
using a ‘global’ standardization of the data (subtracting the mean and dividing by the 383 
standard deviation of streamflow values computed from the entire Chile-wide dataset), rather 384 
than a ‘local’ standardization (where the mean and standard deviation were regressed against 385 
aridity index). Further, Figure 4b indicates that the performance of the LSTM model so 386 
obtained is not sensitive to the choice of 𝜆, and so we again fixed the hyperparameter 𝜆 = 1 387 
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(corresponding to no transformation) for both standardization approaches, and report only 388 
results obtained using this value. 389 

[43] These results are interesting because the value of 𝜆 encodes information about the DGP 390 
when using the GR4J representation but not when using the ML-based representations. One 391 
might speculate that this result is a consequence of the fact that the ‘local’ GR4J modeling 392 
approach permits each catchment to be represented by a different value for 𝜆, while the 393 
‘global’ ML-based modeling approaches require the specification of a single country-wide 394 
value. However, if this were true we might expect the ML-based ‘globally optimal’ 𝜆 values 395 
to converge to something like the mean or median of the GR4J-based distribution of ‘locally 396 
optimal’ 𝜆 values.  Given that this is not the case for both the (quite different) LSTM and RF 397 
representational approaches, it is more likely that the ML models are internally able to 398 
address problems related to data skewness in some other manner.  Nonetheless, this remains 399 
an interesting issue for future investigation. 400 

4.1.2 System Memory 401 

[44] For the ML-based representations, an important property is the manner in which the 402 
“system memory” is characterized, in terms of the number of previous time-steps of input 403 
data (meteorological variables) that are determined to provide useful information about the 404 
current value of streamflow.  Note that this “lag-time” hyperparameter is not relevant to the 405 
GR4J representation, which tracks system memory exclusively through its state variables. 406 
Figures 5a and b show how the CDFs of the model performance vary with different values 407 
of the lag-time hyperparameter for the RF and LSTM models respectively. 408 

[45] Consider first the RF model.  For catchments with KGEss better than ~0.45, the CDFs 409 
move progressively to the right (indicating improved performance) as the lag-time is 410 
increased from 2 to 32 days, whereas for catchments with KGEss less than ~0.45 the results 411 
are insensitive to the value of the lag-time hyperparameter.  Further, the marginal 412 
performance improvement declines, on average, as the lag-time is increased. A similar result 413 
is found for the LSTM model, but now we see an additional region of improvement when 414 
going from 128 to 270 days, occurring mainly in catchments with KGEss values below ~0.85. 415 

[46] Taken together, these results suggest that the ML-based models are detecting the 416 
expression of two different kinds of processes giving rise to streamflow generation across 417 
the country, one related to a system “memory” of around 32 days and the other related to one 418 
of around 270 days. We will revisit this topic in the next section, where we see that this 419 
difference in length of system memory is correlated with hydro-geo-climatic attributes. Note 420 
that this kind of information about systemic differences between different catchments in the 421 
study region is somewhat more difficult to infer from the relatively simple GR4J 422 
representation used in this study. 423 

4.1.3 Feature Importance 424 

[47] Another interesting aspect of ML-based approaches is the manner and flexibility by 425 
which the relative informativeness/importance of different (spatially-varying) hydro-geo-426 
climatic attributes can be assessed.  As a consequence, it is (in general) easier to detect which 427 
attributes are more/less important when explaining the predictive power of an ML-based 428 
model. Whereas this is, in principle, also possible using a conceptual/lumped modeling 429 
approach, such an inference would have to be done indirectly through an analysis of the 430 
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spatial patterns of calibrated values of the model parameters, which is arguably a less direct 431 
and somewhat more complicated process. 432 

[48] In particular, for ML-based models, tools such as the Scikit-learn Python library 433 
(Pedregosa et al., 2011) facilitate a simple sensitivity analysis that permits a relatively 434 
straightforward exploration of the importance of each input variable or system attribute in 435 
contributing to the predictions. For conceptual/lumped representations, this exploration is 436 
complicated by the fact that the importance/informativeness of a given variable or attribute 437 
is mediated by the specific structural assumptions encoded by the system architecture and 438 
process parameterization equations chosen for the model.  In contrast, the ML-based 439 
representational structure is not quite so strongly pre-determined and is therefore, arguably, 440 
less likely to bias any inferences of relative feature importance. Of course, this is not entirely 441 
true since different ML-based approaches also (unavoidably) encode different 442 
representational assumptions about how to map system inputs to outputs.  However, the 443 
relative flexibility of ML-based representations (as well as their focus on the strengths of 444 
“informational” relationships) should, in principle, enable interesting (and hopefully useful) 445 
insights regarding relative feature importance to be inferred. That inference is neither as 446 
simple or as direct as in a lumped water balance model, due to the fact that attributes and 447 
variables are connected through hundreds (even thousands) of parameters. Nonetheless, tools 448 
such as the one mentioned above are increasingly making such analysis possible.   449 

[49] The consequence is that an ML-based assessment of the relative importance of hydro-450 
geo-climatic attributes can provide potentially valuable information regarding what system 451 
attributes are likely to be important when constructing a (better) conceptual/lumped model, 452 
and regarding how these attributes are likely to vary across space, and must therefore be 453 
considered in order to achieve a lumped water balance representation that generalizes well at 454 
the large scale.  455 

[50] Here we analyze the information about feature importance that is an inherent property 456 
of the RF-based model, where the variables selected for data-space thresholding earlier in the 457 
tree (e.g, at the first split) can be interpreted as being more ‘fundamentally’ or ‘globally’ 458 
important to the construction of a decision tree. Figure 6a indicates that the most important 459 
attribute is an “aridity” index (aridity_cr2met, computed using the CR2MET precipitation 460 
product), which strongly suggests that the form of the relationship between the availability 461 
of water and the generation of streamflow is different in different parts of the country (e.g., 462 
in humid versus arid regions). While this observation is not novel (Neto et al, 2020; Booij et 463 
al, 2019, Chen et al, 2019), it is consistent with the fact that lumped catchment-scale water 464 
balance representations, with their fixed architectures and process-parameterization 465 
equations, are typically not able to generalize well across different hydro-geo-climatic 466 
conditions. 467 

[51] Of course, this does not imply that failure to account for “aridity” is, per se, a complete 468 
and meaningful explanation for poor performance of any given model type. In general, 469 
spatio-temporal changes in aridity index are likely to simply indicate relative changes in the 470 
importance of various drivers of streamflow. From Figure 6a we see that the second, fourth, 471 
fifth, and seventh most important attributes are daily precipitation values, which indicates 472 
that the behavior of the RF model is mainly controlled by aspects related to precipitation, 473 
once aridity has been accounted for. This is consistent with the interpretation for the Box-474 
Cox transformation parameter 𝜆 used with the GR4J model. 475 
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[52]  In our case, the first split (Figure 6b) that occurs in most trees of the RF model occurs 476 
at an aridity index threshold of 0.6 mm/day. While, for any given study area, the precise value 477 
at which this split occurs will depend on the distribution of wet and arid catchments in the 478 
dataset, this observation suggests that different streamflow generating representations may 479 
be required for the model to perform well in regions that are “energy-limited” as opposed to 480 
“water-limited”. When a similar analysis is performed for the precipitation threshold, we find 481 
that the nature of the streamflow response is different for values above/below ~10 mm/day. 482 
From this, we could hypothesize that more than ~10mm/day of precipitation is required (on 483 
average) to generate surface runoff, but of course, much more analysis would need to be done 484 
to test such a hypothesis. 485 

