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Abstract

Magnitude and frequency are prominent features of river floods informing design of engineering structures, insurance premiums

and adaptation strategies. Recent advances yielding a formal characterization of these variables from a joint description of

soil moisture and daily runoff dynamics in river basins are here systematized to highlight their chief outcome: the PHysically-

based Extreme Value (PHEV) distribution of river flows. This is a physically-based alternative to empirical estimates and

purely statistical methods hitherto used to characterize extremes of hydro-meteorological variables. Capabilities of PHEV for

predicting flood magnitude and frequency are benchmarked against a standard distribution and the latest statistical approach

for extreme estimation in two ways. The methods are first applied to an extensive dataset to compare their skills for predicting

observed flood quantiles in a wide range of case studies. Synthetic time series of streamflow, generated for select river basins

from contrasting hydro-climatic regions, are later used to assess performances for rare events. Both analyses reveal fairly

unbiased capabilities of PHEV to estimate flood magnitudes corresponding to return periods much longer than the sample size

used for calibration. The results also emphasize reduced prediction uncertainty of PHEV for rare floods when the mechanistic

hypotheses postulated by the method are fulfilled, notably if the flood magnitude-frequency curve displays an inflection point.

These features, arising from the mechanistic understanding embedded in the novel distribution of the largest river flows, are

key for a reliable assessment of the actual flooding hazard associated to poorly sampled rare events, especially when lacking

long observational records.
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Abstract. Magnitude and frequency are prominent features of river floods informing

design of engineering structures, insurance premiums and adaptation strategies.

Recent advances yielding a formal characterization of these variables from a joint

description of soil moisture and daily runoff dynamics in river basins are here

systematized to highlight their chief outcome: the PHysically-based Extreme Value

(PHEV) distribution of river flows. This is a physically-based alternative to empirical

estimates and purely statistical methods hitherto used to characterize extremes of

hydro-meteorological variables. Capabilities of PHEV for predicting flood magnitude

and frequency are benchmarked against a standard distribution and the latest

statistical approach for extreme estimation in two ways. The methods are first applied

to an extensive dataset to compare their skills for predicting observed flood quantiles

in a wide range of case studies. Synthetic time series of streamflow, generated for

select river basins from contrasting hydro-climatic regions, are later used to assess

performances for rare events. Both analyses reveal fairly unbiased capabilities of

PHEV to estimate flood magnitudes corresponding to return periods much longer than

the sample size used for calibration. The results also emphasize reduced prediction

uncertainty of PHEV for rare floods when the mechanistic hypotheses postulated by

the method are fulfilled, notably if the flood magnitude-frequency curve displays an

inflection point. These features, arising from the mechanistic understanding embedded

in the novel distribution of the largest river flows, are key for a reliable assessment of

the actual flooding hazard associated to poorly sampled rare events, especially when

lacking long observational records.
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1. Introduction

Reliable estimates of magnitude and frequency of river floods are crucial for a wide

range of social and economic activities. For instance, they inform design of engineering

structures, insurance premiums, urban planning and adaptation strategies. But despite

hundreds of years of efforts, flooding is still the most common natural disaster

(Wallemacq and House, 2018). Hazard assessment is indeed hampered by processes

that might be more variable than suggested by observed records, let alone ongoing

global changes (The Economist, 2017; Bevere et al., 2020). This is a problem, as

both purely statistical methods hitherto used for characterizing extremes of hydro-

meteorological variables (Katz et al., 2002; Morrison and Smith, 2002; England et al.,

2019; Metzger et al., 2020) and complex hydrological models encoding state-of-the-art

knowledge of physical processes (Maxwell and Miller, 2005; Knijff et al., 2010; Hirpa

et al., 2018; Kuffour et al., 2020) heavily rely on observations. Tools pairing physical

understanding of the mechanisms producing extreme events with easily tractable

mathematical descriptions of them and less demanding data requirements are therefore

vital to a more accurate flood risk estimation (Klemeš, 1989; Barth et al., 2019).

This letter systematizes and tests advances in the mechanistic-stochastic description

of soil moisture and runoff dynamics in river basins to emphasize what might be such

a tool: the PHysically-based Extreme Value (PHEV) distribution of river flows. Perks

of this physically-grounded alternative to statistical and hydrological methods hitherto

used for characterizing extremes of hydro-meteorological variables are its being simple

as a statistical distribution, mechanistic as a fully-fledged model, and stochastic as

nature is. Capabilities of PHEV for predicting flood magnitude and frequency are here

benchmarked against observation-based estimates and leading flood hazard assessment

methods, a pivotal milestone to further adoption of this tool in the community of

researchers, professionals and policy markers.

