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Abstract

Quantification of heterogeneous multiscale permeability in geologic porous media is key for understanding and predicting

flow and transport processes in the subsurface. Recent utilization of in situ imaging, specifically positron emission tomography

(PET), enables the measurement of three-dimensional (3-D) time-lapse radiotracer solute transport in geologic media. However,

accurate and computationally efficient characterization of the permeability distribution that controls the solute transport process

remains challenging. Leveraging the relationship between local permeability variation and solute advection rates, an encoder-

decoder based convolutional neural network (CNN) is implemented as a permeability inversion scheme using a single PET

scan of a radiotracer pulse injection experiment as input. The CNN consists of Densely Connected Neural Networks that can

accurately capture the 3-D spatial correlation between the permeability and the radiotracer solute arrival time difference maps

in geologic cores. We first test the inversion accuracy using 500 synthetic test datasets. We then use a suite of experimental

PET imaging datasets acquired on four different geologic cores. The network-inverted permeability maps from the geologic cores

are used to parameterize forward numerical models that are directly compared with the experimental PET imaging datasets.

The results indicate that a single trained network can generate robust, denoised 3-D permeability inversion maps in seconds.

Numerical models parameterized with these permeability maps closely capture the experimental solute arrival time behavior.

This approach presents an unprecedented improvement for efficiently characterizing multiscale permeability heterogeneity in

complex geologic materials.
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Key Points:9

• Positron emission tomography (PET) quantifies spatially-resolved solute trans-10

port that provides input data for permeability map inversion.11
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• The inverted permeability map of large experimental datasets are used to param-14

eterize forward numerical models to validate CNN predictions.15
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Abstract16

Quantification of heterogeneous multiscale permeability in geologic porous media is key17

for understanding and predicting flow and transport processes in the subsurface. Recent18

utilization of in situ imaging, specifically positron emission tomography (PET), enables19

the measurement of three-dimensional (3-D) time-lapse radiotracer solute transport in20

geologic media. However, accurate and computationally efficient characterization of the21

permeability distribution that controls the solute transport process remains challenging.22

Leveraging the relationship between local permeability variation and solute advection23

rates, an encoder-decoder based convolutional neural network (CNN) is implemented as24

a permeability inversion scheme using a single PET scan of a radiotracer pulse injection25

experiment as input. The CNN consists of Densely Connected Neural Networks that can26

accurately capture the 3-D spatial correlation between the permeability and the radio-27

tracer solute arrival time difference maps in geologic cores. We first test the inversion28

accuracy using 500 synthetic test datasets. We then use a suite of experimental PET imag-29

ing datasets acquired on four different geologic cores. The network-inverted permeabil-30

ity maps from the geologic cores are used to parameterize forward numerical models that31

are directly compared with the experimental PET imaging datasets. The results indi-32

cate that a single trained network can generate robust, denoised 3-D permeability in-33

version maps in seconds. Numerical models parameterized with these permeability maps34

closely capture the experimental solute arrival time behavior. This approach presents35

an unprecedented improvement for efficiently characterizing multiscale permeability het-36

erogeneity in complex geologic materials.37

1 Keywords38

Convolutional Neural Network, Deep Learning, Machine Learning, Permeability39

Inversion, Positron Emission Tomography, X-ray Computed Tomography40

2 Plain Language Summary41

The first step in understanding how water and contaminants are flowing in the sub-42

surface is to describe the ease at which fluid can flow–this property is termed permeabil-43

ity. Variation in permeability is an intrinsic property of geologic materials that arises44

due to differences in the underlying geologic processes that generated the materials. The45

use of medical imaging techniques in the field of hydrogeology enables scientists to bet-46
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ter understand how water and contaminants flow through geologic porous media. This47

study leverages these imaging techniques combined with recent advances in deep learn-48

ing to develop a new way for measuring permeability variation in geologic materials. In49

this study, we use a deep learning network to perform 3-D permeability prediction. This50

network is first trained on a diverse set of synthetic permeability maps and correspond-51

ing mathematical models of fluid flow through these permeability maps. The training52

is done by guiding the network to identify the characteristics in the flow data that pro-53

vide insights on permeability distribution. Compared to traditional mathematical mod-54

eling approaches, the trained deep learning network significantly reduces the computa-55

tional cost while accurately predicting the 3-D permeability distributions in real geologic56

materials.57

3 Introduction58

Understanding flow and transport in porous media is crucial for understanding com-59

plex hydrogeologic systems, designing contaminant remediation strategies, and utilizing60

subsurface energy resources. To improve the applicability and accuracy of subsurface flow61

and transport models, 3-D characterization of hydrogeologic properties that govern these62

processes—such as intrinsic permeability—is required. Despite this necessity, approaches63

for non-destructive experimental measurement of multi-scale permeability variation in64

geologic materials remains a critical challenge. Current approaches for measuring spa-65

tially variable permeability are experimentally challenging, computationally expensive,66

and typically rely on sample-specific porosity-permeability or capillary pressure scaling67

relationships.68

Medical, industrial, and synchrotron-based imaging methods applied to problems69

in the field of hydrogeology have revolutionized our understanding of physical processes70

from the nanometer to the meter scale (Akin & Kovscek, 2003; Blunt et al., 2013; Arm-71

strong et al., 2014; Crandall et al., 2017; Zahasky et al., 2019). Photon transmission imag-72

ing techniques such as X-ray computed tomography (X-ray CT) excel at characterizing73

materials with different electron densities. As a result, at the micron scale, X-ray CT74

is ideal for mapping pore geometry and fluid interfaces (Garing et al., 2017; Zahasky et75

al., 2019; Garfi et al., 2020). At the continuum scale—the scale at which Darcy’s Law76

can be used to describe flow in a porous medium—X-ray CT can map the spatial dis-77
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tribution of fluids of different densities or variations in porosity (Akin & Kovscek, 2003;78

Vega et al., 2014; Glatz et al., 2016; Minto et al., 2017).79

A range of methods have been developed to approximate spatially-variable perme-80

ability using X-ray CT measurements of porosity and fluid saturation (Krause et al., 2013;81

Krause, 2012; Rabinovich, 2017). The approach developed by Krause et al. (2013) uti-82

lizes multiphase core-flooding experiments, mercury injection capillary pressure data, and83

Leverett-J scaling to estimate sub-core permeability variation. This scaling approach has84

been validated in sandstone rocks that have intra-sample pore size distribution similar-85

ity. More commonly, measurements of porosity are implemented directly into empirical86

relationships (Chilingar, 1964; Chilingarian, 1991) to estimate local permeability. While87

strong correlations between porosity and permeability often exist in geologic materials,88

the empirical form of these correlations depends on rock type, extent of lithification, and89

sedimentological properties of the rock. For instance, in the model of Chilingar (1964),90

the same porosity in coarse sand could correspond to two different permeability values91

that differ by 300%. This discrepancy is due to the geology-specific nature of these re-92

lations and is difficult to quantify when the composition and lithification of the geologic93

materials are unknown.94

In carbonates, multi-scale heterogeneity often generates large variation in both per-95

meability and porosity distributions within a sample. Previous studies have shown that96

variance in porosity-permeability relationship increases with decreasing sample volume97

for carbonate materials (Vik et al., 2013). In many carbonates, a significant portion of98

inter-particle porosity are characterized as vug—pores larger than the typical grain size99

