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Abstract

Historical simulations performed for the Coupled Model Intercomparison Project Phase 6 (CMIP6) used biomass burning

emissions between 1997–2014 containing higher spatial and temporal variability compared to emission inventories specified for

earlier years, and compared to emissions used in previous (e.g., CMIP5) simulation intercomparisons. Using the Community

Earth System Model version 2 (CESM2) Large Ensemble, we show this increased biomass burning emissions variability leads

to amplification of the hydrologic cycle poleward of 40°N. Notably, the high variability of biomass burning emissions leads to

increased latent heat fluxes, column-integrated precipitable water, and precipitation. Lower relative humidity, greater static

stability, greater ocean heat uptake, and weaker meridional energy transport from the tropics act to moderate this hydrologic

cycle amplification. Our results suggest it is not only the secular changes (on multidecadal timescales) in biomass burning

emissions that impact the hydrologic cycle, but also the shorter timescale variability of their emissions.
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Abstract18

Historical simulations performed for the Coupled Model Intercomparison Project Phase19

6 (CMIP6) used biomass burning emissions between 1997–2014 containing higher spatial20

and temporal variability compared to emission inventories specified for earlier years, and21

compared to emissions used in previous (e.g., CMIP5) simulation intercomparisons. Using22

the Community Earth System Model version 2 (CESM2) Large Ensemble, we show this23

increased biomass burning emissions variability leads to amplification of the hydrologic24

cycle poleward of 40◦N. Notably, the high variability of biomass burning emissions leads to25

increased latent heat fluxes, column-integrated precipitable water, and precipitation. Lower26

relative humidity, greater static stability, greater ocean heat uptake, and weaker meridional27

energy transport from the tropics act to moderate this hydrologic cycle amplification. Our28

results suggest it is not only the secular changes (on multidecadal timescales) in biomass29

burning emissions that impact the hydrologic cycle, but also the shorter timescale variability30

of their emissions.31

Plain Language Summary32

Global climate models use different inputs to simulate the past climate as accurately as33

possible. One of these inputs is an estimate of emissions from the burning of biomass (e.g.,34

from forests and cropland). In the sixth phase of the Climate Model Intercomparison Project35

(CMIP6), the estimated biomass burning emissions were derived using two very different36

methods. Prior to 1997, emission estimates relied on a combination of indirect measurements37

and best-guess fire modelling resulting in emissions having relatively modest temporal and38

spatial variability. During later periods (i.e., 1997–2014) satellite based estimates of fire39

occurrence and intensity were used in combination with biogeochemical models to produce40

emission estimates containing much larger spatial and temporal variability. This study41

demonstrates that the differing variability in biomass burning has an impact on the model’s42

water cycle. During years of strong burning episodes, clouds thin and more sunlight reaches43

the surface, which results in more surface evaporation, and higher atmospheric humidity,44

and precipitation. Additionally, the high variation in emissions increases rainfall, decreases45

snowfall, and increases the intensity of extreme precipitation events. Our results show that46

the timing of biomass burning emissions, not just the amount emitted, is an important47

moderator of the atmospheric water cycle.48
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1 Introduction49

Many factors affect the atmospheric hydrologic cycle, and aerosols are among the most50

important of these factors. Aerosols impact regional and global scale precipitation through51

their direct radiative forcing and indirect microphysical effects (e.g., see Boucher et al.,52

2013; Ramanathan et al., 2001, and references therein). Simulation of the hydrologic cycle53

in historical and future projections is highly dependent on accurate modelling of aerosols.54

Indeed, aerosol-cloud interactions and their associated radiative forcing are among the most55

uncertain components of the historical radiative forcing of Earth’s climate (Boucher et al.,56

2013; Flato et al., 2013; Kiehl, 2007; Seinfeld et al., 2016).57

While aerosols are a topic of great interest to the climate community, comparatively58

little attention has been directed to how the variability of aerosol emissions affect the cli-59

mate system (rather than the total amount of such emissions). Most current knowledge is60

based on idealized scenarios. For example, the latest Geoengineering Model Intercomparison61

