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Abstract

The severity and frequency of wildfires have risen dramatically in recent years, drawing attention to the term ‘wildland-urban

interface’ (WUI), the region where man-made constructions meet flammable vegetation. Herein, we mapped a finer-scale, novel

linear WUI for California (CA) based on the intersection of boundaries of wildland vegetation and building footprint. The

direct intersection is referred to as a direct WUI, whereas the intersection at 100-m is known as an indirect WUI. More fires

were ignited closer to direct WUI than indirect WUI due to their proximity to communities. However, the overlap of past fire

perimeters with indirect WUI is greater than that with direct WUI which shows that more areas were burned in the indirect

WUI due to embers transported by strong wind gusts during large wildfires. The study’s findings will help land managers and

policymakers in controlling fire dangers, land-use planning, and reducing threats to fire-prone communities.
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Abstract 

   The severity and frequency of wildfires have risen dramatically in recent years, drawing attention to the 

term ‘wildland-urban interface’ (WUI), the region where man-made constructions meet flammable 

vegetation. Herein, we mapped a finer-scale, novel linear WUI for California (CA) based on the intersection 

of boundaries of wildland vegetation and building footprint. The direct intersection is referred to as a direct 

WUI, whereas the intersection at 100-m is known as an indirect WUI. More fires were ignited closer to 

direct WUI than indirect WUI due to their proximity to communities. However, the overlap of past fire 

perimeters with indirect WUI is greater than that with direct WUI which shows that more areas were 

burned in the indirect WUI due to embers transported by strong wind gusts during large wildfires. The 

study's findings will help land managers and policymakers in controlling fire dangers, land-use planning, 

and reducing threats to fire-prone communities. 
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Plain Language Summary 

Wildfires have become more severe and frequent in recent years, posing a threat to lives, property, and the 

environment. Over the years, the term ‘wildland-urban interface’ (WUI) has gained huge popularity in the 

context of wildfires. It is defined as a region where man-made structures are present within or near 

flammable vegetation. For more accurate analysis of wildfire occurrences and land-use planning, different 

WUI mapping methodologies have been developed in the past, across many countries. However, the 

existing approaches lack consistency in providing accurate information on the proximity of infrastructure 

and relief features to large flammable vegetated areas, and particularly, a clear definition of the interface. 

Therefore, herein, we have proposed and mapped a novel WUI, based on the linear intersection of the 

boundaries of flammable vegetation and individual buildings. We have thus obtained a higher-resolution 

WUI map that can be easily stored and accessed. Our analysis reveals that there is a higher risk of fire 



ignition where vegetation is in immediate physical contact with housing communities. Results from this 

study will help land managers and policymakers in land-use planning, fuel management, and reducing 

threats to fire-prone communities. 

1. Introduction 

The human propensity to live within the vicinity of natural amenities offered by forested lands and 

seashores has been recognized in past studies (Radeloff et al., 2001; Johnson et al., 2005; Bartlett et al., 2000). 

Therefore, due to the increasing number of houses near forests and densely vegetated lands in the past few 

decades, there has been a dramatic proliferation in the number of regions where man-made structures are 

present within or near wildland vegetation, known as the Wildland-Urban Interface (WUI) (Radeloff et al., 

2018; Martunizzi et al., 2015). In recent years, CA wildfires have burned the highest number of acres and 

buildings of all states in the US (National Interagency Fire Center (NIFC) report (2018); CALFIRE summary 

report). The wildfire season gained the title of 'giga fire' in the year 2020 and burned more than a million 

acres of land compared to previous years during which the burned area had been recorded as a few 

hundred thousand acres ('mega fire’). Whenever homes are constructed near flammable vegetation, it poses 

two types of major issues: first, the risk of human sparked fires increases, and second, it also escalates the 

risk of damage caused by wildfires (Radeloff et al., 2018).  

For the purpose of a more accurate analysis of the wildfire occurrences, tracking the location of 

wildfires, and land use planning, different WUI mapping methodologies have been developed in the past 

using a wide range of datasets and for different types of man-made structural regions across many 

countries including Europe, Australia, and Canada (Johnston et al., 2018; Hanberry et al., 2020; Miranda et 

al., 2020; Bento-Gonçalves et al., 2020). In addition, these maps also depend on the context and purpose of 

the study; for example, housing-centric or fuel-centric WUI mapping, as demonstrated in Stewart et al., 

2009. In the US, WUI mapping was based on the 2001 federal register definition of the US Department of 

Interior (US DOI) and the US Department of Agriculture (USDA) which states that WUI are those areas 

where houses are present within or nearby wildland vegetation. In the original definition, it was not 

specified whether the intersection of these two types of land use were based on the intersected area or the 

common boundary of two polygons. However, previous studies were based on areal intersection, i.e., in 

terms of intersection of the area of these two features and were based on zonal approaches where either a 

housing density was defined or point based approaches where individual housing locations were used 

(Radeloff et al., 2005; Wilmer and Aplet, 2005; Li et al., 2021). These approaches lacked consistency on 

accurate information on all three components of the WUI definition together - accurate housing 



information, accurate vegetation information and a clear definition of the interface and the proximity of 

buildings to large vegetated areas. 

To address this gap, Pereira et al., 2018 argued that a semantically correct definition of an interface 

(Webster’s Third New International Dictionary (Gove, 1961)) should be a plane or other surface forming a 

common boundary of two bodies or spaces. Therefore, ideally, the result of WUI mapping would be a line 

segment that could show the common boundary or the physical contact between the boundaries of two 

features. Linear WUI offers greater simplicity in the storage and utilization of information over previous 

WUI mappings because each WUI line segment can be tagged with information about its surroundings, 

such as distance to nearby roads, fuel types, population, building and vegetation density, etc. (Pereira et 

al., 2018). The new WUI map for CA will yield a more accurate analysis of the wildfire events with respect 

to WUI as it maps at a 30-m finer-scale resolution. Recent studies suggest that most of the CA wildfires 

destroyed houses in the WUI but occurred outside the existing WUI regions (Kumar et al., 2020; Kramer et 

al., 2018). It is therefore important to analyze how far the linear WUI features are present from the past 

wildfire events and would be helpful in monitoring fires in proximity to these linear WUIs, as well as in 

making development plans in the immediate area. The distance between previous wildfire ignition points 

and WUI line will show how far wildfires occurred from the linear WUI. This would help in the 

identification of the wildfire risk prone areas. It is expected that more ignitions near the linear WUI 

segments due to human ignited fires. In addition, the wildfire burned area with respect to the WUI line 

segment will provide more information on the severity of the fire as well as the respective risk level. 

The resulting linear WUI features from this approach will be in vector format as opposed to rasters, 

which have been provided by the previous WUI mapping approaches. In geospatial analysis, vector data 

are associated with higher geographic accuracy because of lesser dependence on grid size. Additionally, 

storing, handling, and appending new data layers to vector data is significantly more efficient compared 

to rasters which are considerably larger in size. In addition, vector data are much more scalable, amenable 

to defining connections between topology and network structures, and easier for delineating boundaries 

and administrative maps in fine resolution, comparable to raster datasets. Moreover, storing of vector data 

is possible without the loss of generalization and preserving geolocation information. Therefore, it is 

envisioned that developing wildland fire policies under a changing climate and growing trends in WUI 

land use features will be more efficient using linear WUI features as developed in this manuscript. 

This paper contributes in a number of ways to existing WUI literature. To the authors’ knowledge, 

this paper is one of the first attempts to map the linear WUI for the US using a point-based approach, i.e., 

the location of individual buildings at a finer resolution of 30 m and linear features. This means that rather 



than providing the areas that WUIs contain, the focus of this mapping approach is the boundaries that 

mark the edges of the interface, which is semantically more accurate. This novel WUI map gives the most 

accurate representation of the intersecting boundaries between the flammable vegetation and houses. This 

map will guide local and regional government agencies to determine the location of infrastructures for 

further construction and development of buildings, roads, and power supplies, etc. Furthermore, it would 

also help in locating the highly risky areas where there are many communities living nearby these WUI 

lines and thus policies and activities will be implemented in a way to either reduce the density of houses 

or clear the fuel loading in such regions. The key objectives of this study are as follows: (i) map the linear 

WUI in terms of direct and indirect interfaces and determine which WUI is more widespread in CA; (ii) 

evaluate how much percentage of wildfires occurred in the linear WUI features in CA; (iii) examine the 

distance between wildfire ignition points and the linear WUI features to see how far the fires ignited from 

it since 2010 in CA. Thus, this paper aims to show the importance of the novel linear WUI features for CA 

at both the local and federal level.  

2. Data and Methodology 

2.1. Data 

        The vegetation data used for this study was Landsat-based, the 2016 National Land Cover Database 

(NLCD) (Jin et al., 2019), a new generation of NLCD products, released by the U.S. Geological Survey 

(USGS). We used a rasterized format of Microsoft building footprint datasets, available at 30 m spatial 

resolution, and used the boundaries of houses for producing the linear WUI feature (Heris et al., 2020; Li 

et al., 2021). Since the liner WUI was mapped using the recent land cover and housing information, 

therefore, to better analyze the WUI maps and their relationship with the previous wildfires, we used 

Monitoring Trends in Burn Severity (MTBS) datasets and included only those fires which occurred in the 

last decade i.e., from 2010 to 2018. It shows all 380 fire perimeters of all fire events that happened in 

California from 2010 to 2018 and are represented by the legend in Figure 2. More details about these data 

can be found in the supplementary information.  

