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Abstract

Water availability in the dry Western United States (US) under a warming climate and increasing water use demand has

become a serious concern. Previous studies have projected future runoff changes across the Western US but ignored the

impacts of ecosystem response to elevated CO2 concentration. Here, we aim to understand the impacts of elevated CO2 on

future runoff changes through ecosystem responses to both rising CO2 and associated warming using the Noah-MP model with

representations of vegetation dynamics and plant hydraulics. We first validated Noah-MP against observed runoff, LAI, and

terrestrial water storage anomaly from 1980–2015. We then projected future runoff with Noah-MP under downscaled climates

from three climate models under RCP8.5. The projected runoff declines variably from the Pacific Northwest by –11% to the

Lower Colorado River basin by –92% from 2016–2099. To discern the exact causes, we conducted an attribution analysis of two

additional sensitivity experiments: one with constant CO2 and another with monthly LAI climatology based on the Penman-

Monteith equation. Results show that surface “greening” (due to the CO2 fertilization effect) and the stomatal closure effect

are the second largest contributors to future runoff change, following the warming effect. These two counteracting CO2 effects

are roughly compensatory, leaving the warming effect to remain the dominant contributor to the projected runoff declines at

large river basin scales. This study suggests that both surface “greening” and stomatal closure effects are important factors

and should be considered together in water resource projections.
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Abstract 29 

Water availability in the dry Western United States (US) under a warming climate and increasing 30 

water use demand has become a serious concern. Previous studies have projected future runoff 31 

changes across the Western US but ignored the impacts of ecosystem response to elevated CO2 32 

concentration. Here, we aim to understand the impacts of elevated CO2 on future runoff changes 33 

through ecosystem responses to both rising CO2 and associated warming using the Noah-MP 34 

model with representations of vegetation dynamics and plant hydraulics. We first validated 35 

Noah-MP against observed runoff, LAI, and terrestrial water storage anomaly from 1980–2015. 36 

We then projected future runoff with Noah-MP under downscaled climates from three climate 37 

models under RCP8.5. The projected runoff declines variably from the Pacific Northwest by –38 

11% to the Lower Colorado River basin by –92% from 2016–2099. To discern the exact causes, 39 

we conducted an attribution analysis of two additional sensitivity experiments: one with constant 40 

CO2 and another with monthly LAI climatology based on the Penman-Monteith equation. 41 

Results show that surface “greening” (due to the CO2 fertilization effect) and the stomatal 42 

closure effect are the second largest contributors to future runoff change, following the warming 43 

effect. These two counteracting CO2 effects are roughly compensatory, leaving the warming 44 

effect to remain the dominant contributor to the projected runoff declines at large river basin 45 

scales. This study suggests that both surface “greening” and stomatal closure effects are 46 

important factors and should be considered together in water resource projections. 47 

  48 
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Plain Language Summary: 49 

Water shortage in the Western United States (US) is becoming increasingly serious due to 50 

increasing socioeconomic demands and global warming. Although previous studies have 51 

projected various degrees of runoff changes, they neglect the impact of rising CO2 on runoff 52 

projections. To explore the possible role of CO2 that may play in the hydrologic cycle, we 53 

conducted three experiments with the newly improved Noah-MP land model including 54 

vegetation dynamics and plant hydraulics. Consistent with previous studies, the Western US 55 

tends to be drier toward the end of the 21
st
 Century. CO2-induced LAI increases (surface 56 

“greening”) contribute considerably to the projected widespread transpiration increases and 57 

runoff reductions; however, these changes are nearly compensated by the stomatal closure effect 58 

of CO2 on transpiration, leaving the warming effect to remain the major cause to these 59 

transpiration and runoff changes. Therefore, the dual roles of CO2 in the hydrologic cycle 60 

through interactions with vegetation processes need to be considered in water resource 61 

projections. 62 

  63 



manuscript submitted to Water Resources Research 

 4 

1 Introduction 64 

Water availability in the dry Western United States (US) under increasing water demands 65 

and a warming climate has become a serious concern. Expanding population, high total water use 66 

rate, and rapidly growing agriculture in the Western US, have posed a great challenge on 67 

sustainable management of water resources (Anderson and Woosley, 2006). Besides, restoration 68 

of endangered riparian ecosystems related to depleted water resources, which has recently 69 

received an increasing attention, requires more water in the episodes of droughts (Anderson and 70 

Woosley, 2006). In addition to substantial water demands, significant reductions in annual runoff 71 

have been observed across the Western US due to climate change (Forbes et al., 2018), with 72 

earlier snowmelt runoff and reduced summer flows (Clow, 2010; Hamlet et al., 2007). It is 73 

crucial to discern the controlling factors of runoff for reducing the uncertainties in future runoff 74 

and water resource projections. 75 

Runoff generation is largely affected by static factors of soil property and topography and 76 

changes in climate and associated ecosystem response. Changing precipitation patterns, such as 77 

amounts as well as intensity, duration, and frequency, directly affect runoff generation. Rising 78 

temperatures enhance evaporation through increases in the atmospheric water demand and 79 

induce a greater loss of snow mass with a shrinking snow cover, causing a positive feedback to 80 

the warming (Milly and Dunne, 2020). Terrestrial ecosystem plays a key role in the terrestrial 81 

hydrologic cycle (Lemordant et al., 2018; Ukkola et al., 2016) through root water uptake, 82 

transpiration, canopy interception loss, and hydraulic redistribution. Recent studies, however, 83 

show conflicting results. Singh et al. (2020) suggested that increases in leaf area index (LAI) and 84 

plant water use efficiency (WUE) due to elevated CO2 result in an insignificant trend in the 85 

observed runoff in the Southeastern US during 1951–2015. Y Yang et al. (2016) reported minor 86 

changes in LAI and leaf-level transpiration under elevated CO2 in 18 tropical forest catchments 87 

over 1982–2010 based on in situ and satellite observations. Yet, Frank et al. (2015) found CO2-88 

induced increases in plant WUE cannot nullify increases in transpiration caused by increases in 89 

LAI and temperature across the European forests during the 20
th

 century. Ukkola et al. (2016) 90 

suggested that the projected runoff reductions caused by changing climate may be moderated 91 

(exacerbated) because of reduced (increased) vegetation growth in wet and humid (dry) 92 

Australia. Although consistent temperature increases and slight precipitation changes are 93 

projected for the Western US (Easterling et al., 2017; Vose et al., 2017), whether the vegetation 94 

response to elevated CO2 and associated climate change alleviate or aggravate the future water 95 

shortage over the already dry Western US remains unknown. 96 

Raw runoff outputs from Earth system models (ESMs) is not generally used in regional 97 

hydrologic projections. The coarse horizontal resolution of ESMs (~100 km) poorly 98 

characterizes the heterogeneity in the soil, vegetation, and topographic characteristics. The low 99 

spatial resolution may result in uncertainties of the water balance in hydrologic projections that 100 

may already miss key hydrologic processes in current ESMs, such as soil water-groundwater 101 

interactions and subsurface lateral flows (Fan et al., 2019; Sun et al., 2016). More importantly, 102 

current land surface models (LSMs) used in ESMs do not adequately represent ecosystem 103 

resilience, producing an unrealistically decreasing LAI trend in most drying drylands (Mao et al., 104 

