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Abstract

Monitoring net ecosystem carbon dioxide (CO2) exchange (NEE) using eddy covariance (EC) flux towers is quite common, but

the measurements are valid at the scale of tower footprints. Alternative ways to quantify and extrapolate EC-measured NEE

across potential production areas have not been explored in detail. To address this need, we used NEE measurements from

a switchgrass (Panicum virgatum L.) ecosystem and detailed meteorological measurements from the Oklahoma Mesonet and

developed empirical relationships for quantifying seasonal (April to October) NEE across potential switchgrass establishment

landscapes in Oklahoma, USA. We identified ensemble area for potential switchgrass expansion regions and created thematic

maps of switchgrass productivity using geostatistics and GIS routines. The purpose of this study was not to calibrate the model

for estimating NEE in the future but to explore if model parametrizations based on high temporal frequency meteorological

forcing can be used to construct reliable estimates of NEE for evaluating the source-sink status of organic carbon. Based on EC

measurements, empirical models, a) rectangular hyperbolic light-response curve and b) temperature response functions, were

fitted to estimate gross primary production (GPP) and ecosystem respiration (ER) on a seasonal scale. Model performance

validated by comparing EC-measured seasonal NEE for three years showed good-to-strong agreement (0.29 < R2 <0.91; p <

0.05). Additionally, total seasonal NEE estimates were validated with measured biomass data in three additional locations. The

estimated seasonal average net ecosystem production (NEP =-NEE) was 3.97 ± 1.92 (S.D.) Mg C ha-1. However, results based

on a simple linear model suggested significant differences in NEP between contrasting climatic years. Overall, the results from

this study indicate that this new scaling-up exercise involving high temporal resolution meteorological data may be a helpful

tool for assessing spatiotemporal heterogeneity of switchgrass production and the potential of switchgrass fields to sequester

carbon in the Southern Great Plains of the United States.
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Abstract 9 

Monitoring net ecosystem carbon dioxide (CO2) exchange (NEE) using eddy covariance (EC) flux 10 

towers is quite common, but the measurements are valid at the scale of tower footprints. Alternative 11 

ways to quantify and extrapolate EC-measured NEE across potential production areas have not been 12 

explored in detail. To address this need, we used NEE measurements from a switchgrass (Panicum 13 

virgatum L.) ecosystem and detailed meteorological measurements from the Oklahoma Mesonet and 14 

developed empirical relationships for quantifying seasonal (April to October) NEE across potential 15 

switchgrass establishment landscapes in Oklahoma, USA. We identified ensemble area for potential 16 

switchgrass expansion regions and created thematic maps of switchgrass productivity using 17 

geostatistics and GIS routines. The purpose of this study was not to calibrate the model for estimating 18 

NEE in the future but to explore if model parametrizations based on high temporal frequency 19 

meteorological forcing can be used to construct reliable estimates of NEE for evaluating the source-20 

sink status of organic carbon. Based on EC measurements, empirical models, a) rectangular 21 

hyperbolic light-response curve and b) temperature response functions, were fitted to estimate gross 22 

primary production (GPP) and ecosystem respiration (ER) on a seasonal scale. Model performance 23 

validated by comparing EC-measured seasonal NEE for three years showed good-to-strong 24 

agreement (0.29 < R2 <0.91; p < 0.05). Additionally, total seasonal NEE estimates were validated 25 

with measured biomass data in three additional locations. The estimated seasonal average net 26 

ecosystem production (NEP =-NEE) was 3.97 ± 1.92 (S.D.) Mg C ha-1. However, results based on a 27 

simple linear model suggested significant differences in NEP between contrasting climatic years. 28 

Overall, the results from this study indicate that this new scaling-up exercise involving high temporal 29 

resolution meteorological data may be a helpful tool for assessing spatiotemporal heterogeneity of 30 

switchgrass production and the potential of switchgrass fields to sequester carbon in the Southern 31 

Great Plains of the United States. 32 

  33 



1 Introduction 34 

Fossil fuel combustion has been identified as a primary carbon dioxide (CO2) emission source and a 35 

key factor in the mounting human-induced climate crises. The development of carbon-neutral or 36 

carbon-negative alternative fuel is an urgent global priority to curtail the increasing consumption of 37 

fossil fuel and mitigate the threats of the climate crisis. Various cellulosic biofuel species are 38 

proposed as a cornerstone of a low-carbon economy with the potential to displace or reduce 39 

petroleum consumption for transportation (Robertson et al., 2017). Unfortunately, legislative 40 

initiatives on biofuel production have expanded grain-based ethanol production and garnered 41 

negative attention due to risks associated with nitrous oxide emissions, nitrate pollution, soil carbon 42 

loss (Gelfand et al., 2013), and food security (Demirer et al., 2012). Instead, opting for perennial 43 

exemplary biomass crops such as switchgrass (Panicum virgatum L.), miscanthus (Miscanthus × 44 

giganteus), and hybrid poplar trees (Populus spp.) would be a better choice for future energy 45 

portfolios because of their substantial energy return on investment (Ohlrogge et al., 2009). 46 

Various policies and incentives (e.g., the European Union’s Renewable Energy Directive 47 

(2018/2001) and the U.S. Energy Independence and Security Act, 2007) are in place currently to 48 

encourage biofuel production and development. Relatedly, the enactment of the Biomass Crop 49 

Assistance Program (BCAP) in 2008 was aimed to incentivize biomass for bioenergy production. To 50 

achieve energy independence from foreign oil, the U.S. Energy Independence and Security Act, 51 