[53] Finally, we note that of the top ten most important attributes, the only ones that are not 486 
related to aridity and/or precipitation are the “month of year” (Month) and “forested fraction” 487 
(nf_frac). The month of year attribute conveys information related to hydro-climatic cycling 488 
(annual periodicity), whereas the forest fraction conveys (among other things) information 489 
about infiltrability and soil water retention capacity of the soil. 490 

[54] The main point of these two rather simple (even trivial) examples shown in Figure 6 is 491 
that the RF representation facilitates a kind of analysis that can provide interesting 492 
information that is not easily obtained using either the GR4J or LSTM representational 493 
approaches. In this sense, the RF approach provides a strong complement to other 494 
representational approaches when our goal is to use modeling in support of scientific 495 
discovery and understanding. 496 

4.2 Comparative Analysis of Similarities and Differences in Performance 497 

[55] The relative ability of any properly trained model to perform well on independent 498 
“evaluation period” datasets can be considered indicative of well the corresponding 499 
representational approach supports discovery about the underlying DGP. However, even if 500 
all of the models tested on the evaluation period provide essentially identical values for some 501 
aggregate performance metric (such as KGEss or NSE; see Appendix A.1), deeper analysis 502 
may reveal systematic differences in model simulated behaviors that the aggregate metric is 503 
not capable of distinguishing between (Gupta et al 2008, 2009).  504 

[56] For our rainfall-runoff modeling case study, such behaviors may include things such as 505 
the simulated-to-observed long-term water balance and variability ratios, and the timing and 506 
shape (measured, for example by cross-correlation strength between the simulated and 507 
observed time-series of model output response). By examining how well each 508 
representational approach reproduces such behaviors (when trained, as is customary, on an 509 
aggregate performance metric), we can hope to obtain insights into the strengths and 510 
weaknesses of each, which is the objective of this paper. This section investigates overall and 511 
spatial patterns of such differences in model behavior/performance, with a view to 512 
understanding the manner and extent to which the models (developed using different 513 
representational approaches) are able to generalize well in space and time.  514 

4.2.1 Overall Performance 515 

[57] First, we examine the distributions of overall model performance across the country.  516 
Figure 7a shows the CDFs of evaluation period performance (as measured by KGEss) for 517 
all locations where 𝐾𝐺𝐸𝑠𝑠 > 0 (where predictions are, on average, better the “no-model” 518 
prediction that simply uses the observed mean; Knoben et al 2019).  Similar results were 519 
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obtained using NSE (not shown; for details see De la Fuente, 2021). Two interesting points 520 
can be noted: 521 

1) The LSTM curve (blue line) is significantly further to the right (~85% of the 522 
catchments) over most of the range, indicating statistically better overall performance.   523 

2) The GR4J model fails to meet the 𝐾𝐺𝐸𝑠𝑠 > 0 threshold at only ~5% of the 524 
catchments, as opposed to ~11% for LSTM and ~22% for RF.   525 

[58] Regarding the first result, the superior performance of the LSTM model over most of 526 
the range is (arguably) expected given that the LSTM can both a) explicitly learn about 527 
system dynamics and memory through its representation of state variable recurrence, and b) 528 
learn the functional form of the input-state-output mapping due to its structural flexibility.  529 
Note that the former ability is not explicitly enabled by the RF architecture (green line), while 530 
the latter ability is not possible for the fixed GR4J architecture (red line). 531 

[59] Regarding the second point, given that all three representations are trained using 532 
(almost) the same input-output information (GR4J model uses only precipitation and 533 
evapotranspiration), this result suggests that there are hydro-geo-climatic conditions under 534 
which the GR4J representation provides useful (lumped water balance) information that is 535 
not directly inferable from the available data by the LSTM and RF representations. Of course, 536 
whether this benefit comes from the specific mass-conserving and process-equation nature 537 
of the GR4J architecture, or from its ability to compensate for mass-balance errors by 538 
importing/exporting groundwater (or some other reason) is not immediately clear, and will 539 
require more detailed investigation.  In a recent study by Hoedt et al. (2021), a “mass-540 
conservative” LSTM model was found to be able to learn a good state-variable representation 541 
of the dynamics of snow storage, but such findings would need to be tested at larger scales 542 
over a variety of hydro-geo-climatic conditions before more general conclusions can be 543 
drawn.  544 

[60] Next, we examine the distributions of the decomposition components of KGEss (see 545 
definitions in Appendix A1.7).  While aggregate metrics such as KGEss (and NSE etc.) can 546 
provide a good overall idea of model performance, they can often be poor at revealing 547 
important differences in characteristic model behaviors, particularly when overall 548 
performance is poor (Gupta et al., 2009).  Figure 7b provides further discriminatory 549 
information by plotting the CDF of model Bias Ratio, where values larger (smaller) than 550 
10"	(= 1) indicates a tendency to overestimation (underestimation).  551 

[61] This plot reveals that the GR4J and LSTM models, that have the explicit ability to 552 
simulate system dynamics, tend (on average) to be unbiased, whereas the RF model tends to 553 
be positively biased.  Interestingly, for situations where the models tend to overestimate the 554 
mean (Bias Ratio > 1.0), the GR4J model tends to do better (have lower bias) than the two 555 
ML-based models, with the RF model being the worst. However, for situations where the 556 
models tend to underestimate the mean (Bias Ratio < 1.0) that situation is reversed and the 557 
two ML-based models perform better than GR4J, with the RF model being the best. Similar 558 
results were found for the Standard Deviation Ratio (results not shown). 559 

[62] So, while the LSTM is statistically superior in terms of overall KGEss performance for 560 
the majority of catchments, the situation is clearly more nuanced – with each representational 561 
type providing different characteristic abilities to simulate various attributes of streamflow, 562 
despite the fact that all the model types were trained using (almost) the same data. This 563 
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supports our contention that a multi-representational approach can aid in scientific 564 
investigation and discovery, particularly when faced with significant hydro-geo-climatic 565 
variability.  566 

[63] Meanwhile, the use of multiple metrics, that target different (ideally complementary) 567 
signature properties of the data (Gupta et al 2008), can assist in the extraction of different 568 
kinds of useful information, enabling inferences about different aspects of the input-(state)-569 
output response of the system.  570 

4.2.2 Spatial Patterns of Performance 571 

[64] The previous statistical analysis is informative about the overall properties and 572 
capabilities of the different representational types.  However, it is of little value when needing 573 
to make statements about actual performance at any catchment. In this section, we investigate 574 
how the different representational types perform across the variety of different hydro-geo-575 
climatic conditions that characterize Chile. 576 

[65] Figures 8a and b explore the relationship between model performance and two 577 
interesting hydro-geo-climatic factors – Latitude, and Aridity. Given the long narrow shape 578 
and North-South orientation of the country, these two factors serve as useful surrogates for 579 
hydro-geo-climatological variability, with the Northern extent of the country being 580 
characterized by very dry conditions and high elevations, the Southern extent being 581 
characterized by extreme precipitation and permanent icefields, and the central region being 582 
characterized by intermediate degrees of wetness and considerable variability in elevation.  583 