2013). During droughts, these models produces unrealistically low rain use efficiency (biomass 105 

productivity per unit rainfall) (Ma et al., 2017; Zhu et al., 2019). Inadequate representations of 106 

plant and root hydraulics, especially under a changing climate, may result in low transpiration 107 

and high runoff. Most recent models have started to implement plant hydraulics (Kennedy et al., 108 
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2019; Li et al., 2021; Niu et al., 2020; S Zhu et al., 2017) and explicitly represent plant water 109 

storage supplied by dynamic root water uptake and groundwater capillary rise to enhance 110 

ecosystem resilience to drought stress (Niu et al., 2020). 111 

A commonly-used way to project future water availability is to use offline LSMs driven 112 

by downscaled ESM’s atmospheric outputs (Hamlet and Lettenmaier, 1999; Naz et al., 2016; 113 

Sun et al., 2016). Hamlet and Lettenmaier (1999) used a “delta” method to perturb historical 114 

climate data by mapping spatially averaged future changes in precipitation and temperature 115 

resulting from global climate models (GCMs) relative to their historical records. They reported 116 

that the annual runoff of the Columbia River Basin in 2045 would be 85–110% of that of 1961–117 

1997. Naz et al. (2016) projected an increase in runoff in spring and winter but widespread 118 

summer runoff declines in the mid-century (2011–2050) compared to the baseline period (1966–119 

2005) with the VIC hydrological model driven by the downscaled and high-resolution 120 

precipitation and temperature from ten climate models of the Fifth Phase of the Coupled Model 121 

Intercomparison Project (CMIP5) under the Representative Concentration Pathway (RCP) 8.5. 122 

Sun et al. (2016) projected more than 20% annual runoff declines in the central part of the 123 

Western US during 2031–2060 compared to that during 1979–2007, except in the Lower 124 

Colorado River basin. However, these previous studies considered only the impacts of 125 

temperature and precipitation but neglected the impacts of other forcing variables including 126 

downward longwave radiation and specific humidity that show an apparent trend and thus may 127 

directly affect the projected evapotranspiration (ET) and runoff trends (Figure S1). Also, these 128 

studies neglected the significant rise of CO2 and related ecohydrological consequences.  129 

A widespread surface “greening” over the boreal forests has been observed and attributed 130 

to the CO2 fertilization effect under a warming climate (Z Zhu et al., 2017). Also, despite a 131 

drying trend (Chang et al., 2020), arid and semiarid ecosystems have been greening as evidenced 132 

from pronounced greenness increases (Fensholt et al., 2012), large-scale woody encroachment 133 

(Andela et al., 2013), and enhanced net carbon sinks (Ahlström et al., 2015) over global 134 

drylands. Z Zeng et al. (2018) reported that vegetation greening has contributed to over 50% of 135 

global ET increases during the past three decades. However, plant stomatal closure and increased 136 

WUE caused by elevated CO2 concentration may result in less transpiration at the leaf level scale 137 

(Field et al., 1995). The CO2 inhibition effect on stomatal opening is widely used in interpreting 138 

runoff changes projected by ESMs with the conceptual Penman-Monteith & Budyko framework 139 

(Milly and Dunne, 2016; Y Yang et al., 2019). Therefore, the model projected future runoff 140 

change may be largely controlled by the relative importance of these two counteracting CO2 141 

effects to terrestrial ecosystem responses, whereas the surface “greening” induced by CO2 142 

fertilization effects is greatly affected by model representations of ecosystem resilience to 143 

increasing drought stress (Niu et al., 2020). 144 

In this study, we aim to discern the dominant processes controlling the projected future 145 

runoff changes using the Noah-MP LSM (Niu et al., 2011) with explicit representations of 146 

vegetation dynamics and plant hydraulics (Niu et al., 2020). Here, our specific objectives are to 147 

1) project future runoff changes in the Western US; 2) quantify the impacts of LAI changes (or 148 

“greening”) and stomatal closure on ET changes using the Penman-Monteith (PM) equation; 3) 149 

investigate the role of the two counteracting effects of CO2 (“greening” and stomatal closure) 150 

playing in the hydrologic cycle. We first performed future projections of runoff and factors 151 

influencing runoff generation in the Western US under the RCP 8.5 scenario with Noah-MP. We 152 

then conducted an attribution analysis on the modeling results based on the PM equation (Y 153 

Xueyan Zhang
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Yang et al., 2019) and isolated the two counteracting CO2 effects on the projected changes in ET 154 

and runoff through model sensitivity experiments with constant CO2 concentration and static leaf 155 

dynamics. 156 

2 Materials and Methods 157 

2.1 Data 158 

2.1.1 Forcing, Vegetation, and Soil Data 159 

We used the Phase 2 of the North American Land Data Assimilation System (NLDAS-2) 160 

atmospheric forcing data (Xia et al., 2012) to drive Noah-MP during the historical period from 161 

1980 through 2015. This dataset spans from January 1979 to present at a resolution of 0.125° 162 

with an hourly time step throughout the contiguous US (CONUS). NLDAS-2 includes 163 

downward shortwave and longwave radiation fluxes, surface air pressure and temperature, 164 

specific humidity, wind speed, and precipitation rate. NDLAS-2 has been widely verified and 165 

employed in modeling studies over the CONUS domain (Ma et al., 2017; Xia et al., 2012). We 166 

used the global 1-km hybrid State Soil Geographic Database and the USGS 24-category 167 

vegetation data, which were resampled to fit the NLDAS-2 resolution to determine the dominant 168 

soil and vegetation types (for use in Noah-MP) over the Western US in both the historical and 169 

future simulations. 170 

We used the CMIP5 climate models’ output (Taylor et al., 2012) for future projections. 171 

Nonlinear yearly CO2 concentration (Prather et al., 2013) was used to represent future CO2 172 

changes (Figure S2). We selected the model outputs from three CMIP5 GCMs experiments 173 

under RCP 8.5 because they provide sub-daily atmospheric variables for driving Noah-MP, 174 

including GFDL-ESM2G (at 2.0°×2.5°), MIROC5 (1.4°×1.4°), and IPSL-CM5A-MR 175 

(1.3°×2.5°). The three models represent divergent future climate changes, where the most 176 

aggressive increase in air temperature occurs in IPSL-CM5A-MR (Buotte et al., 2019), and the 177 

least temperature increase in GFDL-ESM2G (Figure S1). We downscaled these 3-hourly data 178 

(except precipitation) to the resolution of NLDAS-2 through bilinear interpolation and corrected 179 

the biases of the downscaled data using linear regression models by retaining the probability 180 

distributions of historical values similar to those of NLDAS-2 (Dettinger et al., 2004). The daily 181 

precipitation data (Abatzoglou, 2013) from the selected GCMs were interpolated to a spatial 182 

resolution of 0.125° by bilinear interpolation and disaggregated into a temporal resolution of 3 183 

hours following the method described by Buotte et al. (2019). This method first calculates the 184 

ratio of the 3-hourly CMIP5 precipitation to the daily CMIP5 precipitation total and then 185 

disaggregated the Multivariate Adaptive Constructed Analogs daily precipitation product based 186 

on these ratios over each grid cell. Through downscaling and bias-corrections, the biases in these 187 

GCM outputs are largely reduced for the historical period (Figure S1), enhancing the credibility 188 

of the future projections. 189 

2.1.2 Observational Data 190 

To calibrate and evaluate the Noah-MP’s performance, we used ground-based runoff, 191 

satellite-derived LAI and terrestrial water storage (TWS) change, upscaled FLUXNET data of 192 

gross primary production (GPP) and ET using model tree ensemble (FLUXNET MTE), and 193 

ground-based snow water equivalent data (SWE) developed at the University of Arizona (UA) 194 

