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Abstract

Mesoscale ocean eddies dramatically impact oceanic material transport, momentum and energy budgets, and large-scale ocean
circulation; therefore, reasonably diagnosing their effects is crucial for providing insights into eddy parameterization scheme
development. In this work, a Reynolds and coarse-graining hybrid eddy transport diagnostic framework is proposed and applied
in the Southern Ocean. Both the isotropic transport coefficient and anisotropic transport tensor are diagnosed and decomposed
into contributions from transient and stationary eddies. The tensor can be split into its symmetric and antisymmetric parts,
and the symmetric tensor is further diagonalized to analyze the eigenvalues and eigenvectors. We verify that the anisotropic
assumption better fits the ocean mesoscale eddy transport process than the isotropic assumption, at least in the Southern
Ocean. We place particular emphasis on the transport tensor’s stationary component affected by large-scale topographies,
nonconservative processes, and large-scale flow structures and find that its influence is highly anisotropic horizontally and
varies vertically. We probe all tensor-related elements that emerge in our hybrid framework, especially the eigenvalues and
eigenvectors of the symmetric tensor. We reveal all three configurations of the major and minor eigenvalues that appear in
the Southern Ocean, where the one representing vortex filamentation is the most common scenario. In addition, we discover
a high randomness of the eigenvectors, which implies the possibility of a semideterministic and semistochastic anisotropic

parameterization scheme.
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Key Points:

e A Reynolds and coarse-graining hybrid eddy transport diagnostic frame-
work was developed to distinguish the transient and stationary eddies

e The anisotropic transport tensor and all the tensor-related quantities are
analyzed in the Southern Ocean

e The tensor’s stationary component can be affected by large-scale topogra-
phy, nonconservative processes, and large-scale flow structure

Abstract

Mesoscale ocean eddies dramatically impact oceanic material transport, momen-
tum and energy budgets, and large-scale ocean circulation; therefore, reasonably
diagnosing their effects is crucial for providing insights into eddy parameteriza-
tion scheme development. In this work, a Reynolds and coarse-graining hybrid
eddy transport diagnostic framework is proposed and applied in the Southern
Ocean. Both the isotropic transport coefficient and anisotropic transport tensor
are diagnosed and decomposed into contributions from transient and stationary
eddies. The tensor can be split into its symmetric and antisymmetric parts,
and the symmetric tensor is further diagonalized to analyze the eigenvalues and
eigenvectors. We verify that the anisotropic assumption better fits the ocean
mesoscale eddy transport process than the isotropic assumption, at least in the
Southern Ocean. We place particular emphasis on the transport tensor’s station-
ary component affected by large-scale topographies, nonconservative processes,
and large-scale flow structures and find that its influence is highly anisotropic
horizontally and varies vertically. We probe all tensor-related elements that
emerge in our hybrid framework, especially the eigenvalues and eigenvectors of
the symmetric tensor. We reveal all three configurations of the major and mi-
nor eigenvalues that appear in the Southern Ocean, where the one representing
vortex filamentation is the most common scenario. In addition, we discover a
high randomness of the eigenvectors, which implies the possibility of a semide-
terministic and semistochastic anisotropic parameterization scheme.

Plain Language Summary

The “flux-gradient” relationship, which links the eddy fluxes with the large-
scale background gradient fields through either a scalar transport coefficient or
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a transport tensor, is widely leveraged in mesoscale ocean eddy parameteriza-
tion. The scalar coefficient and the transport tensor represent the isotropic and
anisotropic assumptions, respectively. To use the “flux-gradient” relationship
in diagnostics, one needs to carry out scale separation between eddying motion
and large-scale motion. Most studies do this through zonal or temporal averag-
ing, although such averaging would lead to a loss of local information. In this
study, we apply either a spatial coarse-graining method or a 2D spatial filter to
define the mesoscale eddying structure as the deviation from the filtered large-
scale field. Then, the Reynolds’ temporal average is used to divide the eddy
effect into transient and stationary parts. In this way, we can diagnose how
stationary and transient eddies contribute to the tracer transport process and
provide insights into mesoscale eddy parameterization design.

1 Introduction

Ocean physical processes with a horizontal spatial scale of approximately 50-
500 km or near the first baroclinic Rossby deformation radius are usually called
ocean mesoscale motions; these include mesoscale eddies and meander struc-
tures. Mesoscale motions impact ocean material transport, momentum budget,
and large-scale ocean circulation and contain more than 90% of the ocean ki-
netic energy. Therefore, it is necessary to resolve the oceanic mesoscale process
in a numerical model. However, due to the current limitations of computing
power and high costs, the global climate system model that needs long-term in-
tegration cannot reach the resolution to resolve mesoscale processes. Designing
a reasonable parameterization scheme for this scale is still of great interest for
developing climate ocean models. For convenience, "mesoscale eddy” is used
below to represent all ocean mesoscale processes and structures.

Gent and McWilliams (1990) and Gent et al. (1995) proposed a mesoscale eddy
parameterization scheme to mimic the process of releasing the available potential
energy (APE) by baroclinic instability for application in a noneddy-resolving
ocean model (called GM parameterization). This scheme is widely practiced
in climate models and has been continuously developed over the previous three
decades (Treguier et al., 1997; Visbeck et al., 1997; Griffies, 1998; Griffies et
al., 1998; Marshall et al., 1999; Smith & Gent, 2004; Marshall et al., 2012; Mak
et al., 2017; Bachman, 2019). In essence, mesoscale eddy parameterization is
a turbulent closure problem. That is, the resolved scale quantities are used to
describe the overall effect of the unresolved or incompletely resolved mesoscale
eddy transport process for the evolution of large-scale tracer fields (Vallis, 2017).
In practice, the "flux-gradient” relationship is often applied; namely, the eddy
tracer flux and the local large-scale tracer gradient field are associated by the
eddy transport coefficient ( ) or the transport tensor (K) (Nikurashin & Ferrari,
2010; Vallis, 2017).

Diagnosing the eddy transport coefficient and the transport tensor and identi-
fying the factors that might determine them have become important topics in
mesoscale eddy parameterization development. In addition to using observa-
tion data for estimation, the diagnosis of the mesoscale eddy transport effect



can also leverage high-resolution model data and separate information from dif-
ferent scales to estimate the integral effect of smaller scales on the large-scale
background field. In the "flux-gradient” relationship, this collective effect is
expressed in the eddy transport coefficient () or the eddy transport tensor (K).

A key difference between the eddy transport coefficient ( ) and the eddy trans-
port tensor (K) is that is based on the assumption of isotropic eddy diffusion,
while K assumes anisotropic eddy transport. Furthermore, the symmetrical part
(S) of K can be used to express anisotropic eddy diffusion, and the isotropic
case is a specific scenario in which the eigenvalues of S are equal (see section
2.1 of this paper or Fox-Kemper et al., 2013 for details). Currently, most stud-
ies on eddy transport diagnosis and parameterization have adopted isotropic
hypotheses and probed scalar eddy transport coefficients (Gent & McWilliams,
1990; Gent et al., 1995; Treguier et al., 1997; Visbeck et al., 1997; Treguier,
1999; Wilson & Williams, 2004, 2006; Zhao & Vallis, 2008; Nikurashin & Fer-
rari, 2010; Garabato et al., 2011; Abernathey et al., 2013). However, due to
the effect, the transport caused by mesoscale eddies is stronger in the zonal di-
rection than in the meridional direction. Therefore, the form of an anisotropic
mesoscale eddy parameterization is more aligned with real-world geophysical
fluid dynamics (Smith & Gent, 2004).