[66] The curves in Figure 8a show smoothed trajectories (using a moving average of 15 584 
catchments) of the variation in KGEss performance with Latitude from South to North (left 585 
to right across the x-axis).  First, we see that, while all three models exhibit relatively good 586 
performance in the mid- and south-central (moderately wet) parts of the country [latitude 587 
−45° to −35°], performance of GR4J decreases sharply relative to the ML-based RF and 588 
LSTM as we move to the southernmost regions [latitude −55° to −45°].  This decline in 589 
GR4J performance makes sense given that the south is characterized by the existence of 590 
glaciers and lakes, which can introduce significant time-lags into the dynamics of the system 591 
that cannot easily be reproduced by the existing GR4J architecture. In contrast, the flexibility 592 
of the ML-based representations enables them to better account for such phenomena.  593 

[67] Meanwhile, all three models exhibit relatively poor performance (KGEss < 0.5) across 594 
the north-central parts of the country [latitude −35° to −25°].  This region is characterized 595 
by strong slopes (rapid elevation changes and very short times of concentration) and 596 
relatively greater aridity (see next sub-section) than the mid/south-central and southern 597 
regions. Here, RF performs particularly poorly, which may be attributable to the fact that it 598 
does not have access to data with greater than 16 days lag time and is, therefore, unable to 599 
account for longer (seasonal or annual time-scale) system memory, unlike GR4J and LSTM. 600 

[68] Finally, the northern part of the country [ latitude −25° to −18°] contains the Atacama 601 
Desert, which is the aridest region in the world and has moderate slopes. Here, RF and LSTM 602 
both exhibit better performance than GR4J. The inability of the latter to simulate the 603 
hydrologic behavior of such extreme conditions is likely due to the fact that GR4J was 604 
developed to represent the very different hydro-geo-climatic conditions that characterize 605 
France. Meanwhile, the relatively poor performance achieved by both ML-based models 606 
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suggests that the variables that make up the existing CAMELS-CL dataset are not sufficiently 607 
informative about the particular input-state-output dynamics of the catchments in this region 608 
to enable a robust and accurate model to be developed, and that other variables and attributes 609 
should be added to improve model performance (more on this later). 610 

[69] The curves in Figure 8b show smoothed trajectories for how KGEss performance varies 611 
with the Aridity Index (computed as the mean of aridity_cr2met and aridity_mswep).  Here 612 
we see a clear dependence of performance on aridity, with all three models exhibiting better 613 
performance (KGEss > 0.5) under wet (i.e., energy limited) conditions but with performance 614 
becoming progressively worse as the hydro-climatic conditions become increasingly more 615 
arid (water-limited).  Interestingly, the performance of both GR4J and LSTM (that have the 616 
ability to simulate system dynamics) declines more or less linearly with increasing log-617 
aridity, but RF performance declines somewhat more rapidly and is significantly worse than 618 
for GR4J and LSTM when the Aridity Index is between about 1.5 to 8.0.  Given that GR4J is 619 
designed to represent systems that are primarily driven by precipitation, it is understandable 620 
that performance can decline as the direct dependence of streamflow on precipitation 621 
becomes less, while the mediating effects of evapotranspiration and long-term groundwater 622 
storage become more predominant.  623 

[70] However, while the ML-based models have considerably more flexibility to discover 624 
appropriate functional relationships in the data and would therefore normally be expected to 625 
serve as indicators of upper-bounds on achievable model performance (Nearing et al., 2020), 626 
they also show the same declining trend in performance with increasing aridity. This suggests 627 
that the information content of the CAMELS-CL data set is biased towards a better 628 
representation of the hydrological properties of wet (energy-limited) catchments and is 629 
therefore not sufficiently complete to enable model development for arid parts of the country. 630 
For example, it is noteworthy that the CAMELS-CL data set does not include information 631 
about soil characteristics such as depth to bedrock, hydraulic conductivity, or soil fraction, 632 
all of which are present in the US version (Addor et al., 2017), and which can be very 633 
important in the characterization of the baseflow and streamflow-precipitation elasticity 634 
(Addor et al., 2018).  635 

[71] Another interesting observation is that the system memory associated with streamflow 636 
generation from precipitation is different for energy-limited (wet) and water-limited (arid) 637 
catchments.  Referring to Figure 5b, we see that whereas the majority of catchments show 638 
improvement of LSTM performance when provided with ~32 past days of input data 639 
(reflecting short-time-scale memory processes), there is a smaller set of catchments with 640 
poorer model performance that shows improvement only when provided with 270+ past days 641 
of input data (reflecting longer-time-scale memory processes). The indication is, therefore, 642 
that when investigating and modeling the streamflow response of catchments, our 643 
representation – whether ML-based or conceptual/lumped – must contain structures that 644 
make it possible to track memory processes at more than one dominant time-scale, depending 645 
on the hydro-geo-climatology of the region.  For example, one might consider the need to 646 
track at least the short-term (weekly/monthly/seasonal), medium-term (annual), and possibly 647 
longer-term (climatological) time scales.  Of course, to discover and build representations of 648 
longer-term (climatological) rainfall-streamflow response one would typically need more 649 
than 7 years of data. 650 
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[72] The important point, however, is that the representational type selected for model 651 
development should (ideally) make it possible for information about multiple hydro-climatic 652 
time scales to be exploited.  GR4J and LSTM contain explicit representations (through 653 
dynamic state variables and multiple flow pathways) that – to some degree – facilitate this, 654 
with the LSTM having a much greater degree of flexibility to do so (which may explain its 655 
generally better performance in Figure 8b). However, for reasons explained in Appendix 656 
A1.4, our implementation of the data-based RF only included data lagged up to 16 days, 657 
which may explain why performance is worse than for the data-based LSTM when the aridity 658 
index is on the range 1.5 to 8.0.  Note that this kind of model-enabled analysis and discovery 659 
is not easily achieved if only a purely conceptual/lumped approach had been used in this 660 
study; by adopting a multi-representational approach that incorporates both 661 
conceptual/lumped and a variety of complementary ML-based modeling strategies, the 662 
process of analysis and discovery can be greatly enhanced. 663 

[73] Finally, Figures 9a-c show evaluation-period KGEss performance for each of the three 664 
models at each catchment used for model development (green indicates good performance, 665 
yellow-orange indicates poor performance, and red indicates really bad performance). 666 
Overall, all three models exhibit a tendency to good performance (KGEss >> 0.5) south of 667 
latitude ~33°S, and at the very northern tip of the country (north of latitude ~20°S). 668 

[74] Focusing specifically on the region between latitudes 27°S and 33°S, we see that RF 669 
(Figure 9c) performs very poorly throughout this part of the country (see also Figure 8a). 670 
However, LSTM performs quite well along a narrow strip of this region that borders 671 
Argentina. This strip is located at higher elevations where temperatures are low and where 672 
snowmelt processes dominate the generation of streamflow. The ability of LSTM to discover 673 
and track longer-term memory processes is likely contributing to its good performance here. 674 
As we move westward towards the coast, LSTM performance decreases, indicating that the 675 
model no longer has access to the information needed to properly simulate the streamflow 676 
response (which, in this case, is probably information about connections between 677 
groundwater and streamflow). Turning to GR4J, we see that its KGEss performance across 678 
the region is just barely better than 0.0, indicating that the model is mainly only able to 679 
reproduce the long-term mean value of streamflow.  Given that GR4J has explicitly neither 680 
the ability to represent the dynamics of snow accumulation and melt nor the long-term 681 
dynamics of groundwater, this result makes sense. 682 