 

2.2. Methodology 

        NLCD data was clipped for California from the conterminous United States (CONUS). Clipped land 

cover data was converted to polygons from the original raster data using the conversion tool from the 

ArcGIS geoprocessing. A wildland vegetation layer was generated for WUI mapping using selection by 

attributes from the attribute table using ArcGIS. Only shrub/grassland, herbaceous, woody wetlands, 



emergent herbaceous wetlands, and forests including evergreen, mixed, and deciduous were selected for 

the wildland vegetation layer (Radeloff et al., 2005; Martunizzi et al., 2015). The building raster layers were 

converted into vectors. The boundaries of the building were intersected with the wildland vegetated areas 

to map the wildland-urban interface. The resulting feature is a line, called direct WUI or indirect WUI at a 

100-m buffer distance from the building boundary.  

        Direct WUI was calculated using the intersection tool from ArcMap using the vegetation polygon and 

housing boundary, and it represents the direct physical contact of buildings with the flammable vegetation. 

There is always a higher risk of damage to the communities living at the direct WUI feature as compared 

to those living at the indirect WUI as studied by Pereira et al., 2018. To map the indirect WUI, first, we took 

a buffer distance of 100-m from the vegetation polygon and then extracted those areas in California which 

had neither buildings nor vegetation using the erase tool from ArcMap. We then intersected the extracted 

layer with the buffered vegetation layer. Finally, we intersected the previously intersected layer with the 

housing boundary to get the Indirect WUI. We did not intersect the vegetation layer with a buffer and 

housing boundary to avoid the duplication of indirect WUI lines with the direct WUI.       

3. Results and Discussions 

3.1. Linear WUI features in California 



 



 

 

 

Figure 1. The top left and top right panels show direct and indirect WUI respectively for the entire state of 

California. The bottom left panel on the figure above shows the spatial pattern of Microsoft building 

footprints and vegetation data in San Diego. A section of the County map has been enlarged to depict the 

direct, indirect, and non-WUI lines as well as their actual visualization at 30 m resolution. This is displayed 

in the bottom right panel of the figure above. 

        Direct WUI is a linear WUI feature that is shown in Figure 1, with pixel lengths in meters (m) and is 

represented with a green colorbar. Enlarged portion of Figure 1 on the bottom right panel depicts a very 

clear visualization of the different linear WUI (direct and indirect WUI) and Non-WUI segments and it 

became possible only due to the finer-scale mapping using building footprint data at 30-m resolution. In 

addition, such a finer-scale WUI map provides more detailed information related to both housing and 

wildland vegetation. Linear WUI segments may be used to gather information about building density, 

population and the area of the housing cluster. Similarly, it can also be used to collect data related to 

flammable vegetation, such as, area of the flammable patch, types of near fuel availability, and proximity 

to roads, etc. The findings of this analysis will help foresters, land managers, and policymakers plan future 

development activities, mitigation, and evacuation. Most importantly, by shrinking the linear WUI, the risk 

of community damage can be reduced. It can be achieved by either clearing off flammable vegetation 

nearby buildings or slowing down the rate at which new houses are being built near flammable vegetation. 

         



3.2. Overlap of wildfires and linear WUI 

 

Figure 2. The figure shows the overlap of California historic wildfire perimeters (2010-2018) with direct 

WUI (top left panel) and indirect WUI (bottom left panel). Legends with green and blue lines represent 

direct and indirect WUI respectively. The middle panels present enlarged views of the relevant sections of 

the left two maps for clearer visualization. Top right and bottom right panel show the countywide 

percentage overlap of total direct WUI and total indirect WUI of California respectively with wildfire 

perimeters from 2010 to 2018. Colorbar shows the increase from yellow (low) to red (high) for the respective 

counties in California. 

        Right and left-hand panels in Figure 2 depict the overlap of wildfire perimeters with direct WUI from 

2010 to 2018. This result clearly indicates that there is a very low percentage of overlap between the direct 



WUI and the fire perimeters. However, a maximum of up to 29 % of all direct WUI lines in California 

overlap within the past wildfire perimeters (top right panel, Figure 2). Thus, the results show that the 

majority of wildfires are not occurring at WUI lines and may be burning farther away from the direct WUI 

lines. Similarly, a considerable percentage of fires ignited and burned outside WUI areas, according to a 

recent study by Kumar et al., 2020. In the case of indirect WUI, though, the percentage overlap between 

indirect WUI and wildfire perimeters is still low, but it is higher than what we have seen with direct WUI 

(top right and bottom right panels, Figure 2). Because of the devastating wildfire in Butte County in 2018, 

i.e., the Camp Fire, the maximum value of percentage overlap rises up to 35%. The percentage overlap of 

wildfire perimeters and indirect WUI might vary depending on how we choose the wildland vegetation 

perimeters when mapping the indirect WUI. 

        We calculated that the total pixel length of direct WUI in California is 119,640,741 m. It has 672,435 

counts with a maximum count length of 5,958 m. In contrast, indirect WUI has a total pixel length of 

164,706,030 m, which comprises a total number of 3,009,978 counts, with the highest length of a count being 

5,022 m. When we examined these two linear WUI features, we discovered that the direct WUI has a lower 

total pixel length than the indirect WUI. However, a higher percentage of fires ignited in close proximity 

to direct WUI as compared to those in the vicinity of indirect WUI (Please refer to Table S1 in the 

supplementary materials). As a result, even though direct WUI has a lower total pixel length in California, 

it has a larger potential of fire ignitions in its vicinity based on prior fire incidence data. In addition, the 

maximum length of a count, the statistical parameters like mean, median, and mode are higher for the 

direct WUI. However, the total number of counts is lower for direct WUI as compared to indirect WUI. As 

a result, this difference in counts reveals that the direct WUI is less fragmented than the indirect WUI 

(Figure 1 and Figure 2). A greater length of linear WUI in a region corresponds to a higher likelihood of 

wildfire risk due to the presence of flammable vegetation nearby. Moreover, a greater length of linear WUI 

also indicates a larger number of interfaces between flammable vegetation and human settlements which 

would mean a higher risk of damage to the lives, properties, and health of a larger number of communities 

nearby that region. As mentioned earlier, the direct WUI indicates direct physical contact between houses 

and flammable vegetation. Hence, the likelihood of fire ignition increases as one gets closer to these linear 

WUI features. Interestingly, from 2010 to 2018, 36.58 % of wildfires in California were ignited within 1 km 

of direct WUI, according to our assessment. In the case of indirect WUI, it represents an indirect contact 

between the housing boundary and flammable vegetation, with a 100-meter buffer surrounding it (Pereira 

et al., 2018). As a result, we analyzed those house boundaries that do not cross directly with flammable 

vegetation, and we expected that there would be a lower likelihood of wildland fires in the presence of 



such linear WUI characteristics as compared to direct WUI. Indeed, we revealed in our analysis that only 

17.37 % of fires ignited within 1 km of indirect WUI. As a result, we can see that there are lower risks of 

wildfire ignitions closer to indirect WUI than to direct WUI. 

 

3.3. Distance of fire ignition points from linear WUI features 



 

Figure 3. The figure shows the distribution of the best fit plot for distance (m) of wildfire ignition points 

from direct WUI (top panel) and indirect WUI (middle panel). Bottom panel shows two histograms for the 

distribution of distance of wildfire ignition points on the either side from linear WUI features. Histogram 

for the direct WUI (green) shows a continuous decreasing percentage of wildfires; while it is neither 

continuously increasing nor continuously decreasing and has two peaks for the indirect WUI (red).  

        In the bottom panel of Figure 3, we show the histogram plots for the distribution of distance of wildfire 

ignition points in six different classes from the direct, and indirect WUI respectively. Additionally, the 

percentages, total number of fires that occurred between these classes are also shown. In our analysis, we 

observe that in case of the direct WUI, 139 fires ignited out of a total of 380 fires i.e., 36.58% of fires ignited 

within 1 km range on either side from direct WUI (Please also refer to Table S1 in supplementary materials). 

It has decreased continuously as we increase the distance farther away from the direct WUI. And it dropped 

to only 3.42 % of total fires that were ignited above 5 km distance from the direct WUI in California (bottom 

panel, Figure 3). In case of indirect WUI, we found a different trend of the fire ignitions in different classes 

of the distance ranges on either side of the indirect WUI. Only 90 fires ignited within 1 km distance on 

either side of the indirect WUI, making it 17.37% fires within this range (Please also refer to Table S1 in 

supplementary materials). However, it has increased from 17.37% to 23.68% in the range of 0-1 km to 1-2 

km distance from indirect WUI features respectively (bottom panel, Figure 3). Additionally, a significant 

portion of the fires i.e., 21.05% ignited above 5 km on either side from the indirect WUI. And this accounts 

for 80 fires out of a total 380 fires that ignited above 5 km in California from 2010 to 2018. We can indeed 

conclude that the direct WUI is more prone to fire activity based on the past nine years of wildfire history 

in California. And, thus, there is a higher risk of damage due to wildland fires within the closer proximity 

of direct WUI. On the other hand, almost 83% of fires ignited above 1 km distance from the indirect WUI. 

Therefore, there is lower probability of burning within 1 km distance from the indirect WUI as compared 

to the direct WUI. Additionally, a significant percentage of fires ignited above 5 km distance from the 

indirect WUI as compared to the direct WUI. 

        A total of 380 wildfires occurred in California from 2010 to 2018 as reported by MTBS. These included 

both man-made fires as well as fires ignited by natural causes, such as lightning. In the left panel of Figure 

S1 (Please refer to the supplementary materials), we show the countywide fire frequency in California, with 

more than 20 large fires in some of the counties, as shown with the red colorbar. We observe that 

northernmost and southern California have the highest number of fires (Figure S1, left panel). Notably in 

southern California, the counties of San Diego (SDG) and Kern (KER) each had 27 fires from 2010 to 2018. 