Recently, some studies have used the anisotropic form to diagnose the eddy trans-
port process and found that the anisotropic result is more appropriate than the
isotropic result. Abernathey et al. (2013) ran a channel model with a sponge
lateral boundary layer to mimic the dynamics in the Southern Ocean and cap-
ture its stratification structure. They then diagnosed the anisotropic tensor and
compared it to various isotropic scalar coefficients. Bachman and Fox-Kemper
(2013), Bachman et al. (2015), and Bachman et al. (2020) developed the multi-
tracer inversion technique to diagnose the eddy transport tensor through ideal
numerical simulations and a high-resolution global model. Lu et al. (2016) stud-
ied both the scalar coefficients and the transport tensors in the Southern Ocean
with eddy-permitting data and further decomposed the eddy effect into station-
ary and transient parts. Haigh et al. (2020), Haigh et al. (2021a), and Haigh
et al. (2021b) made a detailed diagnosis of the anisotropic transport tensor, in-
cluding its symmetric and antisymmetric parts, with a double-gyre ideal model
output. Stanley et al. (2020) tried to reconstruct the vertical structure of the
transport tensor K through vertical modes and their linear combinations. They
found that the anisotropic framework could obtain much more precise vertical
structure results than the isotropic framework.

Whether isotropic or anisotropic forms are adopted, the eddy transport effect
can be decomposed into an advective part and a diffusive part (Lee et al., 1997;
Treguier, 1999). Griffies (1998) conducted a theoretical derivation and con-
nected the symmetric part (S) of the transport tensor (K) to the diffusion pro-
cess and the antisymmetric part (A) with either the advection process or skew
flux along large-scale tracer contours. S can be further diagonalized, where its
different eigenvalues represent the eddy diffusive intensities along the direction



of the corresponding eigenvector (Smith & Gent, 2004; Bachman & Fox-Kemper,
2013; Fox-Kemper et al., 2013; Bachman et al., 2015). However, due to its com-
plexity and abstraction, the characteristics of the transport tensor are far from
clear.

For the relationship between the diffusive part and the advective part, Dukowicz
and Smith (1997) used the random walk model to deduce that the same diffusion
tensor can be used to specify eddy diffusion and eddy-induced advection along
the isopycnal surface. Smith and Gent (2004) suggested that, from the per-
spective of increasing convenience and reducing computation, the off-diagonal
elements of the symmetric and antisymmetric parts should take the same abso-
lute value. However, Treguier (1999) proposed that the transport coefficients of
the two processes do not need to be the same when the isotropic assumption is
adopted. Bachman et al. (2020) give the difference between the two processes
and note that the result of Dukowicz and Smith (1997) is attributed to their
failure to consider the vertical distribution of the transport tensor. In addition,
Haigh et al. (2020), Haigh et al. (2021a), and Haigh et al. (2021b) followed
the practice of Lu et al. (2016) to diagnose the transport tensor on isopycnal
surfaces, simplified the problem into two dimensions and diagnosed a spatiotem-
porally varying 2x2 tensor. They found that the off-diagonal elements of S
contribute significantly to the polarity of the eigenvalues (i.e., the signs of the
two eigenvalues are different), while the distributions and roles of A and S are
not consistent. From the above descriptions, for the complete diagnosis of K,
one should consider all elements of A and S and the eigenvalues and eigenvectors
of S. This precisely describes one of the strategies we adopt in this study.

In relevant works on diagnosing mesoscale eddy transport, the definitions of
mesoscale eddies and their separation on a large scale are still vague. In most
cases, mesoscale eddies are defined as anomalies from zonal or temporal aver-
ages, but this approach does not guarantee robust scale separation between the
mesoscale and large spatial scales (Buzzicotti et al., 2021). Recently, some stud-
ies began to use either the coarse-graining method or a two-dimensional spatial
filter to separate mesoscale motion from large-scale background fields (Lu et al.,
2016; Aluie et al., 2018; Bachman et al., 2020; Haigh et al., 2020; Buzzicotti et
al., 2021; Haigh et al., 2021a, 2021b), which is more intuitively similar to the
practice of low-resolution ocean models. In particular, Lu et al. (2016) adopted
a modified Lorenz-type spatiotemporal decomposition method (Lorenz, 1967),
in which a two-dimensional moving box filter is used for spatial scale separation
and the annual average is used for the time average. Their method is essen-
tially a hybrid version of the Reynolds average in time and the coarse-graining
method in space. We will also follow and develop their approach in this paper.

Meanwhile, this hybrid method can be used to decompose the mesoscale eddy
transport tensor into the contribution of stationary eddies (SEs) and transient
eddies (TEs). In terms of the mechanism, the understanding of TEs is more
in-depth; namely, eddies are mainly formed when the APE is converted into ki-
netic energy through baroclinic instability. Therefore, the GM scheme is aimed



at TE. For the SE transport effect, it is generally believed that topographic
forcing is the major contributor. Treguier and McWilliams (1990), MacCready
and Rhines (2001), Garabato et al. (2011), Thompson and Sallee (2012), Aber-
nathey and Cessi (2014), and so on found that stationary structures appear
downstream of large-scale topographies and make a crucial contribution to the
cross-front eddy mass and tracer transport. Abernathey and Cessi (2014) dis-
covered that time-averaged stationary waves have the characteristics of standing
Rossby waves. Youngs et al. (2017) verified that the topography could produce
zonal inhomogeneity of flow and form stationary meanders downstream. They
also found that both baroclinic instability and barotropic instability could play
vital roles in meander dynamics. Other studies, such as Bischoff and Thompson
(2014), Radko and Kamenkovich (2017), and Khani et al. (2019), leverage ideal
numerical simulations to clarify the relationship between stationary phenomena
and topographies. Most relevant to our study, Lu et al. (2016) showed that
SEs could play a nonnegligible role in eddy transport flux and the transport co-
efficient or tensor in the Southern Ocean so that their effect should be involved
in mesoscale eddy parameterization. Therefore, although the framework of this
paper can be used to compare the contributions of TEs and SEs simultaneously,
we will focus more on the results related to the stationary part and shed some
light on the potential impacts of the topography on the eddy transport tensor
and coefficient.

To better understand the characteristics of the mesoscale eddy transport pro-
cess, this paper will first further develop the approach of Lu et al. (2016) into
a Reynolds and coarse-graining hybrid eddy transport diagnostic method. The
coarse-graining method is for spatial scale separation, and the Reynolds’ aver-
age is for temporal separation. This hybrid framework allows us to decompose
the transport tensor into stationary and transient contributions, representing
the major difference from Bachman et al. (2020) and Haigh et al. (2020). This
is also an anisotropic transport tensor diagnosis framework in which symmetric
and antisymmetric decomposition of the tensor is performed. Unlike Lu et al.
(2016), which analyzed only the diagonal elements of the transport tensor, this
paper performs a complete diagnosis of all relevant elements of the transport ten-
sor, including the four elements of the original tensor, the off-diagonal elements
of both S and A and the eigenvalues and eigenvectors of S. We will demon-
strate the rationality of the anisotropic assumption in the ocean mesoscale eddy
transport process from several angles and focus on the contribution of SEs to
the transport of potential vorticity (PV) under the hybrid framework. In addi-
tion, we will use this framework to explore the potential impact of topography
on the eddy transport tensor, especially the different effects on stationary and
transient transport tensors and coefficients. Upon comparison to the previous
work of Lu et al. (2016), we also select the Southern Ocean as the research
area. An in-depth analysis and understanding of the transport tensor will help
us to comprehend the physical mechanism of the mesoscale transport process
and propose a more physically complete parameterization scheme.

The outline of this paper is as follows. Section 2 introduces the diagnostic



methods, including the transient and stationary flux-gradient relationship under
the hybrid framework, the anisotropic transport tensor, and further processing.
In section 3, we show the diagnosis results in the Southern Ocean area and
explore the influences of the topography on the transport tensor and coefficient.
Section 4 is the summary and discussion.