(Broxton et al., 2016; Dawson et al., 2017; X Zeng et al., 2018). We calibrated and validated the 195 
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simulated runoff during 1980–2015 against the USGS WaterWatch monthly runoff data at two-196 

digital hydrological unit code (HUC2) basins (Rivers 14–18). This runoff dataset is generated 197 

using stream gage observations, the corresponding drainage basins, and HUC2 boundaries 198 

(Brakebill et al., 2011), which has been taken as a surrogate of natural streamflow (Ashfaq et al., 199 

2013; Ma et al., 2017). We selected a consistent and continuous LAI product to evaluate the 200 

simulated LAI, which is an improved product (Yuan et al., 2011) of the Moderate-Resolution 201 

Imaging Spectroradiometer (MODIS) LAI at a spatial resolution of 1 km and a temporal 202 

resolution of 8 days. We upscaled this LAI dataset into the resolution of NLDAS-2 (0.125°) and 203 

aggregated it into a monthly product during 2002–2015.  204 

Because of high uncertainties related to current ET products (Mueller et al., 2011), we 205 

indirectly evaluated ET simulations using the terrestrial water storage anomaly (TWSA) anomaly 206 

derived from gravity changes detected by the Gravity Recovery and Climate Experiment 207 

(GRACE) twin satellites. We applied the gain factors to three 1° monthly GRACE TWSA 208 

product and averaged these datasets for the period of 2003–2015 to reduce their noises because 209 

of various resolutions (Landerer and Swenson, 2012; Sakumura et al., 2014). The FLUXNET 210 

MTE dataset is generated by upscaling water, CO2, and energy fluxes measured at FLUXNET 211 

sites, which are densely located in the US, and incorporating remote sensing, meteorological, and 212 

land cover data through a machine learning approach (Jung et al., 2011).We downscaled the 0.5° 213 

GPP and ET of FLUXNET MTE to 0.125° to assess the modelled GPP and ET. The daily UA 214 

SWE product is developed using in situ observations and 4-km gridded PRISM precipitation and 215 

temperature data and has been a benchmark for large-scale SWE evaluations (Broxton et al., 216 

2016; Cho et al., 2020). We reprocessed the daily SWE data into a spatial resolution of 0.125° 217 

and a temporal resolution of monthly to evaluate the simulated SWE. 218 

2.2 Model 219 

We used Noah-MP (Niu et al., 2011), a widely-used LSM that simulates the exchanges of 220 

energy, water, and carbon between the terrestrial ecosystem and the atmosphere. The model 221 

includes one canopy layer, up to three snow layers depending on the snow depth, four soil layers 222 

with a total depth of 2 m, and an unconfined aquifer. Noah-MP represents surface heterogeneity 223 

with a “semi-tile” scheme that separately computes the energy, water, and carbon fluxes for 224 

vegetated and bare fractions of a model grid cell (Niu et al., 2011). Surface runoff and subsurface 225 

runoff are parameterized as functions of water table depth based on the TOPMODEL concept.  226 

Noah‐MP adopts the simple bucket‐type groundwater model of Niu et al. (2007) to 227 

represent groundwater recharge into the aquifer (or “bucket”) in wet periods and groundwater 228 

capillary rise from the “bucket” during dry periods. It also introduces a scaling factor, fmic, 229 

(between 0 and 1; fraction of micropore volume) to reduce the capillary rise to account for the 230 

presence of subsurface macropores and thus helps improve the modeled soil moisture variability 231 

in the State of Illinois (Z L Yang et al., 2011). In general, a larger fmic produces a wetter soil with 232 

smaller soil moisture variabilities. In this study, we used a constant fmic of 0.3 for all experiments 233 

over the Western US. The hydraulic conductivity of the aquifer is parameterized as a harmonic 234 

average of those of the bottom soil layer and the water table. Groundwater capillary rise is 235 

demonstrated important for plants to survive drought stress over the central US basins (Niu et al., 236 

2020). 237 

Noah-MP incorporates a simple but efficient dynamic vegetation model (Niu et al., 238 

2011). This model explicitly represent photosynthesis, carbon allocation, respiration, turnover, 239 

Xueyan Zhang
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and leaf death due to temperature and water stresses (Dickinson et al., 1998; Niu et al., 2011; 240 

Parton et al., 1978). Noah-MP calculates the gross photosynthesis rate, A, as a sum of leaf-level 241 

gross photosynthesis rate, Ai (𝜇mol CO2 m
-2

 s
-1

; i = 1, 2 for sunlit and shaded leaves per unit leaf 242 

area, respectively), weighted by sunlit and shaded LAI. The leaf-level Ai is calculated as the 243 

minimum of three limiting carboxylation rates: the light-limited rate, the Rubisco-limited rate, 244 

and the limitation by the transport of photosynthate for C3 and C4 plants (Collatz et al., 1992; 245 

Farquhar et al., 1980). Noah-MP represents the leaf-level stomatal conductance, 𝑔𝑠,𝑖 and Ai under 246 

the control of abiotic factors, such as atmospheric humidity and CO2 concentration, ca, for sunlit 247 

and shaded leaves (Ball et al., 1987):  248 

𝑔𝑠,𝑖 = 𝑔0 + 𝑚
𝐴𝑖

𝑐𝑠

𝑒𝑠

𝑒𝑖
𝑃𝑎𝑡𝑚              (1) 249 

where 𝑐𝑠  is CO2 concentration at the leaf surface (Pa) controlled by intermittent turbulent 250 

diffusion of ca through the leaf boundary layer: 𝑐𝑠 = 𝑐𝑎 −
𝐴𝑖𝑃𝑎𝑡𝑚

1.37𝑟𝑏
, where rb is the leaf boundary 251 

layer resistance; es and ei are the water vapor pressure at the leaf surface and the saturated vapor 252 

pressure inside the leaves (Pa) at leaf surface temperature, respectively; 𝑔0  is the minimum 253 

conductance (𝜇mol m
-2

 s
-2

); 𝑚 is the slope constant of the gs,i – Ai relationship; 𝑃𝑎𝑡𝑚  is the 254 

atmospheric pressure (Pa). Because Ai for the light-limited and Rubisco-limited rates of C3 plants 255 

and transport-limited rate of C4 plants is linked to the intercellular CO2 concentration, 𝑐𝑖 = 𝑐𝑎 −256 
𝐴𝑖𝑃𝑎𝑡𝑚

1.37𝑟𝑏+1.65/𝑔𝑠,𝑖
, Noah-MP iteratively solves the above equation with a first guess of ci = 0.7 ca for 257 

C3 plants and ci = 0.4 ca for C4 plants. Because 𝑔𝑠,𝑖 is inversely related to 𝑐𝑠, a higher 𝑐𝑠 due to 258 

elevated ca results in a reduction in 𝑔𝑠,𝑖 and subsequently a reduction in leaf-level transpiration, 259 

inducing a “stomatal closure” effect on transpiration. On the other hand, Ai increases with 260 

increasing ci controlled by the diffusion of ca through the leaf boundary layer and plant stomata. 261 

LAI increases with increasing assimilated carbon (Ai), resulting in a “surface greening” effect on 262 

transpiration. 263 

Reduction in Ai due to soil water stress is parameterized through the control of plant 264 

water availability, 𝛽, on the optimum carboxylation rate at 25°C. The Noah-MP version used in 265 

this study also includes a dynamic root submodule that explicitly describes plant water storage 266 

supplied by dynamic root water uptake through hydrotropic root growth to meet the transpiration 267 

demand (Niu et al., 2020). The plant water availability factor 𝛽  controlling Ai and 𝑔𝑠,𝑖  is 268 

parameterized as a function of water storage in the living plant tissues, 𝑀𝑞 (Niu et al., 2020):  269 