Project Phase 6 (GeoMIP6; Kravitz et al., 2015) experiments only prescribe emissions as62

either constant in time, increasing at a fixed rate, or as an instantaneous change. The Model63

Intercomparison Project on the climatic response to volcanic forcing (VolMIP; Zanchettin et64

al., 2016) and the fourth phase of the Paleoclimate Model Intercomparison Project (PMIP4;65

Jungclaus et al., 2017) do consider the effect of volcanic emissions, which are necessarily66

episodic. However, the volcanic events simulated in these experiments are large and occur67

infrequently (i.e., they are years to decades apart). Such studies did not explore the cli-68

mate impact of interannual emissions variability, or compare the impacts of variable aerosol69

emissions to continuous emissions.70

Unlike the emissions used in many previous intercomparison activities, the biomass71

burning emissions prescribed for the sixth phase of the Climate Model Intercomparison72

Project (CMIP6) historical simulations (BB4CMIP6; see van Marle et al., 2017) contain73

separate periods characterized by low and high interannual variability, thereby providing74

an opportunity to explore how such variability impacts the climate system. The meth-75

ods and measurements used to construct this aerosol emission inventory utilized a variety76

of strategies over different intervals within the historical (1850–2014) period that produce77

different variability in estimated emissions. Between 1997 and 2014, the Global Fire Emis-78

sions Database version 4 with small fires (hereafter GFED; van der Werf et al., 2017) was79

used to estimate biomass burning emissions. These estimates include much higher temporal80
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variability compared to prior years. Similar strategies were used for other aerosol sources81

(Hoesly et al., 2018). The interannual variability of black carbon, sulfate, and primary or-82

ganics emitted between 40-70◦N during 1997–2014 is approximately six times greater than83

the 18 years prior to it (as assessed from the standard deviation; see Figure 1a, black line).84

This large change in variability is new to the CMIP6 forcing and was not present in CMIP5,85

where decadal means were used to construct historical gridded biomass burning emissions86

(Lamarque et al., 2010). The prescribed biomass burning emissions largely consist of pri-87

mary aerosols and reactive gases (van Marle et al., 2017), many of which result in the88

formation of secondary organic aerosols (Pandis et al., 1992).89

Recent studies by DeRepentigny et al. (2021) and Fasullo et al. (2021) have compared90

the climate impacts of these (high variability) BB4CMIP6 emissions with simulations using91

emissions with less variability. Both studies find that it is not only the magnitude of aerosol92

emissions that impact the climate system, but also their temporal variability. Fasullo et al.93

(2021) showed that the sudden increase in aerosol emissions variability from 1997–2014 acts94

to decrease cloud droplet number concentrations and low cloud amount, which increases95

downwelling shortwave radiation. DeRepentigny et al. (2021) further showed that greater96

variability in biomass burning emissions accelerated Arctic sea ice loss over this time period.97

Given that aerosols have a profound impact on the hydrologic cycle, a natural question that98

arises is the following: how does such a change in the temporal variability of biomass burning99

emissions affect the hydrologic cycle?100

This study addresses this very question. Following the findings of DeRepentigny et101

al. (2021) and Fasullo et al. (2021), the Community Earth System Model version 2 Large102

Ensemble Community Project (CESM2-LE; Rodgers et al., 2021) forced half of its ensemble103

members with the original CMIP6 biomass burning emissions, and the second half with104

smoothed biomass burning emissions during the period of increased variability (from 1997–105

2014; Figure 1a, red line). Here, we utilize these two sets of simulations to investigate the106

impact that this increase in biomass burning emissions variability has on the global atmo-107

spheric hydrologic cycle. We find the high variability of biomass burning emissions amplifies108

all elements of the atmospheric hydrologic cycle, from evaporation to column-integrated pre-109

cipitable water to precipitation. Conversely, we find that several moderating factors act to110

mitigate this amplification of the hydrologic cycle. We conclude with a discussion of the111

implications of our findings for research utilizing CMIP6 output over the historical period.112

–4–



manuscript submitted to Geophysical Research Letters

2 Model Data113

We assess the impact of biomass burning emissions variability on the atmospheric hy-114

drologic cycle using the Community Earth System Model version 2 Large Ensemble Com-115

munity Project (CESM2-LE; Rodgers et al., 2021). This large ensemble project used the116

fully coupled CESM2 configured with the Community Atmosphere Model version 6 (CAM6;117