(Lucia, 1983). Depending on the connectivity of vugs, the porosity-permeability rela-100

tionship can vary significantly and thus be challenging to characterize or generalize. For101

example, the presence of isolated vugs significantly increases the porosity but it does not102

lead to proportional increase in permeability. Alternatively, permeability is often dispro-103

portionately high for inter-connected vugs (Lucia, 1983). These characteristics pose unique104

challenges to applying traditional experiment-based permeability inversion methods in105

carbonates.106

While the most widely used imaging tool in hydrogeology is X-ray CT, other imag-107

ing approaches that can provide complementary dynamic quantification of continuum-108

scale transport processes—such as positron emission tomography (PET)—are emerging.109
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Emission tomography methods are used to detect and reconstruct images-based on pho-110

tons emitted from radiolabeled fluids in otherwise opaque materials. This difference in111

image acquisition and reconstruction provides complementary approaches for quantify-112

ing different properties of solute transport in geologic materials (Zahasky et al., 2020).113

By radiolabeling and imaging the solutes directly, PET imaging excels at obtaining fast,114

time-lapse, high signal-to-noise images of solute concentration in geologic materials. This115

has opened up new opportunities to understand fundamental aspects of flow and trans-116

port processes, such as solute tailing driven by diffusion into microporous carbonates (Kurotori117

et al., 2019), flow path alteration in fractured carbonates (Brattekas & Seright, 2017),118

herbicide transport in soil columns (Kulenkampff et al., 2018), multiphase flow (Ferno119

et al., 2015), multi-scale dispersion (Zahasky & Benson, 2018), and the impact of very120

strong heterogeneity created by structural features such as deformation bands (Romano121

et al., 2020).122

Positron emission tomography generates multiple 3-D solute concentration maps123

at user defined time steps. A PET image at a single time step often consists of over ten124

thousand concentration measurements throughout a sediment column or geologic core;125

an entire PET scan may consist of over a million concentration measurements. These126

massive time-lapse datasets are the result of the millimeter-scale discretization of PET127

images, termed voxels. The application of these imaging methods enables the genera-128

tion of massive volumes of data not typically available from traditional hydrogeologic129

laboratory or field approaches. These datasets thus provide orders of magnitude more130

measurements for heterogeneity characterization than even the most heavily instrumented131

field sites (Mackay et al., 1986; Boggs & Adams, 1992). These image-based observations132

combined with recently developed deep learning tools provides a unique opportunity to133

advance understanding of multi-scale transport processes in heterogeneous geologic ma-134

terials.135

Convolution neural networks (CNNs) are a subcategory of deep learning models136

that are designed for processing data that has grid-like topology to extract multi-scale137

features from high-dimensional input (Goodfellow et al., 2016). By connecting each con-138

volutional layer with all its subsequent layers, Densely Connected Neural Networks (DenseNet)139

fully leverage the hierarchical advantages of CNNs by encouraging feature propagation,140

sharing, and reuse among all the layers (G. Huang et al., 2017). To further solve the vanishing-141

gradient problem for the gradient-based learning methods, while diversifying the learned142
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features, a residual-in-residual structure can be applied to all the DenseNet blocks (Wang143

et al., 2018; Zhang et al., 2018). Built from the residual-in-residual dense block, the ar-144

chitecture of the encoder–decoder based CNN is defined by hyperparameters such as ker-145

nel size, stride, padding, and the number and growth rate of layers. Once the model ar-146

chitecture has been defined, the model is then trained—a process requiring additional147

hyperparameters such as batch size, learning rate, and optimizer selection—to learn the148

relationship between the input data space (e.g. imaging data) and desired model out-149

put data space (e.g. permeability). Using a subset of the input data, termed the train-150

ing dataset, the network predictions are compared against the training targets through151

loss functions. The loss is minimized by back propagating and updating the network weights152

using a different subset of input data, termed the validation dataset. Finally, an unbi-153

ased evaluation of the trained network is performed on a third subset of data, termed154

the test dataset.155

In recent years, CNNs have been applied across a range of hydrogeologic applica-156

tions including parametrizing hydrogeological properties in highly complex digital rock157

images (Sudakov et al., 2019; Tian et al., 2020; Kamrava et al., 2021), groundwater in-158

ventory maps (Panahi et al., 2020), and synthetic hydrogeological parameter maps (Canchumuni159

et al., 2019; Mo et al., 2019c). A deep dense convolution encoder-decoder network was160

developed (Zhu & Zabaras, 2018) and expanded (Mo et al., 2019a, 2019b; Zhong et al.,161

2019; Tang et al., 2021; Wen et al., 2021) to provide a surrogate model to replace full-162

physics forward models. These methods have successfully replicated forward model re-163

sults with dramatic reductions in computational cost, but have not been applied directly164

to sample-specific permeability inversion tasks. At the pore scale, CNNs have been used165

to determine the average permeability or dispersion of a geologic sample from a pore-166

scale digital rock image (Sudakov et al., 2019; Tian et al., 2020; Kamrava et al., 2021).167

These digital workflows are a promising avenue for experiment-free parameterization of168

flow and transport properties in geologic materials; however, they require repeated dis-169

crete analysis to characterize permeability spatial variation at the continuum scale.170

In this study, we first trained an encoder–decoder based CNN to determine the 3-171

D permeability map of geologic core samples based on PET imaging-derived solute trans-172

port data. This approach of using a CNN for parameter inversion is fundamentally dif-173

ferent from traditional geostatistical inversion approaches because rather than iterating174

a simulation model to fit a specific geologic sample, the encoder–decoder based CNN is175
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trained to estimate the permeability of any geologic sample within the parameter space176

represented by the training data. The model was trained and tested on a large synthet-177

ically generated dataset and then further tested with PET imaging datasets from one178

sandstone and three carbonate rock cores. A second CNN was then constructed that uti-179

lizes X-ray CT data as an additional input channel to determine the value of rock struc-180

ture information in predicting 3-D permeability. Predicted permeability maps from the181

trained network were fed into a forward flow and transport numerical model. These mod-182

eled solute transport data were then directly compared with the experimental measure-183

ments to validate the applicability of a single trained CNN for permeability inversion us-184

ing image-based datasets in sedimentary rocks.185

4 Methods186

4.1 Experimental Positron Emission Tomography Data Acquisition187

Four different geologic cores with a range of lithologies and permeability structures188

were used to provide robust experimental datasets to test the encoder–decoder based CNN189

inversion algorithm. The samples include a laminated Berea sandstone (Zahasky & Ben-190

son, 2018, 2019), an Indiana limestone, an Edwards Brown limestone (Kurotori et al.,191

2020), and a Ketton limestone (Kurotori et al., 2019, 2020). All of the samples are 5.04192

cm in diameter, between 10–10.3 cm long, and have a core-average permeability between193

23 mD and 1920 mD. See the referenced studies and Table S1 in the Supporting Infor-194

mation for additional details of the core sample properties.195

A detailed description of the PET data acquisition, imaging system, and experi-196

mental platform can be found in Zahasky and Benson (2018) or Zahasky et al. (2019).197