𝛽 = 𝑚𝑖𝑛 (1.0,
𝑀𝑞−𝑀𝑞,𝑤𝑖𝑙𝑡

𝑀𝑞,𝑚𝑎𝑥−𝑀𝑞,𝑤𝑖𝑙𝑡
)                                                             (2) 270 

where 𝑀𝑞,𝑤𝑖𝑙𝑡 represents the minimum plant water storage at the wilting point of 30 bar (306 m 271 

or 3.0 MPa), and 𝑀𝑞,𝑚𝑎𝑥 the maximum plant water storage when the plants are at full hydration. 272 

Mq – Mq,wilt is the plant water available for transpiration, and (Mq,max – Mq,wilt) is the maximum 273 

water that a plant can lose through transpiration until its wilting point. 𝑀𝑞  is depleted by 274 

transpiration while supplied by root water uptake, which is further controlled by root surface area 275 

that is converted from root biomass at each layer and the water pressure gradient between the 276 

soils and the roots. Compared to the static root in previous versions of Noah-MP, the current 277 

version greatly improve plant drought resilience through hydrotropic root growth and 278 

groundwater capillary rise in the central US (Niu et al., 2020). 279 
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2.3 Model Experiments 280 

We conducted two sets of simulations using Noah-MP with the parameterization schemes 281 

including all recent improvements (Table S1): a historical simulation from 1980–2015 using the 282 

NLDAS-2 forcing and projections from 2016–2019 driven by the downscaled climatic forcing. 283 

The historical simulation, starting with arbitrary initial states and a constant CO2 concentration of 284 

360 ppm, is spun up for seven times from 1980 through 2015 (mainly for TWS anomaly), and 285 

the last loop is used for analysis. The future projections were performed with the downscaled and 286 

bias-corrected forcing data from 2016–2099. The initial conditions for future projections were 287 

from the last loop of the historical simulation of Noah-MP driven by downscaled GCM outputs 288 

during 1980–2015. In this study, we selected the RCP 8.5 scenario because the CO2 effects are 289 

more apparent with the highest CO2 growth rate. 290 

In the set of future projections, we conducted three experiments: 1) using Noah-MP with 291 

the RCP 8.5 CO2 concentration (hereafter CTRL); 2) based on CTRL but with the constant CO2 292 

of 1980 concentration (CON-CO2); and 3) based on CTRL but with the monthly LAI 293 

climatology of MODIS LAI (from 2002–2015) (STATIC-LAI; DVEG = 1). These three 294 

experiments are designed to discern the surface greening effect and stomatal closure effect: 295 

CTRL includes both effects; STATIC-LAI removes the greening effect but retains the stomatal 296 

closure effect; and CON-CO2 excludes the stomatal closure effects and significantly reduces the 297 

LAI trends compared with those in CTRL (to be discussed later in Section 3.4). 298 

To evaluate Noah-MP modeled runoff, LAI, TWSA, GPP, ET, and SWE, we calculated 299 

the relative bias (RB), Pearson Correlation coefficient (r), Nash-Sutcliffe efficiency (NSE), and 300 

linear trends between simulations and observations using USGS WaterWatch runoff, MODIS 301 

LAI, GRACE TWSA, FLUXNET MTE, and UA SWE datasets across the Western US, 302 

respectively. For the projection results, we calculated long-term linear trends of annual runoff, 303 

LAI, transpiration, and ET during 2016–2099 and examined the significance of these trends 304 

using the nonparametric Mann-Kendall test. We also analyzed the contribution of net radiation 305 

(𝑅𝑛), vapor pressure deficit (𝑣𝑝𝑑), surface resistance (𝑟𝑠), aerodynamic resistance (𝑟𝑎), and the 306 

slope of the saturation vapor pressure–temperature relationship (𝛿) to the projected ET changes 307 

using the PM equation (see Appendix). More importantly, we isolated the contribution of the 308 

surface greening and stomatal closure effects through the difference between the model 309 

experiments using the PM equation.   310 

3 Results 311 

3.1 Model Evaluation 312 

The modeled runoff is comparable with the USGS WaterWatch runoff data from 1980 313 

through 2015 over the five HUC2 rivers (Figure 1). The RB, r, and NSE values are less than 314 

15%, above 0.89, and over 0.76 for most regions, respectively. The relatively large RB of 47% 315 

and low NSE of 0.51 for the Lower Colorado are due mainly to the overestimated NLDAS-2 316 

precipitation (Ma et al., 2017). Noah-MP well reproduces the observed declining trends in 317 

runoff, despite slight overestimations of the observed decreases in most rivers. The simulated 318 

LAI agrees with the observed monthly LAI during 2002–2015 for each river in terms of mean, 319 

timing, and variance, with RB values of less than 13%, r values of over 0.92, and NSE values of 320 

over 0.73, although Noah-MP slightly overestimates LAI variabilities and thus results in a 321 

negative NSE in the Lower Colorado (Figure 2). Both the simulated and observed LAI values do 322 
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not exhibit apparent trends in all rivers, due possibly to the non-significant change in CO2 323 

concentration during this short period (2002–2015).  324 

We also compared the simulated monthly TWSA with GRACE TWSA during 2003–325 

2015 (Figure 3). The simulated monthly TWSA is derived by subtracting the monthly mean of 326 

the simulated TWS during 2004–2009 to be consistent with the procedure of the GRACE TWSA 327 

products. Here, the modeled TWS is the sum of SWE, soil moisture, groundwater storage, 328 

canopy water, and the plant water storage. The simulated TWSA agrees well with GRACE in 329 

phase and variability in most rivers, with the r and NSE values being above 0.81 and 0.29, 330 

respectively. Promisingly, Noah-MP captures well the observed TWSA trends, except in the 331 

Upper Colorado, suggesting that ET was also well simulated. Noah-MP also showed comparable 332 

estimations of ET and GPP with those of FLUXNET MTE and of SWE with those of UA SWE 333 

over each river basin, respectively (Figure S3–S5). Overall, the good agreement between the 334 

simulated and the observed runoff, LAI, TWSA, and relevant variables ensures an improved 335 

credibility of Noah-MP for projected future runoff and vegetation changes. 336 

 337 

Figure 1. The Noah-MP simulated and observed monthly runoff during 1980–2015 of the HUC2 338 

river basins in the Western US (unit: mm): (a) the Upper Colorado (River 14), (b) the Lower 339 

Colorado (River 15), (c) the Great Basin (River 16), (d) the Pacific Northwest (River 17), and (e) 340 

California (River 18). Also shown on top of each panel are the linear trend (mm/month) of the 341 

observed/modeled and model evaluation metrics in terms of RB/r/NSE. RB = relative bias; r = 342 

Pearson correlation coefficient; NSE = Nash-Sutcliffe efficiency. 343 

 344 
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 345 

Figure 2. Same as Figure 1 but for monthly LAI during 2002–2015 (unit: m
2
/m

2
). The trend unit 346 

is m
2
/m

2
/month. 347 

 348 

 349 

Figure 3. Same as Figure 1 but for monthly TWSA during 2003–2015 (unit: mm). The trend unit 350 

is mm/month. 351 

3.2 Projected Runoff Changes 352 

The Noah-MP projected runoff declines remarkably across the Western US rivers in the 353 

future under the different climate produced by the three different GCMs (Figure 4a). The annual 354 

mean runoff averaged over these rivers decreases by up to -71% during 2016–2099 (-12 355 

mm/decade), -92% (-6 mm/decade), -52% (-5 mm/decade), -11% (-7 mm/decade), and -30% (-356 