While in the northern part, Siskiyou (SIS) County had a maximum of 24 fires during the same period (Please 

refer to Figure S1 in the supplementary materials). Strong wind events, more specifically, Diablo winds in 

northern California and Santa Ana winds in southern California are the main drivers for the larger and 

more devastating wildfires. Furthermore, human ignition is one of the most significant factors in the last 

few decades for a majority of the deadliest fires. Counties with zero wildfires were shown with no color 

and thus left blank white spaces, as can be referred to in the left panel of Figure S1. A few counties had no 

or very few wildfire events during 2010-2018; however, these counties more recently recorded severe 

wildfires that are not shown here. For example, the Silverado fire occurred in October and November 2020 

in southern Orange County, California. However, such wildfire occurrences are not included in this study 

because of the unavailability of adequate datasets for the recent wildfire events. 

        It is crucial to observe how far fires ignited from the linear WUI features and which statistical curve 

will best fit the distribution of the distance between fires and WUI. Therefore, we performed the statistical 

analysis and used different curve fittings to choose the best fit curve for both direct and indirect WUI. We 

chose 13 different distributions to test the best fit as shown in Table S2a and Table S2b in the supplementary 

information. Our analysis reveals that the ‘lognormal with three parameters’ distribution is the best fit 

curve for the direct WUI as can be seen in the top panel of Figure 3. It has a p-value of 0.15 that is highest 

of all, as compared to the p values of the other 12 distributions (Please refer to Table S2 a and Table S2b in 

supplementary materials). In this approach the null hypothesis is that the dataset is sampled from the 

chosen distribution and a p-value larger than the significance level 0.05 indicates that the null hypothesis 

cannot be rejected in favor of the alternate hypothesis. Apart from p-value, there are other parameters to 

check whether or not the result of a statistical analysis is adequate.  For example, the location and scale of 

a distribution also tells us about the data structure. The scale parameter describes how spread out the data 

values are, while the location parameter describes how large the data values are. However, some of the 

distributions like ‘weibull’ and ‘gamma’ do not have these parameters (Please refer to Table S2 a and Table 

S2b in supplementary materials). And therefore, we must check for the ‘shape’ parameter, which is an 

outcome of these distributions. The shape parameter describes how the data is spread. In general, a larger 

scale results in a more spread-out distribution. In this study, we used a suitable number of datasets (380) 

to perform the statistical analysis in both direct and indirect WUI (Please refer to Table S2 a and Table S2b 

in supplementary materials). Therefore, the conclusion of our results based on p value is adequate and 

acceptable. As we can see in the middle panel of Figure 3, lognormal with three parameters is also the best 

fit curve in the case of indirect WUI. 



4. Conclusions 

        Past studies showed that different WUI maps were developed for the CONUS using a variety of 

datasets and different mapping methodologies. However, neither of these focused on WUI mapping based 

on the linear intersection of vegetation and housing boundary, using building footprint and NLCD land 

cover data respectively. In this study, we mapped linear WUI at 30 m resolution. We defined two types of 

linear WUI i.e., direct, and indirect WUI for California. Direct WUI has direct physical contact between 

flammable vegetation and housing boundary and thus, has a higher risk of fires. While indirect WUI is 

mapped by the intersection of housing, and 100 m buffer boundary surrounding flammable vegetation and 

therefore it has a lower probability of fires. Results revealed that the direct WUI had a lower total pixel 

length and is less scattered than the indirect WUI in California. However, a higher percentage of fires 

ignited in the vicinity of direct WUI because of a higher extent of human activities as compared to indirect 

WUI. Hence, even though direct WUI has a lower total pixel length in California, it has a larger potential 

of fire ignitions in its vicinity based on the historical wildfires. Furthermore, the majority of wildfires did 

not burn along WUI lines, and we found that the overlap between wildfire burned areas and WUI hardly 

goes up to 30% for some of the counties. The reason for this is simply because some of the recent fires 

occurred over these linear WUIs. Furthermore, the percentages are lower in most of the counties in 

California as wildfires did not burn directly over it, but in the vicinity of linear WUI features. As revealed 

in this study, 69.47% fires ignited within 2 km range from direct WUI and 41.05% ignited within the same 

range from indirect WUI in California. Therefore, in this study, we show that the direct WUI are more 

prone to wildfires as compared to the indirect WUI. Not only this but also, the fires ignited from the linear 

WUI features follow a ‘lognormal with three parameters’ distribution in both direct and indirect WUI. 

Results from this study show that most of the wildfire events in CA have occurred within 2 km linear 

distance from these linear WUI features and this study also proposes that fires are not happening at the 

intersecting lines, but they ignite farther away from the linear WUI features as highlighted in Kumar et al., 

2020. These linear WUI maps will help in creating and sustaining a fire-adapted community within a WUI. 

This would also help policymakers to develop a community wildfire protection plan in the era of climate 

change that will bring an increase in wildfire events in the future. In addition, it will enhance community 

awareness regarding the prevention of fires within the WUI. Overall, this research will help in creating a 

more effective response to the wildfire events that will occur in the WUI. 
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Supplementary Information 7 

Table S1. Statistical summary table showing distance of fire ignition points with respect to direct and 8 

indirect WUI in California. 9 

 10 

Distance from Indirect WUI (km) No. of wildfires 

(2010-2018) 

Percentage of total fires (%) 

Indirect Direct Indirect Direct 

0-1 66 139 17.37 36.58 

1-2 90 125 23.68 32.89 

2-3 63 62 16.58 16.05 

3-4 39 26 10.26 6.84 

4-5 42 16 11.05 4.21 

>5 80 13 21.05 3.42 

 11 



Table S2a. Statistical analysis using 13 different curve fittings to choose the best fit curve for the distribution 12 

of the distance between wildfire ignition points and direct WUI line segments. 13 

 14 

Descriptive Statistics and curve fitting summary table for direct WUI 

 
Count Mean StDev Median Min Max Skew Kurt 

 

 
380 1741.6 1554.6 1425.9 4.689 11056 2.388 9.107 

 

Distribution Location Shape Scale Threshold Log-

Likelihood 

AD p Value LRT AIC 

Gamma 

 
1.358 1282.5 

 
-3205.7 0.699 0.084 

 
6415.5 

Weibull 

 
1.190 1849.9 

 
-3206.7 0.871 0.026 

 
6417.4 

Gamma - Three Parameter 

 
1.374 1269.9 -3.155 -3205.7 0.652 0.105 0.777 6417.4 

Weibull - Three Parameter 

 
1.184 1844.0 2.734 -3206.6 0.896 0.023 0.662 6419.2 

LogNormal - Three Parameter 7.383 
 

0.700 -300.7 -3209.0 0.553 0.153 0.000 6424.1 

LogLogistic - Three Parameter 7.319 
 

0.438 -197.2 -3213.6 0.982 0.006 0.000 6433.1 

Exponential - Two Parameter 

  
1736.9 4.689 -3214.8 5.856 <0.001 0.152 6433.5 

Exponential 

  
1741.6 

 
-3215.8 5.736 <0.001 

 
6433.6 

LogLogistic 7.148 
 

0.556 
 

-3221.9 2.637 <0.005 
 

6447.8 

Largest Extreme Value 1124.8 
 

965.5 
 

-3234.4 2.620 <0.01 
 

6472.7 

LogNormal 7.051 
 

1.058 
 

-3239.9 5.891 0.000 
 

6483.8 

Normal 1741.6 
 

1552.5 
 

-3331.3 15.07 0.000 
 

6666.6 

Smallest Extreme Value 2656.4 
 

2542.8 
 

-3496.3 44.68 <0.01 
 

6996.6 

 15 

 16 

 17 

 18 
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Table S2b. Statistical analysis using 13 different curve fittings to choose the best fit curve for the 20 

distribution of the distance between wildfire ignition points and indirect WUI line segments. 21 

 22 

Descriptive Statistics and curve fitting summary table for indirect WUI 

 
Count Mean StDev Median Min Max Skew Kurt 

 

 
380 3599.8 3535.2 2492.7 2.939 23825 2.339 7.327 

 

Distribution Location Shape Scale Threshold Log-

Likelihood 

AD p Value LRT AIC 

LogNormal - Three Parameter 7.921 
 

0.836 -265.6 -3481.1 0.243 0.766 0.000 6968.2 

Gamma 

 
1.278 2816.1 

 
-3485.1 1.294 <0.005 

 
6974.1 

Gamma - Three Parameter 

 
1.286 2801.4 -2.505 -3485.0 1.304 <0.005 0.773 6976.0 

Weibull 

 
1.119 3762.2 

 
-3487.6 1.830 <0.01 

 
6979.3 

LogLogistic 7.803 
 

0.564 
 

-3487.8 0.740 0.032 
 

6979.5 

Weibull - Three Parameter 

 
1.117 3758.5 1.337 -3487.6 1.825 <0.01 0.820 6981.2 

Exponential 

  
3599.8 

 
-3491.7 3.784 <0.001 

 
6985.4 

Exponential - Two Parameter 

  
3596.9 2.939 -3491.4 4.013 <0.001 0.431 6986.7 

LogLogistic - Three Parameter 7.800 
 

0.578 2.936 -3493.0 0.820 0.019 * 6991.9 

LogNormal 7.749 
 

1.046 
 

-3500.8 1.982 0.000 
 

7005.6 

Largest Extreme Value 2232.3 
 

2047.1 
 

-3531.0 6.813 <0.01 
 

7066.1 

Normal 3599.8 
 

3530.6 
 

-3643.5 22.39 0.000 
 

7291.0 

Smallest Extreme Value 5674.7 
 

5511.1 
 

-3796.6 46.64 <0.01 
 

7597.2 

 23 
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1. Data in detail 28 

1.1. Vegetation data 29 

        The vegetation data used for this study was Landsat-based, the 2016 National Land Cover Database 30 