[75] Figure 9d indicates, for these same catchments, which model provides the best 683 
evaluation-period KGEss performance (red=GR4J, blue=LSTM, green=RF) across the 684 
country. Here we simply report the model with the best evaluation-period KGEss, regardless 685 
of whether these KGEss values are statistically distinguishable.  No clear pattern emerges, 686 
but in general, the blue (LSTM) and red (GR4J) colors dominate, with LSTM generally being 687 
the best-performing model across the country. This is consistent with the statistical results 688 
(CDF plots) shown in Figure 7a. 689 

[76] Some more nuanced findings emerge from a statistical analysis of KGEss performance 690 
by model type, reported in Table 2. LSTM is the best performing model at 53% (172 of 322) 691 
of the catchments, with an excellent median KGEss performance of 0.70.  However, this 692 
statistic masks the fact that where LSTM fails, it does so very badly – the worst KGEss value 693 
is very poor and, consequently, the dispersion of performance is highly skewed.  In contrast, 694 
the distribution for GR4J, which performs best at only 30% of the catchments and has a 695 
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median KGEss performance of 0.56, has much lower skewness and dispersion, and achieves 696 
positive KGEss values at a greater number (94%) of the catchments.  697 

[77] So, while data-based representations may have a greater potential to learn from the data, 698 
and thereby achieve greater predictive performance, the conceptual/lumped representations 699 
contain valuable regularizing information that may help to prevent model performance from 700 
becoming catastrophically poor under conditions where the data is insufficiently informative 701 
about the dynamics of streamflow generation.  We can speculate, therefore, that GR4J could 702 
help to moderate the dispersion associated with the lower percentiles if an ensemble of these 703 
three model types were to be used for operational streamflow prediction across Chile. Of 704 
course, to implement such a system for Chile, further work would need to be done to 705 
generalize the method for estimating parameter values to enable application at ungauged 706 
catchment locations. We do not pursue this possibility further in this paper and leave it for 707 
future work. 708 

4.2.3 Spatial Generalization 709 

[78] The results presented so far indicate that the data-based LSTM has the potential to 710 
provide the “best” overall performance, while GR4J tends to provide more “robust” results 711 
in cases where data-based approaches may fail.  Meanwhile, the data-based RF is particularly 712 
useful for enabling discovery, by providing clues that can lead to hypotheses about what 713 
kinds of hydro-geo-climatic processes (and hence data sets) should be incorporated into 714 
ongoing model development efforts. 715 

[79] However, the previous analysis was for a “pseudo-independent” data set, consisting of 716 
evaluation-period data from the same catchments that were used for model development. As 717 
such, the results may not provide a reliable assessment of the quality of model performance 718 
that might be expected at (other/new) catchments that are not part of the model development 719 
dataset. Figures 10a-c and Table 2 report the results of our “out-of-sample” analysis, where 720 
model performance was assessed on the 167 CAMELS-CL catchments for which less than 7 721 
years but more than 1 year of data were available (these catchments were withheld from the 722 
model development dataset). Since GR4J parameter estimates are not available for these 723 
catchments (an extra parameter regionalization step would be required, that was not pursued 724 
in this study), this assessment was done only for LSTM and RF. 725 

[80] Overall, the out-of-sample results indicate that LSTM and RF do not show significantly 726 
different (relative to each other) spatial distributions of performance.   This tends to conflict 727 
with the in-sample evaluation results (Figure 9), despite the fact that both the in-sample and 728 
out-of sample catchment locations are distributed similarly with respect to the Aridity Index. 729 
When we compare the CDF’s of in-sample and out-of-sample performance (Figure 11a) for 730 
these models, we see that both RF and LSTM exhibit remarkably similar statistical 731 
distributions of out-of-sample performance, which suggests that both of these ML-based 732 
approaches have a similar ability to generalize to locations that were not included in the 733 
model development dataset.  There is, however, a larger deterioration in the statistical 734 
distribution of model performance from in-sample to out-of-sample for LSTM than for RF.  735 

[81] Meanwhile, the CDF of streamflow prediction bias (Figure 11b) shows that RF retains 736 
the same tendencies in- and out-of-sample tendencies to overestimate the long-term mean 737 
streamflow (compare with Figure 7b). This is encouraging, as it suggests the possibility of 738 
being able to learn and correct for any long-term predictive bias at a given location.  739 
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[82] Finally, Table 3 reports a more detailed statistical analysis of KGEss performance by 740 
model type, showing that RF slightly outperforms LSTM on most of the statistical indicators. 741 
So, while LSTM clearly achieved (in general) better temporal (in sample) generalization, the 742 
results for out-of-sample generalization are less definitive. It is possible that the tradeoff 743 
between temporal- and spatial-generalization ability is somehow different for each 744 
representational type. Further, this may be partially related to the differences in model 745 
development strategies – while the LSTM was sequentially fed with the information from 746 
different catchments (model parameters are updated using the data from each catchment in 747 
turn), the RF model development focuses on finding the best split for all catchments 748 
simultaneously, which may make it less sensitive to the new conditions encountered in out-749 
of-sample testing. While this is simply speculative at this point, it would be interesting to 750 
further examine this issue using large-sample catchment-scale data sets from other parts of 751 
the world. 752 

5 DISCUSSION 753 

[83] An understanding of how hydrological processes vary at large (e.g. national) scales is 754 
important to the development of strategies for mitigating the effects of floods and droughts 755 
(and other natural hazards). Such understanding can be difficult to establish, given the large 756 
number of variables, attributes, and relationships that need to be considered. Under such 757 
circumstances, the traditional approach of attempting to model the entire diversity of hydro-758 
geo-climatic conditions across an entire country/region with a single representational 759 
approach may not result in a sufficiently accurate characterization of the underlying Data 760 
Generation Process (DGP). Through a case study, we have explored the possibility of using 761 
a multi-representational approach to address the challenge of large-scale model development, 762 
where the different representations are selected to have complementary strengths and with 763 
the goal of maximizing learning and discovery. 764 

5.1 Challenges and Opportunities of a Multi-Representational Approach 765 

[84] While each representation can support different kinds of discovery through the model 766 
development and evaluation process, adoption of a multi-representational approach brings 767 
forth both opportunities and challenges to be addressed.  768 

1) It becomes difficult to implement a completely “uniform” strategy for model 769 
development since each representational approach may exploit the information in 770 
data differently and can have different requirements for inference.   771 

2) For conceptual/process-resolved representations, discovery/learning about the spatial 772 
variability of hydrological processes is mediated through an analysis of spatial 773 
patterns or parameters.   774 

[85] However, multiple parameter sets can give rise to similar model performance, thereby 775 
complicating our ability to make meaningful inferences. In contrast, for the ML-based 776 
models, the need for transformations and/or standardizations of the data was found to be 777 
unnecessary, and even to bring about declines in overall performance telling us how different 778 
representations are dealing with the data. 779 
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3) ML-based approaches facilitate an exploration of varying memory time scales.  780 