13 mm/decade), over River 14 to River 18, respectively. The trends with a unit of percent in this 357 

study were calculated as the total linear changes relative to the linear fit of the stating year 358 

(2016). The TWS also exhibits substantial decreasing trends at a rate of -134, -152, -104, -2, and 359 
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-49 mm/decade over these rivers, respectively (Figure 4c), resulting in deeper water tables 360 

because groundwater storage accounts for the majority of TWS. Therefore, the model differences 361 

in the annual runoff trends are generally consistent with those in the modeled TWS trends. 362 

Insignificant precipitation changes (Figure 4b) and substantial TWS declines indicate that ET 363 

changes likely control the future runoff trends for the Western US, based on the annual water 364 

balance. However, the decreased annual runoff over the Lower Colorado from IPSL-CM5A-MR 365 

and MIROC5 and over the Upper Colorado from IPSL-CM5A-MR result from decreasing 366 

precipitation due to the smaller magnitudes of ET decreases (Figure 5). Overall, the runoff 367 

reductions in the western US rivers are due mainly to increases in ET, which will be further 368 

discussed in the next section. 369 

 370 

Figure 4. Noah-MP projected (a) runoff change from 2016-2099 (%), (b) precipitation change 371 

from 2016-2099 (%), and (c) TWS linear trends (mm/decade) for each river driven by different 372 

climates produced by the three GCMs. The asterisks represent significant trends (p < 0.05); the 373 

linear trends in percent are relative to the starting year of the linear fit (i.e., 2016). 374 

3.3 Projected LAI and ET Changes 375 

From 2016 to 2099, the projected annual mean LAI across the Western US exhibit an 376 

increasing trend under all the three climates produced by different GCMs (Figure 5a). The 377 

annual LAI increases by 92% (0.06 m
2
/m

2
/decade), 77% (0.05 m

2
/m

2
/decade), 101% (0.04 378 

m
2
/m

2
/decade), 60% (0.08 m

2
/m

2
/decade), and 57% (0.07 m

2
/m

2
/decade) over River 14 to River 379 

18, respectively. We will show later that these increasing trends are mainly attributed to the 380 

rising CO2 through comparison with the constant CO2 experiment (see Section 3.4). Increases in 381 

the summer LAI (Figure S6) resulting from IPSL-CM5A-MR are less than those from GFDL-382 

ESM2G due mainly to its relatively high temperatures over the optimum temperature (25°C) for 383 

photosynthesis in all the rivers except the relatively colder Pacific Northwest. The differences in 384 

LAI changes for other three seasons between 2016–2045 and 2070–2099 are smaller compared 385 

to those during summer. Therefore, Noah-MP driven by the GFDL-ESM2G climate with the 386 

lowest warming produces the largest annual LAI trends in the Upper and Lower Colorado and 387 

Great basin, but the least in the Pacific Northwest, where the vegetation growth is stressed by 388 

cold climates.  389 
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 390 

Figure 5. Noah-MP projected trends (represented as percentage change from 2016 to 2099) in 391 

annual (a) LAI (leaf area index), (b) transpiration (T), (c) ET (evapotranspiration), and (d) T/ET 392 

ratio for the HUC2 rivers. The asterisks represent significant trends (p < 0.05).  393 

The annual transpiration (T) is projected to significantly increase across the Western US 394 

(Figure 5b). The annual transpiration increases by up to 68% (8 mm/decade), 43% (7 395 

mm/decade), 84% (9 mm/decade), 51% (10 mm/decade), and 30% (8 mm/decade) from 2016 to 396 

2099 over the five HUC2 rivers, respectively. The differences in the projected annual 397 

transpiration trends between these rivers are consistent with those of the annual LAI trends, 398 

suggesting a strong vegetation phenological impact on transpiration. The projected ET increases 399 

by up to 27% (10 mm/decade), 9% (4 mm/decade), 20% (6 mm/decade), 25% (11 mm/decade), 400 

and 10% (5 mm/decade) from 2016 to 2099 over the five rivers, indicating that transpiration 401 

contributes the most to the ET increases. Additionally, the ratio of transpiration to ET (T/ET) 402 

shows a significant increasing trend by up to 53% (2%/decade), 44% (2%/decade), 74% 403 

(3%/decade), 21% (1%/decade), and 18% (1%/decade) from 2016 to 2099 over the five rivers, 404 

respectively. Despite the declining transpiration trend in the Lower Colorado for IPSL-CM5A-405 

MR, the T/ET ratio shows an increasing trend due to decreases in ET. The increasing trend in the 406 

T/ET ratio indicates an enhanced WUE under the increasing CO2 concentration. Therefore, the 407 

greening effect on ET increase and thus runoff reduction can be mainly attributed to the impacts 408 

of LAI increase on increases in transpiration under the increasing atmospheric demand (see also 409 

Section 3.4). 410 

We conducted an attribution analysis based on the PM equation (see Appendix), which 411 

helps discern the dominant factors contributing to changes in ET. The conceptual PM model 412 

represents a “big-leaf” (or a single source) evaporating surface, while Noah-MP represents 413 

multiple evaporating sources including soil surface evaporation, interception loss, and 414 

transpiration. By fitting the Noah-MP modeled ET with the PM model, a single “surface 415 

resistance” (rs in PM) can be derived. As such, rs represents a combined effect of resistances of 416 

the soil surface, leaf boundary layer, and leaf stomata, reflecting the overall water supply from 417 

the land surface under the atmospheric water demand. 418 
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We first calculated the basin-averaged air temperature, pressure and specific humidity, 419 

wind speed, surface roughness length, and sensible and latent heat fluxes. Using these basin-420 

averaged values, we calculated the basin-averaged net radiation (Rn), water vapor pressure 421 

deficit (vpd), the slope of the saturated water vapor pressure against air temperature (𝛿), and 422 

aerodynamic resistance (ra). The basin-averaged rs was then derived by fitting the resulting ET 423 

from the PM equation with inputs of the basin-averaged Rn, vpd, 𝛿, and ra against the basin-424 

averaged model outputs of ET. We then quantified the contributions of changes in Rn, vpd, 𝛿, ra, 425 

and rs (∆Rn, ∆vpd, ∆𝛿, ∆ra, and ∆rs in equation A2) during 2070–2099 averaged over each river 426 

basin relative to those during 2016–2045 to the corresponding changes in ET (∆ET in equation 427 

A2; Figure 6).  428 

The ET changes reconstructed through the PM equation from CTRL agree well with the 429 

modeled outputs with an r
2
 value of 0.98 (Figure 6b), indicating an overall excellent fit. The non-430 

perfect match may be caused by the averaging, in space and time, ET and the controlling factors, 431 

of which the relationships are nonlinear, as well as the difference between ra used in PM and the 432 

multiple aerodynamic resistances used in Noah-MP. The largest positive contributor to ∆ET over 433 

all the rivers is ∆vpd followed by ∆𝛿 due to the nature of the increasing slope of the saturated 434 

water vapor pressure against temperature (Figure 6a). ∆Rn also positively contributes to ∆ET, and 435 

it is due to increased downward longwave radiation (Figure S1), surface “greening”-induced 436 

reduction in surface albedo, warming-induced reduction in snow (Figure 7f) (Milly and Dunne, 437 