2. Methods

2.1. The physically-based extreme value distribution of river flows

The physically-based extreme value distribution of river flows arises from advances in

the mathematical description of catchment-scale daily soil moisture and runoff dynamics

in river basins (Laio et al., 2001; Porporato et al., 2004; Botter et al., 2007). These

well established scientific theories represent rainfall as a marked Poisson process with

frequency λP [T−1] and exponentially distributed depths with average α[L]. Infiltration

of rainfall into the soil determines stochastic increments of the moisture content, whereas

evapotranspiration causes loss of soil moisture from the root zone. Losses linearly vary

with the soil moisture between the wilting point and a critical upper threshold akin

to the water holding capacity of the soil. The exceedance of this threshold triggers

runoff pulses occurring with frequency λ < λP [T−1] and whose magnitudes follow an

exponential distribution with average α [L] (Botter et al., 2007). These pulses feed
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a single catchment hydrologic storage, which is finally drained by the river network

as streamflow. A non-linear storage-discharge relation echoes a hydrological response

which varies with the catchment water content and mimics the joint effect of different

flow components (e.g., subsurface and surface runoff) (Basso et al., 2015).

The mechanistic-stochastic description of runoff generation processes summarized

above yields an expression for the probability distribution of daily streamflows q (A.1,

Botter et al. (2009)) which, in addition to λ and α, depends on the coefficient K and

exponent a of a power law function (alike the storage-discharge relation mentioned

earlier) used to describe hydrograph’s recessions. It also provides a physically-grounded

mathematical form for the probability distribution of ordinary peak flows (sensu

Zorzetto et al. (2016), i.e., local flow peaks occurring as a result of streamflow-producing

rainfall events) (A.2, Basso et al. (2016)) which depends on the same set of parameters.

By further postulating independence of the peak flows, the physically-based probability

distribution of flow maxima (i.e., maximum values in a specified time frame, such as a

season or a year) finally emerges (A.3, Basso et al. (2016)).

These three probability distributions form a consistent and physically-grounded set

of expressions to characterize the statistical properties of daily flows, ordinary peak

flows and flow maxima. They describe their magnitudes, likelihoods of occurrence and

the related flood hazard based on a set of four physically meaningful parameters (α,

λ, a, K) which embody climatic and landscape attributes of the considered catchment.

These probability distributions might therefore constitute a sound alternative to purely

statistical distributions commonly used to characterize hydrological variables and their

maxima.

2.2. Benchmarking PHEV against leading methods for flood hazard assessment

We benchmark the performance of PHEV! against two leading statistical models for

flood hazard assessment, namely the Generalized Extreme Value (GEV) (Gnedenko,

1943; Coles, 2001) and Metastatistical Extreme Value (MEV) (Marani and Ignaccolo,

2015; Zorzetto et al., 2016) distributions. We ruled out the widely applied Log Pearson

Type III distribution (England et al., 2019) as a suitable term of comparison in this

study as a recent work showed it being outperformed by GEV and MEV distributions for

estimating magnitude and frequency of river floods from short data samples (Miniussi,

Marani and Villarini, 2020).

The GEV distribution is a standard tool (Kjeldsen and Bayliss, 2008; DWA, 2012)

traditionally applied to samples of maxima (as per the block maxima approach) under

the assumption that the number of events within each block tends towards infinity

(Coles, 2001). It is also used to characterize the peaks above a high threshold (in the

peak over threshold approach) under the hypotheses of a Poisson distributed number of

peaks, whose magnitudes follow a Generalized Pareto distribution (Pickands, 1975).

The MEV distribution is instead a recently proposed method to estimate extremes

by exploiting the features of ordinary events, which is currently gaining momentum
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(Marra et al., 2018, 2019; Schellander et al., 2019; Zorzetto and Marani, 2019; Hosseini

et al., 2020; Zorzetto and Marani, 2020; Miniussi, Marani and Villarini, 2020; Miniussi,

Villarini and Marani, 2020; Miniussi and Marani, 2020; Marra et al., 2020). It relaxes

the mentioned assumptions which lie at the heart of the GEV distribution and regards

as random variables both the number of independent ordinary events occurring in the

considered time interval and the parameters of the distribution used to describe their

magnitudes, without any restriction on the distribution underlying them. Details on

these two methods are respectively available in Coles (2001) and Zorzetto et al. (2016).