Briefly, the cores were loaded into a flow-through coreholder that enabled the applica-198

tion of confining pressure and thus no-flow boundary conditions on the cylindrical faces199

of the samples. Samples were saturated with water by first flushing the sample with low200

pressure CO2 and then injecting water into the inlet face of the sample while applying201

a backpressure at the outlet face to prevent gravity-driven desaturation. The differen-202

tial pressure was monitored, and steady state conditions were determined to have been203

reached when the differential pressure stabilized. All of the presented experiments were204

performed at a flow rate of 2 mL/min.205

–7–



manuscript submitted to Water Resources Research

To begin the imaging experiments, a positron-emitting radiotracer—Fludeoxyglucose206

(18F-FDG)—was diluted in water to reach the optimal radioactivity concentration for207

minimizing imaging noise (Zahasky et al., 2019). Fludeoxyglucose is a commercially avail-208

able conservative tracer with a half-life of 109.7 minutes. The PET scans were performed209

using a Siemens pre-clinical Inveon DPET scanner. Once a scan was started, pulses of210

radiotracer—between 0.02–0.10 pore volumes—were injected into the samples and dis-211

placed with water containing no 18F-FDG. Images of the radiotracer distributions at two212

different times in the four rock cores are illustrated in Figure 1. This figure highlights213

the significant variation in transport behavior and the multiscale permeability hetero-214

geneity present in each of the cores used in this study.215

4.2 Arrival Time Analysis216

Arrival time analysis was used to efficiently summarize the impact of spatial per-

meability variation on radiotracer transport while reducing the time-lapse experimen-

tal PET datasets from four dimensions (x, y, z, t) to three dimensions (x, y, z). This di-

mension reduction was performed by calculating the quantile arrival time for every voxel

in the core.

Q(τ) =

∫ τ
0
Ci(t)dt∫∞

0
Ci(t)dt

(1)

Here Ci(t) is the concentration of voxel i within a reconstructed 3-D PET image as a217

function of time (t) and τ is the time when Q(τ) reaches the quantile q. The 0.5 quan-218

tile, corresponding to the time when half of the solute has passed through the voxel, was219

used in this study. Using the discrete form of Equation 1, the arrival time were calcu-220

lated for every voxel location in the imaged sample. The quantiles were calculated based221

on the numerical interpolation and integration of the breakthrough curve in every voxel222

in the core samples. An example 3-D arrival time map is illustrated for the Berea sand-223

stone sample in Figure 2.224

In addition to dimension reduction, utilization of quantile-based arrival time rather225

than the time-lapse radiotracer concentration data has several key advantages for inver-226

sion applications. First, arrival time values are independent of solute pulse volume and227

initial concentration, enabling the comparison of experiments with different pulse vol-228

umes and different starting concentrations. Second, the arrival time is insulated from229

variations in hydrodynamic and numerical dispersion. This is particularly important for230
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Figure 1: Example PET imaging time frames from each of the four cores used in this

study. The pore volumes injected (PV) is indicated for each image and is referenced from

the start of tracer injection. Note that the top sandstone core has a slightly larger color-

bar scale because the pulse volume of tracer injected was 4 mL as opposed to the three

limestone cores that had a pulse volume of 2 mL. The voxel size dimensions for all mod-

els are 0.2329 cm ×0.2329 cm ×0.2388 cm. These images highlight the local sub-core

permeability heterogeneity present in all four cores.
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the generation of numerical-generated neural network training data as it allows for com-231

parison with experimental data without knowledge of experimental dispersion behavior232

and without needing to account for the potential impacts of numerical dispersion. Third,233

application of the quantile-based arrival time is especially advantageous when working234

with experimental data because the integration of the breakthrough curves averages out235

much of the imaging measurement error (Harvey & Gorelick, 1995). Furthermore, the236

quantile-based arrival time is less susceptible to solute tailing and background measure-237

ment noise than the normalized first moment because the first moment is a time-weighted238

integration of the voxel breakthrough curves. An example of this comparison for two dif-239

ferent voxels of the PET data in the Berea sandstone and the Ketton limestone is shown240

in Figure S1 in the Supporting Information.241

Computer vision tasks benefit from shared underlying structure (Isola et al., 2017;242

Zhu & Zabaras, 2018). However, the calculated arrival times include the underlying lin-243

ear trend due to the flow from the inlet to the outlet of the samples. This linear trend244

can mask arrival time variation and is fundamentally different from the underlying per-245

meability structure of the samples as illustrated in the upper left plot in Figure 2. To246

increase the structural similarity and amplify the signal of subtle differences in arrival247

times, the arrival time was first normalized to nondimensional units of pore volumes in-248

jected (upper right image in Figure 2). The nondimensionalized data was then subtracted249

from the linear trend, resulting in what we call an arrival time difference map as shown250

in the bottom plot of Figure 2. This representation of arrival times more closely reflects251

the underlying permeability structure. Greener voxels in Figure 2 have arrival times faster252

than the core average as a result of higher permeability zones. Pinker voxels in Figure253

2 have arrival times slower than the core average, thus are likely corresponding to regions254

of lower permeability. These arrival time difference maps were used as input for the CNN255

inversion workflow.256

4.3 Experimental Porosity Map Calculation257

The traditional approach for measuring porosity maps in geologic materials is to

use X-ray CT (Akin & Kovscek, 2003). The 3-D porosity map (Φ) is calculated via the

linear scaling expression in Equation 2. This scaling requires a scan of the sample when

it is dry (Xa), and a second scan when the sample is fully saturated with water (Xw).

The difference between these scans is then scaled by using the difference between pure
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Figure 2: (Upper left) Quantile (0.5) arrival time map collected in the Berea core using

the PET data illustrated in the top of Figure 1. (Upper right) Quantile arrival time map

in normalized units of pore volumes of water injected since the start of tracer injection.

(Bottom) Quantile arrival time difference map in units of pore volumes.
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air and water phase Hounsfield X-ray CT numbers (∆a,w = 1000). An illustration of

the porosity in the Berea sandstone calculated with Equation 2 is illustrated in the left

plot of Figure 3.

Φ =
Xw −Xa

∆a,w
(2)

For application to permeability inversion with a neural network, it is the spatial258

structure of the porosity map—as opposed to the actual values of porosity—that may259

provide information to improve the 3-D permeability map prediction. The true values260

of porosity may not be useful because the network was trained on datasets that lack a261

specific porosity-permeability relationship, as will be described in the following section.262

Therefore, the inversion workflow was also tested using a single dry X-ray CT scan, where263

the Hounsfield values have been scaled to a typical porosity range. This simplification264

has the advantage of reduced scanning costs and experimental data collection times. In265

addition, a single or average set of dry scans can also have less measurement noise due266

to the lack of registration errors that may arise when collecting X-ray CT scans over the267

course of an experiment. The numerical subtraction of CT data in Equation 2 leads to268

an amplification of these potential registration errors. Furthermore, since the density of269

dry air is much less than water, a dry X-ray CT scan provides a higher contrast between270

the pore spaces and geologic material; thus, highlight the spatial structure of the poros-271

ity map. However, a risk of using scaled X-ray CT scans is that they are more suscep-272

tible to X-ray CT imaging artifacts such as beam hardening that are reduced or removed273

during porosity linear scaling calculations (Akin & Kovscek, 2003). In addition, the lack274

of measured porosity when using scaled X-ray CT maps requires the use of core-average275

porosity for numerical model parameterization.276

To test the network with single X-ray CT scan data, dry scans were normalized and

then scaled to have a range from 0.15-0.25 using Equation 3, similar to typical poros-

ity ranges in consolidated rocks.

