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Abstract

In this study, an effective post-processing approach has been examined to improve skill of NMME precipitation forecasts. This

method is based on the existence of a correlation between the historical raw forecast and observational data. In this respect, the

Copula-Bayesian approach was used along with the Normal Kernel Density marginal distribution, kernel Copula function, and a

novel approach to select final improved forecast data amongst the existing candidates on the calculated Conditional Probability

Distribution Functions (CPDF). In this approach, called the Double Copula method, four input variables are effective for

determining the improved NMME data. These are 1) the likelihood of an improved forecast (as a probable observation) for a

given raw forecast (CPDFf) 2) the likelihood of raw forecast for the corresponding improved forecast (CPDFo) 3) the probability

of occurrence of raw and 4) the probability of occurrence of improved forecast data (as PDF). The evaluation of the proposed

method for improving the precipitation forecast by the NMME model has been performed in Karoon basin, Iran. Here, the

data of 1982-2010 for the calibration period (hindcast) and 2011-2018 (forecast) to validate the results have been used. The

results show that the improved forecast data is more reliable due to several achievements namely; 1) higher spatial and temporal

accuracy and consistency are observed, 2) extreme values of precipitation are better detected, and finally, 3) during different

length of time, the involved uncertainties have been reduced significantly in comparison with raw data.
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Abstract 15 

In this study, an effective post-processing approach has been examined to improve skill of 16 

NMME precipitation forecasts. This method is based on the existence of a correlation between the 17 

historical raw forecast and observational data. In this respect, the Copula-Bayesian approach was 18 

used along with the Normal Kernel Density marginal distribution, kernel Copula function, and a 19 

novel approach to select final improved forecast data amongst the existing candidates on the 20 

calculated Conditional Probability Distribution Functions (CPDF). In this approach, called the 21 

Double Copula method, four input variables are effective for determining the improved NMME 22 

data. These are 1) the likelihood of an improved forecast (as a probable observation) for a given 23 

raw forecast (CPDFf) 2) the likelihood of raw forecast for the corresponding improved forecast 24 

(CPDFo) 3) the probability of occurrence of raw and 4) the probability of occurrence of improved 25 

forecast data (as PDF). The evaluation of the proposed method for improving the precipitation 26 

forecast by the NMME model has been performed in Karoon basin, Iran. Here, the data of 1982-27 

2010 for the calibration period (hindcast) and 2011-2018 (forecast) to validate the results have 28 

been used. The results show that the improved forecast data is more reliable due to several 29 

achievements namely; 1) higher spatial and temporal accuracy and consistency are observed, 2) 30 

extreme values of precipitation are better detected, and finally, 3) during different length of time, 31 

the involved uncertainties have been reduced significantly in comparison with raw data. 32 

1. Introduction 33 

Accurate precipitation forecasting is one of the most important and challenging issues, especially 34 

in flood prone areas. These areas are extremely vulnerable to flash flooding during heavy storms. 35 

Between 1987 and 1997, 15 percent of natural disasters were due to floods which not equally 36 

distributed around the world. According the World Meteorological Organization (2011) report in 37 
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this same period, 44% of them occurred in Asia, claimed more than 228,000 lives (equivalent to 38 

93% of flood deaths in the world). Based on the third NU World Conference in Sendai (Japan), 39 

the flood risk reduction was outlined as one of the desired targets of 2015-2030. (Ibrahim et al., 40 

2017; Salvati et al., 2018). In this regard, accurate precipitation forecasting is one of the advances 41 

in the right direction of flood early warning systems. The longer the forecast horizon for 42 

precipitation data, the greater the preparedness for possible warnings. Recently different dynamic 43 

models have been developed to predict various climate variables such as monthly and seasonal 44 

precipitation (Dehban et al., 2020). Amongst many, the North American Multi-Model Ensemble 45 

(NMME) is one of the most well-known GCMs (General Circulation Models) which provide an 46 

effective seasonal precipitation forecast (Becker et al., 2020; Roy et al., 2020; Slater et al., 2019). 47 

The NMME models predictions are accompanied by some uncertainties due to initial assumptions, 48 

model limitations, and inaccurate forecast ensembles (Rayner et al., 2005; Tao et al., 2014; Wu et 49 

al., 2011). Not surprisingly, many works have been tried to improve the accuracy of predictions 50 

by statistical post-processing methods. In all these methods establishing a good relationship 51 

between the observational and the predicted NMME model’s data is the most common important 52 

task. In this regard, the bivariate joint distributions, Meta-Gaussian distribution function (Kelly & 53 