For the present analyses we used rainfall and streamflow time series of gauges

unaffected by climatic and anthropogenic hydrograph alterations from the US Model

Parameter Estimation Experiment (MOPEX) dataset (Schaake et al., 2006; Wang and

Hejazi, 2011). We only retained catchments for which at least 30 years of observations

are available, with less than 10% of missing data in each season (December-February,

March-May, June-August, September-November). The resulting mininum, mean and

maximum lengths of the analyzed records are 35, 52 and 55 years. We performed all

computations at seasonal scale (Durrans et al., 2003; Baratti et al., 2012) to account

for the seasonality of rainfall and runoff generation processes. Catchments where

precipitation falls as snow (i.e., when average daily temperatures below zero degrees

occur during precipitation) for more than 50% of a season were discarded to comply

with key hypotheses of the theoretical framework underlying PHEV (Botter et al., 2013),

which are violated where snow dynamics play a decisive role. This initial data screening

resulted into 161 gauges (483 catchment-season case studies) retained for analysis, whose

geographical locations are shown with grey dots in Figure 1G.

We further selected eight stations from different US hydro-climatic regions (red

squares in Figure 1G and Table B1) with the aim of using them for a more in-depth

assessment of the capability of the theoretical extreme value distributions (i.e., PHEV,

GEV and MEV) to predict magnitudes of events with return periods much longer than

the available length of observations. This reflects typical conditions in the practice,

where the magnitude of events with rather long return periods (say, 100-1000 years)

must be extrapolated on the basis of relatively short samples of observations. In light

of the limited length of observed discharge time series typically available, and being the

maximum empirical return period about equal to the duration of the record, in such

situations observations cannot serve as a benchmark for evaluating performances in the

estimation of the highest quantiles of the distribution.

For this reason, we utilized a stochastic rainfall generator and a parsimonious

hydrological model (see details in Garbin et al. (2019)) to produce 1000 years long

synthetic time series of daily rainfall and streamflow for the select catchments. The series

were used as a reference and compared to empirical and statistical estimates derived from

shorter samples extracted from the 1000 years long data series. The rainfall generator

and hydrological model comply with the main physical assumptions of PHEV detailed

at the beginning (being MEV and GEV purely statistical models which do not require

specific assumptions on the underlying processes). In this way we created a controlled
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experiment which enables analyzing the robustness of both empirical estimates and

theoretical extreme value distributions to non-ergodic data samples only.

Furthermore, we employed a cross-validation procedure (Zorzetto et al., 2016;

Miniussi, Marani and Villarini, 2020) to analyze the ability of the different methods to

extrapolate information outside the range covered by the observations. This would not

be possible in a customary goodness-of-fit approach, which provides no information on

the capability of a method to predict events which are not included in the calibration

sample. To do so, we first divided the available series of observed (synthetic) data

into two complementary parts by randomly selecting from them (through resampling

without substitution) 100 (1000) subsets of S years. These are the training sets used

to calibrate the theoretical distributions, whereas the remaining parts constitute the

validation samples. We used S = 10 years for the observations and repeated the process

for S = 10, 20, 30 and 60 years for the long synthetic data series to explore how the

different models perform with various sizes of the calibration sample.

We fitted the GEV distribution on the calibration sample of seasonal maxima by

means of L-moments (Hosking, 1990). Likewise, we employed L-moments to estimate

the parameters of a Gamma distribution here adopted to describe the whole set of

ordinary flow peaks in the MEV approach. Further details on the calibration of GEV

and MEV are available in (Miniussi, Marani and Villarini, 2020). Parameters of PHEV

were instead either directly derived from daily rainfall and streamflow series (α, λ and a)

or obtained through maximum likelihood calibration on the sample of seasonal maxima

(K) (Basso et al., 2016). In particular, we computed α as the average amount of

precipitation in rainy days, λ as the ratio between long-term average streamflow and

α, and a as the median value of the recession exponents obtained by fitting a power

law function to dq/dt− q pairs observed for each hydrograph recession. The maximum

likelihood approach here used to calibrate the parameter K is known to provide frail

estimates when small calibration samples are available, as in this application. Although

aware of the handicap thus imposed to the performance of PHEV, we were compelled to

adopt this method due to the current unavailability of more suitable approaches (such

as L-moments) for the novel physically-based extreme value distribution.