[86] Our analysis suggested that, for energy-limited catchments in Chile, the ability to access 781 
input information over the past 32 days was critical to achieving an optimal representation, 782 
whereas for arid catchments the memory time-scale required was much longer (~270 days). 783 
In this regard, 32 days is likely associated with rapid time-scale precipitation-driven 784 
processes such as surface runoff and lateral flow, and while 270 days is likely associated with 785 
slower time-scale groundwater driven processes such as baseflow. While further 786 
investigation is needed to test these findings, such findings illustrate the power of ML-based 787 
approaches to support learning and discovery. 788 

4) The RF architecture enables an exploration of feature importance, potentially 789 
enabling a higher degree of interpretability and discovery than the GR4J and LSTM 790 
representations.  791 

[87] In our case, aridity was seen to provide the highest-level segregation of catchments, 792 
which makes sense given that the nature of the hydrological processes underlying the 793 
generation of streamflow depends, unavoidably, on the availability of water. Beyond this, 794 
various characteristic features associated with precipitation in the period just prior to the 795 
streamflow event of interest were seen to provide strong explanatory power. By exploring 796 
the structure of the decision tree model, it is possible to gain insight into the main 797 
relationships or drivers governing the behavior of the system under investigation. 798 

[88] Overall, by synthesizing the results obtained using a multi-representational approach, 799 
we can obtain a more comprehensive overall picture of the underlying DGP, which in turn 800 
creates a better context for a more in-depth investigation of the capabilities and performance 801 
of each specific modeling approach.  802 

5.2 On the Issue of Data Informativeness  803 

[89] In terms of overall performance during the independent evaluation period (temporal 804 
generalization), the LSTM model provided better overall (statistical) performance than GR4J 805 
and RF.  On the other hand, the GR4J model tended to be more robust, providing the best 806 
performance for locations where KGEss was lower than 0.15. It might make sense, therefore, 807 
to implement a lumped water balance model as a “lower benchmark” in any multi-808 
representational ensemble of component models, and to generally require that any ML-based 809 
approach under consideration for inclusion in such an ensemble should demonstrate some 810 
benefits over the benchmark.  Further, when an ML-based model fails to perform well when 811 
compared with the lumped water balance benchmark, this should alert us to the possibility 812 
that the data may not be sufficiently informative regarding the processes we seek to model. 813 

[90] In this regard, note also that RF performed slightly better than LSTM when tested out-814 
of-sample (spatial generalization).  The reasons for this are not yet clear, but it is possible 815 
that the LSTM model development strategy employed tends to overfit the temporal/sequence 816 
patterns in the data.  Regardless, this result also lends support to the idea that a multi-817 
representational ensemble has the potential to be superior to one that is less representationally 818 
diverse.   819 
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[91] One common finding for all three models was their poor performance in one particular 820 
region of Chile. Given that the most important shared commonality of the three models is 821 
their access to the same dataset, coupled with the fact that ML-based approaches are highly 822 
flexible, this result strongly indicates that the dataset is not sufficiently informative to enable 823 
a suitable characterization of the streamflow response of this region, and that the main driver 824 
of local streamflow is not precipitation.  Unfortunately, the Chilean CAMELS dataset does 825 
not include attributes from which it could be possible to infer groundwater-driven baseflow, 826 
or other related processes, and so proper characterization of the streamflow response of this 827 
region will require further investigation and exploration of alternative sources of relevant 828 
information. 829 

[92]  Overall, these observations point to the issue of whether the available data is 830 
informative enough for a sufficiently robust characterization of the underlying DGP to be 831 
achieved. While a multi-representation approach cannot (by itself) solve that issue, it can 832 
certainly help us to recognize the existence of the problem so that we can seek additional 833 
relevant information that may help us in the process of learning and discovery.  834 

5.3 Relationship of the Multi-Representational Approach to Hypothesis Testing 835 

[93] Given the tendency for each of the three representation types to provide better 836 
performance under different hydro-geo-climatic conditions, and the fact that each one 837 
facilitates different (complementary) kinds of information extraction and degree of 838 
interpretability, it seems clear that the three models can collectively be treated as a valuable 839 
tool for gaining insights regarding the underlying DGP.  From this point of view, a 840 
meaningful answer to the question “Does a single “correct” catchment-scale hydrological 841 
model exist at all?” expressed by Clark et al (2011) may be that:  842 

“It seems sensible to abandon any concept of a “best” model, and instead consider the 843 
value of learning to live with a plurality of representations while developing strategies 844 
for extracting important relevant information from the representational ensemble”.  845 

This is, of course, because any model is unavoidably a “simplified” (and hopefully 846 
informationally relevant) representation of reality.  847 

[94] Another way of think of this is that it is the “ensemble of representations” (and not each 848 
of the individual components thereof) that is actually “the model” per se, since it helps to 849 
meet the goal of incorporating within the “Model” (writ large) a representation of “what we 850 
know that we do not know” (i.e., our known uncertainties).  From this perspective, our task 851 
is to populate this ensemble with representations that best support our investigative goals. 852 
This is clearly consistent with the idea of a “multiple-hypothesis approach” (Clark et al, 853 
2011), but one where the hypotheses are selected to be as (potentially) informationally 854 
complementary as possible, so that learning/discovery can be maximized.  In contrast, an 855 
approach where the ensemble consists of hypotheses that may only be marginally different 856 
from each other (e.g, that all share the same system architecture while differing only in the 857 
forms of the process parameterization equations) may not lend itself to efficient and effective 858 
learning (Gharari et al., 2021). 859 
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[95] Such a perspective unavoidably affects how we think about the model development 860 
process, and its role in a scientific investigation. Our view is that conceptual/process/theory-861 
based and ML-data-based approaches to model development must co-exist within such an 862 
environment, with neither being the dominant approach, and that a multi-representational 863 
strategy is a key to promoting model-based scientific discovery. While this perspective is 864 
likely to promote (as is currently happening) interest in hybrid approaches that integrate 865 
theory-based and data-based strengths, it is not clear that such a push towards reductionism 866 
through integration will necessarily obviate the need for a continued multi-representational 867 
approach in order for models to be tools that enable scientific discovery. 868 

6 CONCLUSIONS 869 

[96] In conclusion, while the metaphor of the “blind people and the elephant” is highly 870 
suggestive, it is not completely accurate. In the metaphor, each person constructs a different 871 
representation based on potentially different prior knowledge and clearly different sensory 872 
information (data).  In our case, all of the representational approaches have access to the same 873 
sources of information (dataset) but differ in their abilities to fully exploit that information 874 
due to (prior) representational restrictions.   875 

[97] So, while one might debate how to improve the metaphorical story to match the current 876 
situation, more important is the fact that an optimal strategy for scientific discovery would 877 
seem to be one that combines multiple complementary model structural representations 878 
(modeling strategies) with multiple complementary mechanisms for extracting information 879 
from data (inferential strategies). In this regard, it is perhaps worth noting that the strategy of 880 
“multi-headed attention” that has recently become the topic of intense inquiry in fields such 881 
as text prediction, translation, and speech recognition (Vaswani et al, 2017; Devlin et al, 882 
2018; Luo et al, 2021), is explicitly based on the notion that multiple attentional perspectives 883 
bring considerable value to such tasks.  884 