2007, has mandated the production of 16 billion gallons (1 gallon = 3.785 liters) of cellulosic ethanol 52 

by 2022. The most recent 2016 Billion-Ton Report from the U.S. Department of Energy has 53 

identified willow (Salix spp.), miscanthus, and switchgrass as perennial feedstocks with the potential 54 

for profitable production (Langholtz, 2016).  55 

Switchgrass is a productive, perennial C4 grass native to the tallgrass prairie regions of the U.S. and 56 

one of the promising model energy crops for bioenergy feedstock (Wright, 2007). It is a dual-purpose 57 

forage and biofuel feedstock, which requires minimal management. It is effective at storing soil 58 

organic carbon, even below depths greater than 30 cm, due to its prolific and deeper root systems 59 

(Lee et al., 2007, Liebig et al., 2005). Switchgrass has larger potential for greenhouse gas sinks 60 

compared to cultivated croplands (Adler et al., 2007). Ecologically, switchgrass is dominant in the 61 

central Great Plains region and renders various ecosystem services, that include but are not limited to, 62 

livestock forage, nitrate-nitrogen leaching mitigation (Brandes et al., 2017, Griffiths et al., 2021), 63 

provision for wildlife habitat (Marshall et al., 2017), phytoremediation (Guo et al., 2019, Shrestha et 64 

al., 2019), and wind and water erosion protection (Liebig et al., 2005). Long-term data have 65 

demonstrated the feasibility of switchgrass for liquid fuel production across a broad geographic 66 

region of the U.S. (Mitchell et al., 2014).  67 

As the Agriculture Improvement Act of 2018 has reauthorized the extension of the Conservation 68 

Reserve Program, production of switchgrass is likely to occur in the marginally productive land, 69 

minimizing the competition with other field crops (Bigelow et al., 2020). The Great Plains of the 70 

U.S. has the potential to become a pivotal location for lignocellulosic feedstock production 71 

(Martinez‐Feria & Basso, 2020). Although the feasibility of switchgrass for biofuel production has 72 

been demonstrated for the U.S. (Mitchell et al., 2014), the existing scientific literature is not yet rich 73 

enough to provide information on switchgrass productivity and its carbon sink potential across large 74 

geographical and temporal scales (Behrman et al., 2013). Lately, there has been a growing interest in 75 

studying carbon dynamics in switchgrass to understand its potential to offset anthropogenic 76 

greenhouse gases and make switchgrass a promising bioenergy crop (Eichelmann et al., 2016, 77 

Kasanke et al., 2020, Slessarev et al., 2020). Various approaches have been utilized to predict 78 
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switchgrass productivity, such as the use of Robel pole for ocular estimates (Schmer et al., 2010), 79 

process-based plant growth models (Behrman et al., 2013, Brown et al., 2000, Hartman et al., 2011, 80 

Kiniry et al., 1996, McLaughlin et al., 2006), empirical modeling (Jager et al., 2010), and remote and 81 

proximal sensing (Foster et al., 2016, Gu et al., 2015). Although remote sensing is a proven tool to 82 

provide spatially comprehensive ecosystem activity (Churkina et al., 2005), satellite-based 83 

information is not readily available at finer temporal and spatial resolutions. Moreover, remote 84 

sensing observations will not be available now for potential future production areas.  85 

Information on ecosystem-level study of switchgrass productivity and its carbon dynamics in the 86 

Southern Great Plain regions of the U.S. is lacking. Only a few studies have reported carbon 87 

dynamics of switchgrass ecosystems for few years only based on EC measurements (Eichelmann et 88 

al., 2016, Liebig et al., 2005, Skinner & Adler, 2010, Wagle & Kakani, 2014b, Wagle & Kakani, 89 

2014c, Wagle et al., 2015). The EC flux towers continuously measure ecosystem-level net exchange 90 

of CO2, H2O, energy, and other trace gases between the land surface and the atmosphere. However, 91 

EC systems provide measurements for their footprint areas or fetch lengths, which usually ranges 92 

from 100 m to few kilometers depending on several factors, including EC tower height, wind speed, 93 

and vegetation properties (Gockede et al., 2004). Additionally, direct measurements of fluxes using 94 

EC towers are cost-prohibitive and limited to flat topography with uniform vegetation only 95 

(Baldocchi, 2008, Baldocchi, 2003). Thus, these site-level measurements need to be extrapolated or 96 

upscaled at larger spatial scales to estimate the regional carbon balance (Wofsy et al.,19993) and 97 

facilitate carbon cycling research (Gilmanov et al., 2005). In this paper, we developed empirical 98 

models to derive switchgrass productivity during the growing season (April through October) using 99 

EC-measured NEE from a switchgrass ecosystem and easily accessible time series meteorological 100 

data from the Oklahoma Mesonet and validated the estimates of NEE to four different sites using 101 

ancillary measures (e.g., NEE, biomass). Additionally, we characterize seamless switchgrass 102 

productivity estimates for the potential switchgrass production areas in Oklahoma. This proposed 103 

method can be implemented elsewhere for a regional prediction of switchgrass or any other 104 

bioenergy production potential species.  105 

 106 

2 Materials and Methods 107 

2.1 Net ecosystem CO2 exchange measurements 108 

Eddy covariance measurements, equipped with a CSAT3 sonic anemometer (Campbell Scientific 109 

Inc., Logan, UT, U.S.) and LI-7500 open-path infrared gas analyzer (IRGA, LI-COR Inc., Lincoln, 110 

NE, U.S.), were taken in a switchgrass (cv. Alamo) field located at Oklahoma State University South 111 

Central Research Station, Chickasha, Oklahoma (35° 2' 24" N, 97° 57' 0" W, 330 m above sea level) 112 

after the first year of its establishment (2010). The EC data recorded at 10 Hz frequency were 113 

processed using EddyPro software (LI-COR Inc., Lincoln, NE, U.S.) to compute 30-min eddy fluxes. 114 