2020). ∆ET due to ∆Rn, ∆vpd, and ∆𝛿 is the largest for IPSL-CM5A-MR (which produces the 438 

strongest warming among the three GCMs), but the lowest for GFDL-ESM2G with a weaker 439 

warming, because 𝑣𝑝𝑑 and 𝛿 are strongly dependent on temperature. Due to the slightly slowing 440 

winds (Figure S1), ∆ra plays a negative but negligible role in the ET changes. Increases in rs, 441 

which may include the combined effects of stomatal closure, surface “greening”, and soil surface 442 

drying, largely reduce ET by -0.35 (mm/day), -0.71 (mm/day), -0.19 (mm/day), -0.15 (mm/day), 443 

and -0.20 (mm/day) over river basins 14–18, respectively, representing the largest negative 444 

contributor. Because the negative contribution of ∆𝑟𝑠 exceeds the combined positive contribution 445 

of other variables, ∆ET is negative over the Lower Colorado for MIROC5 (Figure 5c). However, 446 

due to the bad fit between the PM-derived and the modeled ET (Figure 6b), this approach fails to 447 

explain the ET changes over the Lower Colorado for IPSL-CM5A-MR. From this analysis, it is 448 

apparent that ∆vpd and ∆rs largely control the future ET changes, suggesting the counteracting 449 

effects of the warming-induced increases in the atmospheric demand and the decreasing surface 450 

water supply. However, the contribution of ∆rs to ∆ET is more complicated due to the soil 451 

surface drying and the two counteracting effects of CO2. 452 

 453 
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Figure 6. (a) Contribution of ∆Rn, ∆vpd, ∆rs, ∆ra, and ∆𝛿 to ∆ET (2070–2099 relative to 2016–454 

2045); (b) Scatter plot of ∆ET during 2070–2099 relative to 2016–2045 resulting from Noah-MP 455 

and those computed by the Penman-Monteith equation. G, M, and I represent GFDL-ESM2G, 456 

MIROC5, and IPSL-CM5A-MR. 457 

3.4 Compensatory Surface “Greening” and Stomatal Closure Effects 458 

The negative contribution of ∆rs to ∆ET can be a combined net effect of plant stomatal 459 

closure, surface “greening”, and soil surface drying. We assessed the surface “greening” effect 460 

through the difference between CTRL and STATIC-LAI and the stomatal closure effect through 461 

the difference between CON-CO2 and STATIC-LAI. We first compared some key hydrological 462 

variables resulting from CTRL, CON-CO2, and STATIC-LAI over the five rivers (Figure 7) and 463 

then conducted a PM-based attribution analysis to quantify the “greening” effect (Figure 8a) and 464 

stomatal closure effect (Figure 8b).  465 

STATIC-LAI (without a trend in LAI or “greening” effects) projects a much smaller 466 

trend in transpiration (Figure 7b) and ET (Figure 7c) than does CTRL, becoming slightly 467 

negative. Consequently, the decreasing runoff trend projected by CTRL is largely reduced due to 468 

removal of the “greening” effect in STATIC-LAI. The projected changes in runoff are generally 469 

consistent with the changes in TWS (Figure 7e), soil moisture (Figure 7g), and groundwater 470 

water storage (Figure 7h), all showing reduced decreasing trends. The comparison between 471 

CTRL and STATIC-LAI suggests that the surface “greening” plays an important role in the 472 

projected changes of transpiration, ET, runoff, and TWS in the Western US. In addition, 473 

STATIC-LAI projects a larger declining trend in SWE (Figure 7f) than does CTRL due likely to 474 

less vegetation shading and thus increased solar radiation absorption by the snowpack on the 475 

ground.  476 

In CON-CO2, both the “greening” and stomatal closure effects are removed. As a result, 477 

the projected LAI trends are largely reduced due to removal of the greening effect. However, 478 

CON-CO2 projects a similar level of changes in transpiration (Figure 7b), ET (Figure 7c), runoff 479 

(Figure 7d), SWE (Figure 7f), and soil moisture (Figure 7g) to those by CTRL because of the 480 

removal of both effects. CON-CO2 projects enhanced runoff reductions in Rivers 17 & 18, 481 

because the stomatal closure effect may exceed the impact of surface greening, while Rivers 14–482 

16 showing an opposite case. Because the two counteracting effects of CO2 are roughly 483 

compensatory, CON-CO2 projects changes in the hydrological variables that are comparable 484 

with CTRL. This suggests that the warming effect remains the largest factor controlling the long-485 

term change in hydrologic processes.  486 
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 487 

Figure 7. The model projected trends in (a) LAI (m
2
/m

2
/decade), (b) transpiration (T; 488 

mm/decade), (c) evapotranspiration (ET; mm/decade), (d) runoff (mm/decade), (e) terrestrial 489 

water storage (TWS; mm/decade), (f) snow water equivalent (SWE; mm/decade), (g) soil 490 

moisture (SMC; mm/decade), and (h) groundwater storage (WA; mm/decade) by CTRL, CON-491 

CO2, and STATIC-LAI for each HUC2 rivers. The circles and error bars represent the ensemble 492 

mean of trends and ± 1 standard deviation from the three climate models. 493 

We conducted the same PM-based analyses of the two sensitivity experiments: STATIC-494 

LAI (Figure S7) and CON-CO2 (Figure S8). We then computed the difference of the ∆ET 495 

attributions between CTRL and STATIC-LAI (Figure 8a) and that between CON-CO2 and 496 

STATIC-LAI (Figure 8b). The effect of ∆𝑟𝑠  stands out above all else, becoming the most 497 

dominant contributor in both cases, but the former (Figure 8a) indicates the surface greening 498 

effect, while the latter (Figure 8b) indicates the stomatal closure effect. 499 

Both STATIC-LAI and CTRL are driven by the increasing RCP8.5 CO2 concentration. 500 

The difference between CTRL and STATIC-LAI removes the CO2 effects on stomatal closure 501 
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but retains only the net “greening” effect (Figure 8a). Also, ∆Rn becomes a positive contributor 502 

due to the surface greening. ∆ra can be a positive or negative contributor due possibly to 503 

different changes in surface roughness length and zero-displacement height associated with a 504 

different extent of greening over various basins under various climates. ∆vpd and ∆ 𝛿 505 

contributions to ∆ET are due largely to the smaller first-derivatives of 𝑣𝑝𝑑 and 𝛿 because ∆𝑣𝑝𝑑 506 

and ∆𝛿 are the same in CTRL and STATIC-LAI experiments. 507 

CON-CO2 completely removes the stomatal closure effect and largely removes the 508 

surface greening effects, because other factors such as changes in radiation, temperature, and 509 

humidity may contribute to the greening (Figure 7a), while STATIC-LAI completely removes 510 

the greening effect but contains the stomatal closure effect. So, the difference between CON-511 

CO2 and STATIC-LAI approximates the stomatal closure effect with the greening effect being 512 

mostly removed (Figure 8b). The stomatal closure effect also affects the contribution of changes 513 

in ∆𝑣𝑝𝑑, ∆𝛿, ∆𝑟𝑎, and ∆𝑅𝑛 to ∆ET, but with a much smaller magnitude compared to that of ∆rs. 514 

The magnitudes of the two counteracting CO2 effects on ET changes are roughly equal (~0.15 515 

mm/day averaged over all basins and climates, Figure 8c), more than half of the contribution of 516 

the warming effects to ET changes, which are dominated by ∆vpd (~0.2 mm/day; Figure S7) in 517 