Danabasoglu et al., 2020), Parallel Ocean Program version 2 (POP2; Smith et al., 2010),118

Los Alamos Sea Ice Model version 5.1.2 (CICE5; Hunke et al., 2015), and Community Land119

Model version 5 (CLM5; Lawrence et al., 2019). Aerosols were simulated using the four-120

mode version of the Modal Aerosol Module (MAM4; Liu et al., 2016). Each component was121

configured at a nominal 1◦ spatial resolution (Rodgers et al., 2021).122

We analyze 80 CESM2-LE ensemble members subject to historical emissions (1850–123

2014) and the future SSP3-7.0 emissions (a medium-to-high emission scenario from 2015–124

2100; see O’Neill et al., 2016). Half of these 80 members were forced with the standard125

CMIP6 biomass burning emissions (hereafter HiVarBB; Figure 1a, black line; van Marle et126

al., 2017). The other half instead used a temporally smoothed biomass burning emission127

inventory (hereafter SmoothBB; Figure 1a, red line). This temporal smoothing was achieved128

by using an 11-year running mean filter from 1990–2020. This smoothing method reduced129

the interannual variability such that it aligned more closely with the variability of biomass130

burning emissions before the GFED period (1997–2014), but still nearly preserved the total131

cumulative amount of aerosol emissions through this period. Because fires varied from one132

year to another, the temporally smoothed emission inventory is also spatially smoother. The133

80 members were initialized from four different years of the pre-industrial control simulation134

(years 1231, 1251, 1281, and 1301). Each initialization year was selected based on the phase135

of the Atlantic Meridional Overturning Circulation (AMOC) strength (see Rodgers et al.,136

2021). Twenty members were started from each initialization year by randomly perturbing137

the temperature field. Half of each 20 member set used the HiVarBB emissions, while the138

other half used the SmoothBB emissions. We evaluate the relative impact of the increase139

in biomass burning variability by comparing the HiVarBB and SmoothBB simulations over140

the GFED period (1997–2014).141

–5–
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3 Cloud and Surface Radiative Response142

In the CESM2-LE, the choice of biomass burning emissions (HiVarBB or SmoothBB;143

Figure 1a, black and red lines, respectively) impacts clouds and surface radiation. Cloud144

droplet number (CDN) concentrations are lower in ensemble members subjected to the145

CMIP6 biomass burning emissions relative to those subjected to the smoothed biomass146

burning emissions during the GFED period (i.e., the average of HiVarBB ensemble mem-147

bers minus the average of the SmoothBB ensemble members from 1997 to 2014; Figure 1b).148

The difference in CDN concentrations is particularly large over the North American and149

Asian boreal regions. This cloud thinning effect in HiVarBB ensemble members, relative to150

SmoothBB ensemble members, leads to greater surface absorption of shortwave radiation:151

less shortwave radiation is reflected by clouds, so more reaches the surface (Figure 1c). This152

larger net surface shortwave radiation leads to surface warming in HiVarBB ensemble mem-153

bers relative to SmoothBB ensemble members during the GFED period (Figure 1d). These154

findings are in general agreement with similar experiments performed by DeRepentigny et155

al. (2021) and Fasullo et al. (2021).156

4 Hydrologic Cycle Response157

We find that the hydrologic cycle strengthens when biomass burning emissions vari-158

ability is high during the GFED period. Surface latent heat fluxes are greater in HiVarBB159

ensemble members compared to SmoothBB ensemble members over most of the area pole-160

ward of 40◦N (Figure 2a). In general, regions with greater latent heat fluxes correspond161

to those that experience more surface shortwave heating (compare spatial patterns of net162

surface shortwave flux differences and latent heat flux differences in Figures 1c and 2a, re-163

spectively). Poleward of 40◦N, the surface latent heat flux is 0.8% (0.3 W/m2) larger in164

the HiVarBB ensemble members compared to the SmoothBB ensemble members during the165