Krzysztofowicz, 1997), Bayesian Joint Probability (BJP)(Robertson et al., 2013), Neural Networks 54 

(Pakdaman et al., 2020), Hybrid Models (Xu et al., 2018; Yazdandoost et al., 2020) and Copula 55 

base models (Amir AghaKouchak et al., 2010; Khajehei et al., 2018; Sadegh et al., 2017), have 56 

been widely used. Most of these post-processing methods used parametric distributions to simulate 57 

each variable’s behavior (observation or predicted data) or parametric bivariate functions. 58 

However, within the context of Copula-based models, there is a unique ability to use parametric, 59 

non-parametric, and semi-parametric distributions for fitting the bivariate distribution that best fit 60 
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observed and predicted variables (Chen & Huang, 2007). Fully parametrically estimation of 61 

copulas is performed by determining parametric models for marginal distributions and copulas 62 

(firstly suggested by Oakes (1982) in the context of Clayton copula). Later, semiparametric 63 

estimation was suggested to use non-parametric marginal distributions to achieve a parametric 64 

copula (Genest et al., 1995; Oakes, 1986). One of these methods' deficiencies is the elimination of 65 

the relation between extreme observed data with the forecasts or vice versa. Consequently, they 66 

could not predict the extreme values of precipitation. However, accurate estimation of extreme 67 

values is the most important issue in flood prone areas (Exum et al., 2018). Using the non-68 

parametric estimations for both of the marginal distributions and copula function (such that they 69 

are parameter-free) can overcome the mentioned weakness (Bouri et al., 2019; Chen & Huang, 70 

2007).  Therefore, proposing a non-parametric estimator can play an effective role compared to 71 

the parametric copula model.  72 

Based on the literature, while preparing for possible future floods has always been emphasized, 73 

very little attention has been paid (from academics) to the assessment and improvement of NMME 74 

models' skill for extreme forecast precipitation, which may lead to flooding (Slater et al., 2019). 75 

Following these efforts, this study aims to improve NMME precipitation forecasts in a region that 76 

has experienced several extreme rainfall events over the past few years. Hence, in this study, the 77 

proposed post-processing is employed by non-parametric Copula -Bayesian approach with focuses 78 

on extreme and non-extreme values. 79 

The Copula-Bayesian method causes the conditional probability density function (CPDF), 80 

which describes the likelihood of observational data event, given each raw forecast data. There are 81 

diverse methods for choosing the improved forecast found on CPDF (Khajehei & Moradkhani, 82 

2017; Madadgar & Moradkhani, 2012). One of the most common methods is picking out the 83 
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Maximum Likelihood (ML) of CPDF as the desired improved forecast. In the parametric method, 84 

it is an individual point, but in semi-parametric and non-parametric methods, there are multiple 85 

relative maximum points in the CPDF.  86 

However, in using this method, there is no assurance that the selected data is the most accurate 87 

data. Therefore, another objective of this paper is to introduce a novel method based on the non-88 

parametric copula estimator to recognize the extreme values as better as possible by distinguishing 89 

between the maximum relative values and choose the best one.  90 

The rest of the paper is organized as the following. First, the study area and the used data are 91 

presented in section 2. Then, in section 3, the proposed methodology of research is introduced 92 

through four subsections, pursing; 1) preparation of input data for the following steps, 2) 93 

estimation of CPDF based on Copula-Bayesian method for each raw forecast data, 3) description 94 

of the proposed new approach for selecting the best improved data and 4) introduction of some 95 

statistical criteria for evaluating the skill of forecast data. Section 4 presents the obtained results, 96 

and finally, the concluding remarks are condensed in section 5. 97 

2. Case Study and Data 98 

2.1. . Study area 99 

This study investigates the Karoon river watershed in south-west Iran with about 67000km2 area 100 

(Figure1). According to Iran’s hydrological divisions, this region is a part of the Persian Gulf basin. 101 

Based on the De Martonne classification of aridity index (de Martonne, 1926), the watershed 102 

climate has a great diversity. As the largest river by discharge, the Karoon river is separated into 103 

two main branches namely; Arvand and Bahmanshir rivers and continues to the Persian Gulf.  104 