(NLCD) (Jin et al., 2019), a new generation of NLCD products, released by the U.S. Geological Survey 31 

(USGS). It was designed specifically for the rapidly growing demand for land cover change analysis and 32 

the related studies, and it represented the most robust land cover base ever produced by the USGS. It 33 

included land cover and its changes over the CONUS for seven years, 2001, 2003, 2006, 2008, 2011, 2013, 34 

and 2016. Thus, it increased the land cover time series from 10 years to 15 years (2001 to 2016) (Homer et 35 

al., 2020). It was downloaded from Multi-Resolution Land Characteristics (MRLC) Consortium (available 36 

on https://www.mrlc.gov/) and was available at 30 m spatial resolution. The accuracy and robustness of 37 

the NLCD 2016 map were also shown by recent studies including Jin et al., 2019 and Homer et al., 2020. 38 

NLCD 2016 could be used for the identification of the different features at a finer resolution and thus can 39 

be considered for the deeper analysis of the expanding areas and further planning of the developmental 40 

activities. It contained a total of 28 different types of land cover classes over the CONUS. For the purpose 41 

of mapping the linear WUI, we chose only those vegetation categories which were flammable vegetation 42 

(right panel, Figure S1) and included shrubland, grassland, woody wetlands, and all kinds of forest 43 

vegetation (California fire alliance 2001; Radeloff et al., 2005). Specific steps used for extracting the 44 

vegetation layer using ArcMap tools will be discussed in methodology section 2.2. 45 

1.2. Building data 46 

        With the improvement of remote sensing data in acquisition efficiency and resolution, it has become 47 

possible to extract detailed housing boundaries from it. Over the past few years, Microsoft has made great 48 

efforts in applying deep learning, computer vision, and Artificial Intelligence for mapping, and leveraging 49 

the power of Machine Learning in analyzing satellite imagery to trace the shape of buildings across the 50 

country.  More specifically, Bing Maps, a mapping platform from Microsoft had successfully generated the 51 

first comprehensive high-quality housing footprints database covering the entire CONUS by using Deep 52 

Neural Network (DNN) and the residual neural network (ResNet34) with segmentation techniques (Refine 53 

Net up-sampling) to detect individual building footprints from their imagery data. However, there was a 54 

need to develop some methodologies to put this data in a more usable format for the researchers and land 55 

planning management, to study and analyze the human and environmental impacts on small cities and 56 

regions (Heris et al., 2020; Demuzere et al., 2020). A new method of rasterizing building footprint was 57 

developed by Heris et al., 2020 and was used in this study to produce a robust WUI map. Taking advantage 58 

https://www.mrlc.gov/


of the new building dataset from Microsoft product and rasterizing method, we propose a new framework 59 

of mapping novel linear WUI over California. The building dataset was extracted from the Microsoft 60 

dataset containing 124,885,597 computer-generated building footprints in GeoJSON format for the US. 61 

Regarding the accuracy metrics, the precision of the evaluation set is 99.3 % and the recall is 93.5 %. The 62 

California building footprint file implemented in this study contained 10,988,525 computer-generated 63 

building footprints in California and was extracted from the US building footprint dataset by Microsoft 64 

(2018), then converted to shapefile format. We used a rasterized format of Microsoft building footprint 65 

datasets, available at 30 m spatial resolution, and used the boundaries of houses for producing the linear 66 

WUI feature (Heris et al., 2020; Li et al., 2021). This boundary data was obtained from Heris et al., 2020 in 67 

which the value of each cell represents the area of the cell that was covered by building footprints. The cell 68 

values were calculated by developing an algorithm that used High Performance Computing (HPC) (Heris 69 

et al., 2020). This algorithm created a small meshgrid (a 2D array) for each building's bounding box, 70 

generating unique values for each meshgrid cell that was further coordinated with NLCD products to make 71 

it more usable (projected using Albers Equal Area Conic system) (Heris et al., 2020). The range of values 72 

was from 0 to 900 sq. meters. To better aid the implementation of building footprint data into large-scale 73 

computation, these values are represented as raster layers with a 30 m cell size covering each of the 48 74 

conterminous states. 75 

 76 

1.3. Wildfires data 77 

        Previous wildfire data were downloaded from Monitoring Trends in Burn Severity (MTBS), (available 78 

on https://www.mtbs.gov/direct-download). MTBS is an interagency initiative whose purpose is to 79 

continuously monitor the intensity of wildfires in terms of burn severity and the size of major fires from 80 

1984 to present in the US. It does not cover small fires and includes all those fires in the Western US of 1000 81 

or more acres, and 500 or greater acres in the Eastern part of the US (MTBS, 2021). In this study, we used 82 

two kinds of MTBS datasets, namely, wildfire occurrence dataset that showed wildfire ignition points, and 83 

burned area boundaries datasets, representing wildfire perimeters. For analyzing the overlap of previous 84 

wildfires with the linear WUI features, we used wildfire perimeter. While detecting the distance of previous 85 

wildfire events from the linear WUI features, we used wildfire ignition points data. Since the liner WUI 86 

was mapped using the recent land cover and housing information, therefore, to better analyze the WUI 87 

maps and their relationship with the previous wildfires, we included only those fires which occurred in 88 

https://www.mtbs.gov/direct-download


the last decade i.e., from 2010 to 2018. It shows all 380 fire perimeters of all fire events that happened in 89 

California from 2010 to 2018 and are represented by the legend in Figure 2. 90 

2. Wildland fire ignition frequency analysis 91 

        A total of 380 wildfires occurred in California from 2010 to 2018 as reported by MTBS. These included 92 

both man-made fires as well as fires ignited by natural causes, such as lightning. In the left panel of Figure 93 

S1, we show the countywide fire frequency in California, with more than 20 large fires in some of the 94 

counties, as shown with the red colorbar. We observe that northernmost and southern California have the 95 

highest number of fires (left panel, Figure S1). Notably in southern California, the counties of San Diego 96 

(SDG) and Kern (KER) each had 27 fires from 2010 to 2018. While in the northern part, Siskiyou (SIS) County 97 

had a maximum of 24 fires during the same period. Strong wind events, more specifically, Diablo winds in 98 

northern California and Santa Ana winds in southern California are the main drivers for the larger and 99 

more devastating wildfires. Furthermore, human ignition is one of the most significant factors in the last 100 

few decades for a majority of the deadliest fires. Counties with zero wildfires were shown with no color 101 

and thus left blank white spaces, as can be referred to in the left panel of Figure S1. A few counties had no 102 

or very few wildfire events during 2010-2018; however, these counties more recently recorded severe 103 

wildfires that are not shown here. For example, the Silverado fire occurred in October and November 2020 104 

in southern Orange County, California. However, such wildfire occurrences are not included in this study 105 

because of the unavailability of adequate datasets for the recent wildfire events. 106 



 107 

Figure S1. The left panel on the figure above shows wildfire frequency in all the counties of California from 108 

2010 to 2018. The blue triangular-shaped symbols represent the wildfire ignition points in the respective 109 

counties, while the colorbar shows the number strength of these fire frequencies for each County. The white 110 

portions of the map represent those counties where the fire activity was absent. The right panel on the 111 

figure above shows the spatial pattern of NLCD data, the wildland vegetation data used to map the linear 112 

WUI for California at 30 m resolution; it includes three kinds of forest, shrubs, and emergent herbaceous & 113 

woody wetlands; white color represents the water bodies and other vegetation types that were not included 114 

for mapping the linear WUI. 115 

        Figure S1 (right panel) depicts the wildland vegetation cover used in the mapping of linear WUI. This 116 

map clearly shows that the majority of southern California is covered by shrubland vegetation, whereas 117 

the dominant land cover type in the north is evergreen forest and shrubland. Furthermore, the variability 118 

in land cover type is greater in the northern counties of California than in the southern regions. Overall, 119 

shrubland is the most common type of vegetation in California. Shrublands are defined as ecosystems with 120 

a minimum of 30% shrub or sub-shrub cover and tree densities of up to 10 trees per hectare (USDA).  They 121 

are one of the significant regions where wildfire season lasts the longest (Jolly et al., 2015). Although it has 122 

a low fuel presence, those available fuels are very dry and therefore, the fire spread is very high in 123 

shrublands (Bond et al., 2001). Also, recent studies have shown that the shrublands are one of the areas 124 



most affected by wildfires (Jolly et al., 2015). The white colorbar in the right panel of Figure S1 also reflects 125 

water and other land cover types that are not classified as wildland vegetation while mapping linear WUI. 126 
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Abstract 

   The severity and frequency of wildfires have risen dramatically in recent years, drawing attention to the 

term ‘wildland-urban interface’ (WUI), the region where man-made constructions meet flammable 

vegetation. Herein, we mapped a finer-scale, novel linear WUI for California (CA) based on the intersection 

of boundaries of wildland vegetation and building footprint. The direct intersection is referred to as a direct 

WUI, whereas the intersection at 100-m is known as an indirect WUI. More fires were ignited closer to 

direct WUI than indirect WUI due to their proximity to communities. However, the overlap of past fire 

perimeters with indirect WUI is greater than that with direct WUI which shows that more areas were 

burned in the indirect WUI due to embers transported by strong wind gusts during large wildfires. The 

study's findings will help land managers and policymakers in controlling fire dangers, land-use planning, 

and reducing threats to fire-prone communities. 

