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Abstract

The global carbon budget including fluxes of CO2 between atmosphere, land and ocean, and its atmospheric growth rate show

large interannual to decadal variations. Yet, these variations are poorly represented in uninitialized simulations. In a novel

approach we reconstruct and predict the global carbon cycle with the decadal prediction system based on the Max Planck

Institute Earth system model (MPI-ESM) extended with an interactive carbon cycle. By assimilating atmospheric and oceanic

data products into the MPI-ESM, we can well reproduce historical global carbon budget variations with high correlations

relative to the assessments from the global carbon project of 0.75, 0.75 and 0.97 for atmospheric CO2 growth, air-land CO2

fluxes and air-sea CO2 fluxes, respectively. Retrospective predictions initializing from the assimilation simulation show the

predictive skill of the air-sea CO2 fluxes up to 5 years, and the air-land CO2 fluxes and atmospheric carbon growth rate of 2

years.
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Key Points:6

• The global carbon cycle is well reproduced by MPI-ESM assimilation, which en-7

ables global carbon budgeting within a closed Earth system.8

• Predictive skill of air-sea CO2 fluxes is up to 5 years and it is up to 2 years for air-9

land CO2 fluxes and the atmospheric carbon growth.10

• For the first time, our emission-driven predictions enables prognostic atmospheric11

CO2, hence reconstructing and predicting the variations.12

Corresponding author: Hongmei Li, hongmei.li@mpimet.mpg.de

–1–



manuscript submitted to Geophysical Research Letters

Abstract13

The global carbon budget including fluxes of CO2 between atmosphere, land and14

ocean, and its atmospheric growth rate show large interannual to decadal variations. Yet,15

these variations are poorly represented in uninitialized simulations. In a novel approach16

we reconstruct and predict the global carbon cycle with the decadal prediction system17

based on the Max Planck Institute Earth system model (MPI-ESM) extended with an18

interactive carbon cycle. By assimilating atmospheric and oceanic data products into19

the MPI-ESM, we can well reproduce historical global carbon budget variations with high20

correlations relative to the assessments from the global carbon project of 0.75, 0.75 and21

0.97 for atmospheric CO2 growth, air-land CO2 fluxes and air-sea CO2 fluxes, respec-22

tively. Retrospective predictions initializing from the assimilation simulation show the23

predictive skill of the air-sea CO2 fluxes up to 5 years, and the air-land CO2 fluxes and24

atmospheric carbon growth rate of 2 years.25

Plain Language Summary26

Reconstructing and predicting the variable global carbon cycle is essential for trac-27

ing the fate of carbon and the corresponding climate and ecosystem changes. Reconstruc-28

tions based on the MPI-ESM emission-driven prediction system by assimilating obser-29

vational products capture the observed global carbon budget variations in the past decades.30

Such a fully coupled decadal prediction system with interactive carbon cycle enables rep-31

resentation of the global carbon budget within a closed Earth system and therefore pro-32

vides an additional line of evidence for the ongoing assessments of the anthropogenic global33

carbon budget. Retrospective predictions starting from the reconstruction show promis-34

ing predictive skill for the global carbon cycle up to 5 years for the air-sea CO2 fluxes35

and up to 2 years for the air-land CO2 fluxes and atmospheric carbon growth rate. Our36

results also suggest predictions based on Earth system models enable reproduction and37

prediction of the evolution of atmospheric CO2 concentration changes. The earth sys-38

tem predictions in this study provide valuable inputs for understanding the global car-39

bon cycle and supporting climate relevant policy development.40
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1 Introduction41

The CO2 fluxes between atmosphere, land and ocean and thus the atmospheric car-42

bon growth rate vary substantially on interannual to decadal time-scales (Peters et al.,43

2017; Friedlingstein et al., 2019; Landschützer et al., 2019; Friedlingstein et al., 2020).44