GFED period (Figures 2b, S1a).166

These greater latent heat fluxes in the HiVarBB simulations are accompanied by greater167

column-integrated precipitable water over most of the Northern Hemisphere (NH) relative to168

the SmoothBB simulations (Figure 2c). Regional differences are statistically significant over169

most regions of the NH and all regions north of 30◦N. Poleward of 40◦N, the area-averaged170

column-integrated precipitable water is 1.4% (0.2 kg/m2) larger in the HiVarBB simulations171

–6–
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Figure 1. Aerosol emission scenarios and resulting differences in cloud and radiative

responses. Panel (a) shows the annual mean sum of black carbon, primary organic, and sulfate

aerosol surface fluxes from HiVarBB (black line) and SmoothBB (red line) ensemble sets averaged

from 40-70◦N, with the vertical gray dashed lines delineating the GFED period (1997–2014). Panels

(b-d) show ensemble mean differences (average of HiVarBB ensemble members minus average of

SmoothBB ensemble members) in (b) vertically-integrated cloud droplet number concentration, in

109 m−2; (c) net surface shortwave flux, in W m−2; and (d) surface temperature, in K, during the

GFED period (1997–2014). Stippling signifies 95% confidence in the significance of the difference

between ensemble member sets (see Text S1).
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Figure 2. Differences in the atmospheric hydrologic cycle. (a,b) latent heat flux, in

W m−2; (c,d) column-integrated precipitable water, in kg m−2; (e,f) total precipitation, in mm

day−1; (g,h) percentage of precipitation that is liquid; and (i,j) annual maximum daily precipitation

(Rx1day) in mm day−1. The left column shows the ensemble mean difference (average of HiVarBB

ensemble members minus average of SmoothBB ensemble members), with stippling signifying 95%

confidence (see Text S1). The right column shows the annual mean value, averaged from 40-90◦N, in

HiVarBB (black line) and SmoothBB (red line) ensemble members; thick lines denote the ensemble

mean, shading denotes the range of each ensemble member set, and vertical gray dashed lines

delineate the GFED period (1997–2014).
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relative to the SmoothBB simulations (Figure 2d), a difference that is statistically significant172

(Figure S1b).173

Consistent with greater evaporation and atmospheric precipitable water, the HiVarBB174

emissions also increase precipitation over most regions poleward of 40◦N relative to the175

SmoothBB emissions (Figure 2e). When averaged poleward of 40◦N, greater precipitation176

in the HiVarBB simulations is clear (Figure 2f) and statistically significant (Figure S1c).177

Specifically, total precipitation poleward of 40◦N is 0.5% (0.01 mm/day) greater in the178

HiVarBB simulations relative to the SmoothBB simulations during the GFED period. There179

is also a discernible northward shift in the Inter-Tropical Convergence Zone (ITCZ) in the180

HiVarBB simulations relative to the SmoothBB simulations. This is apparent in Figure 2e181

as a statistically significant northward ITCZ shift over the Atlantic Ocean and drying of the182

South Pacific Convergence Zone (SPCZ).183

Higher surface temperatures in the NH in the HiVarBB simulations relative to SmoothBB184

simulations also leads to a shift in precipitation phase. In the NH high latitudes, a larger185

proportion of precipitation falls as rain rather than snow in HiVarBB ensemble members186

relative to SmoothBB ensemble members (Figure 2g). Regional differences in the relative187

amount of liquid precipitation (proportion of liquid to total precipitation) are statistically188

significant over much of the NH high latitudes. Averaged poleward of 40◦N over the GFED189

period, the proportion of precipitation that falls as rain is 0.8% larger in the HiVarBB190

ensemble members relative to the SmoothBB ensemble members (Figure 2h) and is statisti-191

cally significant (Figure S1d). This difference in precipitation phase is most apparent during192

boreal summer (JJA; Figure S2).193

We also find the annual maximum daily precipitation is larger in the HiVarBB simula-194

tions compared to SmoothBB simulations over the GFED period for most regions poleward195

of 40◦N. Unlike total precipitation, there is no statistical significance in regional differences196

in annual maximum daily precipitation (Figure 2i). However, there is statistical significance197

