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Abstract

The Asian monsoon anticyclone (AMA) exhibits a trimodal distribution of sub-vortices and the western Pacific is one of the
preferred locations. Amplification of the western Pacific anticyclone (WPA) is often linked with eastward eddy shedding from
the AMA, although the processes are not well understood. This study investigates the dynamics driving eastward eddy shedding
associated with the emergence of the WPA in the upper troposphere and lower stratosphere on synoptic scales. Using reanalysis
data during 1979 to 2019, our composite analysis reveals that amplified WPA events are closely related to the upstream Silk Road
(SR) wave-train pattern over mid-latitude Eurasia as identified in previous studies. The quasi-stationary eastward propagating
eddies result from baroclinic excitation along the westerly jet, as identified by coherent eddy heat fluxes and relaxation of the
low-level temperature gradient. The upper-level westerly jet is important in determining the longitudinal phase-locking of wave
trains, which are anchored and amplify near the jet exit. Occasionally enhanced convection near the Philippines also triggers
anticyclonic eddies that propagate upward and northeastward via the Pacific-Japan (PJ) pattern, forming the WPA in the

upper troposphere. Correlation analysis suggests that the SR and PJ mechanisms are not physically correlated.
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Figure 6 shows a 2D distribution of SRI vs. BHI for all daily samples over July-August
1979-2019. Contours represent the density of scatter points. There is a weak but statistically
signi cant correlation in the distribution (r 0:3), as expected from the results in Fig. 3.
The red dots in Fig. 6 represent the WPA events, primarily falling in the upper right-
hand quadrant, i.e. large amplitude BHI and SRI. These statistics are consistent with an
ampli ed Silk Road pattern typically preceding the strong anticyclone above Japan by 1 to

4 days.

3.2.2 Dynamics in Relation to the Silk-Road Pattern

We apply composite analysis to obtain the essential circulation patterns of the WPA
with reference to the intensity of the SR pattern. To sharpen the composited features,
variables whose SRI fall above the 78 percentile are selected. Wave activity ux (WAF)
vectors are computed to identify the origin and propagation of Rossby waves associated
with the WPA events coinciding with the pronounced SR pattern. The calculation is based
on the methods of Takaya and Nakamura (2001), which generalizes Plumb uxes (Plumb,
1979) to allow for transient eddies propagating in a zonally varying mean state. The WAF
is designed in the quasi-geostrophic (QG) framework, whose direction is parallel to the
wave group velocity and the divergence (convergence) implies source (sink) of Rossby waves

(H.-H. Hsu & Lin, 2007; Gu et al., 2018).

Figure 7. Cross sections of QG streamfunction anomalies (in colors, unit: 10 ®m?=s) and WAF
(in vectors, unit: m?=s?) (a) averaged over 120 -140 E and (b) at 40 N composited for the WPA

events which coincide with pronounced Silk Road pattern.
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statistical signi cance at the 95% con dence level), although there is stronger relationship
for extreme PJ patterns. For instance, red dots represent the WPA events whose PJI falls
above the 74" percentile and suggest a positive correlation with the intensity of the WPA.
Figure 11b shows only thesigni cant correlation coe cients between the PJI and the BHI
as the PJI increases from -30, -20, ..., 20, 3WV=m?. The correlation is in fact maximized
when the PJI falls above the upper 3¢" percentile (0.47*) while becomes insigni cant as
the PJI reaches 20W=m?. The upper 30" percentile agrees well with statistics of back
trajectories initialized within the WPA in Honomichl and Pan (2020), where one third of

air parcels trace back to the Philippine Sea.

Figure 11. (a) Scatterplot between the BHI ( m) against the PJI ( W=m?) composited for a total
of 614 Bonin high events. Red dots highlight the Bonin high events whose PJI falls above the 75™
percentile. Correlation coe cients are given in the gure title. Gray reference lines indicate the
10" (p10), the 25" (p25), the median (p50), the 67" (p67), the 75" (p75), and the 90" (p90)
percentiles of the PJI, respectively. (b) Curve indicates the signi cant correlation between subsets

of the BHI and PJI, which are regrouped as the PJI increases.

3.3.2 Dynamics in Relation to the Paci c-Japan Pattern

We apply composite analysis to identify the circulation patterns with reference to the
intensity of the PJ pattern. Similar to Section 3.2.2, variables composited for the WPA
events on Day O are averaged when the corresponding PJI falls above the "5percentile,

i.e. enhanced convection as in Fig. 10a (represented by gray contours in Fig. 12b). Fig. 12a
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