These variations reflect combined effects of internal variability of the global carbon cy-45

cle (Li & Ilyina, 2018; Séférian et al., 2018; Spring et al., 2020; Fransner et al., 2020) and46

its responses to external forcings (McKinley et al., 2020).47

To constrain the global carbon cycle of the past and facilitate its prediction and48

projection into the future, since 2007 the Global Carbon Project (Canadell et al., 2007)49

assesses the anthropogenic global carbon budget (GCB), i.e., CO2 emissions and their50

redistribution among the atmosphere, ocean, and land every year. This assessment is based51

on data assessments for emissions, observations of the atmospheric CO2 concentration52

and single stand-alone model simulations, separately for ocean and land, of CO2 fluxes.53

The air-land fluxes are the sum of natural fluxes and the land-use change induced emis-54

sions, the GCBs use the bookkeeping approach for the land-use emissions term. The stand-55

alone simulations on land and ocean use different climatology and thus do not provide56

an internally consistent estimate of the CO2 fluxes. Moreover, these stand-alone model57

simulations of CO2 fluxes do not exactly match the observations while the variations are58

well represented via constraining by observation/reanalysis data forcing. Therefore, the59

global carbon budget is not closed but ends up with a budget imbalance term up to 260

PgC/year (Friedlingstein et al., 2020), which hinders full attribution of the global car-61

bon cycle variations. The budget imbalance could be also attributed to a large part to62

the mismatch of net biome production between the dynamic global vegetation models63

(DGVMs) used in the GCBs and inversions that match the atmospheric CO2 growth rate64

(Bastos et al., 2020). Both DGVM spread and differences between inversions contributed65

substantially to the uncertainty of the budget terms on the global and regional scale, re-66

spectively (Bastos et al., 2020).67

Reconstruction of the variable global carbon cycle within a closed Earth system68

model (ESM) is of essential value of tracing the fate of carbon and the corresponding69

climate and ecosystem changes. The decadal prediction systems based on ESMs (Marotzke70

et al., 2016) show potential to reconstruct and predict the global carbon cycle (Li et al.,71

2016; Spring & Ilyina, 2020). By assimilating observational products of physical fields,72
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the decadal prediction systems show ability to reproduce the variations of CO2 fluxes73

as found in observation-based products. Starting from initial states from the assimila-74

tion simulation that are close to the real world, decadal prediction systems enable fur-75

ther multi-year predictions of the global carbon cycle (Li et al., 2016, 2019; Lovenduski,76

Yeager, et al., 2019; Lovenduski, Bonan, et al., 2019; Ilyina et al., 2021). However, as77

of now, the state-of-the-art decadal prediction systems are typically forced with prescribed78

atmospheric CO2 concentration without interactive carbon cycle, i.e., the feedback of79

CO2 fluxes strength to the atmospheric CO2 variations is ignored. With this conventional80

model setup, one can only assess the CO2 fluxes into land and ocean, but not the result-81

ing variations in atmospheric CO2 concentration and growth.82

For the first time, we extend our prediction system from concentration-driven to83

emission-driven taking into account the interactive carbon cycle and hence enabling prog-84

nostic atmospheric carbon increment. In this study, we assess the global carbon budget85

in a simulation with assimilating data products into the model, and further estimate our86

decadal predictions based on the Max Planck Institute Earth system model (MPI-ESM)87

relative to GCB2019 (Friedlingstein et al., 2019) and observation-based estimates of the88

CO2 fluxes and atmospheric CO2. The assimilation simulation is designed to reconstruct89

the evolution of climate and earth system of the real world by incorporating essential90

fields from observational products into the MPI-ESM. The reconstruction from the fully91

coupled model simulation (i.e., the assimilation simulation) enables representation of the92

global carbon budget within a closed Earth system. Therefore, by construction, this ap-93

proach avoids the budget imbalance term arising from the need to budget carbon fluxes94

from stand-alone models and observations. Our reconstructions of the carbon budget pro-95

vide an additional novel estimate, that could be used in addition for a consistent assess-96

ment of the dominant processes in regulating the global carbon cycle. The assimilation97

simulation states, which are close to the real world, are then used to start our retrospec-98

tive prediction simulations (i.e., initialized simulations) aiming to predict the changes99

of global carbon cycle in the next years by improving the initial states.100
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2 Materials and Methods101

2.1 Model and simulations102

We use the MPI-ESM1.2-LR (Mauritsen et al., 2019), which is the low resolution103

version of MPI-ESM1.2 used for the sixth phase of the Coupled Model Intercomparison104