2 Method
2.1 The "flux-gradient” relationship

Because the ocean interior satisfies the quasi-adiabatic condition, mesoscale
motion occurs along isopycnal surfaces (or neutral surfaces) (McDougall, 1987;
Fox-Kemper et al., 2013). Therefore, the problem can be simplified into two
dimensions in density coordinates. In the average or large-scale tracer equation,
there are often unresolved eddy flux divergence terms that need to be parameter-
ized. It is assumed that the spatial scale separation of motion is established, and
the mixing-length assumption is also made (Taylor, 1922; Vallis, 2017; Bachman
et al., 2020); that is, if a fluid parcel deviates from its equilibrium position, its
properties do not change significantly within the mixing-length distance. Then,
it is not difficult to obtain the isopycnal flux-gradient relationship as

(1)
where can be any tracer field, “-” represents an averaged or large-scale quantity,

“77 represents the subgrid scale quantity or deviation from the mean, and is a
second-order tensor, namely,

(2)

where . This tensor can be regarded as the covariance matrix of eddy velocity
and eddy displacement (or mixing length), which we call the transport tensor
in this paper. This tensor is kinematic, depending on the turbulent flow state
(Dukowicz & Smith, 1997; Treguier, 1999; Smith & Gent, 2004; Abernathey et
al., 2013).

The transport tensor is not necessarily symmetric, and it can be further decom-
posed into a symmetric and an antisymmetric tensor,

(3)
(4)
(5)
The antisymmetric part (3) represents the advective transport along large-scale
tracer contours, corresponding to the GM parameterization scheme (Gent &
McWilliams, 1990; Gent et al., 1995; Griffies, 1998). The symmetric part (4)
represents a diffusion-like effect, corresponding to the Redi diffusion parame-

terization scheme (Redi, 1982; Griffies, 1998). The decomposed "flux-gradient”
relationship can be written as (5).



Furthermore, the symmetric tensor is diagonalized to obtain the diagonal matrix
consisting of the eigenvalues and the corresponding eigenvector matrix

(6)
(7)

Here, is the major eigenvalue and is the minor eigenvalue, and they represent
the diffusion strength along the major axis (parallel to the major eigenvector)
and the minor axis (parallel to the minor eigenvector), respectively. represents
anisotropic diffusion, and represents isotropic diffusion, in which case we can
use a scalar transport coefficient to express the “flux-gradient” relationship,

(8)

Note that the eigenvalues are not necessarily positive in diagnosis (Lu et al.,
2016; Bachman et al., 2020; Haigh et al., 2020; Stanley et al., 2020). When
the eigenvalue is positive, positive diffusion in the corresponding axis reduces
the eddy tracer variance. Anti-diffusion enhances the corresponding eddy tracer
variance when the eigenvalue is negative.

2.2 Reynolds and coarse-graining hybrid decomposition

This section will introduce Reynolds and coarse-graining hybrid decomposition
or modified Lorenz-type spatiotemporal decomposition (Lorenz, 1967; Lu et al.,
2016). Spatial scale separation uses a 2D boxcar sliding filter (Lu et al., 2016;
Khani et al., 2019; Haigh et al., 2020) and can also be regarded as a coarse-
graining method (Berloff, 2005; Aluie et al., 2018; Buzzicotti et al., 2021). The
temporal scale separation is a Reynolds’ average that was chosen to be the
annual average in 2008. Hence, any field can be expressed as the sum of the
instantaneous large-scale background field, SE field, and TE field as follows:

(9)

where [ ] represents the spatial filtered field, “-” represents the temporally aver-
aged field, “” represents the eddy field that varies in space (the original field mi-
nus the spatially coarse-grained field ), and “‘” represents the temporally vary-

ing eddy field (the original field minus the temporally averaged field ). In this
paper, the mesoscale eddy field is defined as a spatially varying small-scale field
, which is assumed to be scale-separated from the large-scale background field
and contains a stationary part and transient part . Accordingly, the mesoscale
eddy flux can be decomposed into the SE flux and TE flux

(10)

This study focuses only on the influence of eddy flux that occurs completely
inside the mesoscale or subgrid scale, namely, those in (10). When the coarse-
graining method is used, the Leonard term (, describing the interaction within
the resolved scale) and the Crank term (, describing the interaction between
the resolved scale and the subgrid scale) appear because the scale separation
conditions are not satisfied (Leonard, 1975; Clark et al., 1979; Bachman et al.,



2015). In this paper, we suppose spatial scale separation and do not consider
these terms.

Then, we have the “flux-gradient” relationship of the total mesoscale eddy, SE,
and TE as follows:

(11)
(12)
(13)
where
(14)

Namely, the transport tensor can also perform transient and stationary decom-
position.

Thus far, we have formulated a diagnostic framework for the eddy transport
process embracing transient/stationary (Reynolds and coarse-graining hybrid)
decomposition and diffusion/advection (symmetric and antisymmetric) decom-
position. All tensors and their elements will be discussed in this work.

2.3 Data and processing

In this paper, we show results only using Southern Ocean State Estimate (SOSE)
eddy-permitting data from 2008 with a horizontal resolution of 1/6° for com-
parison with Lu et al. (2016). The research area is in the Southern Hemisphere
south of 25°S. We also check the results of the eddy-resolving version of the
LASG/IAP Climate System Ocean Model (LICOM; Liu et al., 2012 and Li et
al., 2021) and obtain consistent diagnostic outcomes with SOSE. However, we
do not show these results here.

For the hybrid framework, Reynolds’ average is the annual average, and the
coarse-graining method for spatial scale separation is a 3°x3° 2D boundary
adaptive boxcar filter. When far from the boundary, the filter size is 3°x3°.
When approaching the topographic boundary, the box’s radius is automatically
reduced to maintain the square shape (Lu et al., 2016; Haigh et al., 2020); its
mathematical expression is

(15)
where and are the radii of the boxcar filter, and in this square case .

We choose to use the potential vorticity (PV, ) to diagnose the eddy transport
process. The diagnostic framework in this paper is carried out on isopycnal
surfaces. The velocity field is interpolated to the density coordinate. The active
tracer PV is calculated in the z-coordinate and then interpolated into the density
coordinate. The filtering and gradient operations are entirely conducted along
isopycnals. The advantage of this is that the problem can be simplified to
a 2D problem, changing the transport tensor from rank 3 to rank 2. Then,
we calculate all eddy fluxes and large-scale background PV gradients based



on (9)-(15) and estimate the transport coefficient and tensor. After acquiring
the estimates of the transport tensors corresponding to the TE, SE, and total
eddy PV fluxes based on the “flux-gradient” relationship, we further derive the
following tensors through mathematical operations (3)-(7).

The specific step of the transport tensor estimation is as follows. First, the
large-scale background gradient field and eddy flux fields are diagnosed directly
from the data. Next, for a given point, the large-scale background field gradient
and corresponding eddy flux are taken for all the valid points in a box (same as
our boxcar filter) and a least-square regression is performed to obtain the slope
as the estimation of each element of the transport tensor at a given point, i.e.,

(16)

are specific eddy PV fluxes in the x and y directions, respectively. Then, sym-
metric and antisymmetric decomposition is carried out. Furthermore, the sym-
metric part is diagonalized to obtain the eigenvalues and eigenvectors. The
estimation of the transport coefficient under the isotropic assumption is similar.

We highlight that our sampling method in a box can be used to solve the under-
determined transport tensor estimation issue (Bachman & Fox-Kemper, 2013;
Bachman et al., 2015; Bachman et al., 2020), avoiding the use of multiple tracers.
However, it must be assumed that the large-scale background field is smooth
and varies slowly.

3 Results
3.1 Meridional eddy PV transport

The zonal mean total meridional eddy PV transport (Figure la) is generally
equatorward in areas above 400 m and north of 65°S. Poleward PV eddy flux
exists in the shallow layers near the Antarctic continent and at a depth of 1000-
2000 m south of 45°S (i.e., below the jet core). The magnitude of deep layer
transport below 2000 m is relatively small.