[98] This paper seeks to explicitly promote adoption of a multi-representational approach to 885 
learning, understanding, and discovery in the hydrological sciences.  We believe that the 886 
multi-representational approach is fundamental to understanding hydrology at a large scale, 887 
where the complexity of the system we seek to understand and represent demands access to 888 
large and informationally diverse data sets and an analytical strategy that is purposefully 889 
diverse.  As always, we are keenly interested in dialogue and collaboration on this and related 890 
issues of how we use models to support prediction, understanding, and scientific discovery.      891 
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CODE AND DATA AVAILABILITY 900 

[100] The CAMELS-CL dataset is freely available from 901 
https://doi.pangaea.de/10.1594/PANGAEA.894885.  The analytical methods are presented 902 
as a Jupiter notebook freely available at 903 
http://www.hydroshare.org/resource/fc08997100fa4cd6abdd8a4f5731de15 .   904 

APPENDIX 905 

A1. Model Development Strategies 906 

A1.1 Partitioning the Data 907 

[101] A key step in model development is to partition the available data into ‘model 908 
development’ and ‘evaluation’ subsets, where the former is used for model structure selection 909 
and parameter tuning, while the latter is used to assess the generalization performance that 910 
can be expected from the developed model. However, no clear guidance exists for how to 911 
achieve such a partitioning for data that represent dynamical hydrological systems (Wu et al, 912 
2013, Daggupati et al, 2015, Zheng et al 2018, Guo et al 2020). In general, the hydrological 913 
literature has traditionally assumed that the entire available dataset comes from a stationary 914 
underlying data generating process, and that any split that preserves the full range of 915 
hydrologic variability (dry, medium, and wet) in both sets is satisfactory.  Based on this 916 
assumption, it is common to use a continuous-time period that makes up ~60-80% of the 917 
available data for model development, while allocating the remaining ~20-40% for an 918 
evaluation of the generalization ability of the model. 919 

[102] In this study, we adopt the strategy of further partitioning the ‘model development’ 920 
subset into ‘calibration’ and ‘selection’ subsets, where the calibration subset is used for 921 
model/network parameter tuning (commonly called ‘training’ in the ML literature), and the 922 
selection subset is used for model/network structure selection and/or hyperparameter tuning 923 
(commonly called ‘validation’ in the ML literature).  Note that we adopt this naming 924 
convention to try and overcome the inconsistency in terminology between the ML and 925 
hydrological modeling literature.  Accordingly, the available data are partitioned into three 926 
subsets, where the first 60% of the data is used for model calibration, the next 24% is used 927 
for model selection, and the final 16% is used for model evaluation (commonly called 928 
‘testing’ in the ML literature)  929 

A1.2 Variable Selection 930 

[103] The variables selected from the CAMEL-CL dataset include two sources of 931 
precipitation (CR2MET and MSWEP, both having long records), three values characterizing 932 
temperature (Maximum, mean, and minimum), and potential evapotranspiration (PET) 933 
estimated via the Hargreaves and Samani (1985) method. The PET value derived from 934 
MODIS was not used because its time step is higher than daily (8 days). Further, the snow 935 
water equivalent (SWE) data does not cover the entire country and was therefore not 936 
considered suitable for the current study.  937 
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[104] Because the GR4J model has a pre-defined input representation, it is unable to use any 938 
other sources of data and so we used the weighted average of the two sources of precipitation 939 
as input to the GR4J model. In contrast, the ML-based models are able to use the information 940 
provided by all of the available variables and attributes, but in different ways. While the RF 941 
model used lagged input variables as surrogates for system memory (lag memory), the LSTM 942 
model used internal state variables to characterize system memory (sequential memory). 943 
More details regarding the variables and attributes used for the development of each model 944 
type are presented in Tables A-1, A-2, and A-3. 945 

A1.3 Representing System Memory 946 

[105] For the RF representation, which does not explicitly include dynamical state variables, 947 
system memory was included by concatenating past inputs (precipitation, evapotranspiration, 948 
and temperature) to the inputs for the current time step. This follows the idea of a Markov 949 
Process, where a state variable can be thought of as a summary property of an infinite number 950 
of past inputs to the system.  For the RF, the number of past input lags was treated as a model 951 
hyperparameter. While this strategy enables important information to be made available to 952 
the model, it results in a very high cost (in terms of computational and storage resources) 953 
because huge system memory is required to manage the dataset as the number of lags is 954 
increased. We found that at 32 days of lagged memory, the computation became unstable. 955 
This prevented us from readily exploring longer memory time scales, such as 270 or 365 days 956 
(or longer), and the results presented only consider a memory time-scale of 16 days.   957 

A1.4 Model Warm-Up 958 

[106] It is recommended, regardless of representational strategy, to use a warm-up period 959 
(during which performance metrics are not computed) to minimize errors associated with the 960 
initialization of dynamical model states. For lumped water balance modeling it is common 961 
to use a full year (365 days) of data for this purpose; for example, Perrin et al. (2003) used 962 
a full year to initialize the GR4J model, following the suggestion of Chiew and McMahon 963 
(1994). For the LSTM machine-learning approach, Kratzert et al. (2019) used 270 days, after 964 
testing 90, 180, 270, and 365 days as different options.   965 

[107] In this study, we adopted the following strategy for warm-up period selection.  For the 966 
GR4J and LSTM representations, because preliminary testing suggested that the LSTM 967 
requires the longest warm-up period to ensure stable results, we followed the strategy of first 968 
tuning the LSTM to determine a suitable warm-up period length (as a model hyperparameter) 969 
and then using that same period to “warm-up” the GR4J model.  970 

A1.5 Parameters and Hyperparameters to be Tuned 971 

[108] Each representational strategy involves different sets of parameters and 972 
hyperparameters, depending on its structural form. Whereas the original GR4J model 973 
contains 4 tunable parameters that must be calibrated for each catchment, our implementation 974 
includes an additional 3 parameters, two of which are used to facilitate driving the model by 975 
a weighted average of the two available precipitation products (CR2MET and MSWEP), and 976 
the third being the Box-Cox transformation parameter.  977 
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[109] For the LSTM model, in addition to a large number of system-wide network weights 978 
and biases, 6 hyperparameters must be tuned, namely the sequence length (memory from the 979 
past hidden states), number of hidden nodes, batch size, number of epochs, standardization 980 
parameters, and the Box-Cox transformation parameter. To standardize the data (centering 981 
by subtracting the mean, and rescaling by dividing by the standard deviation), we investigated 982 
two options – global and local standardization. In global standardization, for each variable, 983 
we use the mean and standard deviation computed from the entire dataset, whereas in local 984 
standardization (which is applied only to the precipitation and streamflow variables) we 985 
assume that the local means and standard deviations vary as functions of the aridity index. 986 

[110] Finally, in addition to determining the nodal split “parameters”, the RF model requires 987 
the tuning of 4 hyperparameters for the entire set of catchments taken together, the first 988 
representing system “memory” (expressed as the number of days previous to the current day 989 
for which inputs are simultaneously presented to the model), the second being the Box-Cox 990 
transformation parameter, the third being the number of trees, and the fourth being the 991 
minimum number of elements that must be retained in the last leaf. To attempt to circumvent 992 
the problem of being unable to input lagged daily inputs beyond 32 days to the RF model to 993 
account for “memory” in the system, we augment the input data to include surrogate variables 994 
intended to be informative about the state of the system. Specifically, we included the 995 
“month-of-year” as an attribute, to enable the model to learn a representation of long-term 996 
memory as the average behavior associated with different months of the year. Meanwhile, as 997 
mentioned above, the short-term memory was treated as a hyperparameter. 998 