We finally used several metrics (e.g., skill score (Murphy and Winkler, 1992;

Hashino et al., 2007), relative error (Abramowitz and Stegun, 1972), quantile-quantile

plot (Barnett, 1975)) to evaluate and compare performances of PHEV, GEV and MEV

when both observed data (for the MOPEX dataset) and long synthetic series (for the

eight select basins) are analyzed. We introduce the significance of these metrics in the

following, where results are discussed.

3. Results and Discussion

Figure 1A-C summarizes the performances of PHEV, GEV and MEV for predicting

observed flood quantiles with return periods longer than the length of the calibration

samples (i.e., 10 years) in all the case studies. Warmer colors indicate higher density of
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the point clouds and thus mark the most frequent performances of the methods. PHEV

(panel A) tends to slightly underestimate flood magnitudes in the record (i.e., the red-

to-yellow core of the point cloud stands below the 45-degree line). Higher variability

of its performances (i.e., larger spread of points in the figure) compared to GEV and

MEV is manifest, especially in the case of high quantiles for which overestimation often

occurs. On the contrary, both GEV (panel B) and MEV (panel C) correctly estimate

lower flood magnitudes (i.e., the point clouds are centered on the 45-degree lines for

low quantiles) but tend to systematically underestimate the larger floods. In the case

of MEV, this behavior is likely due to using a Gamma distribution to describe ordinary

events, in agreement with Villarini and Strong (2014) and Slater and Villarini (2017). In

fact, such a light tailed distribution might underestimate ordinary peaks characterized

by low probability, eventually resulting in underestimation of maxima with long return

periods. Although the optimization of the MEV methodology is outside the scope of this

work, we recognize that the choice of a site-specific distribution of ordinary peaks might

reduce underestimation issues in the MEV approach (Miniussi, Marani and Villarini,

2020).

As for PHEV, previous studies scantily reported about the possible existence of a

relation between recession coefficient K and peak flow and its capability to interfere with

the characterization of daily flow distributions provided by the mechanistic-stochastic

model underlying it (Basso et al., 2015; Ghosh et al., 2016). Was there such a relation,

the parameters describing the hydrologic behavior of the catchment would vary along

with the peak flow magnitude, thus precluding the use of a single effective K to

portray the catchment hydrologic response and the resulting magnitude of floods. At

the same time, such a relation would also suggest caution about the dependability

of purely statistical flood estimates beyond the range of recorded magnitudes, as

ostensibly good performances of these methods might indicate their higher flexibility to

represent conditions which occurred in the observed time frame rather than robustness

in estimating uncharted flood magnitudes (Kirchner, 2006).

We computed the recession coefficient by fitting a power law function with exponent

set equal to a (i.e., the median exponent across all recessions in a case study) to

dq/dt− q pairs observed for each hydrograph recession (Biswal, 2021), and investigated

the possible existence of a relation between K and peak flow in the MOPEX basins.

Panels E and F display examples of catchments where we either did not or identified

such a relation. We then classified all the case studies into two groups based on the

slope of their K - peak flow relation, rendering them in panel D with either light or dark

green markers if the relation was respectively weak (i.e., absolute value of the slope ≤
0.4) or strong (i.e., absolute value of the slope > 0.4). Notice that choosing alternative

thresholds around this value does not substantially impact the key results of the study.

The performance of PHEV remarkably improves in case studies exhibiting weak

relations between K and peak flow (i.e., the majority of light green markers lie just

below the 45-degree line in panel D, whereas dark green markers mainly stand above

it). The Two-sample Kolmogorov-Smirnov test for the probability distribution of the
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relative estimation errors confirms that the two groups are significantly different in a

statistical sense (p-value < 0.01). The variability of PHEV diminishes for the set of cases

featuring weak K- peak flow relations (the interdecile and interquartile ranges of the

relative error decrease by 25% and 48%) and, although PHEV tends to underestimate

flood magnitudes in the range of observed quantiles, the bias of the estimate seems to

be relatively stable for increasing quantiles compared to GEV and MEV.