Data quality was assessed by the degree of energy balance closure [latent heat (LE) + sensible heat 115 

(H)]/ [net radiation (Rn) – soil heat flux (G)]. Energy balance closures of 0.77 and 0.83 were reported 116 

for 2011 and 2012, respectively (Wagle and Kakani, 2014d), which were within the typical range for 117 

EC experiments (Foken, 2008). The study area was under abnormally dry to exceptional drought 118 

during the study period. Details on eddy flux measurements and data processing have been 119 

extensively described previously (Wagle and Kakani, 2014c; a; Wagle et al., 2014; Wagle et al., 120 

2015). 121 

2.2 Site description 122 



The State of Oklahoma was chosen as a study region given the presence of one of the foremost 123 

mesoscale-level weather monitoring networks (Oklahoma Mesonet, http://mesonet.org/) that records 124 

research-quality grade weather data. According to the Köppen-Geiger climate classification, 125 

Oklahoma’s climate has distinct zonation, with a humid subtropical climate in the east to a semi-arid 126 

climate in the west (Kottek et al., 2006). The state covers the region bounded by 94 29' 08.90” W–127 

103 00' 06.631” W longitude and 33 38' 17.7” N–37 00' 00.473” N latitude. Topographic elevation 128 

in Oklahoma ranges from 87 m near Little River to 1518 m above mean sea level on Black Mesa. A 129 

distinct north-south temperature gradient and east-west precipitation gradient are present. The 130 

average annual temperature is around 14C along the northern border and 16.6 C at the southern 131 

border (see, http://climate.ok.gov/index.php/site/page/climate_of_oklahoma). Average annual 132 

precipitation ranges from 432 mm in the far western panhandle to 1422 mm in the far southeast. The 133 

state encompasses twelve level III eco-regions and forty-six level IV eco-regions (Woods et al., 134 

2005). Oklahoma has 14 million hectares of cropland area distributed throughout nine agricultural 135 

districts (USDA, 2017a) (Northeast, Southeast, East Central, South Central, Central, North Central, 136 

Southwest, West Central, and Panhandle). Forty-nine percent of the total cropland area is grass/ 137 

pasture, followed by 18% deciduous forest, and 11% wheat-grown areas. As per the recent 138 

Conservation Reserve Program statistics (USDA, 2017b), 277,349 ha of land in Oklahoma are 139 

enrolled in Conservation Reserve Program (https://bit.ly/3Ftlu1j, accessed May 23, 2021). This 140 

suggests there is an abundance of land for biomass feedstock production and a potential large market 141 

for biofuels in Oklahoma. 142 

The soil type at the flux tower siting was McClain silt loam (fine, mixed, super active, thermic, 143 

Pachic Argiustolls) (Foster et al., 2015). The site where flux tower is located received a total of 525 144 

and 673 mm precipitation during 2011 and 2012 compared to 30-year average (1981–2010) rainfall 145 

of 896 mm. The aboveground switchgrass (cultivar Alamo) biomass data was manually harvested at 146 

the end of the growing season (late September through early October) from Stillwater Agronomy 147 

Research Station, Stillwater, Oklahoma (36°07'03.7"N 97°05'37.0"W); Wes Watkins Agricultural 148 

Research and Extension Center, Lane, Oklahoma(34°18'17.9"N 96°00'12.3"W); South Central 149 

Research Station, Chickasha, Oklahoma (35°02'38.9"N 97°54'50.2"W); and Southern Great Plains 150 

Research Station, Woodward, Oklahoma (36°25'18.2"N 99°24'17.6"W) from 2011 to 2014. These 151 

stations represent various ecoregions of Oklahoma (Tables 152 

Table 1), and their mean monthly temperature and average monthly total precipitation are shown in 153 

Fig. 1. 154 

2.3 Procuring and processing the Mesonet data 155 

Five-minute interval weather data for 110 environmental monitoring stations across Oklahoma (Fig. 156 

2) were acquired from the Oklahoma Mesonet (Mesoscale network) from 2011 to 2014. The 157 

automated weather stations collect statewide weather data, with a minimum of one site in each of 158 

Oklahoma’s seventy-seven counties to ensure spatial meteorological differences across landscapes 159 

are captured well (Brock et al., 1995; McPherson et al., 2007). Most of the aboveground Mesonet 160 

measurements are averaged over five minutes from measurements sampled every three seconds, 161 

except for the barometer and the event driven rain gauge. Data included relative humidity (RH, %), 162 

air temperature at 1.5 m (Tair, °C), solar radiation (Srad, Wm-2), liquid precipitation (Rain, mm), and 163 

soil temperature under native vegetation at 5 cm (TS05, °C). Instruments used to measure these 164 

variables are summarized in (Table 2). Data was checked thoroughly for missing and erroneous 165 

observations and processed to calculate maximum, minimum, and average values for every 30-166 

minutes. 167 

https://bit.ly/3Ftlu1j
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 168 

2.4 Deriving coefficients for NEE estimates 169 

Empirical equations were developed based on EC measurements during the 2011 and 2012 growing 170 

seasons in a switchgrass field (8 ha) at the South-Central Research Station, Chickasha, Oklahoma. 171 

Light-saturated NEE (NEEsat) was calculated as a function of air temperature (temperature ≥ 5.9 ºC 172 

and PPFD ≥ 50 μ mol m-2s-1). Daytime respiration (DR) was calculated using a quadratic function of 173 

air temperature, whereas nighttime respiration (NR) was calculated using an exponential function of 174 

soil temperature. Temperature response curves were developed for NEEsat, apparent quantum 175 

efficiency (α), DR, and NR. Based on these values, 30-minute NEE values were generated as a 176 

function of NEEsat, photosynthetic photon flux density (PPFD), and α. We applied the same equations 177 

from April through October to the rest of the entire study period and locations.  178 