In recent years, extreme precipitation events have been observed in this watershed. One of these 105 

devastating precipitations occurred in 2019. A series of devastating floods and flash floods have 106 
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deluged large parts of the watershed following the unprecedented rainfall events from March 17th 107 

to April 20th. During this incident, the amount of rainfall accumulation for Khorram Abad, Ahvaz, 108 

and Shahrekord located in the Karoon basin is 71%, 52%, and 49% of the average annual rainfall 109 

from 2003 to 2018 for each city, respectively. Therefore, accurate precipitation forecasts can be 110 

used as an effective management tools to avoid or reduce the damage of the mentioned natural 111 

disasters, prevent further degradation of natural resources and promote sustainable development.  112 

 113 

Figure 1. The location and topography of the study area. 114 

The observed long-term average monthly precipitation for this region is shown in Table 1.  115 

Table 1. Observed Long-term Average Monthly Precipitation 116 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Prec. (mm) 66.11 46.74 52.4 31.3 16.13 9.62 9.44 9.71 9.48 14.77 39.07 59.75 

Karoon 

   River Basin

IRAN

Persian Gulf

¯

https://www.timeanddate.com/calendar/months/february.html
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2.2. .  Data Sources 117 

2.2.1. Observation data 118 

Global Precipitation Climatology Centre (GPCC) data firstly has been established in 1989 by 119 

Germany's National Meteorological Service, the Deutscher Wetterdienst (DWD), on request of the 120 

World Meteorological Organization (WMO) (Yazdandoost et al., 2020). It is a precipitation dataset 121 

based on around 80000 observational stations from several different sources and provides different 122 

spatial resolution gridded data (2.5° x 2.5°, 1.0° x 1.0°, 0.5° x 0.5°, and 0.25° x 0.25° resolution). 123 

In this study, the monthly records of GPCC from 1982 to 2018 with the spatial resolution of a one-124 

degree cell (according to the forecast's resolution) as the reliable surrogate reference gridded data 125 

for the observed precipitation (Azizi et al., 2015; Darand & Zand, 2016; Rezayi et al., 2011) was 126 

used. 127 

2.2.2. Forecast data 128 

Five NMME models have been utilized at 1° (one-degree) spatial resolution to provide monthly 129 

forecasts of precipitations over the study area. More information about the used NMME models is 130 

condensed in Table 2. The ensemble means of each model from 1982 to 2010 (hindcast or 131 

reforecast period) have been used to form non-parametric Copula and reforecast-based calibration. 132 

The presented post-processing process's validity has been assessed (directly to each model's 133 

ensemble means) for the data from 2011 to 2018 as the forecast period.  134 

Table  2. Summary of the Five NMME Models and their Characteristics, used in the study 135 

Ensemble size Forecast period Hindcast period Model 

24 (28)* 2012-present 1982-2010 NCEP-CFSv2 

12 2011-present 1980-2010 GFDL 

10 2011-present 1981-2010 CMC1-CanCM3 

10 2011-present 1981-2010 CMC2-CanCM4 

10 2011-present 1982-2010 NCAR-CCSM4 

*Note. The value in the parenthesis presents the ensemble size for the forecast 

period.  
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3. Methodology 136 

To improve the NMME precipitation forecast data as the main objective of this research, a three-137 

step post-processing method based on the Copula-Bayesian approach is proposed (Figure 2).  138 

As this framework benefited from copula analysis twice, it is so called the Double Copula in 139 

short, here. A detailed description of the steps is described in the following. In this approach, the 140 

existence of the correlation between the historical observations and estimated forecasts (hindcast 141 

period) is supposed, and it is expected that this assumed correlation would remain consistent in the 142 

future (forecast period) (Khajehei & Moradkhani, 2017).  143 
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 144 

Figure 2. The dominant perspective of the Post-Processing. 145 
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3.1. .  Input data preparation 146 

First, the available data must be classified to the observational and the forecast time series for 147 

each month of the year. In this regard, the GPCC and the ensemble raw NMME data time-series 148 

are formed for each month separately. Then, the obtained time-series containing the monthly 149 

precipitation data (with the annual time steps for each 1-degree cell) will be used to prepare a 150 

marginal distribution. Later, the normal kernel density distributions as the marginal distributions 151 

are separately fitted to the historical observations and model in the analyses period (which its 152 

efficiency was approved in Yazdandoost et al. 2020 & Yazdandoost et al. 2021). The historical 153 

period from 1982 to 2010 is used to set the marginal distribution and kernel Copula function. 154 