The stationary (Figure 1d) and transient (Figure 1g) components of the zonal
mean eddy PV transport are close in magnitude but have obviously different
distributions. From an overall view, TEs account for most of the total PV
transported to the equator, especially above the jet core. In shallow layers
near the Antarctic continent, the distribution of SE flux is much more chaotic
than that of TE flux. This difference is evidently related to the complicated
topography. Both components have consistent equatorial transport in the upper
layer far from the Antarctic continent, but the transient component is stronger,
more coherent, and extends deeper downward. Both the TE and SE parts
exhibit PV transport to the polar region at a deeper level, but their specific
latitudes and depths are significantly different. The large value of the stationary
component transported poleward is distributed at a depth of approximately 400
m to the south of the jet core near 60°S and may reach the bottom vertically.
The transient component is strongly transported to the pole near 1000 m to



the north of the jet core, but with a smaller range. In deeper places, the PV
transport is very weak.

As mentioned above, a prominent feature of the zonal mean stationary com-
ponent is the strong poleward transport near the jet core (approximately 60°S
and 400 m depth). We further select four potential density surfaces at 2 =
36.04, 36.38, 36.62, and 36.83 kg/m? to investigate the horizontal and vertical
patterns of the stationary part (Figure 2). Noticeably, the large-value areas of
meridional eddy PV transport on all isopycnals are closely related to the large-
scale topography, such as the Kerguelen Plateau in the South Indian Ocean,
the Mecquade Ridge extending from the Antarctic continent to the Pacific, and
the complicated topographic distribution near the Antarctic Peninsula and the
Drake Strait. Some studies have revealed several ways through which topogra-
phy may affect the transport process. The topography can affect the jet struc-
ture and produce leaky jets in some places, destroying the blocking effect of the
jets with cross-stream mixing, therefore enhancing the mixing process (Garabato
et al., 2011; Thompson & Garabato, 2014). The topography may also stimulate
stronger eddy activity and higher eddy kinetic energy (EKE) downstream, thus
enhancing the eddy transport process (Thompson & Sallee, 2012). In addition,
the topography forces the environmental PV contour to bend and modify the
PV gradient to influence the performance of jet flow and eddy transport (Chen
& Kamenkovich, 2013; Radko & Kamenkovich, 2017; Rhines, 2007; Thompson,
2010). The topographic effect also leads to a stronger local baroclinic instability
by generating more extended meander contours and enhancing local buoyancy
gradients, driving strong transient eddy activity to enhance transport (Aber-
nathey & Cessi, 2014).

In addition, some large-value areas that are possibly related to large-scale to-
pographies penetrate to a certain degree in the vertical direction, such as 80°E,
150°E and 50°W along the 60°S latitude circle; however, such areas may be
affected by other nonconservative processes when close to the upper boundary
(Treguier et al., 1997; Treguier, 1999).

3.2 The isotropic assumption

This section will investigate the transport coefficient based on the flux-gradient
relationship under the isotropic assumption. Attention is given to the distribu-
tion and characteristics under stationary and transient decompositions.

3.2.1 The isotropic eddy transport coefficient

Under the isotropic assumption, most zonally averaged total eddy PV transport
coefficients are positive and weakly negative only in a few regions (Figure 3).
A negative transport coefficient actually corresponds to upgradient transport
(Holland & Rhines, 1980; Lu et al., 2016; Rhines & Holland, 1979; Treguier et
al., 1997; Wilson & Williams, 2006) but does not necessarily represent the exis-
tence of an anti-diffusion process. Nonlocal processes, such as the advection of
tracer variance, destroy the locality hypothesis of the flux-gradient relationship,
resulting in negative coefficients in diagnoses based on this assumption (Bach-
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man & Fox-Kemper, 2013; Lu et al., 2016; Treguier et al., 1997). In addition,
the SE flux can also contribute to the negative coefficient (Lu et al. 2016 and
Figure 4 in this paper).

Under the jet core, i.e., at a depth of 1000-2000 m at approximately 50°S, there
is significant mid-level lateral mixing enhancement. From the northern flank
of the Antarctic Circumpolar Current (ACC) to the westward flow area, sur-
face lateral mixing enhancement emerges. The TE mainly causes enhancement
phenomena (see Figure 3c), consistent with previous studies (Abernathey et
al., 2013; Garabato et al., 2011; Lu et al., 2016; Nikurashin & Ferrari, 2010;
Treguier, 1999). Nikurashin and Ferrari (2010) and Garabato et al. (2011) ex-
plained the phenomena theoretically, showing that the local mixing length at
the upper jet core can be reduced due to eddy propagation relative to the mean
flow, resulting in a mixing suppression effect. Therefore, the lateral mixing is
stronger in the westward flow area and to the northern side of the jet core.

From the zonal average, the transient part dominates the magnitude and struc-
ture of the isotropic transport coefficient, and the stationary transport coeffi-
cient is much smaller than the that of the transient part in most regions. This
feature seems to contradict the importance of the meridional stationary eddy
PV transport presented in the previous section. Because the zonal average loses
much local information, the averaged transport coefficient is obviously under-
estimated. It can be seen from the horizontal map (Figure 4) that the local
stationary transport coefficient can exceed 2000 m?/s, which is similar to the
horizontal order of the transient part, while both of these values rarely exceed
400 m?/s after the zonal average. The substantial variation in the horizontal
direction means that it is not proper to design the eddy transport parameteri-
zation scheme based only on the macrozonal mean structure.

In addition, concerning the SE transport coefficient (Figure 3b), we pay special
attention to two places: the near-surface area to the north of 55°S and the area
at approximately 1000 m in depth at 36°S. First, we believe that the stationary
component represents near-surface nonconservative steady processes rather than
topographic dominance. If this component is related to topography, it would
be unlikely to span such an extensive range meridionally, and there is not a
more coherent response at a deeper level. This means that the stationary part
under the diagnostic framework of this paper is not entirely equivalent to the
topographic effect, and the influence of near-surface nonconservative processes
on mesoscale stationary eddy transport should not be ignored. Second, there
is a dipole structure in the stationary transport coefficient. The horizontal
distribution (Figure 4) is mainly due to the strong local transport coefficient
enhancement by the large-scale topographies near South Africa, southwestern
of Australia, and east of New Zealand. This topographic effect varies for different
potential density layers. A similar structure is also found in the later anisotropy
analysis.

Furthermore, taking a closer look at the horizontal distribution of the stationary
transport coefficient (Figure 4), we find strong flaky large-value areas staggered
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near the large-scale topographies. However, in other places, especially in the jet
zone, the magnitude is not that strong. In the later anisotropic section, we will
illustrate that the transport tensor diagnosed with a more complex anisotropic
framework can be used to highlight the contribution of the stationary part in
the topographic area and strong flow area, whether for the horizontal distribu-
tion or zonal average. Therefore, we assume the reason for the weak isotropic
stationary transport coefficient is the inapplicability of the isotropic assumption;
that is, it fails to effectively capture and fully express the mesoscale stationary
eddy effect. In fact, the transport coefficient evaluated from the isotropic hy-
pothesis represents the relationship between the length of the eddy flux vector
and the length of the gradient vector, which naturally leads to the tangling of
information in different directions, thus making the result less physically coher-
ent. The negative transport coefficient actually represents the upgradient flux
(from smaller to larger values). When the eddy tracer variance varies dramati-
cally along the mean tracer contours, an upgradient flux or negative transport
coefficient must appear in certain areas (Lu et al., 2016; Rhines & Holland, 1979;
Treguier et al., 1997; Wilson & Williams, 2006).