 

   Keywords: building footprint; linear WUI; land-use planning; wildfires; wildland-urban interface; 

wildland vegetation 

Plain Language Summary 

Wildfires have become more severe and frequent in recent years, posing a threat to lives, property, and the 

environment. Over the years, the term ‘wildland-urban interface’ (WUI) has gained huge popularity in the 

context of wildfires. It is defined as a region where man-made structures are present within or near 

flammable vegetation. For more accurate analysis of wildfire occurrences and land-use planning, different 

WUI mapping methodologies have been developed in the past, across many countries. However, the 

existing approaches lack consistency in providing accurate information on the proximity of infrastructure 

and relief features to large flammable vegetated areas, and particularly, a clear definition of the interface. 

Therefore, herein, we have proposed and mapped a novel WUI, based on the linear intersection of the 

boundaries of flammable vegetation and individual buildings. We have thus obtained a higher-resolution 

WUI map that can be easily stored and accessed. Our analysis reveals that there is a higher risk of fire 



ignition where vegetation is in immediate physical contact with housing communities. Results from this 

study will help land managers and policymakers in land-use planning, fuel management, and reducing 

threats to fire-prone communities. 

1. Introduction 

The human propensity to live within the vicinity of natural amenities offered by forested lands and 

seashores has been recognized in past studies (Radeloff et al., 2001; Johnson et al., 2005; Bartlett et al., 2000). 

Therefore, due to the increasing number of houses near forests and densely vegetated lands in the past few 

decades, there has been a dramatic proliferation in the number of regions where man-made structures are 

present within or near wildland vegetation, known as the Wildland-Urban Interface (WUI) (Radeloff et al., 

2018; Martunizzi et al., 2015). In recent years, CA wildfires have burned the highest number of acres and 

buildings of all states in the US (National Interagency Fire Center (NIFC) report (2018); CALFIRE summary 

report). The wildfire season gained the title of 'giga fire' in the year 2020 and burned more than a million 

acres of land compared to previous years during which the burned area had been recorded as a few 

hundred thousand acres ('mega fire’). Whenever homes are constructed near flammable vegetation, it poses 

two types of major issues: first, the risk of human sparked fires increases, and second, it also escalates the 

risk of damage caused by wildfires (Radeloff et al., 2018).  

For the purpose of a more accurate analysis of the wildfire occurrences, tracking the location of 

wildfires, and land use planning, different WUI mapping methodologies have been developed in the past 

using a wide range of datasets and for different types of man-made structural regions across many 

countries including Europe, Australia, and Canada (Johnston et al., 2018; Hanberry et al., 2020; Miranda et 

al., 2020; Bento-Gonçalves et al., 2020). In addition, these maps also depend on the context and purpose of 

the study; for example, housing-centric or fuel-centric WUI mapping, as demonstrated in Stewart et al., 

2009. In the US, WUI mapping was based on the 2001 federal register definition of the US Department of 

Interior (US DOI) and the US Department of Agriculture (USDA) which states that WUI are those areas 

where houses are present within or nearby wildland vegetation. In the original definition, it was not 

specified whether the intersection of these two types of land use were based on the intersected area or the 

common boundary of two polygons. However, previous studies were based on areal intersection, i.e., in 

terms of intersection of the area of these two features and were based on zonal approaches where either a 

housing density was defined or point based approaches where individual housing locations were used 

(Radeloff et al., 2005; Wilmer and Aplet, 2005; Li et al., 2021). These approaches lacked consistency on 

accurate information on all three components of the WUI definition together - accurate housing 



information, accurate vegetation information and a clear definition of the interface and the proximity of 

buildings to large vegetated areas. 

To address this gap, Pereira et al., 2018 argued that a semantically correct definition of an interface 

(Webster’s Third New International Dictionary (Gove, 1961)) should be a plane or other surface forming a 

common boundary of two bodies or spaces. Therefore, ideally, the result of WUI mapping would be a line 

segment that could show the common boundary or the physical contact between the boundaries of two 

features. Linear WUI offers greater simplicity in the storage and utilization of information over previous 

WUI mappings because each WUI line segment can be tagged with information about its surroundings, 

such as distance to nearby roads, fuel types, population, building and vegetation density, etc. (Pereira et 

al., 2018). The new WUI map for CA will yield a more accurate analysis of the wildfire events with respect 

to WUI as it maps at a 30-m finer-scale resolution. Recent studies suggest that most of the CA wildfires 

destroyed houses in the WUI but occurred outside the existing WUI regions (Kumar et al., 2020; Kramer et 

al., 2018). It is therefore important to analyze how far the linear WUI features are present from the past 

wildfire events and would be helpful in monitoring fires in proximity to these linear WUIs, as well as in 

making development plans in the immediate area. The distance between previous wildfire ignition points 

and WUI line will show how far wildfires occurred from the linear WUI. This would help in the 

identification of the wildfire risk prone areas. It is expected that more ignitions near the linear WUI 

segments due to human ignited fires. In addition, the wildfire burned area with respect to the WUI line 

segment will provide more information on the severity of the fire as well as the respective risk level. 

The resulting linear WUI features from this approach will be in vector format as opposed to rasters, 

which have been provided by the previous WUI mapping approaches. In geospatial analysis, vector data 

are associated with higher geographic accuracy because of lesser dependence on grid size. Additionally, 

storing, handling, and appending new data layers to vector data is significantly more efficient compared 

to rasters which are considerably larger in size. In addition, vector data are much more scalable, amenable 

to defining connections between topology and network structures, and easier for delineating boundaries 

and administrative maps in fine resolution, comparable to raster datasets. Moreover, storing of vector data 

is possible without the loss of generalization and preserving geolocation information. Therefore, it is 

envisioned that developing wildland fire policies under a changing climate and growing trends in WUI 

land use features will be more efficient using linear WUI features as developed in this manuscript. 

This paper contributes in a number of ways to existing WUI literature. To the authors’ knowledge, 

this paper is one of the first attempts to map the linear WUI for the US using a point-based approach, i.e., 

the location of individual buildings at a finer resolution of 30 m and linear features. This means that rather 



than providing the areas that WUIs contain, the focus of this mapping approach is the boundaries that 

mark the edges of the interface, which is semantically more accurate. This novel WUI map gives the most 

accurate representation of the intersecting boundaries between the flammable vegetation and houses. This 

map will guide local and regional government agencies to determine the location of infrastructures for 

further construction and development of buildings, roads, and power supplies, etc. Furthermore, it would 

also help in locating the highly risky areas where there are many communities living nearby these WUI 

lines and thus policies and activities will be implemented in a way to either reduce the density of houses 

or clear the fuel loading in such regions. The key objectives of this study are as follows: (i) map the linear 

WUI in terms of direct and indirect interfaces and determine which WUI is more widespread in CA; (ii) 

evaluate how much percentage of wildfires occurred in the linear WUI features in CA; (iii) examine the 

distance between wildfire ignition points and the linear WUI features to see how far the fires ignited from 

it since 2010 in CA. Thus, this paper aims to show the importance of the novel linear WUI features for CA 

at both the local and federal level.  

2. Data and Methodology 

2.1. Data 

        The vegetation data used for this study was Landsat-based, the 2016 National Land Cover Database 

(NLCD) (Jin et al., 2019), a new generation of NLCD products, released by the U.S. Geological Survey 

(USGS). We used a rasterized format of Microsoft building footprint datasets, available at 30 m spatial 

resolution, and used the boundaries of houses for producing the linear WUI feature (Heris et al., 2020; Li 

et al., 2021). Since the liner WUI was mapped using the recent land cover and housing information, 

therefore, to better analyze the WUI maps and their relationship with the previous wildfires, we used 

Monitoring Trends in Burn Severity (MTBS) datasets and included only those fires which occurred in the 

last decade i.e., from 2010 to 2018. It shows all 380 fire perimeters of all fire events that happened in 

California from 2010 to 2018 and are represented by the legend in Figure 2. More details about these data 

can be found in the supplementary information.  

 

2.2. Methodology 

        NLCD data was clipped for California from the conterminous United States (CONUS). Clipped land 

cover data was converted to polygons from the original raster data using the conversion tool from the 

ArcGIS geoprocessing. A wildland vegetation layer was generated for WUI mapping using selection by 

attributes from the attribute table using ArcGIS. Only shrub/grassland, herbaceous, woody wetlands, 



emergent herbaceous wetlands, and forests including evergreen, mixed, and deciduous were selected for 

the wildland vegetation layer (Radeloff et al., 2005; Martunizzi et al., 2015). The building raster layers were 

converted into vectors. The boundaries of the building were intersected with the wildland vegetated areas 

to map the wildland-urban interface. The resulting feature is a line, called direct WUI or indirect WUI at a 

100-m buffer distance from the building boundary.  

        Direct WUI was calculated using the intersection tool from ArcMap using the vegetation polygon and 

housing boundary, and it represents the direct physical contact of buildings with the flammable vegetation. 

There is always a higher risk of damage to the communities living at the direct WUI feature as compared 

to those living at the indirect WUI as studied by Pereira et al., 2018. To map the indirect WUI, first, we took 

a buffer distance of 100-m from the vegetation polygon and then extracted those areas in California which 

had neither buildings nor vegetation using the erase tool from ArcMap. We then intersected the extracted 

layer with the buffered vegetation layer. Finally, we intersected the previously intersected layer with the 

housing boundary to get the Indirect WUI. We did not intersect the vegetation layer with a buffer and 

housing boundary to avoid the duplication of indirect WUI lines with the direct WUI.       

3. Results and Discussions 

3.1. Linear WUI features in California 



 



 

 

 

Figure 1. The top left and top right panels show direct and indirect WUI respectively for the entire state of 

California. The bottom left panel on the figure above shows the spatial pattern of Microsoft building 

footprints and vegetation data in San Diego. A section of the County map has been enlarged to depict the 

direct, indirect, and non-WUI lines as well as their actual visualization at 30 m resolution. This is displayed 

in the bottom right panel of the figure above. 