Project (CMIP6). The atmospheric horizontal resolution has a spectral truncation at105

T63 or approximately 200-km grid spacing with 47 vertical levels. The resolution of the106

ocean model MPIOM is about 150 km with 40 vertical levels. The ocean biogeochem-107

istry component of MPI-ESM is represented by HAMOCC (Ilyina et al., 2013; Paulsen108

et al., 2017), and the land and vegetation component is represented by JSBACH (Reick109

et al., 2021).110

Similar to our previous prediction system (Li et al., 2016, 2019), we performed 3111

sets of simulations, i.e., (i) uninitialized freely historical simulations, (ii) assimilation sim-112

ulation by nudging the observational signal of climate variations into the model, and (iii)113

initialized simulations (also refers to as hindcasts or retrospective predictions) starting114

from the assimilation simulation, to investigate the capacity of our model to reconstruct115

and predict the global carbon cycle. The assimilation run is needed for the initialized116

prediction simulations, and the uninitialized simulations are references to compare to and117

assess the improved predictability due to initialization. The major difference relative to118

the previous system (Li et al., 2016, 2019) is that this new prediction system is based119

on emission-driven simulations, which are forced by CO2 emissions instead of prescribed120

atmospheric CO2 concentration. In this way, the atmospheric CO2 concentration is evolv-121

ing in response to the interaction with the strength in CO2 uptake/outgas of the land122

and ocean. The external forcing is CMIP6 historical extended to the SSP2-4.5 scenario.123

While the fossil fuel emissions are forced, the land-use change induced emissions are prog-124

nostic in the ESMs with LUH2 land use forcing. We use transient land use transitions125

and included natural disturbances with dynamic vegetation. An ensemble of 10 mem-126

bers is run for the uninitialized historical and initialized prediction simulations. The unini-127

tialized ensembles are generated by starting from different year of the control simulation.128

The initialized ensembles are generated with lagged 1-day initialization. Note that the129

initialized 5-year long predictions start annually from November 1st for the period 1960-130

2018. More details of the simulations are summarized in Table S1.131
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2.2 Assimilation methods132

Similar to our previous concentration-driven decadal prediction systems (Li et al.,133

2019), the assimilation is done with nudging the ocean 3-D temperature and salinity anoma-134

lies from the ECMWF ocean reanalysis system 4 (ORAS4) (Balmaseda et al., 2013) and135

the atmospheric 3-D full-field temperature, vorticity, divergence, and log surface pres-136

sure from ECMWF Re-Analysis ERA40 (Uppala et al., 2005) during the period 1960-137

1979 and ERA-Interim (Dee et al., 2011) during the period 1980-2018. The sea-ice con-138

centration is nudged towards the National Snow and Ice Data Center (NSIDC) satellite139

observations (as described in (Bunzel et al., 2016)). The nudging is applied to every model140

time step but with different relaxation time, i.e., relative longer relaxation time of 10 days141

for the ocean temperature and salinity and shorter relaxation time of 6 hours, 24 hours142

and 48 hours for the atmospheric vorticity, temperature and pressure, and divergence,143

respectively. The chosen variables for assimilation and the respective relaxation time are144

according to previous investigations of decadal climate prediction based on MPI-ESM145

(Marotzke et al., 2016). Direct assimilation of the carbon cycle related variables is not146

included because of the limited available data; in the meanwhile, we found that the global147

carbon cycle is well represented from the assimilation of only physical variables (Li et148

al., 2016, 2019; Lovenduski, Yeager, et al., 2019; Lovenduski, Bonan, et al., 2019; Ilyina149

et al., 2021), and furthermore, our recent study based on a perfect model framework (i.e.,150

based on preindustrial run of the model itself) revealed that direct assimilation of the151

global carbon cycle only bring trivial improvement of predictive skill of the global car-152

bon cycle (Spring et al., 2021). To avoid spurious upwelling in the equatorial region caused153

by assimilation as investigated in (Park et al., 2018), we exclude the equatorial band of154