Finally, as an input variable, the obtained fitted distributions will be evaluated for the forecast 155 

period (2011 to 2018).  156 

3.2. .  Estimation of Conditional Probability Density Function (CPDF) 157 

A dependence among the observational and predicted precipitation data can be completely 158 

described by the Copula based methods. Let 𝐹𝑥𝑖
(𝐹𝑥𝑖

= 𝑢𝑖) be the marginal distribution of each ith 159 

variable (𝑥𝑖). The Sklar’s Theorem (Sklar, 1959) assures the existence of a unit cube functions, C, 160 

such that: 161 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐶[𝐹𝑥1
(𝑥1), 𝐹𝑥2

(𝑥2), … , 𝐹𝑥𝑛
(𝑥𝑛)] = 𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) (1) 

See (Nelsen, 2007) for a comprehensive overview of copulas and their mathematical properties. 162 

The probability distribution function 𝑐(𝑢1, … , 𝑢𝑛) is calculated according to equation (2). 163 

𝑐(𝑢1, … , 𝑢𝑛) =
𝜕2𝐶(𝑢1, … , 𝑢𝑛)

𝜕𝑢1 … 𝜕𝑢𝑛
 

(2) 

Also, the joint distribution function (𝑓), which will be used in predicted precipitation 164 

improvement, is as below: 165 
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𝑓(𝑥1, … , 𝑥𝑛) = 𝑐(𝑢1, … , 𝑢𝑛) ∏ 𝑓𝑥𝑖
(𝑥𝑖)

𝑛

𝑖=1
 

 (3) 

By placement the kernel copula function (non-parametric estimation of Copula) as a joint 166 

distribution function in the Bayesian equation (equation 4a), the CPDF will be created as the 167 

likelihood of observational data event, given each raw forecast data (equation 4b).  168 

𝑓(𝑓, 𝑜) = 𝑓(𝑓). 𝑓(𝑜|𝑓) (4a) 

𝑓(𝑜|𝑓) =
𝑓(𝑓, 𝑜)

𝑓(𝑓)
 (4b) 

For bivariate joint distribution function, CPDF in equation (4b) can be calculated as: 169 

𝑓(𝑠𝑜|𝑓𝑡) =
𝑐(𝑈𝑠 = 𝑢𝑠, 𝑈𝑓 = 𝑢𝑓)𝑓(𝑓𝑡)𝑓(𝑠𝑜)

𝑓(𝑓𝑡)
= 𝑐(𝑈𝑠 = 𝑢𝑠, 𝑈𝑓 = 𝑢𝑓)𝑓(𝑠𝑜) (5) 

In the last equation 𝑓(𝑠𝑜|𝑓𝑡) is the CPDF in time 𝑡, 𝑓(𝑠𝑜) and 𝑓(𝑓𝑡) are the marginal distributions 170 

of the samples from the observation and forecast at time t, respectively. The sample data has 500 171 

random data with the same distribution of observations in the hindcast period (Khajehei & 172 

Moradkhani, 2017). For each specific raw forecast data, the process mentioned above for creating 173 

CPDF (as CPDFf) will be carried out. 174 

3.3. .  Determination of improved forecast data 175 

The CPDFf illustrates the likelihood of sample observation data to the particular raw forecast.  176 

As discussed before, the unresolved underlying question in using non-parametric or semi-177 

parametric distribution is how the improved forecast of CPDFf should be selected. In this regard, 178 

this study has offered a novel method to identify the best improvement for the predicted data 179 

between relative maximums of calculated CPDFf in the semi-parametric or non-parametric 180 
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approaches. In order to do this, for each pair of correlated events, equation 6 is established as the 181 

same as the equation 4b. 182 

𝑓(𝑓|𝑜) =
𝑓(𝑜, 𝑓)

𝑓(𝑜)
 (6) 

So, for each sample observation (𝑂𝑖) which is the relative maximum of CPDFf, we have: 183 