in the 40-90◦N mean difference during the GFED period. Specifically, the annual maxi-198

mum daily precipitation is 0.7% (0.2 mm/day) larger in the HiVarBB simulations relative199

to SmoothBB simulations (Figure 2j), and this difference is statistically significant (Fig-200

ure S1e). Greater intensity of extreme precipitation events in HiVarBB ensemble members201

compared to SmoothBB ensemble members is generally consistent with greater precipitable202
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water (Allen & Ingram, 2002; Trenberth et al., 2003) and more surface warming (Utsumi et203

al., 2011).204

5 Moderating Factors to Hydrologic Cycle Amplification205

As we have shown, the hydrologic cycle is clearly sensitive to the variability in biomass206

burning emissions. However, compensating atmospheric and ocean processes moderate the207

extent to which increased biomass burning emissions variability amplifies the hydrologic208

cycle. Most notably, changes in static stability and relative humidity (RH) act to reduce209

precipitation efficiency in the HiVarBB simulations. At the same time, larger ocean heat210

storage and weaker meridional energy convergence act to constrain evaporation increases211

poleward of 40◦N.212

Despite greater total precipitation in the HiVarBB simulations, the precipitation effi-213

ciency (defined here as the ratio of precipitation to column-integrated precipitable water214

evaluated locally) is lower in HiVarBB simulations relative to SmoothBB simulations (Fig-215

ure 3a). The average precipitation efficiency poleward of 40◦N is 0.9% (1.7×10−8 s−1) lower216

in HiVarBB ensemble members compared to SmoothBB ensemble members, a difference217

that is statistically significant (Figure S3a).218

Two mechanisms act to lower precipitation efficiency in the the HiVarBB simulations219

relative to the SmoothBB simulations. First, greater atmospheric black carbon aerosol bur-220

dens and atmospheric water vapor in the HiVarBB simulations act together to increase221

atmospheric absorption of shortwave radiation (Figures S4a, b, c), increasing static stabil-222

ity in the lower troposphere (by increasing moist potential temperature between 990 and223

950 hPa; see Figure 3b). Greater static stability in HiVarBB simulations acts to suppress224

vertical motion and cloud formation relative to the SmoothBB simulations (consistent with225

O’Gorman & Schneider, 2009; Richter & Xie, 2008). Second, lower RH in the lower tropo-226

sphere poleward of 40◦N in the HiVarBB simulations (Figure 3c), in conjunction with greater227

specific humidity (Figure S4b), indicates that the difference in atmospheric water vapor ca-228

pacity is larger than the difference in atmospheric water vapor itself. This deficit is likely229

caused by water limitations over land, where the largest differences in surface shortwave230

absorption occur (Figure 1c). Due to lower RH in the HiVarBB simulations, more energy231

is required to raise air parcels to their lifting condensation level relative to the SmoothBB232

simulations. Additionally, air parcels are less likely to be lifted to levels where they can233

–10–
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Figure 3. Precipitation efficiency and factors that impact it. (a) total precipitation

efficiency, in 10−6 s−1, in HiVarBB (black line) and SmoothBB (red line) simulations, with the

vertical gray dashed lines delineating the GFED period (1997–2014); (b) ensemble mean difference

in the mean 40-90◦N vertical moist potential temperature profile, in K; and (c) ensemble mean

difference in zonal mean relative humidity from 40-90◦N, in %. In (a), thick lines denote the

ensemble mean, while the shaded regions denote the range of each ensemble member set. In (b)

and (c), the ensemble mean differences are computed as the average of HiVarBB ensemble members

minus the average of SmoothBB ensemble members during the GFED period (1997–2014). In (b),

the solid line signifies 95% confidence in the significance of the difference between ensemble member

sets (see Text S1). In (c), stippling signifies 95% confidence in the significance of the difference

between ensemble member sets (see Text S1).

saturate, as the atmosphere is more statically stable in the HiVarBB simulations (Wallace234