5◦S-5◦N from data nudging of the ocean data.155

2.3 Carbon budget decomposition with CBALONE simulations156

The anthropogenic carbon budget is usually decomposed into 5 terms plus an im-157

balance: the two emissions terms from fossil-fuel and land-use changes, and the three sink158

terms natural terrestrial sink, ocean sink, and atmospheric growth. The fossil fuel emis-159

sions are prescribed as forcing, and terrestrial and ocean carbon sinks and atmospheric160

growth terms can be directly derived from the ESM. However, directly deducible from161

an ESM is only the net land-atmosphere exchange, which is the sum of land-use change162

emissions and the natural terrestrial sink. In order to separate the two land-related fluxes,163
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we use a stand-alone component called CBALONE from JSBACH as a diagnostic for a164

direct comparison with the global carbon project (Friedlingstein et al., 2019). More de-165

tails of the method on separating the land-use change induced emission can be found in166

Loughran et al. (2021). Two simulations, one with and one without land-use change, are167

conducted with the forcing of the assimilation run. The difference of the two simulations168

quantify the land-use change induced emission.169

2.4 Predictive skill quantification170

The initialized simulations are investigated according to their lead time, i.e., how171

many model years they have been integrated freely after restarting from the assimila-172

tion simulation (Boer et al., 2016). The time series of initialized simulations at lead time173

of 1 year (2-5 years) combine the 1st year (2-5 years) predictions from initialized sim-174

ulations of all the starting years from 1959-2018. Bias correction is an unavoidable topic175

for decadal predictions due to initial shock, which varies with lead time, therefore, it was176

recommended to do bias correction when necessary according to the lead time (Boer et177

al., 2016). In this study, a bias correction is applied for the atmospheric CO2 concen-178

tration as shown in Fig. 4.179

The predictive skill is quantified mainly based on anomaly correlation coefficient,180

the anomalies are calculated by removing the respective climatology mean state. Here181

the climatology mean state is based on the ensemble mean of the focus time period, i.e.,182

1970-2018 for Fig. 1-3 and last 10 years for Fig. 4. For the atmospheric CO2 concen-183

tration shown in Fig. 4, which has high correlations close to 1 with observations because184

of the coherent linear trends, we have also added root mean square error (RMSE) met-185

ric to investigate the added value of assimilation and initialization. The significance of186

the predictive skill is tested with a nonparametric bootstrap approach (Goddard et al.,187

2013).188

3 Reconstruction of the global carbon budget189

By incorporating observational signals, the assimilation simulation from decadal190

prediction system based on MPI-ESM captures the evolution of the global carbon cy-191

cle as well as the climate in observations. The time series from MPI-ESM assimilation192

simulation in comparison to the GCB2019 is shown in Fig.1.193
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The CO2 emissions from fossil fuel and industry are in general consistent but with194

slightly difference in the 1960-1990s between the assimilation simulation (which uses the195

CO2 emission forcing provided by CMIP6 for historical and SSP2-4.5 simulations) and196

GCB2019. This reveals uncertainty in the CO2 forcings, which could affect the ampli-197

tude of the atmospheric CO2 concentration as it is a cumulative quantity. Cumulatively198

the CMIP6 CO2 emission forcing is 8.20 PgC higher than that from the GCB2019, which199

would end up with a 3.86 ppm (by dividing a factor of 2.124 PgC ppm-1 (Ballantyne et200

al., 2012)) higher atmospheric CO2 concentration in the simulation with CMIP6 forc-201

ing than with GCB2019 forcing. This discrepancy of CO2 emission might explain to some202

extent that the simulated atmospheric CO2 concentration is few ppm higher than the203

NOAA GML observation (Dlugokencky & Tans, 2020) (Fig. S1). However, this little dif-204

ference of a few ppm in atmospheric CO2 concentration magnitude doesn’t noticeably205

affect the variations in the CO2 fluxes and the corresponding atmospheric carbon incre-206

ment (see Fig. 1D-F).207

The land-use change induced emissions diagnosed by CBALONE are within the208

range of GCB2019 multi-model (including JSBACH) simulations from Dynamic Global209