A1.6 Model Calibration/Training 999 

[111] To calibrate the parameters of the GR4J model to each catchment in the calibration 1000 
period, we tested both the Root Mean Square Error (RMSE) and the Kling-Gupta Efficiency 1001 
(KGE, Gupta et al., 2009), as defined below. Overall, we found that KGE provided slightly 1002 
more robust results (De la Fuente, 2021), and therefore we present here only the results 1003 
obtained using KGE in this paper.   1004 
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$'(

𝑛 	1005 

𝐾𝐺𝐸	 = 	1 − A(𝑟 − 1)% + (𝛼 − 1)% + (𝛽 − 1)% 1006 

𝑦$:𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝑠𝑡𝑟𝑒𝑎𝑚𝑓𝑙𝑜𝑤		1007 
𝑦>$: 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑠𝑡𝑟𝑒𝑎𝑚𝑓𝑙𝑜𝑤	1008 
𝑛: 𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑎𝑡𝑎	1009 
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[112] For parameter optimization, we used three algorithms from the Spotpy Python library 1013 
(Houska et al., 2015), namely Maximum Likelihood Estimation (MLE), Differential 1014 
Evolution Adaptive Metropolis (DE-MCz), and Shuffled Complex Evolution (SCE-UA). In 1015 
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total, 22 independent optimization runs were done for each catchment, and the parameter set 1016 
that provided the best performance (out of the 22 parameter sets so obtained) on the ‘selection 1017 
(hyperparameter tuning)’ data subset was chosen. 1018 

[113] To develop the RF model, we use the Scikit-learn Python library (Pedregosa et al., 1019 
2011). The RandomForestRegressor module (version 0.23.1) has two options for 1020 
performance metrics – Mean Squared Error (MSE) and Mean Absolute Error (MAE). While 1021 
MAE can be used to reduce the tendency to emphasize larger streamflow values, because we 1022 
are implementing the Box-Cox transformation on streamflow we chose MSE to be the metric 1023 
used for RF calibration. 1024 
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[114] To train the LSTM model, we used the implementation provided by Kratzert et al 1027 
(2019) and modified it to conform to the data structures and variables of the CAMELS-CL 1028 
dataset. Whereas the original code enables the choice of either MSE or NSE as the calibration 1029 
metric, we used only NSE because its normalization of the error enables better comparison 1030 
across catchments having different amounts of temporal variability. 1031 

𝑁𝑆𝐸	 = 	1 −	
𝑀𝑆𝐸
𝜎*%

	1032 

A1.7 Model Performance Evaluation 1033 

[115] For performance evaluation, we use the KGE skill score (KGEss) (Knoben et al., 2019) 1034 
computed on the evaluation-period data. KGEss is a rescaled version of the KGE metric such 1035 
that a value of zero corresponds to the prediction being no better than simply using the mean 1036 
observed streamflow, in a manner analogous to NSE. While other metrics, including NSE 1037 
and RMSE, were also used for model evaluation (De la Fuente, 2021), we do not report them 1038 
here as the conclusions are similar to those obtained using KGEss. Importantly, we account 1039 
for sampling variability by computing the estimated posterior distributions of KGEss by 1040 
bootstrapping 100 times (Efron and Tibshirani, 1994) and using the median value of KGEss 1041 
in all comparisons. 1042 

𝐾𝐺𝐸𝑠𝑠	 =
𝐾𝐺𝐸 − 𝐾𝐺𝐸+,&-./012
1 − 𝐾𝐺𝐸+,&-./012

=	
𝐾𝐺𝐸 + √2 − 1

√2
= 1 −

1 − KGE
√2

	1043 

A1.8 Out-of-Sample Testing 1044 

[116] For an additional ‘out-of-sample’ model evaluation step, we retained all of the 1045 
CAMELS-CL catchments for which less than 7 years but more than 1 year of data is 1046 
available; being less than 7 years of record length, none of these catchments are included in 1047 
the model development data set. The resulting 167 catchments facilitate a meaningful out-1048 
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of-sample operational comparison of the generalization abilities of the LSTM and RF ML-1049 
based representations. Note that the GR4J model was not tested using this out-of-sample set 1050 
of catchments since regional generalization of lumped water balance model parameters to 1051 
‘ungauged’ catchments is not within the scope of this paper. 1052 

[117] Note that, because the additional ‘out-of-sample’ model evaluation data set is 1053 
completely independent of the data set used for model development, while being similarly 1054 
representative of the geo-hydro-climatic variability across the country (Figure A-1), the 1055 
model performed using those data can be considered to be similar to the idea of “Proxy-basin 1056 
differential split-sample testing” (Klemeš, 1986).    1057 
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Figure 1. Map showing the geographic location of Chile, and its spatial distribution of 
annual precipitation. 

 



manuscript submitted to Water Resources Research 

 

Figure 2. Representational structures of the three different models used; a) The GR4J 
lumped-water balance model; b) The Long-Short Term Memory (LSTM) machine learning 
model; and c) The Random Forest (RF) machine learning model. 
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Figure 3. Frequency distribution of the 𝜆 hyperparameter for the 322 catchments when 
using the GR4J model. 

 

 

Figure 4. Selection period performance CDF’s obtained using different values of the 𝜆 
hyperparameter; the Left subplot is for RF and the right subplot is for LSTM. 
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Figure 5. Selection period performance CDF’s for the RF and LSTM models, showing 
dependence on memory lag. 

 

Figure 6. Feature importance and distribution of the first split of the RF model (For a 
description of the name of each attribute or variable, see Table A-3). 
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Figure 7. Evaluation period performance CDFs for the three models. The left subplot 
shows KGEss and the right subplot shows Bias Ratio. 

 

 

Figure 8. Variation of evaluation period KGEss performance with aridity and latitude. 
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Figure 9. Spatial distributions of evaluation period model performance for a) GR4J, b) 
LSTM, c) RF, and d) the “best” performing model. 

 

 

Figure 10. Spatial distributions “out-of-sample” performance for a) RF and b) LSTM. The 
right subplot (c) indicates the “best” performing model. 
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Figure 11. Performance CDFs for temporal (in-sample) and spatial (out-of-sample) 
generalization. 

 

Figure A-1: Comparison of the histogram for both samples used in the performance 
analysis. 
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Table 1. Comparison between Linear Reservoir and LSTM 

Linear Reservoir LSTM 
𝑑𝑆
𝑑𝑡

= 𝐼 − 𝑂 
𝑑𝑐
𝑑𝑡
= 𝑔(𝑥, ℎ) 

𝑆:𝑤𝑎𝑡𝑒𝑟	𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑐: 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛	𝑠𝑡𝑜𝑟𝑎𝑔𝑒 
𝐼: 𝑖𝑛𝑝𝑢𝑡 𝑥: 𝑖𝑛𝑝𝑢𝑡 
𝑂: 𝑜𝑢𝑡𝑝𝑢𝑡 ℎ: 𝑜𝑢𝑡𝑝𝑢𝑡 

𝑆(𝑡) = 𝛼 ∙ 𝑆(𝑡 − 1) + 𝛽 ∙ (𝐼 − 𝑂) 𝑐(𝑡) = 𝛼 ∙ 𝑐(𝑡 − 1) + 𝛽 ∙ 𝑔(𝑥, ℎ) 
𝛼 = 1 𝛼 = 𝑓(𝑡) 
𝛽 = 1 𝛽 = 𝑖(𝑡) 

𝑂 = 𝑘 ∙ 𝑆(𝑡) ℎ = 𝑘 ∙ 𝑐̿(𝑡) 
𝑘 = ]0,1[ 𝑘 = 𝑜(𝑡) 

 𝑐̿(𝑡) = 	𝑐(𝑡)	𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	]−1,1[ 

Table 2. Evaluation period performance statistics.  