Φ̃ = 0.10 · ‖Xa‖+ 0.15 (3)

An illustration of the rescaled dry X-ray CT scan in the Berea sandstone calculated with277

Equation 3 is illustrated in the right plot in Figure 3. All PET and X-ray CT datasets278

described in this study are provided in the repository referenced in the Acknowledgments.279
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Figure 3: (Left) Porosity map of Berea sandstone calculated using linear scaling with

Equation 2. (Right) Air-saturated X-ray CT scan of Berea sandstone scaled to a typical

porosity range using Equation 3.

4.4 Synthetic Training Dataset Generation280

Two different synthetic datasets were generated to train and test the neural net-281

work for 3-D permeability inversion from image-based datasets. The first dataset is com-282

posed of arrival time difference maps calculated from numerical solute transport simu-283

lations on synthetically generated permeability maps with homogeneous porosity. The284

second dataset is composed of arrival time difference maps with the same synthetically285

generated permeability but with the addition of a corresponding heterogeneous poros-286

ity map.287

4.4.1 Training Dataset Without Porosity288

Permeability maps were generated using the exponential covariance random field289

generation algorithm and open source Python codes from Müller and Schüler (2021). Latin290

hypercube sampling (Deutsch & Deutsch, 2012; Tartakovsky et al., 2020) was used to291

generate 26,000 permeability maps that varied in mean permeability from 10 mD–20 D;292

log10 standard deviation from -1.7–9.9 mD; spatial correlation length from 0.25–12.5 cm293

in the x, y, and z directions; rotation from 0 to 90 degrees in each of the x, y, and z planes;294

and 0–2 dummy slices added to the model inlet face. This range of training dataset prop-295

erties spans the range of consolidated and unconsolidated geologic materials that are typ-296

ically found in unfractured aquifers and conventional reservoirs.297
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The solute arrival time in all grid cells was determined by running numerical steady298

state flow simulations on the synthetic 3-D permeability maps using MODFLOW 2005299

(Harbaugh, 2005) and MT3DMS (Bedekar et al., 2016) scripted in FloPy (Bakker et al.,300

2016). To mimic the experimental settings, the flow simulation was done on synthetic301

cylindrical cores with a radius of 2.5 cm and length of 10 cm. To replicate this cylindri-302

cal shape with a no-flow boundary, permeability and porosity values outside the cylin-303

drical profile were set to zero. The flow rate was set to 2 mL/min and back-pressure was304

assigned to 70 kPa for simulating the fluid pressure condition below the water table. The305

simulated 3-D permeability and arrival time difference maps were all represented with306

dimensions of 20×20×40, which was nearly the same as the dimension of the 3-D PET307

arrival time images obtained from experiments discussed in Section 4.1. The grid cells308

for all models have dimensions of 0.233 cm ×0.233 cm×0.25 cm. Dummy slices were added309

at the inlet and outlet of the model to replicate the conditions of the coreholder faces.310

The width of the dummy slices was varied randomly in the training data to reflect the311

imperfect inlet solute boundary conditions that occur during the experiments. The width312

was varied by adding up to three 0.25 cm slices. The strength of these boundary effects313

has been observed in other in situ transport imaging experiments and is difficult to pre-314

dict a priori (Lehoux et al., 2016). The solute transport model results were used to cal-315

culate 3-D arrival time maps using the same quantile calculation, pore volume normal-316

ization, and differencing procedure described in Section 4.2.317

Experimental PET data contain Gaussian distributed noise due to the measure-318

ment and reconstruction errors (Zahasky et al., 2020). This noise varies between exper-319

iments depending on background radiation in the scanner room, instrument error, and320

the number of coincidence detection events used in a given image reconstruction—as de-321

termined by time step size and quantity of positron-emitting radiotracer in the scanner.322

To replicate this noise in the training data, all of the simulated arrival time difference323

maps were corrupted with Gaussian white noise prior to loading into the neural network.324

To account for variation in dataset noise while ensuring that all datasets experience some325

noise, the noise applied to the input arrival time difference maps was assigned with a Gaus-326

sian distribution. The distribution had a mean of zero and a standard deviation that was327

scaled to 1/70 of the arrival time range for each training set. This value was determined328

both from quantification of numerical measurement error and hyperparameter tuning329

during network training.330
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An additional physical constraint available from routine experimental measurements

is the sample average permeability. For each training dataset, the average permeability

of each core (k̄) was numerically calculated using Darcy’s Law solved for k̄.

k̄ =
Q

A
· µ · L

∆P
(4)

The flow rate (Q) through the synthetic core was set equal to the model flow rate of 2331

mL/min. The cross-sectional area A was based on the modeled core cross-sectional area332

and the length of the model core L was 10 cm, nearly identical to the experimental datasets.333

The variable µ is the viscosity of water and ∆P was the pressure drop calculated by sub-334

tracting the average pore pressure at the outlet slice minus the average pore pressure at335

the inlet slice in the steady state MODFLOW model. The calculated average permeabil-336

ity of the core was then represented by a 20×20 tensor padding at the left boundary of337

the simulated arrival time difference map. The final dimension of every input dataset338

was then 20×20×41. Adding the average permeability as a boundary condition to the339

inversion process is key to preserving the uniqueness of the arrival time difference-permeability340

relationship.341

4.4.2 Training Dataset With Porosity342

A second training dataset was constructed to explore the impact of porosity het-343

erogeneity and porosity structure information on permeability inversion in geologic cores.344

There are two potential advantages to incorporating porosity as an additional input. First,345

geometric information associated with porosity map in geologic cores can be accurately346

characterized through X-ray CT (Akin & Kovscek, 2003; Vega et al., 2014; Glatz et al.,347

2016; Minto et al., 2017). Second, core-averaged porosity has been shown to have a ge-348

ometric correlation with permeability (Chilingar, 1964; Chilingarian, 1991). By using both349

the normalized solute arrival time and porosity maps as the inputs for the inversion pro-350

cess, this second network aimed to improve the accuracy of permeability map inversion351

by gaining insights on the geometric distribution heterogeneity in the core. In this dataset,352

the same permeability training data realizations as the first training set were used but353

synthetic 3-D porosity maps corresponding to each permeability map were added as an354

additional input channel. The porosity-permeability relationship was varied with each355

training data realization because porosity-permeability correlations vary across geologic356

settings.357
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The synthetic porosity maps were generated based on the corresponding perme-

ability map utilizing an empirical porosity-permeability function given by Equation 5.