3.2.2 The isotropic reconstruction

Figures 1b, le, and 1h show the zonally averaged meridional eddy PV transport
reconstructed from the isotropic flux-gradient relationship, namely, . The re-
construction outcomes are not good compared to the diagnostic “true” field in
Figures la, 1d, and 1g; these outcomes have an obvious distortion in the spatial
distribution. Especially near the jet, there are large deviations in shape, ex-
tension depth, and north-south span, and at many places these values are even
one order of magnitude smaller. The pattern correlation coefficient between the
reconstructed zonal mean total meridional eddy transport and the diagnostic
value is only 0.05. The error of the reconstruction results of the stationary part
is slightly greater (the pattern correlation is -0.02), indicating that the isotropic
hypothesis is not valid in the eddy transport process of the Southern Ocean
considering stationary motion, resulting in the dramatic underestimation of the
stationary part’s contribution. The distribution of transient isotropic recon-
struction is slightly more similar to the diagnostic field. The pattern correlation
of the two zonal mean fields is 0.59, but the magnitude is still too small. For the
horizontal distribution of isotropic reconstruction (Figure S1), although the re-
constructed meridional transport is strong in the topographic and vigorous-flow
areas, the distribution and intensity are in low agreement with the diagnostic
distribution and intensity. The above results prove again that the isotropic hy-
pothesis has a large deviation in its description of the mesoscale eddy process
in the Southern Ocean, particularly for SEs.

3.3 The anisotropic assumption

This section will first examine all four elements of the transport tensor based on
the flux-gradient relationship under the anisotropic assumption. We will inves-
tigate the characteristics of each tensor element obtained under the framework
of “symmetric and antisymmetric” (or diffusion and advection) decomposition
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and “stationary and transient” (or Reynolds and coarse-graining hybrid) decom-
position. Then, the eigenvalues and eigenvectors of the symmetric part of the
transport tensor will also be analyzed. We will investigate the eddy flux field re-
constructed by the transport tensor through the flux-gradient relationship under
the anisotropic framework.

3.3.1 The transport tensor
(1) Kxx

The zonal average of the first diagonal element Kxx of the total anisotropic
transport tensor (Figure 5a) shows mid-layer mixing enhancement below the jet
core near 50°S and surface layer enhancement to the north, consistent with the
isotropic transport coefficient. The total Kxx is positive in most places, but
strong negative values still exist in a few places, such as inside the jet core near
50°S. The transient part primarily contributes to the total Kxx distribution
holistically (Figure 5c), while the stationary component (Figure 5b) exhibits
a scattered pattern and remarkably modifies the total pattern only in limited
areas where the intensity is relatively high. As we have pointed out above, the
zonal mean underestimates the effects of the local pattern, so it should not be
asserted that the stationary part of Kxx is less important than the transient
part, particularly on the local scale. In fact, we can see from the horizontal
distribution of the stationary Kxx (Figure 6) that its magnitude exceeds 2000
m? /s in many places, similar to the horizontal distribution of the transient part.
The zonal average undoubtedly weakens the result by one order of magnitude.

We next further investigate the Kxx stationary part. From its zonal average (Fig-
ure 5b), we first focus on the area near the surface and north of 55°S, where the
stationary Kxx has a continuous large-value band consistent with the isotropic
stationary coefficient. Here, we believe it represents the contribution of the
near-surface nonconservative process to mesoscale SE transport. This indicates
that the stationary part should not be completely equivalent to the topographic
effect even in the anisotropic framework, especially in the near-surface region.
We then take a closer look at the strong dipole of the stationary Kxx at 36°S
and 1000 m depth; this dipole is also found in the stationary transport coef-
ficient but is more intense here. From the horizontal distribution (Figure 6),
we see that this strengthened dipole is related to the large-value area south of
the African and Australian continents, showing that the stationary part can be
related to the topography far away from the surface layer. For the patterns in
different potential density layers, the large-scale topography exerts a vertically
varying effect, as in the isotropic case.

In addition, from the horizontal distribution (Figure 6), there are flaky large-
value areas near large-scale topographies and staggered positive and negative
blocks on the ACC pathway. This demonstrates that the transport tensor diag-
nosed by the anisotropic framework has the ability to reasonably describe the
contribution of the stationary part in the topography and energetic flow region,
and this advantage will become more evident as we go through all elements of
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the transport tensor later.
(2) Kxy

Under the assumption of anisotropy, the pattern of zonally averaged transport
tensor elements Kxy (Figures 7a, 7b, and 7¢) is completely distinguished from
that of Kxx and the isotropic transport coefficients. The first distinction is that
the large-value area’s holistic distribution differs from both Kxx and . The
total Kxy and its transient and stationary components have large values mainly
concentrated within the upper 1000 m depth. These values are very small south
of 60°S and in the deep ocean, unlike Kxx and , whose large values can extend to
nearly 3000 m. The second distinction is that the specific distribution between
Kxy and Kxx is entirely dissimilar. The total Kxy has a continuous positive area
in the near-surface layer to the north of the jet core and a strong negative area
between depths of 400 and 1000 m. This feature of the sharp contrast between
the upper positive and lower negative is reflected in both the stationary part and
the transient part. The third distinction is that the contributions of transient
and stationary components are basically of equal importance (Figures 7b and
7¢), and the stationary component is dominant in the upper ocean and in places
intensely affected by large-scale topographies.

To further investigate the zonal average (Figure 7b) and horizontal distribution
(Figure 8) of the stationary part, it is not difficult to reach the same conclusion
as that from Kxx. The stationary part away from the surface is related to the
topographic effect that exerts a changeable influence on the flow properties of
different potential density layers. Looking more closely at the zonal mean Kxy
stationary part, we perceive an asymmetric dipole composed of a larger and
more intense positive area on the upper left and a smaller and weaker negative
piece on the lower right. As mentioned before, the Kxx stationary part (Figure
5b) is an almost vertical positive and negative pair. The stationary part of
another off-diagonal element, Kyx (Figure 7e), is also an asymmetric dipole but
with smaller and weaker positive values in the upper left. The stationarity of
the last element, Kyy (Figure 9e), has a nearly horizontal pair. These results re-
flect another advantage of the anisotropic framework: different elements of the
stationary transport tensor might capture the topographic effect and the role of
the stationary processes and decouple these effects from the different directions.
In addition, from the horizontal distribution of stationary Kxy (Figure 8), the
anisotropic transport tensor can reasonably describe and outstand the contri-
bution of the stationary part in large-scale topographic areas and vigorous-flow
areas.

(3) Kyx

Another off-diagonal element (Kyx) of the transport tensor (Figures 7d, 7e, and
7f) is generally weaker than Kxx and Kxy. The large-value areas of Kyx are dis-
tributed in the near-surface layer and upper-middle layer to the north of 60°S,
and the stationary component is dominant. Comparing the zonally averaged
total Kxy and Kyx (Figures 7a and 7d), both have intense positive values in the
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surface layer north of 50°S, while decreasing positive values and large areas of
strong negative values appear in Kxy. An approximate reverse pattern emerges
in Kyx. The strong positive values of the surface are mainly supported by the
stationary component, which is consistent with the previous consideration that
the near-surface nonconservative processes rendering the stationary part should
not be equivalent to the topographic effect. The overall distributions of Kxy
and Kyx below the surface layer seem to have a certain degree of antisymme-
try, which will become clearer when discussing symmetric and antisymmetric
decomposition later.

The zonal mean stationary and transient Kyx and Kxy (Figure 7) have an upper-
mid-layer strengthening phenomenon at the jet core below 400 m near 50°S. The
isotropic transport coefficient and the middle layer enhancement in Kxx and Kyy
are mainly manifested in the transient component, so the strengthening of Kyx
and Kxyis unlikely to be the same. From the horizontal distribution of the
stationary Kxy and Kyx (Figures 8 and S2), we find that the upper-mid-layer
strengthening at 50°S is manifestly associated with the jet path, suggesting that
large-scale flow structures such as the ACC can also contribute much to the
stationary part. Therefore, the stationary tensor should not be assumed to be
entirely equivalent to the topographic effect in the jet core region. Further-
more, the contribution of the ACC to the off-diagonal element of the stationary
transport tensor also varies vertically. Although we leverage the Reynolds and
coarse-graining hybrid diagnostic framework to perform the former analysis, at
this point we cannot determine a concrete physical mechanism to comprehend
this phenomenon.