The proposed analysis of hydrograph recession characteristics is thus an effective

method to distinguish ex ante in what conditions PHEV shall be applied, namely in all

cases (268 out of 483 in our dataset, which will be referred in the following analyses) when

the recession coefficient K is fairly constant across recessions and thereby agrees with

the mechanistic description of runoff generation processes underlying PHEV. Possible

causes of the variability of K across events and basins are a much debated topic in recent

years (Rupp et al., 2009; Shaw et al., 2013; Bart and Hope, 2014; Biswal and Nagesh

Kumar, 2015; Patnaik et al., 2015; Dralle et al., 2018; Tashie et al., 2019, 2020). The

geomorphological theory of recession flow curves (Biswal and Marani, 2010) suggests,

on the basis of theoretical and observational arguments, that an enhanced variability of

K is linked to the existence of manifold hydrologic storage units which are differentially

activated across events, either because of their uneven distribution along river networks

or as a result of variable degrees of saturation preceding the events (Biswal and Marani,

2014; Mutzner et al., 2013). This behavior is conceivably related to the existence of

assorted triggers of runoff events and floods (Tarasova et al., 2020).

The contrasting behaviors of PHEV, GEV and MEV for the prediction of the

highest quantiles are further analyzed in the insets of panels B, C and D of Figure 1,

which display the median performances among case studies belonging to ten different

hazard categories (i.e., the deciles of the observed flood quantiles). For PHEV (inset

of panel D, light green hue) markers lie just below and parallel to the 45-degree

line, indicating a slight tendency to underestimation that is independent of the flood

magnitude. The markers instead diverge from the 45-degree lines in the insets of panels

B and C (i.e., for GEV and MEV), indicating that the estimation errors associated to

these distributions are low for small floods but increase with increasing quantiles.

To better visualize these traits and their implications for estimating magnitudes

of events with long return periods, we plotted the median relative errors for each

hazard class as a function of the observed quantiles (Figure 2A). We then extrapolated

the performances of the different extreme distributions to higher quantiles by fitting

regression lines using only half the observed errors, randomly extracted a hundred

times from the whole set of them by means of resampling without substitution.

This procedure yields an evaluation of the uncertainty of the extrapolations (shaded

areas in panel A) and concurrently allows for inspecting their robustness against the

observations themselves, avoiding potential errors due to the limited sample available.

The performance of PHEV (light green shaded area) is lesser affected by increasing flood

quantiles, whereas it ceaselessly deteriorate with the magnitude of floods for GEV and

MEV (red and blue shaded areas). This finding is especially relevant for the estimation
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of high quantiles associated to very long return periods. In this situation, errors of

PHEV shall remain fairly limited while those of GEV and MEV are expected to further

increase.

We provide a stricter assessment of the performances of the three extreme value

approaches for very high quantiles in the remainder of Figure 2. There we summarize the

analyses performed on 1000 years long synthetic time series of rainfall and streamflow for

eight select catchments from different US hydro-climatic regions (red squares in Figure

1G), which exhibit weak relations between K and peak flow.

A compendium of the results is given in Figure 2B-G, which displays boxplots of

the skill scores (panels B-C) and relative errors (panels D-G) of PHEV, GEV and MEV.

We computed both the metrics in a predictive fashion, i.e., by only considering in the

computation quantiles corresponding to return periods T longer than the sample size S

used to calibrate the parameters of the distributions.

Figure 2B-C shows the skill scores of PHEV, GEV and MEV when results for all

the calibration sample sizes are pooled together. The skill score is a global metric of

estimation accuracy that varies between −∞ and 1, the latter value indicating a perfect

match between predicted quantiles and the validation sample. PHEV and GEV have

on average similar values of median skill score, which are higher than for MEV (panel

B). The latter result would likely improve if variations of the parameters of the ordinary

peak distribution across time intervals would be allowed for MEV, thus exploiting its

full potentiality (Miniussi and Marani, 2020). Although GEV appears to have the

lowest variance across the distributions, panel C clarifies the reality and discloses the

large number and extent of outliers among GEV estimates. A similar pattern is also

highlighted by the relative errors between estimated and observed maxima, computed

for each T > S and then pooled in the boxplots of Figure 2D-G for all select river

basins and every S = 10, 20, 30 and 60 years. A relative error equal to zero indicates a

perfect match between quantiles predicted by the model and those estimated from the

validation sample. Negative values of the median relative error for MEV (panels D and

F) reflect its tendency to underestimate high quantiles, while limited error variances and

number of outliers indicate stability of its performances. Notwithstanding comparable

performances of GEV and PHEV for what concerns median errors, the latter exhibits

lower error variance than the former in both the ranges of T
S

analyzed in the figure and

its capability to provide estimates does not strongly deteriorate for T
S
> 10, as also

confirmed by the distribution of outliers (panel G).