φn =
ln(kn)
a + b

100
(5)

Here φn is the porosity of a given grid cell in training set n, kn is the permeability in mil-358

liDarcy of a given grid cell in training set n, a is a constant ranging from 0.25–1, and359

b is another constant ranging from 5–20. These empirical parameters varied with each360

training set realization and were sampled by including them with the Latin hypercube361

sample of the permeability map characteristics (e.g. mean, standard deviation spatial362

correlation length, etc.). Varying the constants a and b in each training realization en-363

ables the generation of a porosity map corresponding to a wide range of sedimentary rocks364

types (Chilingar, 1964; Chilingarian, 1991). An illustration of the variation in porosity-365

permeability relationships is illustrated in Figure S2 in the Supporting Information by366

plotting the porosity-permeability relationship of all 500 test set realizations. Each syn-367

thetic porosity map was then concatenated to its corresponding arrival time map as an368

additional input channel. To maintain consistent input channel sizes, the average per-369

meability of the core (k̄) was also padded at the left boundary of the 3-D porosity data370

resulting in a dimension of 20×20×41. Two different randomly selected training datasets371

generated with the above workflow are illustrated in 3-D plots in Figure S3 in the Sup-372

porting Information. The Python codes used for training data generation and the full373

compilation of training data are available in the data repository cited in the Acknowl-374

edgements.375

4.5 Network Construction and Training376

4.5.1 Convolutional Neural Network377

Convolutional neural networks (CNNs) are used to analyze, interpret, or classify378

image-based data. A convolutional layer contains a sequence of filters/kernel, each rep-379

resenting an abstract feature of the input image channels. A convolutional layer extracts380

features from input images through: xxx(l+1) = fl+1(WWW (l+1)xxx(l) + bbb(l+1)), where WWW (l+1)
381

is the weight matrix (or kernel), bbb(l+1) is the bias vector, and fl+1 is the nonlinear ac-382

tivation function that maps the input map xxx(l) to a corresponding output map xxx(l+1).383

In a convolutional layer, every neuron is linked to a receptive field, a region in the in-384

put that represents a particular feature. As the number of connected convolutional lay-385
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ers increases, the input spatial information gets selected and refined through encoding.386

The accumulated receptive fields of shallower (or earlier) layers makes the region exposed387

to the neurons in the deeper (or later) layers larger. This enables CNNs to capture smaller388

scale features in the shallower layers and the more global information in the deeper lay-389

ers (Gu et al., 2018). For the networks in this study, 3-D convolutional layers were uti-390

lized, allowing the network to learn the 3-D spatial correlations within and among fea-391

ture maps.392

4.5.2 Residual-in-residual Dense Network393

The number of parameters in a network increases as a network grows deeper, the-394

oretically improving the performance of the network. However, gradients among param-395

eters experience loss during the back-propagation process due to repeated multiplica-396

tion, and the loss generally increases as the networks get deeper. To solve the gradient-397

vanishing problem, Densely Connected Neural Networks (DenseNet) were developed to398

connect all layers—with matching feature map sizes—directly with all their subsequent399

layers (G. Huang et al., 2017). The direct connections are established by using the out-400

puts of all preceding layers as the inputs of the current layer, so the current layer can401

obtain and concatenate all the preceding input feature maps and then generate its own402

feature maps to all subsequent layers (G. Huang et al., 2017). The growth rate of a dense403

block refers the number of new feature maps concatenated at each layer. In addition to404

alleviating the gradient-vanishing problem, the densely connected structure also strength-405

ens feature propagation and reuse, further reducing the parameters of the networks (G. Huang406

et al., 2017). In a dense block, after receiving the concatenated feature maps as inputs,407

each layer carries out the batch normalization (BN) (Ioffe & Szegedy, 2015) and the ReLU408

(Rectified Linear Unit: ReLU(x) = max(0, x)) nonlinear activation. Finally, the main409

features of the activated prediction are captured by a convolution layer and then passed410

to all subsequent layers.411

To further increase the depth of the networks without the gradient-vanishing or gradient-412

exploding problem, a residual learning framework (He et al., 2016) was adopted to con-413

nect the dense blocks in the networks (Zhang et al., 2018). Residual-in-residual dense414

block (RRDB) has been successfully applied in image super-resolution (Wang et al., 2018)415

and geologic features parameterization (Mo et al., 2019c). Based on these previous mod-416

els, the networks built here contain a residual dense block that consisted of five dense417
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blocks with each RRDB contained three residual dense blocks. The growth rate of the418

dense block was set to 48 and the residual scaling factor β was set to 0.2 (Wang et al.,419

2018; Mo et al., 2019c). An illustration and additional descriptions of the components420

in each residual-in-residual dense block is given in Figure S4 in the Supporting Informa-421

tion.422

4.5.3 Network Architecture423

The 3-D encoder–decoder based CNN extracts high-level features of the input and424

output data through the convolutional blocks and refines the extracted features through425

the residual-in-residual dense blocks. A detailed illustration of the overall network is pre-426

sented in the upper portion of Figure 4. The convolutional block consists of a single 3-427

D convolutional layer—indicated by blue blocks in Figure 4. The residual-in-residual dense428

block consists of fifteen dense blocks— indicated by green blocks in Figure 4. During the429

training, features selection through compression and reconstruction was achieved through430

the pooling and up–sampling blocks—yellow blocks in Figure 4. Each pooling block halved431

the dimension of the input feature maps through a combination of batch normalization432

(BN), ReLU activation, and average pooling layers. Each up-sampling block doubled the433

dimension of the input feature maps through a combination of batch normalization, ReLU434

activation, and Conv-Transpose layers. In total, the entire network contains forty-eight435

3-D convolutional layers, two average pooling layers, and two Conv-Transpose layers with436

a total 8,570,690 trainable parameters. Both the networks trained with and without ad-437

ditional porosity maps have the same architecture with the only difference being the num-438

ber of input channels. The network without porosity has one input channel and the net-439

work that takes into account porosity has two input channels.440

4.5.4 Network Training441

For the network trained with homogeneous porosity, the network training was a

supervised process with 3-D image tensors containing the arrival time difference maps,

corrupted with noise as described in Section 4.4, as the inputs and the permeability maps

of the corresponding synthetic geologic core as the labeling data. To evaluate how poros-

ity information improves the permeability prediction, a second network was trained with

the porosity maps of the synthetic geologic cores as additional inputs. During the train-

ing process, the encoder first extracted and parameterized the high-level features of the
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Figure 4: Schematic illustration of the inversion-validation workflow using both syn-

thetic (top loop) and experimental PET data (bottom loop). Figure includes the net-

work’s encoding-decoding architecture, MODFLOW-MT3DMS numerical forward flow

simulation, and cross-validation. The purple blocks correspond to synthetic/predicted

permeability maps, the red block is the PET data, the orange blocks are experimental and

modeled arrival time difference maps. The CNN components include convolutional blocks

(blue), up/down-sampling block (yellow), and residual-in-residual dense blocks (green).
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input data. The compressed high-level features map, referred to as the latent space, hav-

ing a dimension of 5×5×10. The decoder then constructed the labeling permeability based

on the extracted high-level features in the latent space. The predicted permeability maps

by the decoder had a final dimension of 20×20 ×40, the same as the dimension of the

labeling synthetic permeability maps. The predicted permeability maps were then com-

pared with the labeling synthetic permeability maps through loss functions. The loss func-

tion used in this study was a combination of L1 loss (Equation 6) and KL-Divergence

loss (Equation 7). L1 loss measures the absolute distance between the labeling (p(x))

and predicted (q(x)) permeability maps.

D(p(x)‖q(x))L1 =

n∑
i=1

|p(xi)− q(xi)| (6)

KL-Divergence loss measures the differences in probability distributions between the la-

belling and predicted permeability maps in all three dimensions.