𝐶𝑃𝐷𝐹𝑂𝑖
= 𝑓(𝑠𝑓|𝑂𝑖,𝑡) =

𝑐(𝑈𝑓 = 𝑢𝑓 , 𝑈𝑠 = 𝑢𝑠)𝑓(𝑠𝑓)𝑓(𝑂𝑖,𝑡)

𝑓(𝑂𝑖,𝑡)
= 𝑐(𝑈𝑓 = 𝑢𝑓 , 𝑈𝑠 = 𝑢𝑠)𝑓(𝑠𝑓) (7) 

In which, 𝑠𝑓 is 500 random sample data with the forecast time series’ distribution. 𝐶𝑃𝐷𝐹𝑂𝑖
 refers 184 

to the CPDF of each ith relative maximum (𝑂𝑖) of 𝐶𝑃𝐷𝐹𝑓. 185 

Next, the relative maximums of 𝐶𝑃𝐷𝐹𝑂𝑖
(𝐹𝑗), which are closer to the raw forecast (𝑓𝑡) are 186 

chosen. Each of 𝑂𝑖 and 𝐹𝑗 has a unique conditional likelihood of occurrence based on 𝐶𝑃𝐷𝐹𝑓 and 187 

𝐶𝑃𝐷𝐹𝑂𝑖
. In this study, the Technique for Order Preference by Similarity to Ideal Solution 188 

(TOPSIS) method as a decision-making tool, which developed by (Hwang & Yoon, 1981), is used 189 

to prioritize the 𝑂𝑖𝑠. In this multi-criteria decision-making method, the selection alternatives 190 

(maximum relative points) are ranked based on the degree of similarity to the desired values 191 

(observation) and the one with the first rank is introduced as the best potential for selection. See 192 

(Garg, 2019) for the related equations and method properties. The likelihood of an occurrence 193 

forecast given the observation and vice versa besides the PDF of each sample observation and 194 

forecast are the four input criteria of TOPSIS to introduce the sample observation by taking the 195 

relative closeness to the ideal solution.  196 

3.4. . Assessment of the method validation  197 

The reliability of raw NMME data is evaluated by the KGE criterion (equation 8). According to 198 

Khajehei and Moradkhani (2017), the acceptable amount of the KGE value was considered more 199 
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than 0.6. For the fewer values, the importance of the post-processing appears. Next, Validation 200 

and quantification of the raw or improved NMME models’ uncertainties are fundamental issues to 201 

evaluate their performance. Four volumetric indices developed by A AghaKouchak and Mehran 202 

(2013) is used to assess the skill of forecast NMME models (raw and improved values), especially 203 

to detect extreme forecast of precipitation values (equation 9-12). The first one, the Volumetric 204 

Hit Index (VHI), calculates the volume of correctly detected improved precipitation volume and 205 

missing observation values. The Volumetric False Alarm Ratio (VFAR) calculates the volume of 206 

false simulation (here the inaccurate improved data) to the volume of simulations. The Volumetric 207 

Miss Index (VMI) describes the missing observation’s volume to the correctly detected simulation 208 

volume and missing observations. At last, the Volumetric Critical Success Index (VCSI) which 209 

indicates an overall measure of volumetric performance such as volumetric hit, false alarm and 210 

misses (A AghaKouchak & Mehran, 2013). One of the benefits of volumetric indexes is their 211 

ability to decompose biases of improved data by evaluating different thresholds. According to 212 

main purpose of this study, these indexes are a suitable tool to evaluate the efficient performance 213 

of NMME data post-processing and extreme precipitation values’ detection. In this study, the 214 

thresholds value applied to volumetric indices calculations is selected based on extreme value 215 

detection. Extreme precipitation should be rarer than the tenth or ninetieth percentile of the 216 

observed density probable precipitation function (Shaffie et al., 2019). For the areas with a high 217 

risk of flooding, the threshold value can be considered 0.9, as Shaffie et al. (2019) suggested. 218 

Table 3. Equations used for Validation and Quantification 219 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 − (𝛼 − 1)2 − (𝛽 − 1)2 (8) 