The capabilities of the three distributions (and of an empirical estimation method,

i.e., the Weibull plotting position) to reproduce the reference normalized flood

magnitude-frequency curve (grey dots) obtained from a 1000 years long synthetic time

series when a limited yet common in the hydrological practice calibration sample (S=20

years) is available are exemplified in panels H-M. We display the results for these two

specific case studies to emphasize how the shape of the flood frequency curve might affect

the results given by the three methods. Namely, we chose one case (panels H-J) where

the flood frequency curve is rather predictable (i.e., the magnitude of the normalized
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streamflow smoothly rises with increasing return period) and one case (panels K-M)

characterized by the opposite behavior (i.e., the flood magnitude markedly increases

above a certain return period).

The black lines and shaded areas span the breadth of empirical (i.e., the range

spanned by the calibration samples randomly extracted 1000 times), PHEV (light green),

GEV (red) and MEV (blue) estimates. The empirical method reveals its fickleness, as

the related estimates highly depend on the specific set of flood events sampled in the time

frame S even for short return periods (i.e., the uncertainty of the maximum associated

to an assigned frequency is considerable for return periods as low as 10 years). The

use of a theoretical extreme value distribution reduces this variability (i.e., the shaded

areas span smaller ranges across the y-axes at short return periods). However, GEV

estimates (panels I and L) are as variable for just slightly larger return periods (i.e., 50

years). Conversely, the uncertainty of MEV is limited (i.e., the blue shades in panels J

and M are narrow) for the whole range of investigated return periods, but the method

tends to underestimate magnitudes of rare events with return periods longer than a

few hundred years, in particular when the flood frequency curve is characterized by the

presence of an inflection point (panel M). PHEV (panels H and K) provides dependable

estimates of flood magnitude-frequency curves which are less affected by the specific set

of flood events available in the sample (i.e., the amplitude of the light green shade is as

well limited). Albeit more uncertain than MEV, the pattern of PHEV estimates closely

resembles that of the reference flood magnitude-frequency curve (grey dots) for return

periods above a hundred years, especially when the curve trends upward. Remarkably,

knowledge of the magnitude of events with return periods substantially longer than the

available data series is required at most in the practice.

4. Conclusions and Outlook

The PHysically-based Extreme Value (PHEV) distribution of river flows emerges from

a mechanistic-stochastic description of basin-scale soil moisture dynamics and runoff

generation processes, which provides consistent analytical expressions of the probability

distributions of daily flows, peak flows and flow maxima. It constitutes a physically-

based alternative to purely statistical methods hitherto used to characterize extremes of

hydrological variables, whose parameters are all but one measurable from daily rainfall

and streamflow records.

A novel method relying on flow recession analyses and the identification of an

inverse relation between recession coefficients and peak flows allows for the domain of

applicability of PHEV to be defined a priori. In the absence of such relation PHEV

guarantees remarkable performances which are comparable to those of two leading

statistical models for flood hazard assessment. In particular, PHEV estimates entail

lesser increasing bias with larger flood quantiles than it occurs for the other benchmark

approaches. This feature ensures more reliable appraisal of the magnitude of rare

extreme floods from relatively short data series, an especially valuable achievement
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for the community of professionals involved in environmental hazards assessment.

Notwithstanding the highlighted perks of adopting a mechanistic-stochastic

approach to estimate magnitudes and frequencies of floods from daily streamflow

dynamics, work remains to be done. Stable calibration methods, such as probability

weighted and L-moments, shall be developed for PHEV as done in the past decades

for standard probability distributions now routinely used in extreme value analyses.

The search for approaches to estimate values of the parameter K without resorting

to calibration on observed maxima (thus achieving entirely calibration-free predictions

of flood statistics) shall also continue. Given the apparent dependence of K on the

wetness conditions of river basins (Shaw et al., 2013; Bart and Hope, 2014), satellite-

derived water storage and soil moisture products are promising allies in this regard, as

recently shown by Sharma et al. (2020) and Basso et al. (2021).