        Direct WUI is a linear WUI feature that is shown in Figure 1, with pixel lengths in meters (m) and is 

represented with a green colorbar. Enlarged portion of Figure 1 on the bottom right panel depicts a very 

clear visualization of the different linear WUI (direct and indirect WUI) and Non-WUI segments and it 

became possible only due to the finer-scale mapping using building footprint data at 30-m resolution. In 

addition, such a finer-scale WUI map provides more detailed information related to both housing and 

wildland vegetation. Linear WUI segments may be used to gather information about building density, 

population and the area of the housing cluster. Similarly, it can also be used to collect data related to 

flammable vegetation, such as, area of the flammable patch, types of near fuel availability, and proximity 

to roads, etc. The findings of this analysis will help foresters, land managers, and policymakers plan future 

development activities, mitigation, and evacuation. Most importantly, by shrinking the linear WUI, the risk 

of community damage can be reduced. It can be achieved by either clearing off flammable vegetation 

nearby buildings or slowing down the rate at which new houses are being built near flammable vegetation. 

         



3.2. Overlap of wildfires and linear WUI 

 

Figure 2. The figure shows the overlap of California historic wildfire perimeters (2010-2018) with direct 

WUI (top left panel) and indirect WUI (bottom left panel). Legends with green and blue lines represent 

direct and indirect WUI respectively. The middle panels present enlarged views of the relevant sections of 

the left two maps for clearer visualization. Top right and bottom right panel show the countywide 

percentage overlap of total direct WUI and total indirect WUI of California respectively with wildfire 

perimeters from 2010 to 2018. Colorbar shows the increase from yellow (low) to red (high) for the respective 

counties in California. 

        Right and left-hand panels in Figure 2 depict the overlap of wildfire perimeters with direct WUI from 

2010 to 2018. This result clearly indicates that there is a very low percentage of overlap between the direct 



WUI and the fire perimeters. However, a maximum of up to 29 % of all direct WUI lines in California 

overlap within the past wildfire perimeters (top right panel, Figure 2). Thus, the results show that the 

majority of wildfires are not occurring at WUI lines and may be burning farther away from the direct WUI 

lines. Similarly, a considerable percentage of fires ignited and burned outside WUI areas, according to a 

recent study by Kumar et al., 2020. In the case of indirect WUI, though, the percentage overlap between 

indirect WUI and wildfire perimeters is still low, but it is higher than what we have seen with direct WUI 

(top right and bottom right panels, Figure 2). Because of the devastating wildfire in Butte County in 2018, 

i.e., the Camp Fire, the maximum value of percentage overlap rises up to 35%. The percentage overlap of 

wildfire perimeters and indirect WUI might vary depending on how we choose the wildland vegetation 

perimeters when mapping the indirect WUI. 

        We calculated that the total pixel length of direct WUI in California is 119,640,741 m. It has 672,435 

counts with a maximum count length of 5,958 m. In contrast, indirect WUI has a total pixel length of 

164,706,030 m, which comprises a total number of 3,009,978 counts, with the highest length of a count being 

5,022 m. When we examined these two linear WUI features, we discovered that the direct WUI has a lower 

total pixel length than the indirect WUI. However, a higher percentage of fires ignited in close proximity 

to direct WUI as compared to those in the vicinity of indirect WUI (Please refer to Table S1 in the 

supplementary materials). As a result, even though direct WUI has a lower total pixel length in California, 

it has a larger potential of fire ignitions in its vicinity based on prior fire incidence data. In addition, the 

maximum length of a count, the statistical parameters like mean, median, and mode are higher for the 

direct WUI. However, the total number of counts is lower for direct WUI as compared to indirect WUI. As 

a result, this difference in counts reveals that the direct WUI is less fragmented than the indirect WUI 

(Figure 1 and Figure 2). A greater length of linear WUI in a region corresponds to a higher likelihood of 

wildfire risk due to the presence of flammable vegetation nearby. Moreover, a greater length of linear WUI 

also indicates a larger number of interfaces between flammable vegetation and human settlements which 

would mean a higher risk of damage to the lives, properties, and health of a larger number of communities 

nearby that region. As mentioned earlier, the direct WUI indicates direct physical contact between houses 

and flammable vegetation. Hence, the likelihood of fire ignition increases as one gets closer to these linear 

WUI features. Interestingly, from 2010 to 2018, 36.58 % of wildfires in California were ignited within 1 km 

of direct WUI, according to our assessment. In the case of indirect WUI, it represents an indirect contact 

between the housing boundary and flammable vegetation, with a 100-meter buffer surrounding it (Pereira 

et al., 2018). As a result, we analyzed those house boundaries that do not cross directly with flammable 

vegetation, and we expected that there would be a lower likelihood of wildland fires in the presence of 



such linear WUI characteristics as compared to direct WUI. Indeed, we revealed in our analysis that only 

17.37 % of fires ignited within 1 km of indirect WUI. As a result, we can see that there are lower risks of 

wildfire ignitions closer to indirect WUI than to direct WUI. 

 

3.3. Distance of fire ignition points from linear WUI features 



 

Figure 3. The figure shows the distribution of the best fit plot for distance (m) of wildfire ignition points 

from direct WUI (top panel) and indirect WUI (middle panel). Bottom panel shows two histograms for the 

distribution of distance of wildfire ignition points on the either side from linear WUI features. Histogram 

for the direct WUI (green) shows a continuous decreasing percentage of wildfires; while it is neither 

continuously increasing nor continuously decreasing and has two peaks for the indirect WUI (red).  

        In the bottom panel of Figure 3, we show the histogram plots for the distribution of distance of wildfire 

ignition points in six different classes from the direct, and indirect WUI respectively. Additionally, the 

percentages, total number of fires that occurred between these classes are also shown. In our analysis, we 

observe that in case of the direct WUI, 139 fires ignited out of a total of 380 fires i.e., 36.58% of fires ignited 

within 1 km range on either side from direct WUI (Please also refer to Table S1 in supplementary materials). 

It has decreased continuously as we increase the distance farther away from the direct WUI. And it dropped 

to only 3.42 % of total fires that were ignited above 5 km distance from the direct WUI in California (bottom 

panel, Figure 3). In case of indirect WUI, we found a different trend of the fire ignitions in different classes 

of the distance ranges on either side of the indirect WUI. Only 90 fires ignited within 1 km distance on 

either side of the indirect WUI, making it 17.37% fires within this range (Please also refer to Table S1 in 

supplementary materials). However, it has increased from 17.37% to 23.68% in the range of 0-1 km to 1-2 

km distance from indirect WUI features respectively (bottom panel, Figure 3). Additionally, a significant 

portion of the fires i.e., 21.05% ignited above 5 km on either side from the indirect WUI. And this accounts 

for 80 fires out of a total 380 fires that ignited above 5 km in California from 2010 to 2018. We can indeed 

conclude that the direct WUI is more prone to fire activity based on the past nine years of wildfire history 

in California. And, thus, there is a higher risk of damage due to wildland fires within the closer proximity 

of direct WUI. On the other hand, almost 83% of fires ignited above 1 km distance from the indirect WUI. 

Therefore, there is lower probability of burning within 1 km distance from the indirect WUI as compared 

to the direct WUI. Additionally, a significant percentage of fires ignited above 5 km distance from the 

indirect WUI as compared to the direct WUI. 

        A total of 380 wildfires occurred in California from 2010 to 2018 as reported by MTBS. These included 

both man-made fires as well as fires ignited by natural causes, such as lightning. In the left panel of Figure 

S1 (Please refer to the supplementary materials), we show the countywide fire frequency in California, with 

more than 20 large fires in some of the counties, as shown with the red colorbar. We observe that 

northernmost and southern California have the highest number of fires (Figure S1, left panel). Notably in 

southern California, the counties of San Diego (SDG) and Kern (KER) each had 27 fires from 2010 to 2018. 



While in the northern part, Siskiyou (SIS) County had a maximum of 24 fires during the same period (Please 

refer to Figure S1 in the supplementary materials). Strong wind events, more specifically, Diablo winds in 

northern California and Santa Ana winds in southern California are the main drivers for the larger and 

more devastating wildfires. Furthermore, human ignition is one of the most significant factors in the last 

few decades for a majority of the deadliest fires. Counties with zero wildfires were shown with no color 

and thus left blank white spaces, as can be referred to in the left panel of Figure S1. A few counties had no 

or very few wildfire events during 2010-2018; however, these counties more recently recorded severe 

wildfires that are not shown here. For example, the Silverado fire occurred in October and November 2020 

in southern Orange County, California. However, such wildfire occurrences are not included in this study 

because of the unavailability of adequate datasets for the recent wildfire events. 