The sign convention of NEE used in this study is that CO2 uptake by the ecosystem is negative, 179 

whereas CO2 release to the atmosphere is positive. The study window (i.e., growing season) was 180 

limited to the April 1-October 31 period for each year. We estimated values of PPFD (mol m-2 s-1 of 181 

photons with wavelengths of 0.4-0.7 m) using solar radiance values. In this study, a conversion 182 

factor of 1.892 was used to convert downwelling global solar radiation into photosynthetically active 183 

radiation (PAR) (Varlet-Grancher et al., 1981). The methodology evolves according to the following 184 

equations: 185 

 𝑃𝐴𝑅 = 0.48 × 𝑆𝐼  (1) 186 

 𝑃𝑃𝐹𝐷 = 4.6 × 𝑃𝐴𝑅  (2) 187 

Following Tetens (1930), the saturation vapor pressure (es) (kPa) at a given air temperature, T (C) 188 

was computed as:  189 

 𝑒𝑠 = 0.6108𝑒𝑥𝑝
17.27×𝑇

𝑇+237.3
  (3) 190 

We calculated the saturation vapor pressure (es) at maximum (Tmax) and minimum air 191 

temperature (Tmin) by replacing T with Tmax and Tmin in the above equation.  192 

 𝑒𝑠 =  0.5[𝑒0(𝑇𝑚𝑎𝑥)  + 𝑒0(𝑇𝑚𝑖𝑛)]  (4) 193 

Where e0(Tmax) and e0(Tmin) are the saturated vapor pressure at maximum and minimum 194 

temperature, respectively. The following equation recommended by Allen et al. (1998) was used to 195 

calculate actual vapor pressure (ea) [kPa]. 196 

 197 

𝑒𝑎 =  
𝑒0(𝑇𝑚𝑖𝑛)×

𝑅𝐻𝑚𝑎𝑥
100

+𝑒0(𝑇𝑚𝑎𝑥)×
𝑅𝐻𝑚𝑖𝑛

100

2
  (5) 198 

Vapor pressure deficit (VPD) was calculated as a difference between saturation vapor 199 

pressure and actual vapor pressure.  200 



Ecosystem respiration (ER) is the sum of autotrophic and heterotrophic respiration. Accurate 201 

quantification of ER is imperative for understanding switchgrass carbon dynamics as respiration 202 

emits a substantial proportion of daytime photosynthetic assimilates to the atmosphere. Measurement 203 

of CO2 flux during nighttime by the EC system is underestimated due to weak mixing in less 204 

turbulence and presence of deep boundary layer; leading to systematic and methodological error 205 

(Wofsy et al., 1993; Ruimy et al., 1995; Lavigne et al., 1997). ER values were determined using the 206 

exponential temperature function developed by Lloyd and Taylor (1994) as:  207 

 𝐸𝑅 = 𝑅0𝑒(𝛽𝑇𝑠)  (6) 208 

where R0 (mol CO2 m
-2 s-1) is the base respiration at Ts = 0 °C, β (°C-1) is a constant related to 209 

temperature sensitivity coefficient (Q10). The exponential model based on Ts explained 60% of the 210 

seasonal ER variation for the site when volumetric soil water content was > 0.2 m3 m-3 [ER = 0.72 × 211 

exp (0.08 × Ts), P < 0.0001] (Wagle & Kakani, 2014a). Daily ER was also modeled as proposed by 212 

Reichstein et al. (2003) using daily average values of nighttime soil temperature and soil moisture as 213 

the main drivers of the nonlinear regression function.  214 

 𝐸𝑅 = 𝑅𝑟𝑒𝑓 𝑒𝑥𝑝(𝑎 + 𝑏 × 𝑅𝑆𝑊𝐶) (
1

𝑇𝑟𝑒𝑓−𝑇0
) (

𝑅𝑆𝑊𝐶

𝑅𝑆𝑊𝐶1
2

+𝑅𝑆𝑊𝑋𝐶
)  (7) 215 

In this equation, Rref (mol m-2 s-1) is the ecosystem respiration under standard conditions (at 216 

Tref = 21°C; non-limiting water), Tref (°C) is the reference temperature, T0 (°C) is the lower 217 

temperature limit for the ER which was fixed at -46 °C as in the original model of Lloyd and Taylor 218 

(1994), and RSWC is the soil water content. RSWC1/2 is the fraction of soil water content where half-219 

maximal respiration occurs. This exponential temperature-respiration function could explain more 220 

than 50% of seasonal ER variation at soil moisture > 0.20 m3 m-3. We applied equation 8 to calculate 221 

ER throughout the growing season using soil temperature measurements as average of soil 222 

temperature records collected at 5 cm and 10 cm depths under the sod. Finally NEE data were 223 

partitioned into GPP and ER using the rectangular hyperbolic light-response function developed by 224 

Falge et al. (2001).  225 

 𝑁𝐸𝐸 =
𝛼×𝐺𝑃𝑃𝑚𝑎𝑥

𝛼×𝑃𝑃𝐹𝐷+𝐺𝑃𝑃𝑚𝑎𝑥+𝐸𝑅
  (8) 226 

where α is the apparent quantum yield, PPFD is photosynthetic photon flux density (μmol m-2 227 

s-1), GPmax is the maximum canopy CO2 uptake rate (μmol m-2 s-1) at light saturation, and ER is 228 

respiration rate at zero PPFD. Limitation of higher VPD on photosynthesis was observed (Wagle and 229 

Kakani, 2014d) as Eq (7) failed to provide good fits for the NEE values. This problem was addressed 230 

by calculating GPPmax as the exponential decreasing function at high VPD, as suggested by Lasslop 231 

et al. (2010). A modification of the hyperbolic light response curve was imposed to account for the 232 