The mechanistic-stochastic conceptualization of runoff generation processes

underlying PHEV might as well be further advanced to explicitly include the variability

of recession coefficients in its mathematical expression. Seminal works in this sense

(Botter, 2010; Basso et al., 2015) demonstrated visible improvements of high flow

estimates when this variability is embedded in the mechanistic-stochastic description of

daily flows. Using the physically-based distribution of peak flows underpinning PHEV to

describe ordinary events in the MEV framework constitutes another promising research

avenue whereby capitalizing on the assets of both methods, namely the mechanistic

description of runoff generation processes embedded in PHEV and the possibility to

explicitly account for the inter-annual variability of parameters provided by MEV.

Finally, our findings hint at the possibility to leverage the reliability of PHEV

estimates for very long return periods to pinpoint inflection points of flood magnitude-

frequency curves, whose occurrence entail abrupt increases of the magnitude of high

flows, amplified hydrological hazard and a propensity of rivers to generate extreme

floods. Addressing these aspects would advance the PHysically-based Extreme Value

(PHEV) distribution of river flows towards ripeness for a standard application in the

practice.
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Appendix A. Probability distributions of daily streamflows, ordinary peak

flows and flow maxima

The expression of the probability distribution of daily streamflows q (Botter et al., 2009)

is:

p(q) = C1q
−ae

λq1−a
K(1−a)−

q2−a
αK(2−a) (A.1)

where α and λ are average and frequency of runoff pulses, K and a are coefficient and

exponent of power law hydrograph’s recessions, and C1 is a normalization constant.

The expression of the probability distribution of ordinary peak flows (Basso et al.,

2016) is:

pj(q) = C2q
1−ae

λq1−a
K(1−a)−

q2−a
αK(2−a) (A.2)

which depends on the same parameters of (A.1), where C2 is also a normalization

constant.

The expression of the physically-based probability distribution of flow maxima (i.e.,

maximum values in a specified time frame) (Basso et al., 2016) is:

pM(q) = λτe−λτDj(q)pj(q) (A.3)

where τ [T ] is the duration in days of the chosen time frame, pj(q) is the probability

distribution of peak flows (A.2), and Dj(q) =
∫∞
q pj(q) dq is the exceedance cumulative

probability (i.e., the duration curve) of peak flows.

Appendix B. Subset of river basins from different US hydro-climatic regions

Information concerning the eight select catchments from different US hydro-climatic

regions, which are used in this study to assess performances of the theoretical extreme

distributions for very long return periods (O(103)), are available in Table A1.

Table B1. Select catchments from different US hydro-climatic regions used to assess

the performance of the analyzed methods for very long return periods (O(103))

USGS ID Longitude Latitude River name State Area [km2]