Vegetation Models (DGVMs) (Fig.1B). The estimates from bookkeeping models show210

smaller variations as the DGVMs. Note that the GCBs use the bookkeeping approach211

for the land-use emissions term. Bookkeeping implies that carbon fluxes are determined212

from area changes in vegetation types of different vegetation and soil carbon densities,213

with specific response curves characterizing the evolution of decay and recovery. Car-214

bon densities may stem from recent observations or models, but are kept fix, i.e. changes215

in environmental conditions are not accounted for. The DGVMs by contrast (which are216

used to provide only an uncertainty range around the bookkeeping models in the GCBs)217

calculate land-use emissions under transient environmental conditions. This implies first218

that interannual variability in bookkeeping models is only driven by land-use change, not219

further interactions with climate variability, which makes the DGVM estimates in gen-220

eral more variable from year to year than the bookkeeping estimates are. Second, it im-221

plies that the DGVM-based land-use emissions estimates include the so-called ”loss of222

additional sink capacity” (Pongratz et al., 2014), which refers to the carbon that could223

have been stored on forests additionally over the course of history (e.g., due to the ”CO2-224

fertilization” effect) if these forests had not been cleared by expansion of agriculture and225

forestry. This loss of additionally sink capacity generally increases over time and amounts226
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to about 40% (0.8±0.3 PgC yr1) over 2009-2018 (Obermeier et al., 2021). This explains227

why DGVM estimates in Fig. 1B show higher emissions than bookkeeping estimates in228

recent decades. The DGVM- and expert-based uncertainty range around the GCB book-229

keeping estimates is large and MPI-ESM-based land-use change emission estimates have230

been found to be at the high end of the GCB for all decades by Loughran et al. (2021),231

consistent with our findings.232

There is a budget imbalance term resulting from the approach used in GCB2019233

because the individual budget terms are from separate measurements together with stand-234

alone ocean and land model simulations (Friedlingstein et al., 2019). In this study, we235

assimilate each component within a fully coupled ESM considering the interactions. The236

assimilation ensures evolution of the carbon cycle and climate towards the real world,237

in the meanwhile, the budget is closed within the Earth system, i.e., no the budget im-238

balance occurs (Fig. 1C). Therefore, it is more reliable to attribute the global carbon239

budget variations using the assimilation simulation based on a fully coupled ESM.240

Atmospheric carbon growth rate and carbon fluxes are reasonably well reproduced241

in emission-driven assimilation with prognostic atmospheric CO2 (Fig. 1D-F). The at-242

mospheric carbon growth and the land carbon sink show more pronounced variations on243

interannual time scales, however, the ocean carbon sink has more pronounced variations244

on decadal time scales. These variations are captured in the assimilation with high cor-245

relations between assimilation and GCB2019 of 075, 0.75, and 0.97 for atmospheric growth,246

land sink, and ocean sink, respectively.247

The spatial distribution of coherence in carbon fluxes between GCB2019 and the248

MPI-ESM reconstruction is shown in Fig. S2. The correlation of CO2 fluxes between re-249

construction and GCB2019 is high, especially over the ocean. The root mean square de-250

viation (RMSD) is coherent with the magnitude of carbon fluxes, i.e., with greater val-251

ues on land than over ocean. The large RMSD is partially due to smoothed magnitude252

of fluxes in GCB2019 from multi-model mean.253

In general, the historical global carbon cycle is well reproduced by the MPI-ESM254

with assimilating observational products, which enables quantification of the global car-255

bon budget within a closed Earth system. Prediction systems can actually provide internally-256

consistent values of the ocean and land carbon sink and serve as an additional line of ev-257

idence for the global carbon budget. A full assimilation simulation spans a longer than258
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the analysis period starting from year 1959 for which the reanalysis data is available, the259

first 12 years that might be affected by model adjustment were excluded from the anal-260

yses.261

4 Predictability of global carbon cycle262

The initialized predictions start from the assimilation states which are close to ob-263

servations. Therefore, information of observation are incorporated into the prediction264

system as initial states and they facilitate that the evolution of the global carbon cycle265

and climate follow the trajectory of the real world for some period encompassing the pre-266

dictability horizon.267

As shown in Fig. 2, the initialized simulations at lead time of 2 years still resem-268

ble the variations well as in the GCB2019 with correlations of 0.49 and even higher. The269

results from lead time of 1 year is shown in Fig. S3. As for atmospheric carbon growth,270

the initialized simulations at lead time of 2 years show coherent interannual variations271

even with a relative smaller correlation (0.49) than that of the historical freely run (0.61),272

which is mainly contributed by the coherent trends of the freely run and the GCB2019273