CON-CO2. 518 

 519 

Figure 8. Contribution of ∆Rn, ∆vpd, ∆rs, ∆ra, and ∆𝛿 to ∆ET (2070–2099 relative to 2016–520 

2045). (a) CTRL – STATIC-LAI (surface “greening” effect), (b) CON-CO2 – STATIC-LAI 521 

(stomatal closure effect), and (c) the net stomatal closure (or inhibition) effect versus the net 522 

surface “greening” (or fertilization) effect over different rivers and under various climates.  523 

4. Discussions 524 

4.1 Projected Runoff and Vegetation Changes 525 

This study was initiated to project future runoff under projected climates following 526 

previous studies (e.g., Naz et al., 2016; Sun et al., 2016) but using a different LSM with explicit 527 

representations of plant physiological and phenological responses. Overall, the future runoff 528 

projected by CTRL declines significantly. Despite the similar conclusions to previous studies, 529 

the two sensitivity experiments with Noah-MP reveals the counteracting CO2 fertilization effects 530 

on surface greening and inhibition effects on plant stomatal closure are roughly compensatory. 531 

The CON-CO2 experiment is similar to previous studies that did not take CO2 concentration 532 

changes into account. Compared to CTRL, CON-CO2 projected a similar runoff trend in the 533 
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Upper and Lower Colorado and Great Basin but a larger reduction in the Pacific Northwest and 534 

California (Figure 7d). In other words, the vegetation responses to elevated CO2 concentration 535 

may alleviate the water shortage in the Pacific Northwest and California. This asymmetric CO2 536 

effects on the hydrologic cycle (Figure 8c) has also been observed in the Jinghe River basin 537 

(Huang et al., 2019) and projected in Australia (Ukkola et al., 2016) in semiarid and semi-humid 538 

regions, respectively. 539 

The projected LAI changes are dominated by CO2 but influenced by multiple other 540 

factors, consistent with previous studies (Mahowald et al., 2016; Mankin et al., 2017). Although 541 

the LAI trends are substantially reduced due to the removal of increasing CO2 trend, 542 

nonnegligible LAI trends were still found in all regions (except River 15; Figure 7a). Earlier and 543 

longer growing season induced by the warming facilitates the CO2 fertilization effect on the 544 

greening, especially over the colder mountain ridges (Figure S9). On the contrary, the warming 545 

and precipitation reductions result in decreases in LAI in the warmer Lower Colorado (River 15) 546 

without the CO2 fertilization effects (CON-CO2; Figure S9) This highlights the important control 547 

of other abiotic factors on the CO2 fertilization effects on the long-term trend in vegetation 548 

growth. Increasing specific humidity also slightly alleviate the water stress on carbon 549 

assimilation, benefiting vegetation growth and reducing forest mortality risks (Liu et al., 2017). 550 

Except climatic forcing, plant drought resiliency may also contribute to the projected LAI trends 551 

under a drying climate with more frequent droughts. Dynamic root water uptake and 552 

groundwater capillary rise may enhance the plant’s adaptation capability to changing 553 

environments and survive more frequent droughts in the future (Niu et al., 2020). Other model 554 

components, such as carbon allocation and respiration schemes (Mankin et al., 2017), may also 555 

affect the vegetation greening. Most current LSMs, including Noah-MP, likely overestimate the 556 

greening trends due to incomplete understandings of the vegetation processes, such as nutrient 557 

limitations and interactions between roots and microbes (Smith et al., 2016).  558 

Since Idso and Brazel (1984), a number of studies have argued the CO2-induced stomatal 559 

closure effects on amelioration of water shortage (Lian et al., 2018; Milly and Dunne, 2016; 560 

Roderick et al., 2015; Swann et al., 2016; Y Yang et al., 2019). Our PM-based attribution 561 

analyses indicate that stomatal closure due to the CO2 inhibiting effect can be as large as the 562 

warming effect, thereby canceling out the warming effect and resulting in negligible changes in 563 

transpiration and ET as shown by STATIC-LAI (Figure 7b & 7c). Although the CO2-induced 564 

stomatal closure remarkably reduces transpiration, widespread runoff reductions (though small) 565 

are still projected in the future (Figure 7d), highlighting the importance of warming on the 566 

hydrologic cycle as shown by the CON-CO2 experiment. However, surface greening mainly due 567 

to rising CO2 has nonnegligible impacts on the hydrological cycle, equivalent to the stomatal 568 

closure effects. Our study suggests that the two complementary CO2 effects should be considered 569 

together rather than emphasizing one of them as done in some previous studies (Idso and Brazel, 570 

1984; Mankin et al., 2019; Milly and Dunne, 2016; Y Yang et al., 2019). Interestingly, the CO2 571 

fertilization effect on surface greening is lower than the stomatal closure effect at lower 572 

elevations (< ~1,500 m) but tends to exceed the stomatal closure effect at higher elevations (> 573 

~1,500 m) (Figure S10). Both grasslands and shrublands tend to exhibit a greater greening effect 574 

than the stomatal closure effect at all altitudes (Figures S11 & S12), but the evergreen needleleaf 575 

forests show an opposite pattern, more apparently at lower elevations (Figure S13). This is due 576 

likely to other abiotic factors (e.g., temperature, humidity, and soil water etc.) that may affect the 577 

response of evergreen needleleaf forests to elevated CO2 concentration, which is worth further 578 

studies. 579 
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4.2 Uncertainties 580 

In this study, the vegetation types is prescribed during the 100-year simulations under a 581 

changing climate. In reality, natural disturbances and human activities may influence the 582 

vegetation vigor and species. For example, bark beetle outbreaks and wildfire have resulted in 583 

tree mortality in nearly 15% of the forested area across the Western US during the past three 584 

decades (Hicke et al., 2016). Tree mortality is also projected to likely increase in the future, 585 

especially in the Southwest US (Buotte et al., 2019; Jiang et al., 2013; Thorne et al., 2018). Jiang 586 

et al. (2013) projected that half of the regions dominated by evergreen needleleaf forests in the 587 

Western US will shift into shrub- and grass-dominant areas by the end of the 21
st
 century under 588 

the business-as-usual emission scenario. These potential vegetation changes may increase or 589 

reduce runoff by altering the hydrologic cycle (Goeking and Tarboton, 2020). Although the 590 

forested area comprises less than 20% of the Western US, future work should better understand 591 

the impacts of these disturbances on water resources. 592 

Another source of uncertainties is the T/ET ratio, which is very uncertain due to a lack of 593 

direct transpiration observations and thus limited understanding of the vegetation physiological 594 

processes. Because of the scarcity of large-scale transpiration observations and accurate ET 595 

products, we relied on observational datasets of the USGS monthly runoff and GRACE TWSA, 596 

of which the seasonal variations and trends largely represent the cumulative effects of ET, in the 597 

calibration. However, Lian et al. (2018) found that the simulated global T/ET ratio by CMIP5 598 

ESMs tends to be lower than in-situ observations, indicating that the vegetation would probably 599 

play a more important role in future runoff change. They attributed this underestimation to 600 

inadequate representations of canopy light use, interception loss, and root water uptake. Noah-601 

MP, like many other LSMs, struggles to simulate a T/ET ratio lower than observations, 602 

indicating that the vegetation contribution to ET (Zeng et al., 2017) and thus runoff changes may 603 

be underestimated. The low T/ET ratio produced by Noah-MP and other LSMs may be caused 604 

by a lack of adequate representations of lateral water flow and water vapor diffusion within the 605 

surface soil pores (Chang et al., 2018). Overall, the limited understanding of vegetation 606 

dynamics constrains us from better projecting the ecosystem responses to an unprecedent future 607 

climate. To reduce these uncertainties, large-scale observations and controlled experiments may 608 

be required. 609 

Uncertainties also exist in the validation datasets and downscaling processes. The 610 