VPD limitation of GPP by replacing GPPmax with GP0.  233 

𝐺𝑃𝑃0 𝑒𝑥𝑝(−𝑘(𝑉𝑃𝐷 − 𝑉𝑃𝐷0))
0𝑚𝑎𝑥

   (9) 234 

𝐺𝑃𝑃00𝑚𝑎𝑥
   (10) 235 
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where VPD0 threshold was set to 1 kPa as in Lasslop et al. (2010). Additionally, k parameter 236 

was estimated using nonlinear least squared regression in SAS software (SAS Institute Inc., 2013, 237 

Cary, NC, U.S.). The NEE at light saturation (NEEsat), contingent upon average temperature and 238 

PPFD values, was derived using the equations 11-13.  239 

𝐼𝑓𝑇𝑎𝑣𝑔 > 5.9, 𝑁𝐸𝐸𝑠𝑎𝑡 = ((31.7659 − 0.8456 × 𝑇𝑎𝑣𝑔 − 32.8766) − 2.006 ×240 

𝑇𝑎𝑣𝑔−32.8766) ; 𝑒𝑙𝑠𝑒0   (11) 241 

 𝐼𝑓𝑃𝑃𝐹𝐷 < 50,0, 𝑒𝑙𝑠𝑒𝑁𝐸𝐸𝑠𝑎𝑡  (12) 242 

Light saturated NEE limited by VPD was computed as follows: 243 

 𝑁𝐸𝐸𝑠𝑎𝑡,𝑉𝑃𝐷 = 𝑁𝐸𝐸𝑠𝑎𝑡 × 𝑒𝑥𝑝(−0.2026 × (𝑉𝑃𝐷 − 1))  (13) 244 

In addition, ER values were generated using the following equation: 245 

 𝐼𝑓𝑃𝑃𝐹𝐷 ≤ 50, 𝐸𝑅 = −0.7205 × 𝑒𝑥𝑝(0.0814 × 𝑇𝑆05) ; 246 

𝑒𝑙𝑠𝑒, 𝐸𝑅 = (−0.5135 × 𝑇𝑎𝑣𝑔 + 0.115 × 𝑇𝑎𝑣𝑔)
2
  (14) 247 

Afterward, we computed α as following: 248 

 𝛼 = (0.0035 × 𝑇𝑎𝑣𝑔(0.00008 × 𝑇𝑎𝑣𝑔
2))  (15) 249 

Finally, the NEE values were calculated as following: 250 

 𝐼𝑓𝑁𝐸𝐸𝑠𝑎𝑡,𝑉𝑃𝐷 = 0, 𝑁𝐸𝐸𝑓𝑖𝑛𝑎𝑙 = 𝐸𝑅; 251 

𝑒𝑙𝑠𝑒, 𝑁𝐸𝐸𝑓𝑖𝑛𝑎𝑙 =
(𝑁𝐸𝐸𝑠𝑎𝑡,𝑉𝑃𝐷)×𝛼×𝑃𝑃𝐹𝐷

(𝑁𝐸𝐸𝑠𝑎𝑡,𝑉𝑃𝐷)+𝑃𝑃𝐹𝐷+𝛼
   (16) 252 

Total NEE (g CO2 m
-2) was computed using the following conversion factor:  253 

 
∑ 𝑁𝐸𝐸×1800

22.6×1000
  (17) 254 



Gaps in the data were filled using average values immediately before and after the gap. We 255 

calculated cumulative amounts of seasonal NEE that was sequestered per unit area. 256 

2.5 Identifying potential switchgrass establishment areas in Oklahoma 257 

According to the Conservation Reserve Program (CRP) - USDA Farm Service statistics of 2014, up 258 

to 20% of the county area was under the CRP program in Oklahoma (Fig 3a). Especially, the 259 

counties in western Oklahoma and Oklahoma Panhandle area (Texas, Cimarron, Beaver, Harper, 260 

Ellis, and Grant) had most of the land area dedicated to the CRP. We aggregated six subclasses: 261 

switchgrass, fallow, pasture, shrubland, and grassland as defined in the 2008-2014 USDA-NASS 262 

Cropland Data Layer (CDL) to identify potential switchgrass production areas in Oklahoma. The 263 

raster data were imported into ArcGIS and reclassified to show only potential switchgrass production 264 

areas (Fig 3b). 265 

As mentioned earlier, seasonal average NEE values were calculated for each of the Mesonet sites. 266 

Calculated seasonal NEE values were then interpolated using ordinary kriging interpolation (Dhakal 267 

et al., 2020). The mask identified for potential switchgrass production area was applied to the annual 268 

NEE surface to generate seasonal switchgrass NEE across the state.  269 

2.6 Calibration and Validation  270 

We used three years (2011-2013) of EC measurements of CO2 fluxes, the first two years of data for 271 

developing the empirical equations, and the third year of data to validate the predictions made by our 272 

empirical models. Conceptually, NEE can be linked to total biomass production. Hence, we used 273 

end-of-season aboveground switchgrass biomass data as well to validate the NEE estimates with 274 

measured aboveground switchgrass biomass from 2011 to 2013 in four locations (Lane, Stillwater, 275 

Chickasha, and Woodward) in Oklahoma. Linear regression was used to compare paired 276 

measurements of half-hourly EC-based NEE and half-hourly NEE estimates. To quantify the 277 

accuracy of prediction, root mean square error (RMSE) was also reported, along with the coefficient 278 

of determination and slope. 279 

RMSE = √∑
(𝑃𝑖−𝑂𝑖)

𝑁

𝑛

𝑖=1
        (19) 280 

R2 = (
𝑛(∑ 𝑋𝑌)−(∑𝑥)(∑𝑦)