& Hobbs, 2006).235

Greater ocean heat storage in HiVarBB simulations also moderates hydrologic cycle236

amplification, relative to SmoothBB simulations (Figure 4a). Poleward of 40◦N, upper ocean237

heat content (from 0 to 100m depth) is 1.6 ZJ larger in the HiVarBB simulations compared238

to the SmoothBB simulations during the GFED period, a difference which is statistically239

significant (Figure S3b). Greater ocean heat storage indicates that not all surplus energy240

input (from greater surface shortwave radiative fluxes, as shown in Figure 1c) immediately241

goes to increasing evaporative fluxes, thereby moderating their rise. Greater upper ocean242

heat content in HiVarBB simulations persists for approximately ten years after the end of243

the GFED period, indicating that ocean heat storage both moderates and lengthens the244

time scale of the climate response (as described by Barsugli & Battisti, 1998).245

–11–
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Figure 4. Energetic limitations on hydrologic cycle amplification. (a) upper (top 100

m) ocean heat content anomalies relative to the 1950–1979 average from 40-90◦N in HiVarBB (black

line) and SmoothBB (red line) simulations, in ZJ; and (b) ensemble mean difference (average of

HiVarBB ensemble members minus average of SmoothBB ensemble members) in the meridional

northward energy transport during the GFED period (1997–2014), in PW, including total (∆TET;

black line), atmospheric (∆AET; yellow line), and ocean (∆OHT; cyan line) components. In (a),

thick lines denote the ensemble mean, while shading denotes the range of each member set. In

(b), solid lines signify 95% confidence in the significance of the difference between HiVarBB and

SmoothBB ensemble member sets (see Text S1).

Adjustments in meridional energy transport further mitigate hydrologic cycle differ-246

ences poleward of 40◦N between HiVarBB and SmoothBB simulations. Figure 4b shows247

the difference in energy transport between the two simulation ensemble sets, including to-248

tal, atmospheric, and ocean components. NH total energy transport is lower in HiVarBB249

simulations relative to SmoothBB simulations (Figure 4b, black line) during the GFED pe-250

riod. This lower energy transport is a response to greater energy input poleward of 40◦N251

(Figure 1c), which tends to flatten the meridional moist static energy gradient and thereby252

weaken energy transport (Hwang & Frierson, 2010). Indeed, the total atmospheric energy253

transport is weaker in HiVarBB simulations compared to SmoothBB simulations (Figure 4b,254

yellow line). This anomalously southward atmospheric energy transport is consistent with255

a stronger Southern Hemisphere Hadley Cell in HiVarBB simulations (see dry and moist256

components of atmospheric energy transport in Figure S5) which drives the ITCZ further257

north (recall Figure 2e) and increases net southward atmospheric energy transport in the258

tropics (see Kang et al., 2008). Likewise, lower ocean heat transport also contributes to259

weaker NH total energy transport (Figure 4b, cyan line). Although the lower ocean heat260

–12–
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transport is not statistically significant, the weakening of the Atlantic Meridional Ocean261

Circulation (AMOC) is significant (Figure S6), indicating a decline in ocean heat transport262

in the Atlantic basin. Weaker meridional energy transport in HiVarBB simulations reduces263

the energy available for surface warming and evaporation, thereby moderating hydrologic264

cycle amplification.265

6 Implications266

Our results provide clear evidence that variability in biomass burning emissions affect267

the hydrologic cycle. We show that greater biomass burning emissions variability, as used in268

CMIP6 historical simulations during the GFED period (1997–2014), amplifies the hydrologic269

cycle in CESM2. Evaporation, atmospheric precipitable water, mean precipitation, precipi-270

tation extremes, and fraction of rain precipitation all increase with greater biomass burning271

emissions variability. This amplification is consistent with the thermodynamic impact of272

warming (e.g., Allen & Ingram, 2002; Held & Soden, 2006; Stott et al., 2010). Conversely,273

this hydrologic cycle amplification is moderated by several competing factors: greater static274

stability and lower RH in HiVarBB ensemble members leads to lower precipitation efficiency;275

greater ocean heat storage poleward of 40◦N moderates the available energy for evapora-276

tion over ocean; and weaker meridional energy transport decreases the energy available for277

surface warming.278

It is possible these findings extend to other models participating in CMIP6, not just279

CESM2. All CMIP6 historical simulations use the same biomass burning emissions, includ-280

ing the increase in variability during the GFED period. Indeed, Fasullo et al. (2021) and281