(4) Kyy

The zonal average of another diagonal element of the total transport tensor Kyy
is consistent with Kxx and the isotropic transport coefficient (Figures 5a, 5d,
and 3a). They all have mid-level enhancement below the jet core and surface
enhancement to the north. The transient component can be used to roughly
outline the total Kyy and is positive in most places (Figure 5f). The stationary
part (Figure 5e) modifies the distribution of the total Kyy, especially in the
near-surface layer north of 60°S and between 30°S and 40°S.

Similarly, a large-value region of stationary Kyy also appears near 36°S, and it is
a dipole structure tending to the horizontal direction with negative values in the
north and positive values in the south. As discussed above, these results may
indicate that different elements of the stationary transport tensor can capture
the influence of the topography on the flow field in different directions, reflecting
the advantages of the anisotropic framework. Regarding the large-scale topog-
raphy effects on the transport tensor, we consider it one of the directions for
applying our diagnostic framework in the near future.

To sum up, the anisotropic assumption is consistent with the actual physical
process and necessary in mesoscale eddy parameterization; primarily, it cap-
tures the importance of SEs to the transport tensor. Large-scale topographies,
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nonconservative processes, and large-scale vigorous flow structures may all af-
fect the stationary transport tensor, and the impact is anisotropic horizontally
and varies vertically. In addition, the nonconservative processes have a notable
influence on the near-surface stationary tensor, and it seems difficult to disen-
tangle the effect of a large-scale flow structure on the stationary tensor from the
topographic effect.

3.3.2 The symmetric and antisymmetric decomposition

We will decompose the transport tensors into their symmetric and antisymmetric
components and examine the features of the off-diagonal elements.

1. The antisymmetric component

The antisymmetric part of the anisotropic transport tensor is determined by its
off-diagonal element Axy (because Ayx = -Axy). Its zonal mean (Figures 9d,
9e, and 9f) is holistically similar to that of Kxy, such as positive bands at a
depth above 400 m and negative bands at a depth of 400-1000 m. However, the
corresponding magnitude is smaller than Kxy, which is consistent with the fact
that the absolute value of Kxy is generally larger than that of Kyx.

Transient and stationary Axy are of similar order and, after synthesizing the
information of Kyx and Kxy, show a clearer upper-mid enhancement of ap-
proximately 1000 m at 50°S below the jet core. In the horizontal pattern of
stationary Axy in Figure S4, we see that the upper-mid enhancement of 50°S
is related to the jet path, indicating that a large-scale flow field structure such
as the ACC may have a vertically varying contribution to the stationary part
of the advection process (or skew flux) along the tracer contours represented by
Axy.

There is only one strong positive region in the zonally averaged stationary Axy
at a depth of approximately 1000 m at approximately 36°S; this is quite dif-
ferent from the asymmetric dipole of the transport tensor’s four elements and
the symmetric dipole of the symmetric tensor found in the next section. This
difference shows that large-scale topography can affect the anisotropy of the
transport tensor by affecting the stationary part of the antisymmetric tensor or
the stationary advective process accordingly.

In addition, from the horizontal distribution of Axy (Figure S4), we find that
the topographies near Africa, Australia, New Zealand, and South America pro-
duce strong Axy-positive areas. Compared with bathymetry, these positive Axy
areas tend to occur in shallow and adjacent downstream regions. However, the
relationship between specific topographic quantities (such as topography vari-
ance or slope) and Axy is unclear (not shown). The synergistic effect of multiple
topography-related quantities likely determines the impact of topography on the
antisymmetric tensor. The path of the direct topography effect on the transport
tensor needs to be investigated in future research.

(2) The symmetric component
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The zonal mean (Figures 9a, 9b, and 9c) of the off-diagonal symmetric tensor
element Sxy is smaller than those of Kxy and Kyx. The stationary part of
Sxy makes a decisive contribution to the total Sxy. So far, a common feature
of the transport tensors and the corresponding symmetric and antisymmetric
components obtained in this paper is that their off-diagonal contributions to
the stationary process are relatively large. The magnitude of Sxy is holistically
much less than those of Kxx and Kyy (i.e., Sxx and Syy). This difference might
indicate that the latitudinal and meridional directions are generally the two
characteristic directions of ocean mesoscale motion. Nevertheless, the statement
is not robust based on the eigenanalysis of symmetric tensors in section 3.3.3,
which will investigate the horizontal patterns of eigenvalues and eigenvectors.

For computational convenience, one may take Sxy = Axy (Smith & Gent, 2004),
but this assumption is unreasonable. Although the zonal means Axy and Sxy
(Figure 9) are of almost the same order, their distributions are quite inconsistent,
whether in the jet region, near-surface area, or topographic area. In particular,
we note that there is only one positive-value area of stationary Axy at a depth of
about 1000 m near 36°S, while the stationary part of Sxy at the corresponding
position is an upper and lower dipole slightly inclined in the vertical direction.
Thus, we consider that the symmetric and antisymmetric components describe
independent processes. In other words, we may regard Axy and Sxy as cap-
turing different sides of stationary eddy behavior, especially considering the
topographic effect.

1. The eigenanalysis of the symmetric tensor

In this section, we diagonalize the symmetric tensor to obtain eigenvalues and
eigenvectors and to analyze their spatial distribution and the configuration re-
lationship between eigenvalues.

The major eigenvalue and eigenvector

The zonal mean total, transient, and stationary major eigenvalues (Figures 10a,
10b, and 10c) are positive in the domain, indicating “positive diffusion” that
weakens the eddy PV variance along the major axis. The total eigenvalue de-
creases monotonically from top to bottom and from north to south. There
is no mid-level enhancement phenomenon in the jet zone but only a surface
enhancement phenomenon on the northern flank of the ACC and near the sur-
face of the westward flow. We maintain that the mid-layer enhancement is the
enhancement of lateral mixing perpendicular to the jet flow direction. Because
the eigenvalue represents the mixing intensity in the eigendirection and the base
vectors of the tensor after diagonalization become eigenvectors that no longer co-
incide with the longitude or latitude, the zonal mean eigenvalue inherently lacks
rationality and physical explanation. Therefore, the investigation of eigenvalues
and eigenvectors needs to be done horizontally.

Figures 11a, 11b, and 11c show the major eigenvalue distributions and their
characteristic directions on selected potential density layers of 2 = 36.83 kg/m3.
The major eigenvalues in most areas are positive. However, there are still a few
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negative values, and the strong negative values are related to the ACC pathway
and large-scale topography. Both stationary and transient components may
have negative-value areas, and their positions do not seem to be linked in any
way. The stationary part is weaker than the transient part as a whole, but its
contribution is still remarkable. Both components tend to increase in energetic
flow areas and near large-scale topographies.

(2) The minor eigenvalue

Most zonal mean minor eigenvalues (Figures 10d, 10e, and 10f) are negative.
The stationary parts are all negative, while the transient and total parts are
positive only in limited places, such as below 2000 m. Further investigating
the horizontal distribution of the minor eigenvalues (Figures 11d, 11e and, 11f,
the 2 = 36.83 kg/m? layer is selected, and the results in other layers are simi-
lar), we find that the minor eigenvalues are negative in a large proportion of the
domain. However, there are still some places with strong positive minor eigenval-
ues. The positive area is mainly supported by the transient component. We also
discover great uncertainty in the relationship between the positive-area distribu-
tion and the large-scale topography and jet path for the transient and stationary
parts. We feel it is likely that there are strong positive minor eigenvalues inside
strong current areas and the downstream sides of large-scale topographies. We
also point out that the absolute values of the zonal mean transient, stationary,
and total minor eigenvalues (Figures 10d, 10e, and 10f) reach their maxima in
the northern flank of the jet core at a depth of approximately 400 m. Posi-
tive eigenvalues represent a weakened tracer variance along the corresponding
characteristic direction, while negative eigenvalues indicate the opposite trend.
Combined with the positive major eigenvalue results, we believe that the strong
polarization feature of eigenvalues in the places mentioned above represents a
strong filamentation process (Ledwell et al., 1998; Haigh et al., 2020; Haigh et
al., 2021a; see also part (3) in this section). In addition, in the westerly flow
area on the northern side of the ACC, the eddy mixing of the transient part is
strengthened at the surface; this is consistent with Tulloch et al. (2011) and
Khani et al. (2019), who demonstrated that the eastward trade wind supports
shallow baroclinic modes at that location.