√[𝑛∑𝑥2−(∑𝑥)2][𝑛∑𝑦2−(∑𝑦)2]
)

2

       (20) 281 

3 Results 282 

Pairwise comparisons of estimated NEE at half-hourly, monthly, and seasonal scales were made with 283 

the measured NEE. For each year, we observed good agreements between the half-hourly measured 284 

NEE and the estimated NEE, with R2 values (p < 0.05) of 0.59, 0.63, and 0.63; and RMSE values of 285 

4.78, 4.51, and 4.36 μ mol CO2 m
-2 s-1, for 2011, 2012, and 2013 respectively (Fig. 4a). The 286 

agreement was similar for 2012 and 2013, with R2 values of 0.63 and slope of ~0.5. For all the years, 287 

the slope of the regression line was less than one, suggesting underestimates of NEE values. 288 

For each month of the growing season, there was a good agreement between the measured and 289 

estimated half-hourly NEE values (R2 values ranged between 0.52 and 0.74) (Fig. 4b). The 290 

agreement was highest for May (R2 = 0.74, slope =0.46, p<0.05) and lowest for October (0.52, slope 291 



 
9 

= 1.74, p < 0.05). Further, we aggregated monthly NEE values for each year and compared them 292 

against the aggregated measured NEE values. A strong agreement between the monthly cumulative 293 

measured and estimated NEE was observed for 2013, which was a wetter year (R2 = 0.91, p < 0.05) 294 

followed by a drier year 2012 (R2 = 0.81, p< 0.05). However, the agreement was poor between the 295 

measured and estimated monthly cumulative NEE values for 2011, which was a severe drought year 296 

(R2 = 0.29, p < 0.05). Contrarily, the slope of the regression line was closer to 1.0 for 2011 than 2012 297 

and 2013. Looking at the sink-source status of the switchgrass ecosystem monthly, we observed that 298 

the switchgrass ecosystem was a small source of CO2 for July and August of 2011 and sink for the 299 

rest of the months in the growing season but sink for CO2 for the entire growing season of 2012 and 300 

2013. Based on the estimated NEE values, May, and June (peak growth periods) had the highest 301 

estimated NEE (negative sign convention) among the studied months across all three years. 302 

However, a more accurate and complete NEE measurement and estimates of the true source-sink 303 

status of the switchgrass ecosystem establishment warrants year-round, long-term studies. 304 

Further, we computed seasonal NEE during 2011-2014 for Oklahoma State University’s four 305 

different research stations located at Stillwater, Lane, Chickasha, and Woodward (for site description, 306 

refer to Table 1) using five-minute interval weather data for the Oklahoma Mesonet stations in 307 

proximity to the research stations (STIL, LANE, CHIC, and WOOD) as mentioned earlier. For these 308 

locations, we compared the seasonal NEE estimates with the end-of-the-season aboveground 309 

switchgrass biomass collected from 2011 to 2014. Results showed strong agreements between the 310 

measured aboveground switchgrass biomass and the seasonal carbon uptake by the switchgrass 311 

ecosystem in all four stations (R2 > 0.93, p < 0.05) (Fig. 6). 312 

Upon observing a good agreement between seasonal NEE estimates and switchgrass aboveground 313 

biomass production, we computed the NEE estimates for all active Oklahoma Mesonet stations. The 314 

distribution of the seasonal NEE for each year is shown in Fig. 7. We generated seasonal C uptake 315 

grids for the potential switchgrass production sites across the state of Oklahoma from 2011 to 2014 316 

(Fig. 8). We used the ordinary kriging interpolation method to generate seasonal NEE raster surface 317 

for those years. The year 2011 was a severe drought year and reported as the second driest year in 318 

Oklahoma since 1925 (Shivers and Andrews, 2013). Statewide seasonal NEE for 2011 was recorded 319 

as the lowest among the four (278.5 ± 154 g C m
-2). The effect of drought is visible in the annually 320 

interpolated NEE surface (Fig. 8). The year 2014 had the highest seasonal NEE estimates (493 ± 181 321 

g C m
-2). 322 

For all the sites across 2011–2014, the average seasonal switchgrass NEE was estimated at around 323 

1870 ± 703 g CO2 m
-2 (5.1 Mg CO2 ha-1). NEE values ranged from -468 g CO2 m

-2 to -4093 g CO2 324 

m-2 for the Mesonet sites at Tipton, Oklahoma and Clayton, Oklahoma, respectively. The Mesonet 325 

site at Tipton had temperature data missing for eight days, which resulted in the NEE estimates to be 326 

the lowest among all the Mesonet sites. 327 

4 Discussion 328 

The concept for estimating carbon uptake per absorbed PAR has been demonstrated previously 329 

(Monteith, 1972; Sinclair and Horie, 1989; Goetz and Prince, 1999). Based on the radiation use 330 

efficiency concept, various models have been developed to simulate carbon exchange between the 331 

atmosphere and terrestrial biosphere that account for spatiotemporal dynamics in the ecosystem for 332 

both potential and natural vegetation (Kirschbaum et al., 2001; Fisher et al., 2014). In addition, use of 333 

regression models have been also used to quantify the ecosystem CO2 exchange. Zhang et al. (2011) 334 

used piecewise regression model that included normalized difference vegetation index (NDVI), 335 



phenological metrics, weather data, and soil water holding capacity to show that grasslands in the 336 

U.S. Great Plains are net C sink (0.3 to 47.7 g C m-2 yr-1). Moreover, the ecological literature 337 

contains a plethora of peer-reviewed scientific data highlighting the use of remotely and proximately 338 

sensed vegetation production measurements and eddy flux measurements to estimate and upscale 339 