(Fig. 2A).274

The initialized and uninitialized simulations show a comparably good match to GCB2019275

with respect to net carbon flux into the ocean (with high correlation of 0.98), it suggests276

the good representation of the ocean carbon sink variations (especially on decadal time-277

scale) in the historical free run. This implies that these variations of the globally inte-278

grated ocean carbon sink are more from external forcing rather than internal variabil-279

ity (McKinley et al., 2020).280

The net carbon flux into the land shows higher correlation for initialized simula-281

tions at lead time of 2 years than that for uninitialized simulations. This indicates the282

interannual variations are better captured in the initialized model system even after 2283

years of free integration. This result implies a predictability of the air-land CO2 flux of284

at least 2 years.285

We further quantify the predictive skill of the global carbon cycle (Fig. 3). The cor-286

relation skill relative to GCB2019 is significant for the lead time of 5 years in atmospheric287

carbon growth and the ocean carbon sink, however, the skill is lower up to 2 years for288

the air-land CO2 flux (Fig. 3A-C). The improved predictive skill of initialized hindcasts289
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comparing to the historical uninitialized run is at lead time of 1 year for atmospheric car-290

bon growth and at lead time of 2 years for air-land CO2 flux. The detrended results (Fig.291

3D-F) are similar to those from the original time series. The correlation of atmospheric292

carbon growth at a lead time of 2 years in the initialized hindcasts are higher than the293

uninitialized historical run when detrended. This indicates the contribution of a linear294

trend to the skill of uninitialized historical runs.295

From our MPI-ESM1.2-LR initialized hindcasts, we find that predictive skill of air-296

sea CO2 flux is relatively high up to 5 years, that of the air-land CO2 fluxes is up to 2297

years. This is consistent with previous studies without interactive carbon cycle, i.e., (Ilyina298

et al., 2021; Lovenduski, Bonan, et al., 2019; Lovenduski, Yeager, et al., 2019). Here we299

extend the prediction system into emission-driven enabling prognostic CO2 and the sys-300

tem keeps the features of predictability. Furthermore, the prognostic CO2 from the novel301

emission-driven decadal prediction system suggests predictability as well, and the atmo-302

spheric CO2 growth rate shows predictive skill of 2 years in the initialized predictions.303

5 Atmospheric CO2 concentration304

Fig. 4 shows time series of atmospheric CO2 concentration from MPI-ESM sim-305

ulations together with the NOAA GML observations for the last decade. As the atmo-306

spheric CO2 concentration is an accumulative quantity and shows mainly a linear increas-307

ing trend, it is necessary to zoom in to visualize the trend slope changes. In addition,308

the deviation of model simulated atmospheric CO2 relative to observations in the pre-309

vious period is accumulated along with the integration of the model, therefore, it ends310

up with 8ppm higher global atmospheric CO2 concentration in the model simulation311

than in the observations (see Fig. S4). In the meanwhile, the NOAA GML data repre-312

sents the average of atmospheric CO2 over marine surface sites (Dlugokencky & Tans,313

2020), they are slightly smaller than the values on land because of the anthropogenic CO2314

emissions are mainly on land. The time series shown in Fig. 4 are bias corrected by re-315

moving the difference of mean states and linear trends between observation and simu-316

lations according to Boer et al. (2016).317

The shown atmospheric CO2 concentration from assimilation follows quite well the318

evolution of NOAA GML observation, however the uninitialized historical run show larger319

deviation from the observation with root mean square error (RMSE) of 0.72 ppm whereas320
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the RMSE for assimilation is 0.22 ppm (Fig. 4A). The initialized simulations could rep-321

resent the observed evolution well even at lead time of 5 years, with lower RMSE of 0.46322

ppm than uninitialized historical run. This result further demonstrate the ability of ESM-323

based decadal prediction system in reconstructing and predicting the global carbon cy-324