𝑉𝐻𝐼 =
∑ (𝑆𝐼𝑀𝑖|(𝑆𝐼𝑀𝑖 > 𝑡 & 𝑂𝐵𝑆𝑖 > 𝑡))𝑛

𝑖=1

∑ (𝑆𝐼𝑀𝑖|(𝑆𝐼𝑀𝑖 > 𝑡 & 𝑂𝐵𝑆𝑖 > 𝑡))𝑛
𝑖=1 + ∑ (𝑂𝐵𝑆𝑖|(𝑆𝐼𝑀𝑖 ≤ 𝑡 & 𝑂𝐵𝑆𝑖 > 𝑡))𝑛

𝑖=1

 (9) 

𝑉𝐹𝐴𝑅 =
∑ (𝑆𝐼𝑀𝑖|(𝑆𝐼𝑀𝑖 > 𝑡 & 𝑂𝐵𝑆𝑖 ≤ 𝑡))𝑛

𝑖=1

∑ (𝑆𝐼𝑀𝑖|(𝑆𝐼𝑀𝑖 > 𝑡 & 𝑂𝐵𝑆𝑖 > 𝑡))𝑛
𝑖=1 + ∑ (𝑆𝐼𝑀𝑖|(𝑆𝐼𝑀𝑖 > 𝑡 & 𝑂𝐵𝑆𝑖 ≤ 𝑡))𝑛

𝑖=1

 (10) 
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𝑉𝑀𝐼 =
∑ (𝑂𝐵𝑆𝑖|(𝑆𝐼𝑀𝑖 ≤ 𝑡 & 𝑂𝐵𝑆𝑖 > 𝑡))𝑛

𝑖=1

∑ (𝑆𝐼𝑀𝑖|(𝑆𝐼𝑀𝑖 > 𝑡 & 𝑂𝐵𝑆𝑖 > 𝑡))𝑛
𝑖=1 + ∑ (𝑂𝐵𝑆𝑖|(𝑆𝐼𝑀𝑖 ≤ 𝑡 & 𝑂𝐵𝑆𝑖 > 𝑡))𝑛

𝑖=1

 (11) 

𝑉𝐶𝑆𝐼

=
∑ (𝑆𝐼𝑀𝑖|(𝑆𝐼𝑀𝑖 > 𝑡 & 𝑂𝐵𝑆𝑖 > 𝑡))𝑛

𝑖=1

∑ (𝑆𝐼𝑀𝑖|(𝑆𝐼𝑀𝑖 > 𝑡 & 𝑂𝐵𝑆𝑖 > 𝑡))𝑛
𝑖=1 + (𝑂𝐵𝑆𝑖|(𝑆𝐼𝑀𝑖 ≤ 𝑡 & 𝑂𝐵𝑆𝑖 > 𝑡)) + (𝑆𝐼𝑀𝑖|(𝑆𝐼𝑀𝑖 > 𝑡 & 𝑂𝐵𝑆𝑖 ≤ 𝑡))

 
 

(12) 

Parameters 

𝑟 correlation 

𝛼 the ratio of the variance of the forecast to the variance of the observation 

𝛽 the ratio bias 

𝑆𝐼𝑀𝑖 The NMME model value 

𝑂𝐵𝑆𝑖 The observation 

𝑛 Total number of observation (or NMME) data in the desired time-series 

𝑡 threshold 

4. Post-processing results 220 

In order to evaluate the accuracy of the raw precipitation data of each individual model ensemble 221 

mean, the consistency of data with the GPCC data for the most precipitated months was 222 

determined. Table 4 shows the evaluation of the KGE criterion for all the extent of study area 223 

during 1982-2018 and six rainiest months: 224 

Table  4. The KGE Values for the Six Rainiest Months 225 

December November April march February January Model 

0.13 0.25 -0.07 0.27 0.21 0.35 NCEP-CFSv2 

-0.08 -0.53 -0.44 -0.14 -0.25 -0.33 GFDL 

-0.2 -0.48 -0.85 -0.08 -0.24 -0.27 CMC1-CanCM3 

-0.19 -0.4 -0.53 0.005 -0.12 -0.32 CMC2-CanCM4 

0.22 0.2 -0.08 0.31 0.31 0.25 NCAR-CCSM4 

As seen, in all studied months, the amount of KGE of the study area is lower than 0.6; hence, it 226 

is essential to do the post-processing cell by cell.  227 

As there is no intent to limit this study, the proposed post-processing procedure is applied for 228 

raw forecasts with 1 to 6-month length. However, in the first step, detailed information of the 229 

analysis for the 1-month length is described. Figure 3 shows the raw and improved monthly 230 

precipitation for January as the rainiest month in the forecast period compared to the GPCC data 231 
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(for the 1-month length). According to the figure, the raw data predicted by CanCM4 is much less 232 

than the GPCC data, while the raw predicted values of GFDL model has been shown better 233 

performances. Post-processing has brought all the model’s raw data values closer to the GPCC 234 

data and even the spatial patterns of post-processed precipitations are approximately similar to the 235 