        It is crucial to observe how far fires ignited from the linear WUI features and which statistical curve 

will best fit the distribution of the distance between fires and WUI. Therefore, we performed the statistical 

analysis and used different curve fittings to choose the best fit curve for both direct and indirect WUI. We 

chose 13 different distributions to test the best fit as shown in Table S2a and Table S2b in the supplementary 

information. Our analysis reveals that the ‘lognormal with three parameters’ distribution is the best fit 

curve for the direct WUI as can be seen in the top panel of Figure 3. It has a p-value of 0.15 that is highest 

of all, as compared to the p values of the other 12 distributions (Please refer to Table S2 a and Table S2b in 

supplementary materials). In this approach the null hypothesis is that the dataset is sampled from the 

chosen distribution and a p-value larger than the significance level 0.05 indicates that the null hypothesis 

cannot be rejected in favor of the alternate hypothesis. Apart from p-value, there are other parameters to 

check whether or not the result of a statistical analysis is adequate.  For example, the location and scale of 

a distribution also tells us about the data structure. The scale parameter describes how spread out the data 

values are, while the location parameter describes how large the data values are. However, some of the 

distributions like ‘weibull’ and ‘gamma’ do not have these parameters (Please refer to Table S2 a and Table 

S2b in supplementary materials). And therefore, we must check for the ‘shape’ parameter, which is an 

outcome of these distributions. The shape parameter describes how the data is spread. In general, a larger 

scale results in a more spread-out distribution. In this study, we used a suitable number of datasets (380) 

to perform the statistical analysis in both direct and indirect WUI (Please refer to Table S2 a and Table S2b 

in supplementary materials). Therefore, the conclusion of our results based on p value is adequate and 

acceptable. As we can see in the middle panel of Figure 3, lognormal with three parameters is also the best 

fit curve in the case of indirect WUI. 



4. Conclusions 

        Past studies showed that different WUI maps were developed for the CONUS using a variety of 

datasets and different mapping methodologies. However, neither of these focused on WUI mapping based 

on the linear intersection of vegetation and housing boundary, using building footprint and NLCD land 

cover data respectively. In this study, we mapped linear WUI at 30 m resolution. We defined two types of 

linear WUI i.e., direct, and indirect WUI for California. Direct WUI has direct physical contact between 

flammable vegetation and housing boundary and thus, has a higher risk of fires. While indirect WUI is 

mapped by the intersection of housing, and 100 m buffer boundary surrounding flammable vegetation and 

therefore it has a lower probability of fires. Results revealed that the direct WUI had a lower total pixel 

length and is less scattered than the indirect WUI in California. However, a higher percentage of fires 

ignited in the vicinity of direct WUI because of a higher extent of human activities as compared to indirect 

WUI. Hence, even though direct WUI has a lower total pixel length in California, it has a larger potential 

of fire ignitions in its vicinity based on the historical wildfires. Furthermore, the majority of wildfires did 

not burn along WUI lines, and we found that the overlap between wildfire burned areas and WUI hardly 

goes up to 30% for some of the counties. The reason for this is simply because some of the recent fires 

occurred over these linear WUIs. Furthermore, the percentages are lower in most of the counties in 

California as wildfires did not burn directly over it, but in the vicinity of linear WUI features. As revealed 

in this study, 69.47% fires ignited within 2 km range from direct WUI and 41.05% ignited within the same 

range from indirect WUI in California. Therefore, in this study, we show that the direct WUI are more 

prone to wildfires as compared to the indirect WUI. Not only this but also, the fires ignited from the linear 

WUI features follow a ‘lognormal with three parameters’ distribution in both direct and indirect WUI. 

Results from this study show that most of the wildfire events in CA have occurred within 2 km linear 

distance from these linear WUI features and this study also proposes that fires are not happening at the 

intersecting lines, but they ignite farther away from the linear WUI features as highlighted in Kumar et al., 

2020. These linear WUI maps will help in creating and sustaining a fire-adapted community within a WUI. 

This would also help policymakers to develop a community wildfire protection plan in the era of climate 

change that will bring an increase in wildfire events in the future. In addition, it will enhance community 

awareness regarding the prevention of fires within the WUI. Overall, this research will help in creating a 

more effective response to the wildfire events that will occur in the WUI. 
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Supplementary Information 7 

Table S1. Statistical summary table showing distance of fire ignition points with respect to direct and 8 

indirect WUI in California. 9 

 10 

Distance from Indirect WUI (km) No. of wildfires 

(2010-2018) 

Percentage of total fires (%) 

Indirect Direct Indirect Direct 

0-1 66 139 17.37 36.58 

1-2 90 125 23.68 32.89 

2-3 63 62 16.58 16.05 

3-4 39 26 10.26 6.84 

4-5 42 16 11.05 4.21 

>5 80 13 21.05 3.42 

 11 



Table S2a. Statistical analysis using 13 different curve fittings to choose the best fit curve for the distribution 12 

of the distance between wildfire ignition points and direct WUI line segments. 13 

 14 

Descriptive Statistics and curve fitting summary table for direct WUI 

 
Count Mean StDev Median Min Max Skew Kurt 

 

 
380 1741.6 1554.6 1425.9 4.689 11056 2.388 9.107 

 

Distribution Location Shape Scale Threshold Log-

Likelihood 

AD p Value LRT AIC 

Gamma 

 
1.358 1282.5 

 
-3205.7 0.699 0.084 

 
6415.5 

Weibull 

 
1.190 1849.9 

 
-3206.7 0.871 0.026 

 
6417.4 

Gamma - Three Parameter 

 
1.374 1269.9 -3.155 -3205.7 0.652 0.105 0.777 6417.4 

Weibull - Three Parameter 

 
1.184 1844.0 2.734 -3206.6 0.896 0.023 0.662 6419.2 

LogNormal - Three Parameter 7.383 
 

0.700 -300.7 -3209.0 0.553 0.153 0.000 6424.1 

LogLogistic - Three Parameter 7.319 
 

0.438 -197.2 -3213.6 0.982 0.006 0.000 6433.1 

Exponential - Two Parameter 

  
1736.9 4.689 -3214.8 5.856 <0.001 0.152 6433.5 

Exponential 

  
1741.6 

 
-3215.8 5.736 <0.001 

 
6433.6 

LogLogistic 7.148 
 

0.556 
 

-3221.9 2.637 <0.005 
 

6447.8 

Largest Extreme Value 1124.8 
 

965.5 
 

-3234.4 2.620 <0.01 
 

6472.7 

LogNormal 7.051 
 

1.058 
 

-3239.9 5.891 0.000 
 

6483.8 

Normal 1741.6 
 

1552.5 
 

-3331.3 15.07 0.000 
 

6666.6 

Smallest Extreme Value 2656.4 
 

2542.8 
 

-3496.3 44.68 <0.01 
 

6996.6 

 15 
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Table S2b. Statistical analysis using 13 different curve fittings to choose the best fit curve for the 20 

distribution of the distance between wildfire ignition points and indirect WUI line segments. 21 

 22 

Descriptive Statistics and curve fitting summary table for indirect WUI 

 
Count Mean StDev Median Min Max Skew Kurt 

 

 
380 3599.8 3535.2 2492.7 2.939 23825 2.339 7.327 

 

Distribution Location Shape Scale Threshold Log-

Likelihood 

AD p Value LRT AIC 

LogNormal - Three Parameter 7.921 
 

0.836 -265.6 -3481.1 0.243 0.766 0.000 6968.2 

Gamma 

 
1.278 2816.1 

 
-3485.1 1.294 <0.005 

 
6974.1 

Gamma - Three Parameter 

 
1.286 2801.4 -2.505 -3485.0 1.304 <0.005 0.773 6976.0 

Weibull 

 
1.119 3762.2 

 
-3487.6 1.830 <0.01 

 
6979.3 

LogLogistic 7.803 
 

0.564 
 

-3487.8 0.740 0.032 
 

6979.5 

Weibull - Three Parameter 

 
1.117 3758.5 1.337 -3487.6 1.825 <0.01 0.820 6981.2 

Exponential 

  
3599.8 

 
-3491.7 3.784 <0.001 

 
6985.4 

Exponential - Two Parameter 

  
3596.9 2.939 -3491.4 4.013 <0.001 0.431 6986.7 

LogLogistic - Three Parameter 7.800 
 

0.578 2.936 -3493.0 0.820 0.019 * 6991.9 

LogNormal 7.749 
 

1.046 
 

-3500.8 1.982 0.000 
 

7005.6 

Largest Extreme Value 2232.3 
 

2047.1 
 

-3531.0 6.813 <0.01 
 

7066.1 

Normal 3599.8 
 

3530.6 
 

-3643.5 22.39 0.000 
 

7291.0 

Smallest Extreme Value 5674.7 
 

5511.1 
 

-3796.6 46.64 <0.01 
 

7597.2 

 23 

 24 

 25 

 26 

 27 

file:///C:/Users/MUKESH/Desktop/Linear%20WUI%20Paper%20August%202021/data%20analysis/Distance_distribution_dwui_idwui_sept2021.xlsx%23RANGE!A1
file:///C:/Users/MUKESH/Desktop/Linear%20WUI%20Paper%20August%202021/data%20analysis/Distance_distribution_dwui_idwui_sept2021.xlsx%23RANGE!A1
file:///C:/Users/MUKESH/Desktop/Linear%20WUI%20Paper%20August%202021/data%20analysis/Distance_distribution_dwui_idwui_sept2021.xlsx%23RANGE!A1
file:///C:/Users/MUKESH/Desktop/Linear%20WUI%20Paper%20August%202021/data%20analysis/Distance_distribution_dwui_idwui_sept2021.xlsx%23RANGE!A1
file:///C:/Users/MUKESH/Desktop/Linear%20WUI%20Paper%20August%202021/data%20analysis/Distance_distribution_dwui_idwui_sept2021.xlsx%23RANGE!A1
file:///C:/Users/MUKESH/Desktop/Linear%20WUI%20Paper%20August%202021/data%20analysis/Distance_distribution_dwui_idwui_sept2021.xlsx%23RANGE!A1
file:///C:/Users/MUKESH/Desktop/Linear%20WUI%20Paper%20August%202021/data%20analysis/Distance_distribution_dwui_idwui_sept2021.xlsx%23RANGE!A1
file:///C:/Users/MUKESH/Desktop/Linear%20WUI%20Paper%20August%202021/data%20analysis/Distance_distribution_dwui_idwui_sept2021.xlsx%23RANGE!A1
file:///C:/Users/MUKESH/Desktop/Linear%20WUI%20Paper%20August%202021/data%20analysis/Distance_distribution_dwui_idwui_sept2021.xlsx%23RANGE!A1
file:///C:/Users/MUKESH/Desktop/Linear%20WUI%20Paper%20August%202021/data%20analysis/Distance_distribution_dwui_idwui_sept2021.xlsx%23RANGE!A1
file:///C:/Users/MUKESH/Desktop/Linear%20WUI%20Paper%20August%202021/data%20analysis/Distance_distribution_dwui_idwui_sept2021.xlsx%23RANGE!A1
file:///C:/Users/MUKESH/Desktop/Linear%20WUI%20Paper%20August%202021/data%20analysis/Distance_distribution_dwui_idwui_sept2021.xlsx%23RANGE!A1
file:///C:/Users/MUKESH/Desktop/Linear%20WUI%20Paper%20August%202021/data%20analysis/Distance_distribution_dwui_idwui_sept2021.xlsx%23RANGE!A1