cle, with only assimilating the physical atmosphere and ocean fields.325

6 Conclusions326

For the first time, we extend a decadal prediction system based on MPI-ESM to327

integrate the interactive carbon cycle, driven by fossil fuel emissions, and hence enabling328

prognostic atmospheric CO2. This new setup of assimilation and initialized predictions329

opens one more dimension of freedom, i.e., enabling prognostic atmospheric CO2 and the330

corresponding interactive effects, and represents the global carbon cycle closer to the real331

world.332

The variations of atmospheric carbon growth rate and CO2 fluxes among atmo-333

sphere, ocean, and land are well reconstructed in our assimilation simulations, with high334

correlations (0.75, 0.97, and 0.75) with the GCB2019. This enables an internally con-335

sistent quantification of the global carbon budget within an Earth system model. Fur-336

thermore, our reconstruction of the global carbon cycle provides an additional line of ev-337

idence for quantifying the annual global carbon budgets and opens new opportunities338

in assessing the efficiency of carbon sinks and internally consistent metrics. In partic-339

ular, this approach eliminates the budget imbalance term that arises in GCBs due to the340

combination of various, not fully consistent model and data approaches.341

We also make a step forward and present retrospective predictions of the global car-342

bon cycle which show predictive skill up to 5 years for air-sea CO2 fluxes and up to 2343

years for air-land CO2 fluxes and the atmospheric carbon growth rate. The variations344

of atmospheric CO2 are better reproduced in the assimilation and retrospective predic-345

tions than in the uninitialized historical simulations with prognostic CO2 while the trend346

is better reproduced in the uninitialized simulations.347

We keep the high predictive power of the prediction system by turning it from concentration-348

driven to emission-driven, and that still captures atmospheric CO2 increase pretty well.349

But the emission-driven decadal prediction system delivers the huge advantage of sim-350

ulating the land and ocean fluxes in response to fossil-fuel and land use change emissions,351
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including all feedbacks. Further efforts, towards increasing observations to initiate the352

ESMs and to assess the predictive skills and providing reliable global estimate and spa-353

tial distribution of anthropogenic and natural emissions, will lead to more reliable re-354

construction and predictions.355

We demonstrate that our emission-driven decadal prediction system shows capa-356

bility to reconstruct and predict the global carbon cycle and atmospheric CO2 concen-357

tration variations. This will be a powerful tool in supporting the global carbon stock-358

taking and policy to compliance with goals of the Paris Agreement. Further multi-model359

simulations will alleviate dependence of individual model responses and hence demon-360

strate robust changes of the global carbon cycle.361
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Figure 1. Time series of (A) fossil fuel and industry CO2 emissions (EFF ), (B) emissions

from land use change (ELUC), (C) the budget imbalance (BIM ) that is not accounted for by the

other terms, (D) atmospheric carbon growth rate (GATM ), (E) the natural terrestrial carbon

fluxes (SLAND), and (F) air-sea CO2 fluxes (SOCEAN ) from MPI-ESM1.2-LR assimilation in

comparison with Global Carbon Budget (GCB 2019 (Friedlingstein et al., 2019)). Emissions (A

& B) are positive when they are fluxes into the atmosphere, while sinks (D, E & F) are positive

as fluxes into the respective compartment. A positive BIM means a higher sum of emissions than

sinks. The thin grey curves in B, E, and F show individual GCB stand-alone model results. The

numbers in the legend show the correlation coefficients between assimilation and GCB2019.
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Figure 2. Time series of initialized simulations at lead time of 2 years in atmospheric car-

bon growth rate, i.e., GATM (A), net air-sea CO2 fluxes, i.e., SOCEAN (B) and net air-land CO2

fluxes, i.e., ELUC+SLAND (C) together with Global Carbon Budget (GCB 2019 (Friedlingstein

et al., 2019)). The shown time series are based on annual mean data for the time period from

1970-2018. Positive values in B-C refer to CO2 fluxes into the ocean or land. The numbers in

the legend show the correlation coefficients between the simulations and GCB2019, the ensemble

mean data is used for the calculation.
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Figure 3. Predictive skill of atmospheric carbon growth rate, i.e., GATM (A and D), air-sea