D(p(x)‖q(x))KL =

n∑
i=1

p(xi) · log

(
p(xi)

q(xi)

)
(7)

Generally, small loss indicates less difference and large loss indicates less similarly be-442

tween the ground truth and prediction. The loss propagation was monitored through ob-443

serving the gradient and minimum of the loss curve for the predictions on synthetic per-444

meability maps in the validation set. To monitor and examine the performance of the445

network, the total 26,000 numerically simulated data were divided into 20,000 for train-446

ing, 5,500 for validation, and 500 for test sets.447

Adaptive Moment Estimation (Adam) algorithm was adopted to back-propagate448

the differentiable activation functions through stochastic gradient descent on a series of449

mini-batches. The purpose of adopting Adam optimizer was to save the memory usage450

while efficiently propagating the sparse gradients caused by the high complexity of the451

imagery data (Kingma & Ba, 2014). The initial learning rate for the Adam optimizer452

was set to 0.005 with a batch size of 32. During the training process, over-fitting, when453

the validation loss stagnates at a relatively high value while the training loss is still steadily454

decreasing, was often observed. To address the over-fitting issue, a learning rate sched-455

uler was adopted with a weight decay factor of 0.5 for every plateau or increase in val-456

idation loss over 15 epochs. In addition, a 3-D dropout layer (Hinton et al., 2012) was457

added after the ReLU activation layer in every dense blocks to simulate a sparser acti-458

vation that further reduce the network’s propensity to overfit.459
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Training accuracy was evaluated on the test set by comparing the synthetic per-

meability maps with the network predicted permeability maps. For the experimental data,

the network was evaluated by comparing the experimental arrival time difference maps

and the numerically simulated arrival time difference maps based on the network per-

meability map prediction. The root-mean-squared error (RMSE in Equation 8) and co-

efficient of determination (R2 in Equation 9) statistical indicators were used to evalu-

ate the accuracy of permeability predictions.

RMSE =

√√√√ 1

N

n∑
i=1

(yi − y∗i )2 (8)

R2 = 1−
∑n
i=1(yi − y∗i )2∑n
i=1(yi − ȳi)2

(9)

Here N is the number of voxels in a core, yi and y∗i are the real and predicted value in460

each voxel, respectively. The variable ȳi is the core-averaged real value.461

Each training run of 300 epochs generally took 26 to 36 hours to complete on a Nvidia462

GeForce GTX980 GPU at the University of Wisconsin-Madison Center for High Through-463

put Computing (CHTC), and the trained parameters for the network were stored in a464

path file after the training. The Python codes for the neural networks used in this study465

and the trained models are available in the repository referenced in the Acknowledge-466

ments.467

4.5.5 PET Data Inversion-Validation Workflow468

After the encoder–decoder based CNNs were fully trained, a set of experimental469

3-D arrival time difference maps obtained from the PET imaging methods discussed in470

Sections 4.1 and 4.2 were used to generate permeability map predictions. In the second471

network, both 3-D porosity maps and scaled X-ray CT scans were tested as additional472

inputs to the arrival time data. Using the algorithms discussed in Section 4.4.1, arrival473

time difference maps were then generated using the inverted 3-D permeability maps as474

numerical model input. The modeled arrival time difference maps were then directly com-475

pared with the experimental measurements to validate the accuracy of the network per-476

meability map predictions using the experimental data input. An illustration of the over-477

all workflow including permeability inversion, forward numerical flow and transport mod-478

eling, and cross validation is presented in Figure 4.479
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5 Results480

5.1 Network Results with Synthetic Test Data and Homogeneous Poros-481

ity482

The accuracy of the trained encoder–decoder based CNNs was evaluated by com-483

paring the average RMSE accuracy of the 500 3-D permeability predictions in the test484

dataset. The RMSE accuracy was calculated by comparing the predicted permeability485

(y∗ in Equation 8) with the synthetic permeability maps (y in Equation 8) that were used486

to generate the arrival time difference input data for the network. The arrival time dif-487

ference maps in this testing all included Gaussian noise. The grid cell-average RMSE of488

all of the log10-permeability maps in the test set is 0.057, or 1.1 mD. To illustrate the489

grid cell-level network performance, fifteen sample permeability map predictions from490

the test set were randomly chosen and are presented in Figure 5. These grid cell 3-D per-491

meability predictions were directly compared against the corresponding grid cells in the492

synthetic permeability maps that were used to generate the input arrival time difference493

maps.494

To better describe the overall uncertainty of the network predictions given the wide495

range of test set realization mean permeability, it is useful to calculate the RMSE rel-496

ative to the mean of each permeability map. Figure 6 illustrates the relative uncertainty497

for the 500 test set realizations. For each synthetic permeability map in the test set, the498

input relative uncertainty was calculated using the average of the added Gaussian ran-499

dom noise divided by the mean arrival time difference; the output relative uncertainty500

was calculated using the average RMSE prediction accuracy divided by the mean of the501

synthetic permeability map. The average relative input uncertainty of all of the arrival502

time difference maps in the test set is 0.063 and the average relative output uncertainty503

of all of the log10-permeability maps in the test set is 0.032. The relative uncertainty of504

all the permeability predictions consistently a range between 0.01 to 0.26—lower than505

the range of relative uncertainties (noise level) for all the network input data (0.025 to506

0.35). Figure 6 not only highlights the quality of the parameter inversion by the network507

but also the ability of the network to denoise the data. The denoising is apparent from508

the overall lower relative uncertainty in the output permeability predictions compared509

to the relative uncertainty in the input arrival difference maps. These results highlight510
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Figure 5: Fifteen randomly chose samples of permeability map prediction using arrival

time difference maps from the test set that included Gaussian noise. For each subplot,

the x-axis represents the grid cell-level synthetic permeability associated with the test

set arrival time, and the y-axis represents the corresponding grid cell-level predicted per-

meability. To illustrate the density of the correlations, the cross-plots are colored by the

number of points in a given bin or local region of the cross-plot. The plots with the gold

and red outlines correspond to the top and bottom rows of plots in Figure 7, respectively.

the capability of the network to distinguish useful features in parameter maps from sys-511

tematic and/or random errors.512

An example of two spatially resolved permeability inversion results are plotted in513

Figure 7. The top plot of Figure 7 provides a 3-D example of 90th percentile permeabil-514

ity map prediction (with a R2 score of 0.901) and the bottom plot of Figure 7 provides515

a 3-D example of a 10th percentile permeability map prediction (with a R2 score of 0.775).516

Each set includes the arrival time difference map, the predicted permeability map, and517

the corresponding synthetic permeability map. Based on this multilevel analysis, the trained518

encoder–decoder based CNN is able to learn the key features of the arrival time differ-519

ence map and the relationship with the corresponding heterogeneous permeability map.520
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Figure 6: The distribution of relative uncertainty of permeability predictions utilizing the

network trained without heterogeneous porosity maps evaluated on the 500 test set real-

izations. For each realization in the test set, the input relative uncertainty is calculated

using the average of the added Gaussian noise divided by the mean arrival time difference.