1. Data in detail 28 

1.1. Vegetation data 29 

        The vegetation data used for this study was Landsat-based, the 2016 National Land Cover Database 30 

(NLCD) (Jin et al., 2019), a new generation of NLCD products, released by the U.S. Geological Survey 31 

(USGS). It was designed specifically for the rapidly growing demand for land cover change analysis and 32 

the related studies, and it represented the most robust land cover base ever produced by the USGS. It 33 

included land cover and its changes over the CONUS for seven years, 2001, 2003, 2006, 2008, 2011, 2013, 34 

and 2016. Thus, it increased the land cover time series from 10 years to 15 years (2001 to 2016) (Homer et 35 

al., 2020). It was downloaded from Multi-Resolution Land Characteristics (MRLC) Consortium (available 36 

on https://www.mrlc.gov/) and was available at 30 m spatial resolution. The accuracy and robustness of 37 

the NLCD 2016 map were also shown by recent studies including Jin et al., 2019 and Homer et al., 2020. 38 

NLCD 2016 could be used for the identification of the different features at a finer resolution and thus can 39 

be considered for the deeper analysis of the expanding areas and further planning of the developmental 40 

activities. It contained a total of 28 different types of land cover classes over the CONUS. For the purpose 41 

of mapping the linear WUI, we chose only those vegetation categories which were flammable vegetation 42 

(right panel, Figure S1) and included shrubland, grassland, woody wetlands, and all kinds of forest 43 

vegetation (California fire alliance 2001; Radeloff et al., 2005). Specific steps used for extracting the 44 

vegetation layer using ArcMap tools will be discussed in methodology section 2.2. 45 

1.2. Building data 46 

        With the improvement of remote sensing data in acquisition efficiency and resolution, it has become 47 

possible to extract detailed housing boundaries from it. Over the past few years, Microsoft has made great 48 

efforts in applying deep learning, computer vision, and Artificial Intelligence for mapping, and leveraging 49 

the power of Machine Learning in analyzing satellite imagery to trace the shape of buildings across the 50 

country.  More specifically, Bing Maps, a mapping platform from Microsoft had successfully generated the 51 

first comprehensive high-quality housing footprints database covering the entire CONUS by using Deep 52 

Neural Network (DNN) and the residual neural network (ResNet34) with segmentation techniques (Refine 53 

Net up-sampling) to detect individual building footprints from their imagery data. However, there was a 54 

need to develop some methodologies to put this data in a more usable format for the researchers and land 55 

planning management, to study and analyze the human and environmental impacts on small cities and 56 

regions (Heris et al., 2020; Demuzere et al., 2020). A new method of rasterizing building footprint was 57 

developed by Heris et al., 2020 and was used in this study to produce a robust WUI map. Taking advantage 58 

https://www.mrlc.gov/


of the new building dataset from Microsoft product and rasterizing method, we propose a new framework 59 

of mapping novel linear WUI over California. The building dataset was extracted from the Microsoft 60 

dataset containing 124,885,597 computer-generated building footprints in GeoJSON format for the US. 61 

Regarding the accuracy metrics, the precision of the evaluation set is 99.3 % and the recall is 93.5 %. The 62 

California building footprint file implemented in this study contained 10,988,525 computer-generated 63 

building footprints in California and was extracted from the US building footprint dataset by Microsoft 64 

(2018), then converted to shapefile format. We used a rasterized format of Microsoft building footprint 65 

datasets, available at 30 m spatial resolution, and used the boundaries of houses for producing the linear 66 

WUI feature (Heris et al., 2020; Li et al., 2021). This boundary data was obtained from Heris et al., 2020 in 67 

which the value of each cell represents the area of the cell that was covered by building footprints. The cell 68 

values were calculated by developing an algorithm that used High Performance Computing (HPC) (Heris 69 

et al., 2020). This algorithm created a small meshgrid (a 2D array) for each building's bounding box, 70 

generating unique values for each meshgrid cell that was further coordinated with NLCD products to make 71 

it more usable (projected using Albers Equal Area Conic system) (Heris et al., 2020). The range of values 72 

was from 0 to 900 sq. meters. To better aid the implementation of building footprint data into large-scale 73 

computation, these values are represented as raster layers with a 30 m cell size covering each of the 48 74 

conterminous states. 75 

 76 

1.3. Wildfires data 77 

        Previous wildfire data were downloaded from Monitoring Trends in Burn Severity (MTBS), (available 78 

on https://www.mtbs.gov/direct-download). MTBS is an interagency initiative whose purpose is to 79 

continuously monitor the intensity of wildfires in terms of burn severity and the size of major fires from 80 

1984 to present in the US. It does not cover small fires and includes all those fires in the Western US of 1000 81 

or more acres, and 500 or greater acres in the Eastern part of the US (MTBS, 2021). In this study, we used 82 

two kinds of MTBS datasets, namely, wildfire occurrence dataset that showed wildfire ignition points, and 83 

burned area boundaries datasets, representing wildfire perimeters. For analyzing the overlap of previous 84 

wildfires with the linear WUI features, we used wildfire perimeter. While detecting the distance of previous 85 

wildfire events from the linear WUI features, we used wildfire ignition points data. Since the liner WUI 86 

was mapped using the recent land cover and housing information, therefore, to better analyze the WUI 87 

maps and their relationship with the previous wildfires, we included only those fires which occurred in 88 

https://www.mtbs.gov/direct-download


the last decade i.e., from 2010 to 2018. It shows all 380 fire perimeters of all fire events that happened in 89 

California from 2010 to 2018 and are represented by the legend in Figure 2. 90 

2. Wildland fire ignition frequency analysis 91 

        A total of 380 wildfires occurred in California from 2010 to 2018 as reported by MTBS. These included 92 

both man-made fires as well as fires ignited by natural causes, such as lightning. In the left panel of Figure 93 

S1, we show the countywide fire frequency in California, with more than 20 large fires in some of the 94 

counties, as shown with the red colorbar. We observe that northernmost and southern California have the 95 

highest number of fires (left panel, Figure S1). Notably in southern California, the counties of San Diego 96 

(SDG) and Kern (KER) each had 27 fires from 2010 to 2018. While in the northern part, Siskiyou (SIS) County 97 

had a maximum of 24 fires during the same period. Strong wind events, more specifically, Diablo winds in 98 

northern California and Santa Ana winds in southern California are the main drivers for the larger and 99 

more devastating wildfires. Furthermore, human ignition is one of the most significant factors in the last 100 

few decades for a majority of the deadliest fires. Counties with zero wildfires were shown with no color 101 

and thus left blank white spaces, as can be referred to in the left panel of Figure S1. A few counties had no 102 

or very few wildfire events during 2010-2018; however, these counties more recently recorded severe 103 

wildfires that are not shown here. For example, the Silverado fire occurred in October and November 2020 104 

in southern Orange County, California. However, such wildfire occurrences are not included in this study 105 

because of the unavailability of adequate datasets for the recent wildfire events. 106 



 107 

Figure S1. The left panel on the figure above shows wildfire frequency in all the counties of California from 108 

2010 to 2018. The blue triangular-shaped symbols represent the wildfire ignition points in the respective 109 

counties, while the colorbar shows the number strength of these fire frequencies for each County. The white 110 

portions of the map represent those counties where the fire activity was absent. The right panel on the 111 

figure above shows the spatial pattern of NLCD data, the wildland vegetation data used to map the linear 112 

WUI for California at 30 m resolution; it includes three kinds of forest, shrubs, and emergent herbaceous & 113 

woody wetlands; white color represents the water bodies and other vegetation types that were not included 114 

for mapping the linear WUI. 115 

        Figure S1 (right panel) depicts the wildland vegetation cover used in the mapping of linear WUI. This 116 

map clearly shows that the majority of southern California is covered by shrubland vegetation, whereas 117 

the dominant land cover type in the north is evergreen forest and shrubland. Furthermore, the variability 118 

in land cover type is greater in the northern counties of California than in the southern regions. Overall, 119 

shrubland is the most common type of vegetation in California. Shrublands are defined as ecosystems with 120 

a minimum of 30% shrub or sub-shrub cover and tree densities of up to 10 trees per hectare (USDA).  They 121 

are one of the significant regions where wildfire season lasts the longest (Jolly et al., 2015). Although it has 122 

a low fuel presence, those available fuels are very dry and therefore, the fire spread is very high in 123 

shrublands (Bond et al., 2001). Also, recent studies have shown that the shrublands are one of the areas 124 



most affected by wildfires (Jolly et al., 2015). The white colorbar in the right panel of Figure S1 also reflects 125 

water and other land cover types that are not classified as wildland vegetation while mapping linear WUI. 126 