MODIS LAI product is mainly generated through MODIS reflectance data, a look-up table, and 611 

a three-dimensional radiation transfer model (Yan et al., 2016). Uncertainties in the observed 612 

LAI tend to be high in regions with dense canopy cover and complex terrain. Therefore, this may 613 

explain the relatively high negative model biases in the Pacific Northwest coastal regions and the 614 

Cascades. Moreover, the water balance for some grid cells may be not closed because of 615 

different sources of validation datasets (Cai et al., 2014; Zheng et al., 2020). For instance, over 616 

the Lower Colorado, Noah-MP overestimated both runoff and ET. Additionally, despite the good 617 

performance of the linear regression approach in correcting the biases in the CMIP5 data, this 618 

method may reduce the interannual variabilities of the variables and usually neglect the dynamic 619 

atmospheric processes induced by subgrid variations in topography and land cover (Xue et al., 620 

2014), compared to dynamic downscaling. 621 
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5 Conclusions 622 

This study aims to improve the understanding of the impacts of terrestrial ecosystems 623 

response to rising CO2 on terrestrial water resources across the Western US river basins through 624 

projections of runoff under different warming climates projected by three GCMs under RCP 8.5. 625 

We used the mechanistic Noah-MP LSM with explicit representations of plant physiological and 626 

phenological responses to the CO2 inhibition effect on stomatal opening (stomatal closure) and 627 

fertilization effect on photosynthesis (surface “greening”). The good performance of Noah-MP in 628 

comparison with observations (Figures 1–3 and Figures S3–S5) gives us some confidence in the 629 

projected changes in the 21
st
 Century. Through sensitivity experiments and PM-based attribution 630 

analyses, we conclude that: 631 

(1) The projected annual runoff shows a widespread decline over the Upper Colorado, 632 

Great Basin, Pacific Northwest, and California by -71%, -52%, -11%, and -30% from 2016-633 

2099, respectively, due mainly to increases in ET, and over the Lower Colorado by -92 % but 634 

due mainly to decreases in precipitation.  635 

(2) Both the stomatal closure and surface “greening” effects represent the second largest 636 

contributor to the projected increases in ET following the warming effect.  The PM-based 637 

analysis indicates that the increasing atmospheric demand (through increases in 𝑣𝑝𝑑 and 𝛿) plays 638 

a dominant role over the increasing available energy (through changes in 𝑅𝑛) due to increases in 639 

downward longwave radiation, surface “greening” (increases in LAI), and “darkening” 640 

(shrinking snow cover). 641 

(3) The two counteracting effects of surface “greening” and stomatal closure are roughly 642 

compensatory at the HUC2 river basin scale, and therefore the projected changes in ET and 643 

runoff under RCP8.5 (CTRL) show a magnitude of change similar to those with constant CO2 644 

concentration (CON-CO2) across the Western US HUC2 rivers. However, the strength of the 645 

two effects are dependent on vegetation types distributing over different elevation bands, with 646 

the stomatal closure effect exceeding the “greening” effect for evergreen needleleaf forests over 647 

low elevation bands (< ~1,500 m). 648 

This study suggests that both the surface “greening” and stomatal closure effects are 649 

important factors and should be considered together in runoff and water availability projections. 650 

In contrast, projections with prescribed LAI seasonal cycle without year-to-year variations (i.e., 651 

without the “greening” effect) would lead to misleading results. 652 
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Appendix  671 

We quantified the attribution of ET changes based on the Penman-Monteith equation 672 

(Monteith, 1965).  673 

     𝜆𝐸𝑇 =
𝛿𝑅𝑛+𝜌𝑎𝐶𝑝𝑣𝑝𝑑/𝑟𝑎

𝛿+𝛾(1+𝑟𝑠/𝑟𝑎)
           (A1) 674 

where 𝜆 is the latent heat of vaporization (J/kg); ET is the evaporation flux (kg/(m
2
/s)); 𝛿 is the 675 

slope of the saturation vapor pressure-temperature relationship (Pa/K); 𝑅𝑛 is the total available 676 

energy (equivalent to the sum of sensible and latent heat fluxes; W/m
2
); 𝜌𝑎 is the air density 677 

(kg/m
3
); 𝐶𝑝 is the specific heat of air (J/(kg/K)); 𝑣𝑝𝑑 is the vapor pressure deficit of the air (Pa); 678 

𝛾  is the psychrometric constant (Pa/K); 𝑟𝑎  is the aerodynamic resistance (s/m); and 𝑟𝑠  is the 679 

surface resistance. 680 

The change in ET can be approximated as the sum of ET changes caused by changes in 𝑅𝑛, 681 

𝑣𝑝𝑑, 𝑟𝑠, 𝑟𝑎, and 𝛿, following Y Yang et al. (2019), Ban et al. (2020), and Neto et al. (2020): 682 

                ∆𝐸𝑇 ≈
𝜕𝐸𝑇

𝜕𝑅𝑛
∆𝑅𝑛 +

𝜕𝐸𝑇

𝜕𝑣𝑝𝑑
∆𝑣𝑝𝑑 +

𝜕𝐸𝑇

𝜕𝑟𝑠
∆𝑟𝑠 +

𝜕𝐸𝑇

𝜕𝑟𝑎
∆𝑟𝑎 +

𝜕𝐸𝑇

𝜕𝛿
∆𝛿       (A2) 683 

where the first derivatives of the five dependent variables in Equation (A2) are as follows: 684 
𝜕𝐸𝑇

𝜕𝑅𝑛
=

𝛿

𝛾[𝛿+𝛾(1+
𝑟𝑠
𝑟𝑎

)]
              (A3) 685 

𝜕𝐸𝑇

𝜕𝑣𝑝𝑑
=

𝜌𝑎𝐶𝑝

𝜆𝑟𝑎[𝛿+𝛾(1+
𝑟𝑠
𝑟𝑎

)]
            (A4) 686 

𝜕𝐸𝑇

𝜕𝑟𝑠
=

−𝛾[𝛿𝑅𝑛+
𝜌𝑎𝐶𝑝𝑣𝑝𝑑

𝑟𝑎
]

𝜆𝑟𝑎[𝛿+𝛾(1+
𝑟𝑠
𝑟𝑎

)]2
            (A5) 687 

𝜕𝐸𝑇

𝜕𝑟𝑎
=

𝛾𝑟𝑠[𝛿𝑅𝑛+
𝜌𝑎𝐶𝑝𝑣𝑝𝑑

𝑟𝑎
]

𝜆𝑟𝑎
2[𝛿+𝛾(1+

𝑟𝑠
𝑟𝑎

)]2
−

𝜌𝑎𝐶𝑝𝑣𝑝𝑑

𝜆𝑟𝑎
2[𝛿+𝛾(1+

𝑟𝑠
𝑟𝑎

)]
         (A6) 688 

𝜕𝐸𝑇

𝜕𝛿
=

𝑅𝑛

𝜆[𝛿+𝛾(1+
𝑟𝑠
𝑟𝑎

)]
−

𝛿𝑅𝑛+
𝜌𝑎𝐶𝑝𝑣𝑝𝑑

𝑟𝑎

𝜆[𝛿+𝛾(1+
𝑟𝑠
𝑟𝑎

)]2
          (A7) 689 
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