NEE to a regional level (Emmerton et al., 2016; Reitz et al., 2021). For example, Asrar et al. (1984) 340 

demonstrated that cumulative NDVI measurements through the growing season may be used to 341 

obtain estimates of GPP. Because the coarse spatial resolution of the satellite derived measurements 342 

has been identified as a source of error, coupling Landsat TM and Landsat ETM+ with flux tower 343 

measurements using image fusion and regression tree approach was found to be effective for regional 344 

NEE estimations (Fu et al., 2014). With improvement in high-resolution satellite sensors, shorter 345 

satellite revisit time, high frequency weather data, and advanced data processing and machine 346 

learning algorithms, remote sensing approach can be more appealing in regions with limited in-situ 347 

observation networks (Sharma and Dhakal, 2021).  348 

 349 

Recently, Liu et al. (2021) used various environmental variables (net radiation, soil water content, 350 

soil temperature, precipitation, vapor pressure deficit, and wind speed) to predict NEE for 10 351 

different biomes. The authors used trained XGBoost and Random Forest model to >10 years of 352 

Fluxnet sites measurement across a wide range of biomes and obtained accurate prediction of NEE 353 

for forest, savanna, and grassland ecosystems (0.55 > R2 < 0.81) (Liu et al., 2021). Our approach also 354 

relies completely on deriving relationships between the environmental variables such as air 355 

temperature, soil temperature, and solar radiation to compute half-hourly NEE estimates. The 356 

Oklahoma Mesonet records meteorological data at high temporal frequency (5-min intervals), 357 

offering a unique possibility to produce empirical estimates of regional NEE of switchgrass when 358 

extrapolated using measured NEE. Estimates of mean NEE across the Mesonet sites ranged from 359 

2.78 ± 1.54 Mg C ha-1 in 2011 to 4.93 ± 1.81 Mg C ha-1 in 2014. The NEE estimates from the 360 

semiarid sites of Oklahoma are similar to the EC flux measurements of NEE measured in a 361 

switchgrass ecosystem in Central Illinois. (4.53 ± 0.2 Mg C ha-1) (Zeri et al., 2011). Furthermore, the 362 

NEE measurements acquired from a mature switchgrass stand in Southwestern Ontario for the year 363 

2014 was 3.36 ± 0.38 Mg C ha-1. 364 

 365 

The temporal behaviour of NEE in the switchgrass ecosystem demonstrated seasonal and day-to-day 366 

variations. Additionally, the sptatiotemporal simulations illustrate the effect of microclimate 367 

variability on the carbon balances is captured well for carbon budget related studies in switchgrass 368 

ecosystem on a regional scale. This indicates that our approach using fine temporal resolution 369 

meteorological forcings can capture and describe a range of variation of biophysical factors in 370 

switchgrass ecosystems. Improvement in NEE estimates can be achieved by calibrating and 371 

validating with site-specific flux and meteorological measurements. 372 

 373 

Further inclusion of belowground biomass would significantly improve NEE estimates results at 374 

localities. To our knowledge, there is no other empirical method that is robust across the interest of 375 

scale of time and space, which simulates the switchgrass carbon uptake. In this study, the NEE 376 

measured by EC technique at a location was extrapolated to quantify carbon sequestration potential 377 

across potential switchgrass areas in Oklahoma using 30-minute averaged Mesonet data. As it has 378 

been highlighted in the literature, upscaling of EC-based carbon fluxes to large regions has been 379 

conducted using different approaches such as data-driven (empirical, statistical models) or data 380 

assimilation approaches (ecosystem models, parameter estimation techniques) (Xiao et al., 2012). 381 

Empirical estimates of net primary productivity for terrestrial plant communities were computed 382 

from climatology-derived actual evapotranspiration (Rosenzweig, 1968). Gross primary production 383 

(GPP) in the terrestrial ecosystems of the southern U.S. was estimated by scaling up leaf assimilation 384 
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rates of the shaded and sunlit canopy and factoring it with the daytime length (Tian et al., 2010). 385 

Likewise, GPP modelling for boreal and temperate forest ecosystems was based on light use 386 

efficiency, daily mean temperature, vapor pressure deficit (VPD), and soil water content (Makela et 387 

al., 2008). In their study of carbon fluxes in ponderosa pine forest (Arctostaphylos patula and 388 

Purshia tridentata), Law et al. (2001) also reported that Biome-BGC process model simulated carbon 389 

budgets have been found to underestimate NEE compared to EC measurements.  390 

 391 

Since our study was only limited to the growing season, source/sink dynamics for the entire year 392 

were not captured. However, it is imperative to understand the responses of NEE to various climatic 393 

conditions such as pluvial, drought, and normal years. Uncertainties in this study arise from 394 

parameterizing the model with limited site and simplification of some of the ecosystem processes that 395 

may not truly capture the exact variability of real phenomena. Most of the coefficients and constants 396 

were generated from our calibration site. These values may vary spatially; therefore, additional 397 

studies are necessary to investigate and reduce the uncertainty in the model’s applicability. We only 398 

conducted validation of NEE at the local level. Since this study was performed for potential 399 

switchgrass growing areas, ground truth data for all the sites are not available. If the switchgrass 400 

growing areas are large enough to be captured with satellite imagery, large-scale validation can be 401 

performed using high-resolution remotely sensed data. There is also a potential for benefiting from 402 

usage of current technology such as Uncrewed Aerial Vehicles (UAVs), which can capture the data 403 

on-demand on a custom scale. However, that is beyond the scope of this study. Future studies should 404 

focus on improving this empirical approach to include year-round estimates of NEE under various 405 

climatic conditions. 406 

5 Conclusions 407 

The seasonal carbon balance of a switchgrass ecosystem was evaluated using an estimate of net 408 

ecosystem CO2 exchange (NEE). The models use radiation use efficiency approach, with air 409 

temperature, soil temperature, vapor pressure deficit, and quantum use efficiency as modifying 410 

factors. Empirical equations for estimating NEE of CO2 in a switchgrass ecosystem were generated 411 

and validated against eddy covariance tower measured NEE along with field data for switchgrass 412 

biomass production and high frequency (5-min intervals) meteorological data from four locations. 413 