12098500 -121.9486 47.1514 White River near Buckley WA 1039

11501000 -121.8486 42.5847 Sprague River near Chiloquin OR 4092

11025500 -116.8653 33.1069 Santa Ysabel Creek near Ramona CA 290

08032000 -95.4306 31.8922 Neches River near Neches TX 2966

05471500 -92.6586 41.3553 South Skunk River near Oskaloosa IA 4235

03448000 -82.5925 35.5019 French Broad River at Bent Creek NC 1751

03075500 -79.4256 39.4219 Youghiogheny River near Oakland MD 347

01372500 -73.8731 41.6531 Wappinger Creek near Wappingers Falls NY 469
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Figure 1. (A-D) Quantile-quantile plots of normalized flood magnitudes (i.e., seasonal maxima
divided by the long term average daily flow, <q>, of the catchment) estimated for all catchments and
seasons by means of Weibull plotting position of observations in the validation samples (horizontal
axes) and either (vertical axes) (A and D) the PHysically-based Extreme Value distribution (PHEV),
(B) the Generalized Extreme Value distribution (GEV) or (C) the Metastatistical Extreme Value
distribution (MEV) calibrated on 10 years long samples. Different realizations of the calibration
samples have been assembled by resampling without substitution the available observational series a
hundred times (the remaining part of the data series constitutes each time the validation sample).
Median results among all the realizations are plotted. Notice that only quantiles corresponding to
return periods longer than the length of the calibration samples (i.e., Tr > 10 years) and until the
second longest Tr which could be estimated from the validation sample (to avoid large sampling
uncertainty inherent to the longest empirical return period) are shown. Warmer colors in panels (A)
to (C) indicate higher density of points and thus mark the most frequent performances of the methods.
Dark green markers in panel (D) identify case studies for which a strong relation between recession
coefficient and ordinary peak flows was detected (see panel (F)). The current mechanistic description of
the catchment hydrologic response embedded in PHEV does not consider such a relation and prevents
it from providing satisfactory performances in these cases, which can be identified ex ante through
hydrograph recession analyses. Light green markers in panel (D) instead indicate catchments where
such a relation is weak (see panel (E)). In these cases the mechanistic conceptualization of hydrological
processes underpinning PHEV is suitable and the physically-based extreme value distribution of river
flows guarantees satisfactory performances. The insets of panels (B), (C) and (D) represent the
median performances for all case studies in the figures belonging to ten different hazard categories
(i.e., the deciles of the observed normalized flood quantiles). (E-F) Exemplary case studies displaying
(E) weak (USGS ID: 03253500, spring) and (F) strong (USGS ID: 03504000, summer) relations
between recession coefficients and ordinary peak flows. The recession coefficient is fairly constant
for increasing peak flows in (E), thus supporting the adoption of an effective parameter K in these
cases and justifying its efficacy for estimating flood quantiles (light green markers in (D)). Conversely,
the recession coefficient markedly decreases (of several orders of magnitudes) for increasing values of
the peak flows in (F). This determines declining performances of PHEV for increasing quantiles when
an effective parameter K is adopted (dark green markers in (D)). (G) Location of gauges from the
MOPEX dataset analyzed in this study (grey dots). Red markers display a subset of river basins from
varied hydro-climatic regions that have been selected to perform analyses on 1000 years long synthetic
time series (see Figure 2).
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Figure 2. (A) Relative flood estimation errors for increasing quantiles resulting from the use of
PHEV (light green), GEV (red) and MEV (blue) distributions. The left-hand side of the panel
encompasses the range of quantiles for which errors associated to the use of different statistical
distributions could be evaluated from observations. Extrapolations of these errors for higher quantiles
(i.e., less frequent floods), whose estimation is often required in the practice, are displayed as shaded
areas on the right-hand side of the plot. (B-G) Boxplots (without and with displayed outliers)
summarizing performance metrics for all select case studies and every S = 10, 20, 30 and 60 years.
Performance is assessed by comparing event magnitudes estimated from the (1000 − S) years long
series of synthetic observations with those computed by means of statistical distributions calibrated
on shorter data series of length S assembled through resampling without substitution. Only return
periods longer than the sample size S used for calibration are considered to compute performances.
(B-C) Skill score of PHEV, GEV and MEV and (D-G) Relative error between quantiles predicted by
the models and the validation sample. Panels (D) and (E) show errors for return periods between one
and ten times the length of the calibration samples (i.e., errors for frequent floods), whereas panels
(F) and (G) display errors for rare extreme events (i.e., return periods between 10 and 99 times the
length of the calibration sample). (H-M) Normalized (i.e., seasonal maximum divided by the long term
average daily flow, < q >) flood magnitude-frequency curves estimated by means of synthetic data
series and three different statistical distributions. Results for the Youghiogheny River near Oakland,
MD (USGS gauge 03075500) in the spring season (panels H, I, J) and the South Skunk River near
Oskaloosa, IA (USGS gauge 05471500) in the summer season (panels K, L, M) are here displayed
as exemplary case studies. Grey dots present the estimates obtained by means of Weibull plotting
position of 1000 years long synthetic time series generated for the considered basins. Black solids
lines and shaded areas enclose the ranges of normalized flood magnitude-frequency curves obtained
when shorter data series of 20 years length (assembled by resampling without substitution the long
series a thousand times) are used for estimation either by means of Weibull plotting position of the
shorter series (black solid lines) or the support of (H and K) the PHysically-based Extreme Value
distribution (PHEV, light green areas), (I and L) the Generalized Extreme Value distribution (GEV,
red areas) and (J and M) the Metastatistical Extreme Value distribution (MEV, blue areas). The
plots highlight superior reliability of PHEV for long return periods, especially when discontinuities in
the flood magnitude-frequency curve exist.
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