The output relative uncertainty is calculated using the average RMSE prediction accuracy

divided by the mean of the permeability map. The average relative input uncertainty

of all of the arrival time difference maps in the test set is 0.063 and the average relative

output uncertainty of all of the log10-permeability maps in the test set is 0.032.
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Figure 7: Illustration of two numerically calculated arrival time difference maps using

MODFLOW-MT3DMS (left column) based on the corresponding synthetically generated

permeability maps (right column). The arrival time difference maps—plotted here with-

out the Gaussian noise—were the input data used to generate the corresponding predicted

permeability maps (middle column) by the network trained under with homogeneous

porosity. In terms of the R2 accuracy, the top row corresponds to a 90th percentile quality

prediction. This dataset is also shown in the scatter plot in Figure 5 marked with the gold

box. The bottom row corresponds to a 10th percentile quality prediction and is given by

the scatter plot in Figure 5 marked with the red box. The grid cells for all models are

0.233 cm ×0.233 cm ×0.25 cm.
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5.2 Network Results with Experimental PET Data521

Following the network evaluation with synthetic test set data, permeability pre-522

dictions were generated on the experimental arrival time difference datasets collected from523

four geologic cores using the PET imaging methods illustrated in Figure 2 and described524

in Section 4.1. Figure 8 and Figure 9 show the 3-D experimental arrival time difference525

map calculated from the PET data, the predicted permeability map from the network,526

and the simulated arrival time difference map based from the MODFLOW-MT3DMS527

model parameterized with the predicted permeability map. Grid cell-level comparison528

of the arrival time data is shown in the top row of cross-plots in Figure 10. In Figure529

10 the experimental grid cell-level arrival time difference is given on the x-axis and mod-530

eled grid cell-level arrival time difference—based on the network permeability map prediction—531

is given on the y-axis. For the experimental data, the arrival time difference map pre-532

dictions have an R2 accuracy ranging from 0.756 (Ketton limestone) to 0.831 (laminated533

Berea sandstone), verifying the capability and robustness of a single trained network to534

predict the 3-D permeability map of geologic samples.535

5.3 Results of the Model Trained with Heterogeneous Porosity536

A second network was trained assuming a spatial correlation between porosity and537

permeability maps. This was done to test if additional structural information provided538

by the porosity maps improved the permeability prediction. This network was trained539

with an additional input channel of the porosity map as described in Section 4.4.2. Sim-540

ilar to the first network trained with homogeneous porosity, the training and validation541

loss curves of the second network also display a clear downward trend. The training per-542

formance of this second network with heterogeneous porosity is slightly better than the543

first network with homogeneous porosity as illustrated by both the lower training and544

validation loss, and lower overall testing root mean square error in Figure 11. For this545

second network, the average RMSE accuracy of all the log10-permeability maps in the546

test set is 0.047, a slight improvement relative to the network with no porosity data that547

has an RMSE of 0.057. The improved performance on the synthetic data is attributed548

to the strong spatial correlations between the synthetic permeability and porosity maps549

as illustrated in Figure S3 in the Supporting Information.550
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Figure 8: Cross-comparison of the network trained with homogeneous porosity using

experimental arrival time difference maps measured with PET on a laminated Berea sand-

stone (top three subplots) and an Edwards Brown limestone (bottom three subplots). The

upper left subplots show the arrival time difference map calculated from the PET imaging

data, the lower plot shows the predicted permeability map by the network, and the upper

right shows the numerically simulated arrival time difference map based on the predicted

permeability map. Note that the experimental and modeled arrival times are plotted on

the same colorscale.
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Figure 9: Cross-comparison of the network trained with homogeneous porosity using

experimental arrival time difference data measured with PET collected from an Indiana

limestone (top three subplots) and a Ketton limestone (bottom three subplots). The up-

per left subplots show the arrival time difference map calculated from the PET imaging

data, the lower plot shows the predicted permeability by the network, and the upper right

shows the numerically simulated arrival time difference map based on the predicted per-

meability map. Note that the experimental and modeled arrival times are plotted on the

same colorscale.
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Figure 10: Cross-plot of experimental arrival time difference data (x-axis) and modeled

arrival time difference from network permeability map prediction for the four geologic

cores (from left to right): Berea sandstone, Edwards Brown limestone, Indiana limestone,

and Ketton limestone. The top row of plots show the results using the arrival time dif-

ference map as the only network input channel; the middle row of plots show the results

using the scaled dry X-ray CT scan as the second input channel; the bottom row of plots

show the results using the X-ray CT-measured porosity map as the second input channel.

To illustrate the density of the correlations, the cross-plot is colored by the number of

points in a given bin or local region of the cross-plot. These results indicate that the ad-

ditional of X-ray CT-derived data provides very little or no improvement in permeability

map prediction.
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Figure 11: Training and testing performance of both networks trained with and without

heterogeneous porosity maps, including training loss (top right plot), validation loss (bot-

tom right plot), and the distribution of the RMSE accuracy of the permeability map pre-

dictions based on the test set data (left plot). For the test set, the average RMSE of all of

the predicted log10-permeability maps using the network trained without heterogeneous

porosity maps is 0.057, and the average RMSE of all of the predicted log10-permeability

maps using the network trained with heterogeneous porosity maps is 0.047.

Despite the slightly better performance on synthetic data, a contradictory phenomenon551

was observed regarding the experimental data. For the four geologic cores and PET datasets552

presented in Figures 8 and 9, both traditional X-ray CT-measured porosity maps and553

scaled dry X-ray CT scans were tested as the additional inputs for permeability map pre-554

diction (see the full description of this data in Section 4.3). Figure 10 illustrates the re-555

sults of the modeled arrival time analysis compared against the experimental arrival time556

measurements using the same experimental cross-comparison process as the previous net-557

work. The network trained with heterogeneous porosity maps generally under-performed558

the network trained with only the arrival time difference data. This is illustrated by the559

consistent reduction in the R2 accuracy in the middle and bottom row of plots in Fig-560

ure 10. The only instances of higher R2 accuracy relative to the network using only ar-561

rival time data are the Ketton core with both scaled X-ray CT data and X-ray CT poros-562

ity and the Berea core with scaled X-ray CT data. In all cases the R2 accuracy improved563

by less than three percent with the addition of X-ray CT-derived input data.564
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Figure 12: Summary of network RMSE of all test set data plotted against the corre-

sponding mean permeability (left plot), permeability field standard deviation σ(k) (center

plot), and mean correlation length of the three principle axes pre-rotation (left plot).

6 Discussion565

The results illustrate that the network can accurately determine the local patterns566

and magnitudes of permeability variations from both noisy synthetic and experimentally567

measured arrival time difference maps. High permeability areas generally have more rapid568

arrival times and thus more positive arrival time differences whereas low permeability569

areas generally have slower arrival times and thus more negative arrival time differences.570

However, in many cases the structure of the permeability variation can distort obvious571

relationships with arrival times as indicated by Figures 8 and 9.572

Statistical analysis of the inversion results summarized in the left plot of Figure573

11 indicates that the RMSE of the network predicted permeability relative to the orig-574

inal synthetic permeability field is consistently low across the entire range of 500 test set575

permeability fields. Analysis of RMSE as a function of mean permeability, permeabil-576

ity field standard deviation, and mean correlation length indicates that there is no cor-577

relation between RMSE and permeability field characteristics as illustrated in Figure 12.578