DeRepentigny et al. (2021) find evidence of characteristic increases in downwelling short-282

wave radiation and Arctic sea ice loss, respectively, during the GFED period in several other283

CMIP6 models. This suggests that other models may also be sensitive to greater biomass284

burning emissions variability. Further care is required for future treatments of biomass285

burning emissions variability in historical simulations. If the biomass burning emissions286

variability over the entire historical and future projection periods was corrected to be more287

continuous (whether to align with the variability of the GFED estimates, or the estimates288

prior), the hydrologic cycle would likely change. We note, however, that although each289

model is subject to the same increase in variability, this does not mean that every model290

is sensitive to this change (DeRepentigny et al., 2021; Fasullo et al., 2021). We also note291

that differing model sensitivities to this variability may increase the inter-model spread, and292
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therefore uncertainty, over the GFED period. This highlights the need for further study into293

how greater biomass burning variability during the GFED period affects hydrologic cycle in294

a range of CMIP6 models.295

As indicated by these findings, care is required when analyzing hydrologic cycle fields296

within CMIP6 and CESM2-LE historical simulations. Precipitation robustly increases in297

most areas poleward of 40◦N in CMIP6 future projections (Cook et al., 2020). If a baseline298

includes the GFED period (1997–2014), precipitation increases over future time periods are299

likely to be computed as lower than if adjacent baseline periods are used. For example, the300

change in mean precipitation poleward of 40◦N from 1995–2015 to 2080–2100 is approxi-301

mately 7% smaller in the HiVarBB simulations than the SmoothBB simulations. Similar302

issues are likely even worse for other hydrologic cycle variables, such as atmospheric water303

vapor, as the relative difference between HiVarBB and SmoothBB simulations is even larger.304

Our findings demonstrate that the interannual variability of biomass burning emissions305

is an important factor that determines the strength of the atmospheric hydrologic cycle.306

More research is required to better understand the mechanisms driving the climate response307

to biomass burning emissions variability, particularly that of aerosols and aerosol-adjacent308

compounds. We underscore the need for studies using multiple models to better parse309

out the underlying mechanisms by which biomass burning emissions variability impacts the310

hydrologic cycle and the greater climate system.311
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Introduction

Here, we present the methods we used to evaluate statistical significance (Text S1-S2),

as well as supplemental figures that further our findings on differences between CMIP6

(HiVarBB) and smoothed (SmoothBB) biomass burning emission scenarios in the CESM2

Large Ensemble. These figures show: statistical significance of area-averaged differences
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of metrics shown in Figure 2 (Figure S1), seasonal differences in relative liquid precip-

itation (Figure S2), statistical significance of differences in precipitation efficiency and

ocean heat content (Figure S3), differences in atmospheric and cloud properties (Figure

S4), differences in the moist and dry atmospheric energy transport components (Figure

S5), and differences in the Atlantic meridional overturning circulation (AMOC; Figure S6).

Text S1. Evaluating spatial statistical significance. We assess spatial (i.e., grid

point, zonally-averaged, and vertical profile) statistical significance using a Welch’s t-test.

We additionally limit significance determinations for false discoveries using the recom-

mendations made by Wilks (2016). We use an αFDR of 0.10 to approximate a global

significance level of 0.05.

Text S2. Evaluating area-averaged statistical significance. We use a non-

parametric bootstrapping approach to determine the statistical significance of the area-

average differences between fields in HiVarBB and SmoothBB ensemble member sets. We

conduct this test by randomly dividing all 80 members into two groups and determining

the difference in the means of each group. We repeat this random selection a hundred

thousand times to develop a distribution of random differences. We determine significance

if the mean difference between the HiVarBB and SmoothBB ensemble member sets is out-

side of the 2.5 and 97.5 percentile range, signifying the two-tail 95% confidence interval of

the distribution of differences between randomly divided members. This test allows us to

determine whether, with 95% confidence, the mean difference between the HiVarBB and