Our results illustrate the importance of carbon balance model development on a temporal and spatial 414 

scale. This approach can be used to compare direct carbon flux measurements or when flux 415 

measurements data are unavailable for a better understanding of source-sink status of the switchgrass 416 

ecosystems. The study could be helpful in adjusting cropping systems and management practices for 417 

bioenergy production and understanding of carbon sequestration at a regional level. Undoubtedly, 418 

with improved datasets at a range of scales and computing power, we will enhance our ability to 419 

predict and capture spatial patterns of carbon exchange in switchgrass landscapes. However, we also 420 

acknowledge the fact that such extrapolations should be done with care because of accompanying 421 

uncertainties which require a thorough understanding of the subject matter. Given the findings here, 422 

we recommend pursuing spatial modeling of NEE over a large spatial domain with additional field 423 

measurements representative of that agroecological domain. 424 
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Tables 682 

Table 1. Characteristics of the switchgrass grown fields, including soils (USDA, 2017), the United States Environmental Protection 683 

Agency (EPA) ecoregion (Level IV ecoregion of are shown in parenthesis), and the United States Department of Agriculture Plant 684 

Hardiness Zone. 685 

Site Soil name Dominant taxonomic 

classification 

EPA Ecoregion USDA Plant 

Hardiness 

Zone 

Lane 
Bernow Fine-loamy, siliceous, active, 

thermic Glossic Paleudalfs 

South Central Plains (35d) 7b 

Stillwater Easpur Fine-loamy, mixed, superactive, 

thermic Fluventic Haplustolls 

Central Great Plains (27o) 7a 

Chickasha Dale 

McLain 

 

a) Fine-silty, mixed, 

superactive, thermic 

Pachic Haplustolls 

b) Fine, mixed, superactive, 

thermic Pachic 

Argiustolls 

 

        Central Great Plains (27d) 7      7a 

Woodward 
a) Devol 

b) Eda 

a) Coarse-loamy, mixed, 

superactive, thermic 

Typic Haplustalfs 

b) Mixed, thermic Lamellic 

Ustipsaments 

Central Great Plains (27q) 6b 

686 



  

Table 2 Summary of the sensors used in the Oklahoma Mesonet network. 

Variable Sensor Unit Accuracy 

Air Temperature at 

1.5 m  

Thermometrics Air 

Temperature 

°C ± 0.5 °C 

Rainfall Met One Tipping-

Bucket 

mm ±5% over the range 

of 0 to 5 cm hr-1 

Soil Temperature, 

under sod (5 cm) 

Stainless steel 

encased 10K 

thermistor probe, 

thermocouple sensor 

°C ±0.5 °C 

Solar Radiation LI-200S Pyranometer W m-2 ±5% 

 687 

  688 



Figures 689 

 690 

Fig. 1. Mean monthly temperature (°C) (a) and average total precipitation (mm) for four study locations (Lane, Stillwater, Chickasha, and 691 

Woodward) based on 30-year climate normal.692 
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 693 

Fig. 2. Mesonet site distribution across Oklahoma. The black triangle is the site in Chickasha, 694 

Oklahoma, where empirical models were derived using Eddy flux measurements. Blue, 695 

yellow, and red triangles are the field-based biomass data acquired at Woodward, Stillwater, 696 

and Lane, respectively. Polar plots of (a) average temperature and (b) precipitation for 697 

Woodward, Lane, Stillwater, and Chickasha, respectively.  698 



 699 

Fig. 3. Spatial distribution of the percentage of county area dedicated to the Conservation Reserve 700 

Program (CRP) in Oklahoma (a). Potential switchgrass production areas estimated by reclassifying 701 

the USDA-NASS Crop Data Layer 2008–2014 (b).702 



  

 703 

Fig. 4. (a) Comparison of empirical estimates of half-hourly net ecosystem CO2 exchange (NEE) with measured half-hourly NEE for 2011, 704 

2012, and 2013. The dotted black line represents a 1:1 relationship. (b) Comparison of half-hourly NEE with empirical NEE estimates for 705 

each of the individual months (May through October) of the active growing season.  706 



 707 

Fig. 5. Relationship between cumulative monthly measured and estimated net ecosystem CO2 exchange (NEE) for Chickasha, Oklahoma in 708 

2011, 2012, and 2013.  709 
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 711 

Fig. 6. Relationship between seasonal (April–October) carbon uptake (net ecosystem CO2 exchange, t ha-1) by switchgrass ecosystem and 712 

end-of-season aboveground switchgrass biomass for (a) Woodward, Oklahoma, (b), Stillwater, Oklahoma (c) Chickasha, Oklahoma, and (d) 713 

Lane, Oklahoma for 2011–2014. Biomass yield for Lane, Oklahoma for 2014 was not available.714 



  

 715 

 716 

Fig. 7. Histogram of the seasonal net ecosystem CO2 exchange (NEE) for the Mesonet sites for 2011-717 

2014. Dashed lines represent the mean for the given year, and the legend shows the mean ± standard 718 

deviation of the seasonal NEE values across the Oklahoma Mesonet sites.  719 
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 721 

Fig. 8. Spatial explicit prediction of growing season net ecosystem CO2 exchange (NEE) in a 722 

switchgrass ecosystem from 2011 to 2014 in a theoretical switchgrass production area across 723 

Oklahoma.  724 
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