The lack of correlation between test set RMSE and mean correlation length of the 3-D579

permeability field indicates that there is minimal feature loss resulting from feature smooth-580

ing during the encoding and decoding process. This verifies that using an encoding-decoding581

network significantly reduces network training computational cost while maintaining the582

robustness of permeability inversion.583

In addition to computational cost, a key challenge of determining the 3-D perme-584

ability distribution from 3-D time lapse solute transport measurements is isolating the585
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transport characteristics that are permeability dependent. Convolutional neural networks586

excel at finding spatial correlations between distinct high frequency features such as con-587

tours or edges of distributions. Therefore, it is crucial to minimize the high frequency588

experimental noise—distinct features that are unrelated with permeability distribution—589

in the input data. The quantile-based arrival time analysis emphasizes the advective trans-590

port that is directly influenced by permeability and minimizes the effects of hydrody-591

namic and numerical dispersion, experimental imaging noise, variation in initial solute592

concentration, and solute tailing behavior. While flow rate dependencies are known to593

exist in complex carbonate materials (Kurotori et al., 2019), the quantile threshold can594

be adjusted to minimize the influence of these effects on the permeability inversion pro-595

cess. The normalization of the arrival time map is thus able to reduce the influence of596

experimental conditions such as flow rate and variation in sample dimensions. This pre-597

processing and dimension reduction using classic transport analysis methods converts598

the raw 4-D datasets down to a 3-D maps of arrival time information. This constrains599

the domain of the inversion problem while minimizing the complexity, leading to a more600

unique and computationally efficient permeability prediction.601

Porosity-permeability relationships are likely to exist in structured sedimentary rocks602

such as sandstones, while these relationships often breakdown in carbonates. The accu-603

racy of the permeability predictions in the second network that included correlations be-604

tween porosity and permeability was marginally improved in the synthetic data as illus-605

trated in Figure 11. However there was minimal improvement or even worse predictions606

in the experimental data inversion as illustrated in Figure 10. This highlights the im-607

portance of validating deep learning methods on experimental or field data as deep learn-608

ing model efficacy can be hampered by the intrinsic oversimplification of synthetic train-609

ing datasets.610

The results summarizing the experimental data inversion in Figure 10 generally found611

higher R2 scores for the permeability map predictions using scaled X-ray CT scans as612

opposed to porosity map data. The network using scaled X-ray CT scans as inputs slightly613

outperformed the results without X-ray CT data for permeability predictions on geologic614

cores with distinct structural features—such as the clear lamination in the Berea sand-615

stone. However, scaled X-ray CT scans suffer from the same uncertainty in the strength616

of a single porosity-permeability relationship for a given sample volume. Extensive hy-617

perparameter exploration was performed on the porosity-permeability relationships by618
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adding different levels of noise to the porosity data, thus weakening the underlying porosity-619

permeability relationships in the training data. Nevertheless, these results indicate that620

the porosity-permeability framework adopted in this study is likely not universal enough621

for spanning all geologic materials with a single trained network. Thus, using only PET-622

derived arrival time difference maps provides the best general performance for 3-D per-623

meability inversion. Moreover, the validation results suggest that the presented method624

is rigorous because spatial permeability distributions can be accurately predicted from625

PET datasets alone, without the need to obtain structural information on the geologic626

cores.627

7 Implications628

This study demonstrates a new permeability inversion strategy by applying a deep629

convolutional encoder-decoder neural network—utilizing multilevel residual learning strat-630

egy and the dense connection structure—to massive image-based datasets. The network631

accurately predicts the local patterns and magnitude of the 3-D permeability maps us-632

ing local arrival time difference maps generated from PET scans and routine mean per-633

meability measurements on four different geologic core samples. Although the initial net-634

work training process is computationally intensive, the trained network is able to invert635

for the permeability map of nearly any unfractured geologic core sample in a matter of636

seconds. Furthermore, each path file that contains the trained parameters for the entire637

encoder-decoder network is only tens of megabytes. An equivalent numerical inversion638

approach would typically require repeated flow and transport simulations on an ensem-639

ble of 100’s of models to generate a permeability map of a single rock sample.640

The orders of magnitude reduction in multiscale permeability inversion time pro-641

vides an opportunity for a paradigm shift in core scale analysis and characterization meth-642

ods. This workflow generates an accurate experimentally derived 3-D permeability map643

of a geologic sample rather than a single sample-average permeability measurement. This644

type of rapid characterization is key for building more accurate models of subsurface flow645

and transport processes.646
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Residual-in-Residual Dense Block

To increase the depth of the networks without the gradient-vanishing or gradient-

exploding problem, a residual learning framework was adopted to connect the Dense

Blocks in the networks. Instead of directly learning the unreferenced original mapping,

the residual connection adopts a skip-connection between blocks that learn residual func-

tions with reference to the layer inputs (He et al., 2016). Suppose x is the input for the

current layer and let x denotes the residual. Let F (x) denote the optimal mapping of

the current layer and let R(x) denotes the original mapping (or the residual function) of

the current layer, and let F (x) R(x) + x. The F (x) is then passed to the next layer,

so if the original R(x) of the current layer enlarges the error, the next layer could always

refer back to the residual x, which could be considered as skipping the layer that enlarges

the error. To the other extreme, if the original mapping R(x) is optimal, the residual x

will be set to zero. Therefore, the deeper layer would produce no higher error than the

upper layer (He et al., 2016). Compare to the original mapping, it is easier to optimize

the residual mapping. The residual-in-residual dense block (RRDB) are composed of a

stack of residual dense blocks connected in another residual structure (Wang et al., 2018;

Mo et al., 2019). Therefore, the residual learning was used in two levels, resulting in a

residual-in-residual structure. For both of the two levels, the desired output is actually

denoted as F (x)β ×R(x) + x, where β ∈ (0, 1] is the residual scaling factor (Wang et al.,

2018).
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Sample Name Core length [cm] Average Permeability [mD] Average Porosity [-]

Berea Sandstone 10.0 23 0.20

Indiana limestone 10.3 98 0.17

Edwards Brown limestone 10.3 132 0.41

Ketton limestone 10.0 1920 0.23

Table S1. Table summarizing rock cores used for gathering experimental PET imaging

datasets.
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Figure S1. Example breakthrough curves derived from different voxels of the PET scans

of the Berea sandstone (left plot) and the Ketton limestone (right plot) experiments.

The black lines and darker blue and red lines are for the voxel near the central axis

of the core and 1.19 cm from the inlet (voxel coordinate: 10,10,5). The lighter colors

correspond to the voxel near the central axis of the core and 7.16 cm from the inlet

(voxel coordinate: 10,10,30). While normalized first moments and 0.5 quantiles are very

similar in a Berea sandstone, the significant microporosity and resulting solute tailing in

the Ketton limestone generates significant delay of the normalized first moment location

relative to the 0.5 quantile.
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Figure S2. Porosity-permeability relationships for every grid cell of each test set

realization using Equation 5 with randomly sampled a and b parameters. Each test set

has a different line color and all 500 test datasets are plotted.
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Figure S3. Two test sets of synthetic permeability and corresponding porosity maps

used in the second neural network that incorporates heterogeneous porosity. The top

row illustrates sample 430 from the test set; the corresponding porosity is generated with

a = 0.4565 and b = 19 using Equation 5. The bottom row illustrates sample 404 from

the test set; the corresponding porosity is generated with a = 0.5407 and b = 5. The grid

cells for all models are 0.233 cm ×0.233 cm ×0.25 cm.

Figure S4. Architecture of the residual-in-residual dense block (Wang et al., 2018; Mo

et al., 2019)
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