November 2, 2021, 2:00am
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SmoothBB ensemble member sets is greater than what could be generated by chance if

the mean difference was only influenced by internal variability. To verify that significant

differences are unique to the GFED period, we also conduct sensitivity tests by running

the test over multiple time periods, both before and after the GFED period.
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Figure S1. Statistical significance of area-averaged differences in the atmospheric

hydrologic cycle. (a) latent heat flux, in W m−2; (b) column-integrated precipitable water,

in kg m−2; (c) total precipitation, in mm day−1; (d) percentage of precipitation that is liquid;

and (e) annual maximum daily precipitation (Rx1day) in mm day−1, all from 40-90◦N over the

GFED period (1997–2014). The gray histogram shows a probability density distribution of means

derived from a non-parametric bootstrapping test (see Text S2), and the blue shading indicates

the region outside of the (two-sided) 95% confidence intervals; the difference between HiVarBB

and SmoothBB ensemble means (red line) is statistically significant (at the 95% level) if it falls

within the blue shaded region.
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Figure S2. Differences in seasonal relative liquid precipitation. The left and middle

columns are the same as in Figure 2, but showing differences in percentage of precipitation that is

liquid in (a-c) March-May (MAM), (d-f) June-August (JJA), (g-i) September-November (SON),

(j-l) and December-February (DJF). The right column shows the statistical significance of the

difference in HiVarBB and SmoothBB ensemble means from 40-90◦N over the GFED period. The

gray histogram shows a probability density distribution of means derived from a non-parametric

bootstrapping test (see Text S2), and the blue shading indicates the region outside of the (two-

sided) 95% confidence intervals. The difference between HiVarBB and SmoothBB ensemble

means (red line) is statistically significant (at the 95% level) if it falls within the blue shaded

region.
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Figure S3. Statistical significance of area-averaged differences in moderating fac-

tors. (a) precipitation efficiency, and (b) upper (top 100 m) ocean heat content from 40-90◦N

during the GFED period (1997–2014). The gray histogram shows a probability density distri-

bution of means derived from a non-parametric bootstrapping test (see Text S2), and the blue

shading indicates the region outside of the (two-sided) 95% confidence intervals. The difference

between HiVarBB and SmoothBB ensemble means (red line) is statistically significant (at the

95% level) if it falls within the blue shaded region.
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Figure S4. Zonal-mean ensemble mean difference of mechanisms affecting the

precipitation efficiency. (a) black carbon concentration (in ng/kg), (b) specific humidity (in

g/kg), (c) shortwave heating rate (in 10−7 K/s) from 40-90◦N. Ensemble mean differences are

computed as as the average of HiVarBB ensemble members minus the average of SmoothBB

ensemble members during the GFED period (1997–2014). Stippling signifies 95% confidence in

the significance of the difference between ensemble member sets (see Text S1).
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Figure S5. Differences in meridional atmospheric energy transport components.

Ensemble mean difference (average of HiVarBB ensemble members minus average of SmoothBB

ensemble members) in the total atmospheric energy transport (∆AETtotal, yellow line), latent

heat transport (∆LHT, blue line), and dry static energy transport (∆AETdry, red line) during

the GFED period (1997–2014), in PW. Solid lines signify 95% confidence in the significance of

the difference between HiVarBB and SmoothBB ensemble member sets (see Text S1).
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Figure S6. Differences in Atlantic meridional overturning circulation (AMOC). (a)

zonal-mean ensemble mean difference (average of HiVarBB ensemble members minus average of

the SmoothBB ensemble members), (b) annual mean Atlantic meridional overturning maximum

from HiVarBB (black curve) and SmoothBB (red curve) ensemble members; thick lines denote

the ensemble mean, shading denotes one standard deviation of each ensemble member set, and

horizontal gray dotted lines delineate the GFED period (1997–2014), and (c) statistical signifi-

cance of the difference in Atlantic meridional overturning maximum ensemble means during the

GFED period. The gray histogram shows a probability density distribution of means derived

from a non-parametric bootstrapping test (see Text S2), and the blue shading indicates the re-

gion outside of the (two-sided) 95% confidence intervals. The difference between HiVarBB and

SmoothBB ensemble means (red line) is statistically significant (at the 95% level) if it falls within

the blue shaded region.
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