(3) Configuration of eigenvalues

Based on Wilson and Williams (2006), the eigenvalue contributions to the per-
turbation tracer variance can be obtained, i.e.,
(17)

where and are the gradients of the large-scale PV field in the major and minor
characteristic directions, respectively. Here, the prime symbol represents the
perturbation quantity, which can be regarded as the mesoscale eddy field in this
paper.

Since the major eigenvalue must be larger than the minor eigenvalue, there are
three scenarios:
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1) The major eigenvalue is positive, and the minor eigenvalue is negative
(major+&minor-), indicating that either the tracer variance or PV enstrophy
is reduced by “positive diffusion” in the major characteristic direction and
increased by “negative diffusion”, or anti-diffusion, in the minor one. In other
words, the process of filamentation has taken place (Ledwell et al., 1998; Haigh
et al., 2020; Haigh et al., 2021a). This is the most common case, whether
stationary, transient, or at different layers (Figure 12) and is dominant in the
jet area and at the west boundary (Figure 11). Recent research, including
Stanley et al. (2020), Haigh et al. (2020), and Haigh et al. (2021a), has made
a similar discovery.

2) Both the major and minor eigenvalues are positive (major+&minor+), indi-
cating that the tracer variance increases on the plane supported by the two eigen-
vectors. This also means that these geographical places are complete sources of
PV enstrophy and tend to constantly stimulate eddy activity. This situation
occurs mostly on the north flank of the jet stream and to the west of the large-
scale topography, with a few occasional spots inside the ACC. The transient
component is slightly more prone to this situation than the stationary compo-
nent (Figures 12b and 12c¢). The positive minor eigenvalue can be very strong,
which implies that transient eddies are the dominant process for starting or
strengthening the activities of the ocean mesoscale system.

3) Both eigenvalues are negative (major-&minor-), indicating that the tracer
variance decreases in both characteristic directions; this creates either sinks of
eddy PV enstrophy or a tendency to kill eddy activity. This scenario occurs
very rarely and is prone to being embedded in the strong flow region (Figure
12).

In summary, three configurations of the symmetrical part eigenvalues of the
transport tensor all appear in the Southern Ocean. We highlight that the
major+&minor- configuration is the most frequent and represents the domi-
nance of the filamentation process, which can be reflected by the stationary and
transient parts and different vertical layers.

(4) The absolute angle analysis for eigenvectors

Here, we will calculate the absolute angle between the major eigenvector (to
which the minor eigenvector is perpendicular) and a selected physical quantity
(such as the PV gradient, velocity vector, and topographic slope vector), rather
than the angle’s cosine value calculated Bachman et al. (2020).

Figure 13 shows the horizontal distribution of the absolute angle between the to-
tal major eigenvector and either the large-scale PV gradient, large-scale velocity
vector, or topographic slope vector on a selected potential density layer ( 2 =
36.38 kg/m?). In the whole domain, the absolute angle may change from 0° to
90°; the corresponding vectors may be almost parallel or completely orthogonal.
We find it difficult to summarize an applicable empirical rule regarding when
or where these vectors tend to be parallel or orthogonal. This result seems to
contradict Bachman et al. (2020) in that the major eigenvector is parallel to
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the velocity vector or perpendicular to the PV gradient. We re-examine the
results in Bachman et al. (2020) and find that they compute the cosine value,
which is not linear with the absolute angle. For example, when the cosine value
is 0.85, the included angle is already 30°, which obviously cannot be considered
parallel. In the results of Bachman et al. (2020), there are large areas where the
cosine value of the angle between the major eigenvector and the velocity vector
is lower than 0.85, indicating that most places do not fit their conclusion that
the major eigenvector is parallel to the velocity vector. Therefore, this paper
and Bachman et al. (2020) demonstrate that the angle between the eigenvector
and either the PV gradient, the velocity vector field, or the topographic slope
(all on a large scale) has no global unified feature but has a certain degree of
randomness.

Further comparing the absolute included angle between the major eigenvector
and the PV gradient on two density layers ( 2 = 36.38 and 36.62 kg/m3 in Fig-
ures 13a and 13f, respectively), we observe not only that the horizontal pattern
in each layer looks quite random but also that there is no global consistency
between these two layers. In addition, from Figures 13a, 13d, and 13e, the
absolute angle analysis under stationary and transient decomposition fails to
produce a more orderly structure but proves the randomness.

Figure 14 shows the vertical profile of the probability density function (PDF) of
the absolute angle between the major eigenvector (including the total, station-
ary and transient components) and either the large-scale PV gradient, velocity
vector, or topographic slope. Although we can see that the PDF of some quanti-
ties seems to prefer a skewed distribution, caveats should be considered because
the value difference between the blackest and whitest color is insufficiently large
(the difference is approximately only a quarter of the PDF represented by the
whitest color). Thus, this nonuniformity does exist but is fairly weak. In addi-
tion, the intermediate angle (20°-70°) accounts for a large proportion, implying
that the PDFs might be considered to add weak nonuniformity to a uniform dis-
tribution. A uniform distribution here means a high randomness of the absolute
angle, where the nonuniformity perhaps represents the corresponding physical
relations. That is, the PV gradient, velocity field, and topography should affect
the direction of the major eigenvector. We speculate that the determination of
the eigenvector might involve an intricate and highly sensitive process; namely,
multiple physical quantities can affect the eigenvector, and the final orientation
depends on the residual of all effects. Therefore, in terms of spatial distribution
and even time evolution, the drastic change in the dominance of each phys-
ical quantity and its underlying physical mechanism would produce the high
randomness of the eigenvector. These results further suggest a possible parame-
terization scheme of eddy diffusion, based on the eigenmatrix and eigenvectors,
in which some stochastic factors are introduced. These factors include taking
random numbers from a predefined or diagnostic PDF to specify the angle be-
tween the major eigenvector and a certain quantity, such as a large-scale velocity
vector, so that the characteristic direction can be flow-dependent.
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3.3.4 The anisotropic reconstruction

This section will investigate the reconstruction of meridional eddy PV transport
using tensor elements Kyx, Kyy, Ayx, and Syx and their combination under the
anisotropic framework; this will then be compared with the isotropic reconstruc-
tion results.

The reconstruction result for the anisotropic transport tensor (i.e., ) is the best
(Figures 1lc, 1f, and 1i); it is much better than any single tensor element and
the isotropic coefficient (Figures 1b, le, and 1h). This once again proves that
the anisotropic hypothesis is more reasonable than the isotropic hypothesis at
the mesoscale.

The reconstruction by only the off-diagonal element Kyx of the transport tensor
(i.e., ) is shown in Figures S6a, S6b, and S6¢c. The pattern correlation of the
total transport is 0.416. The reconstructed field bears similarity only with the
diagnostic area in the upper ocean and deviates greatly in the jet region. The
results reconstructed by only the diagonal element of the transport tensor Kyy
(i.e., ) are shown in Figures S6d, S6e, and S6f. The pattern correlation of the
total transport is 0.526. The similarity between the reconstructed field and the
diagnostic field is visually higher than that of Kyx.

The transport reconstructed by the antisymmetric tensor’s off-diagonal element
Ayx (i.e., ) is shown in Figures S7a, S7b, and S7c. We find trivial patterns,
and the magnitude is one order smaller. The reconstructed transport under
the zonal average is very weak, so it is doubtful that the zonal average would
significantly underestimate the contribution of the skew flux. After all, the
magnitude of Axy is comparable to that of any element in the transport tensor
K. However, from the horizontal distribution of the Ayx reconstruction (not
given), the meridional advective flux is indeed weak, and there are a handful of
positive-negative large-value pairs that may offset each other in a zonal circle.