CO2 fluxes, i.e., SOCEAN (B and E) and net air-land CO2 fluxes, i.e., ELUC+SLAND (C and F)

reference to Global Carbon Budget (GCB 2019 (Friedlingstein et al., 2019)). A-C show results

of anomaly correlation coefficients from the original time series, and D-F show results from the

detrended time series with red open circles. All are based on annual mean time series for the

time period from 1970-2018. The filled red circles on top of the open red circles show that the

predictive skill is significant at 95% confidence level and the additional larger blue circles indi-

cate improved significant predictive skill due to initialization in comparison to the uninitialized

simulations. We use a nonparametric bootstrap approach (Goddard et al., 2013) to assess the

significance of predictive skill.
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Figure 4. Atmospheric CO2 concentration from the uninitialized (Uninit) and assimilation

(Assim) simulations (A) and initialized simulations at lead time from 1-5 years (Init LY1 to

Init LY5) (B) in comparing with observations in the last 10 years. The numbers in the figure

legend show the correlation (left) and root mean square error (RMSE, right) of the simulations

relative to observational data from NOAA GML (Dlugokencky & Tans, 2020). The time series

are bias corrected by removing the difference of mean states and linear trend between observation

and simulations according to Boer et al. (2016).
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Table S1. Simulations based on MPI-ESM1.2-LR. Resolution Atmosphere: T63L47 Ocean:

GR15L40. The design of the prediction simulations is according to previous study (Marotzke

et al., 2016). The assimilation starts from the end of year 1958 in an uninitialized simulation.

The nudging is strong therefore an assimilation starting from a different uninitialized simulation

would end up with similar evolution of the climate and carbon cycle. The initialized simulations

start from the assimilation yearly from October 31st and run freely for 2 months plus 5 years

afterwards. We have 59 runs for one ensemble of initialized simulations starting from 1960 to

2019 annually and run for 5 years and 2 months each, i.e., Nov. 1960 - Dec. 1965 for starting

year 1960, Nov. 1961 - Dec. 1966 for starting year 1961, and so forth until Nov. 2018 - Dec.

2023. The ensembles are generated with lagged 1-day initialization, i.e., the simulations start

from 10 consecutive days from October 31st to November 9th. The ensembles for uninitialized

simulations are generated by starting from different year of the control simulation.

Simulations Ensemble members Nudging Initial condition Time period

Uninitialized 10 N/A Preindustrial 1850-2099
Assimilation 1 Atm.: ERA

Ocean: ORAS4
anomalies (without
5N-5S band)
Sea Ice: NSIDC

Uninitialized 1959-2018

Initialized 10 N/A Assimilation 1960-1965
... 2018-2023
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Figure S1. Time series of atmospheric CO2 concentration from model simulations and obser-

vation from 1850-2020. The assimilation and uninitialized simulations are shown with orange and

blue solid lines, respectively. The CMIP6 input4MIPs atmospheric CO2 concentration forcing

and the NOAA GML observation (Dlugokencky & Tans, 2020) are shown with blue dashed line

and black solid lines, respectively.
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Figure S2. Spatial distribution of correlation and root mean square difference (RMSD) in

air-sea and air-land CO2 fluxes between Global Carbon Budget (GCB 2019 (Friedlingstein et al.,

2019)) multi-model mean and MPI-ESM1.2-LR assimilation. The statistics are based on annual

mean time series for the time period from 1960-2018.
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Figure S3. Time series of initialized simulations at lead time of 1 year in atmospheric carbon

growth rate, i.e., GATM (A), net air-sea CO2 fluxes, i.e., SOCEAN (B) and net air-land CO2

fluxes, i.e., ELUC+SLAND (C) together with Global Carbon Budget (GCB 2019 (Friedlingstein

et al., 2019)). The shown time series are based on annual mean data for the time period from

1970-2018. Positive values in B-C refer to CO2 fluxes into the ocean or land. The numbers in

the legend show the correlation coefficients between the simulations and GCB2019, the ensemble

mean data is used for the calculation.
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Figure S4. Atmospheric CO2 concentration from the assimilation and initialized simulations

together with NOAA GML observation (Dlugokencky & Tans, 2020) in the last 10 years. The

time series are original model outputs and connected according to the lead time of years.
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