GPCC value’s pattern, confirming that most of the rainfall is along with the mountainous parts (in 236 

the eastern part) of the region. 237 

 238 

Figure 3 . The Spatial distribution of Karoon basin precipitation for January in forecast period.. 239 

In order to assess the skill of post-processing method, Table 5 presents the comparison of each 240 

raw and improved NMME models forecasts against the GPCC calculated over the extent of study 241 

area. In this table, the columns refer to the results of one (January) to the six-month (January to 242 

June) length forecasts starting from January of years 2011 to 2018.  243 

Table 5. Comparison of the Raw and Improved NMME Models Against the GPCC data (% error) 244 

NMME model Length (month) 
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J JF JFM JFMA JFMAM JFMAMJ 

CanCM4 
raw -68 -71.4 -77 -72.2 -66.7 -66.1 

improved 29.5 23.2 -0.89 -6.9 0.2 3.4 

CanCM3 
raw -40.7 -25 -22.9 -12.6 -4.5 -3.1 

improved 18.5 -3.7 1.7 17.7 14.88 17.55 

CFS2 
raw -12.2 37.7 33.4 49.8 55.9 56.6 

improved -11.8 10.2 -2.8 0.5 14.9 -5 

CCSM4 
raw -20 -15.8 -26.1 -18.7 -11.77 -10.9 

improved 7.5 23.1 12.8 12 13.91 2.01 

GFDL 
raw 29.7 26.2 32.67 49.5 61.63 62.9 

improved 14.4 10.7 17.6 13.86 15.29 11.5 

As seen in this table, the raw data of CanCM3, CanCM4 had the lowest estimates while CCSM4 245 

is almost underestimated and the GFDL is almost overestimated. However, applying the Double 246 

Copula post-processing method has shown that none of the model always have the best 247 

performance for each length of forecasts consequently investigation of the skill of all models is a 248 

proper way for facing with involved uncertainties. As expected, in most models and different 249 

studied periods, the model error after post-processing has been significantly reduced. 250 

In Figure 4, Taylor diagram as an efficient instrument is used to display the quality of model 251 

improvements against the GPCC values for 1 to 6-month length for various forecast models. 252 

According to the displayed results, the shorter the forecast length, the higher dispersion of the 253 

Taylor diagram’s estimated variables for raw data. In other words, in higher periods, almost all 254 

models (except CFSv2) have presented closer results. In terms of CC, in all different length 255 

analysis, most of the improved NMME models have been able to make significant positive 256 

correlation with observational data while among raw model data, the CCSM4 has the only positive 257 

correlation with GPCC data. In terms of RMSE, the estimated values of improved data have shown 258 

significant increase against the raw model data. Generally, it seems that CCSM4 had the best and 259 

CanCM3 had the worst performance among the raw data. 260 
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 261 

Figure 4 . The Taylor diagram of raw and post-processed NMME models with 1 to 6-month period in Karoon 262 
basin. 263 

To evaluate the performance of NMME models in terms of temporal conditions, each model's 264 

skill was evaluated against the observational data at each 1-degree pixel. As a non-limiting 265 

example, Figure 5 shows the temporal distributions of the five NMME model’s precipitation with 266 
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1-month length at the region. In this figure, each subplot presents a comparison of observational 267 

precipitation data with each raw and improved NMME models forecasts. As seen, the number of 268 

months with heavy rainfall has not changed over the past years significantly, and most of these 269 

rainfalls had occurred from October to April. The results show that improved data are more 270 

consistent with observation data. Therefore, the efficiency of the Double Copula post-processing 271 

method has been proved.  272 

Furthermore, the inter-comparison of models shows that the raw GFDL model often tends to 273 

overestimate precipitation. Besides, it has estimated the highest precipitation values compared to 274 

the observed values, and the CFSv2 model has the most similarity to the observation data. Based 275 

on the obtained results, it can be claimed that the proposed method is truly able to improve the 276 

overall results and identify the extreme precipitation values. Since the intensity or frequency of 277 

heavy rains in the region has not increased significantly, it can be considered that the cause of 278 

recent floods in the region is maybe due to increased urbanization and/or change in land use/cover, 279 

which subsequently causes a change in runoff. 280 



manuscript submitted to replace this text with name of AGU journal 

 281 

Figure 5 . The temporal distribution of precipitation. 282 
For precise investigation of post-processing ability to recognize extreme precipitations, the KGE 283 

and four mentioned volumetric indexes values for the January (1-month length) are investigated. 284 