Model Mean Std Min 25% 50% 75% Max # Positive # Best 
GR4J 0.417 0.960 -11.621 0.311 0.561 0.789 0.960 303 98 

RF -2.411 39.310 -703.128 0.075 0.563 0.762 0.940 249 52 
LSTM -3.282 65.269 -1170.490 0.442 0.704 0.826 0.971 289 172 

 

Table 3. Out-of-sample performance statistics.  

Model Mean Std Min 25% 50% 75% Max # Positive # Better 
RF -0.356 2.605 -17.501 0.118 0.45 0.666 0.897 130 89 

LSTM -2.474 17.341 -203.124 -0.103 0.429 0.678 0.968 116 78 

 

Table A-4 Parameters and search range used in the GR4J optimization. 

Parameter Description Searching range 
Alpha1 Amplification factor for CR2MET precipitation product 0-2.5 
Alpha2 Amplification factor for MSWEP precipitation product 0-2.0 

x1 Storage production capacity 0-5000 
x2 Amplification of water exports -10 to 10 
x3 Storage routing capacity 0-1500 
x4 Time-delay between the initial and maximum values of the hydrograph 0.5-4.5 

Lambda Exponent of Box-Cox transformation 0-2.0 
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Table A-5 Variables used in the GR4J model. 

Variable Description 
PP_cr2-0 Precipitation in the same day (“0”) of the mean streamflow from CR2MET product 

PP_mswep-0 Precipitation in the same day (“0”) of the mean streamflow from MSWEP product 
ETP-0 Potential Evapotranspiration in the same day (“0”) of the mean streamflow 

Q Mean streamflow 

 

Table A-6 Variables used in the Random Forest model. 

n° Attribute or variable n° Attribute or variable n° Attribute or variable n° Attribute or variable n° Attribute or variable 

1 area 31 fp_frac 61 PP_cr2-3 91 PP_mswep-16  121 Tmean-6 

2 aridity_cr2met 32 frac_snow_cr2met 62 PP_cr2-4 92 Q 122 Tmean-7 

3 aridity_mswep 33 frac_snow_mswep 63 PP_cr2-5 93 shrub_frac 123 Tmean-8 

4 big_dam 34 gauge_lat 64 PP_cr2-6 94 slope_mean 124 Tmean-9 

5 carb_rocks_frac 35 gauge_lon 65 PP_cr2-7 95 snow_frac 125 Tmean-10 

6 crop_frac 36 grass_frac 66 PP_cr2-8 96 sur_rights_flow 126 Tmean-11 

7 Day 37 gw_rights_flow 67 PP_cr2-9 97 sur_rights_n 127 Tmean-12 

8 elev_gauge 38 gw_rights_n 68 PP_cr2-10 98 Tmax-0 128 Tmean-13 

9 elev_max 39 high_prec_dur_cr2met 69 PP_cr2-11 99 Tmax-1 129 Tmean-14 

10 elev_mean 40 high_prec_dur_mswep 70 PP_cr2-12 100 Tmax-2 130 Tmean-15 

11 elev_med 41 high_prec_freq_cr2met 71 PP_cr2-13 101 Tmax-3 131 Tmean-16 

12 elev_min 42 high_prec_freq_mswep 72 PP_cr2-14 102 Tmax-4 132 Tmin-0 

13 ETP-0 43 imp_frac 73 PP_cr2-15 103 Tmax-5 133 Tmin-1 

14 ETP-1 44 lc_barren 74 PP_cr2-16 104 Tmax-6 134 Tmin-2 

15 ETP-2 45 lc_glacier 75 PP_mswep-0 105 Tmax-7 135 Tmin-3 

16 ETP-3 46 low_prec_dur_cr2met 76 PP_mswep-1 106 Tmax-8 136 Tmin-4 

17 ETP-4 47 low_prec_dur_mswep 77 PP_mswep-2 107 Tmax-9 137 Tmin-5 

18 ETP-5 48 low_prec_freq_cr2met 78 PP_mswep-3 108 Tmax-10 138 Tmin-6 

19 ETP-6 49 low_prec_freq_mswep 79 PP_mswep-4 109 Tmax-11 139 Tmin-7 

20 ETP-7 50 Month 80 PP_mswep-5 110 Tmax-12 140 Tmin-8 

21 ETP-8 51 nf_frac 81 PP_mswep-6 111 Tmax-13 141 Tmin-9 

22 ETP-9 52 p_mean_cr2met 82 PP_mswep-7 112 Tmax-14 142 Tmin-10 

23 ETP-10 53 p_mean_mswep 83 PP_mswep-8 113 Tmax-15 143 Tmin-11 

24 ETP-11 54 p_mean_spread 84 PP_mswep-9 114 Tmax-16 144 Tmin-12 

25 ETP-12 55 p_seasonality_cr2met 85 PP_mswep-10 115 Tmean-0 145 Tmin-13 

26 ETP-13 56 p_seasonality_mswep 86 PP_mswep-11 116 Tmean-1 146 Tmin-14 

27 ETP-14 57 pet_mean 87 PP_mswep-12 117 Tmean-2 147 Tmin-15 

28 ETP-15 58 PP_cr2-0 88 PP_mswep-13 118 Tmean-3 148 Tmin-16 

29 ETP-16 59 PP_cr2-1 89 PP_mswep-14 119 Tmean-4 149 wet_frac 

30 forest_frac 60 PP_cr2-2 90 PP_mswep-15 120 Tmean-5   
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Table A-4 Variables used in the LSTM model. 

n° Attribute or variable n° Attribute or variable 

1 area 31 p_mean_cr2met 

2 aridity_cr2met 32 p_mean_mswep 

3 aridity_mswep 33 p_mean_spread 

4 big_dam 34 p_seasonality_cr2met 

5 carb_rocks_frac 35 p_seasonality_mswep 

6 crop_frac 36 pet_mean 

7 elev_gauge 37 shrub_frac 

8 elev_max 38 slope_mean 

9 elev_mean 39 snow_frac 

10 elev_med 40 sur_rights_flow 

11 elev_min 41 sur_rights_n 

12 forest_frac 42 wet_frac 

13 fp_frac 43 PP_cr2-0 

14 frac_snow_cr2met 44 PP_mswep-0 

15 frac_snow_mswep 45 Tmin-0 

16 grass_frac 46 Tmean-0 

17 gw_rights_flow 47 Tmax-0 

18 gw_rights_n 48 ETP-0 

19 high_prec_dur_cr2met 

 

20 high_prec_dur_mswep 

21 high_prec_freq_cr2met 

22 high_prec_freq_mswep 

23 imp_frac 

24 lc_barren 

25 lc_glacier 

26 low_prec_dur_cr2met 

27 low_prec_dur_mswep 

28 low_prec_freq_cr2met 

29 low_prec_freq_mswep 

30 nf_frac 

 