Figure 6 (as a StarPie diagram) shows different models’ performance over the hindcast and forecast 285 
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periods. In this figure, each pie ranges from 0 to 1 (like volumetric indexes). The closer the index 286 

values to 1, the better the model performance. For the VMI and VFMR indexes, the values of 1- 287 

VMI and 1- VFMR are used as the substitutes. In the case of negative KGE values, they have been 288 

specified by a star sign (*). As shown, the Double Copula method has high ability to improve the 289 

raw NMME data and detect extreme values. As seen in Figure 6, amongst the raw data results, the 290 

estimated KGE values for the raw CFSv2 and CCSM4 models are higher than the others. Due to 291 

other models' negative KGE values, using them for other hydrological calculations will definitely 292 

lead to unreliable results. 293 

According to the volumetric indices shown in the figure, during the forecast period, the extreme 294 

precipitation values are better identified in the raw GFDL model. As seen in the second row of 295 

Figure 6, the post-processed precipitation values in both hindcast and forecast periods have been 296 

improved significantly. Among these modified precipitation values, the KGE index has the lowest 297 

value while the CFSv2 has the least value. In other words, modified forecasts can still be improved 298 

to gain sufficient certainty. However, in terms of other indices, the post-processing algorithm has 299 

been very successful. 300 

  301 

Figure 6 . The KGE and volumetric indices results of NMME models for January 302 
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5. Conclusion 303 

Seasonal precipitation forecast is one of the main inputs of hydrological forecasting models. If 304 

these forecasts have good reliability, they can provide useful  information for decision-makers in 305 

water resources management.  306 

In this paper, a novel Copula-based Bayesian approach named Double Copula is used as the 307 

post-processing method to value the use of non-parametric distribution for both of the marginal 308 

distributions and copula function in order to improve the NMME precipitation forecasts. Here, the 309 

normal kernel density distribution function as marginal distribution and kernel Copula function as 310 

bivariate function are employed to create Conditional Probability Distribution Function (CPDF). 311 

Introducing several relative maximum likelihoods in CPDF can make a challenge for choosing the 312 

best improved data. In order to address this issue, here, a novel method is suggested that chooses 313 

the relative maximum points and applies the Copula Bayesian approach for the second time on the 314 

selected values diversely to receive the initial forecast value for given sample observations. 315 

Finally, the TOPSIS decision-making method is applied to pick out the most likelihood sample 316 

observation. The proposed post-processing method is examined on Karoon Basin, one of the most 317 

experienced flood damage in Iran. Five NMME models for the hindcast (1982-2010) and forecast 318 

periods (2011-2018) are used. To evaluate the accuracy of the ensemble’s mean, the GPCC 319 

observational database is used as the observation data. The KGE values reveal the requirement of 320 

model output improvement. By investigating the obtained results for forecasts with 1 to 6-month 321 

length, we show: 322 

1- The spatial and temporal distributions of GFDL raw models is more similar to the 323 

observational data. 324 

2- GFDL raw models’ values are relatively performed better than other models. Conversely, 325 

CanCM3 and CanCM4 models miss the early months of each year.  326 
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3- According to the post-processed data, the spatial and temporal distributions are highly 327 

consistent with the observations. However, in creating time-series and subsequent 328 

processing methods, the spatial and temporal coherence of data with adjacent cells is 329 

ignored. 330 

4- Based on the used volumetric indexes (VHI, VMI, VFMR, and VCSI) the raw forecast 331 

model values have low skill for estimating extreme values of precipitation while after the 332 

post-processing procedure, the strength of the Double Copula method in determining the 333 

extreme values were demonstrated.  334 

5- The higher accuracy and correlation of different improved NMME data imply lower 335 

uncertainties than raw estimations.   336 
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