The contribution of the symmetric part off-diagonal elements to the meridional
eddy transport (i.e., , Figures S7d, S7e, and S7f) is weak and modifies only
the pattern. Comparing the reconstructions by symmetric and antisymmetric
tensors, the transient parts are similar, while the stationary parts are quite
different. This result implies that the effects of the transient part of the sym-
metric tensor (eddy diffusion) and the antisymmetric tensor (eddy advection)
on meridional eddy transport may compound, while the stationary parts tend
to be independent of each other, and the stationary and transient parts are of
no association.

is the reconstruction of the diffusive part of the eddy flux with the complete
symmetric tensor (Figures S8a, S8b, and S8c). The zonal average generates
decent qualitative and quantitative outcomes, with a pattern correlation of 0.642
between the total reconstruction field and the diagnostic field. Although this
construction represents most features, there is a deviation near the jet core, and
the stationary result is slightly worse than the transient result. However, after
adding the contribution of the antisymmetric tensor that makes a systematic
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correction, namely, (Figures S8d, S8e, and S8f), we unsurprisingly obtain the
best reconstruction result; the pattern correlation of the total scenario reaches
0.873.

Rotation, stratification, and topographic effects make mesoscale oceanic flow
anisotropic. Thus, the anisotropic hypothesis is more physically aligned with the
real world than the isotropic hypothesis. In addition, we find that the meridional
eddy PV transport reconstructed anisotropically is closer to the diagnostic value
than that reconstructed isotropically. The anisotropic framework can capture
the effects of the stationary eddy, especially the topographic effect. Therefore,
it is more suitable to make the anisotropic assumption for the parameterization
of mesoscale eddy transport.

4 Summary

In this paper, we have proposed a Reynolds and coarse-graining hybrid eddy
transport diagnostic framework, in which a coarse-graining method for spatial
scale separation and a Reynolds’ time average for temporal separation are ap-
plied in the Southern Ocean. The mesoscale variability is defined as the rela-
tively small-scale deviation from the large spatial scale background field and can
be further decomposed into stationary and transient eddies in our framework.
We then diagnose the isotropic transport coefficient and anisotropic transport
tensor using the "flux-gradient” relationship, split the tensor into its symmetric
and antisymmetric parts, and analyze the eigenvalues and eigenvectors of the
symmetric tensor.

We verify that the anisotropic assumption is more reasonable than the isotropic
assumption for the ocean mesoscale eddy transport process. In addition to
higher alignment with the physical features of real-world ocean mesoscale flow,
the anisotropic assumption leads to the reconstruction of meridional PV trans-
port that is much closer to that of the diagnostic field. The anisotropic frame-
work can capture the effect of stationary eddies and shed some light on the
potential topography influences on the transport tensor and coefficient.

Because the effect of the stationary eddy is currently under insufficient discus-
sion, we pay particular attention to its contribution to the transport tensor
under our hybrid framework. Large-scale topographies, nonconservative pro-
cesses, and large-scale flow structures can affect the stationary transport tensor,
where this influence is highly horizontally anisotropic and has a vertical struc-
ture. The nonconservative process has a great impact on the stationary tensor
in near-surface areas. Although it seems difficult to decouple the large-scale
structure (e.g., the ACC jet core) effect on the stationary component from the
purely topographic structure, the stationary and symmetrical part of the trans-
port tensor is substantially modulated by topography. In addition, a common
feature of the transport tensor and its symmetric and antisymmetric components
is that the contribution of the stationary part to their off-diagonal elements is
dominant.

Compared with Lu et al. (2016), the work in this paper further decomposes the
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transport tensor symmetrically and anti-symmetrically and probes all tensor-
related elements, especially the eigenvalues and eigenvectors of the symmetric
part of the transport tensor. We find that three configurations of the major
and minor eigenvalues of the symmetric tensor appear in the Southern Ocean,
including major+&minor-, major+&minor+, and major-&minor-. These config-
urations represent vortex filamentation movement, the source of PV enstrophy,
and the sink of PV enstrophy, respectively. Among them, major+&minor- is
the most common case in the Southern Ocean. Although there are three eigen-
value polarity cases, the magnitude of the eigenvalues can still be determined
in a sense. In addition, we find high randomness of the eigenvector by calcu-
lating the absolute angle between the eigenvector direction and either the PV
gradient, velocity vector or topographic slope vector. This finding implies that
the eigenvector may depend on a residual of various physical processes, so it is
susceptible to the environment and shows randomness. These results may in-
troduce random factors into the eddy diffusion parameterization scheme based
on the eigenvalues and eigenvector. For example, one may set the approximate
magnitude of the eigenvalue from the diagnosis results or a pre-existing scheme
and take a random number from a well-defined probability density distribution
to determine the angle between the eigenvector and some quantities, such as
the velocity direction, to make the eigenvector flow-dependent.

This study also has some limitations. The first is the problem of data. To facil-
itate the comparison with Lu et al. (2016), we show the 1/6° eddy-permitting
data results. However, we also use the eddy-resolving global ocean model with
0.1° horizontal resolution and obtain consistent conclusions. Although the data
resolution does not cause great problems, both SOSE and the global eddy-
resolving model contain too many physical processes, making it difficult to dis-
tinguish the impacts of specific mechanisms on the transport tensors (especially
on eigenvectors). When studying the potential influence of the topography, we
fail to give a specific dynamic mechanism of how the topography influences the
transport tensor and decouples its effect from other processes. Therefore, our
conclusions are only of enlightenment on a potentially new perspective about
topography influence and parameterization. In the future, diagnosing and con-
structing parameterization schemes (deterministic or random parameterization)
using a Reynolds and coarse-graining hybrid framework in this paper should be
based on ideal numerical simulation to better control the variables. In addition,
this paper assumes that the mesoscale and large-scale background fields meet
the scale separation conditions, so the Leonard term describing the interaction
within the resolved scale and the crank term describing the interaction between
the resolved scale and the subgrid scale are not investigated. Both of these
terms might be important, especially when increasing the horizontal resolution.
Therefore, the future application of this diagnosis should consider the complete
eddy flux, as in Haigh et al. (2021a).
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Figure 1 Zonal mean (a) total meridional PV transport (unit: 107'2572), (b)
total PV transport reconstruction by the isotropic transport coefficient, and (c)
total PV transport reconstruction by the anisotropic transport tensor. (d)(e)(f)
for the stationary component and (g)(h)(i) for the transient component. The
green lines refer to the isopycnal depths (400 m, 1000 m, 2000 m, 3000 m), and
the black in (g) refers to the zonal-averaged zonal velocity (unit: cm/s)
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Figure 2 Meridional eddy PV transport (unit: 10*3s2), (a)(b)(c) for the sta-
tionary component on potential density surfaces 2 = 36.38, 36.62 and 36.83
kg/m3, respectively, and (d) for the transient and (e) total transport on the
surface of 2 = 36.38 kg/m?
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Figure 4 The isotropic transport coefficients (unit m?/s), (a)(b)(c) for the
stationary component on potential density surfaces 2 = 36.38, 36.62 and 36.83
kg/m3, respectively, and (d) for the transient and (e) total transport on the
surface of 2 = 36.38 kg/m?
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Figure 6 Same as Figure 4, but for the anisotropic transport tensor element
Kxx
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Figure 8 Same as Figure 4, but for the anisotropic transport tensor element
Kxy
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isopycnal of 2 = 36.38 kg/m?, where (d)(e)(f) are those for the minor eigenvalues
in the same order, and the black needle is the local characteristic direction
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Figure 12 The frequency of the three eigenvalue configurations on each po-
tential density surface, (a)(b)(c) for the total, stationary and transient cases,
respectively. The results for layer 9 ( 2 = 32.6 kg/m3) through layer 30 (2 =
37.17 kg/m?) with enough valid points are shown
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Figure 13 Absolute included angle between the total major eigenvector and the
large-scale (a) PV gradient, (b) velocity vector and (c) topographic slope vector
on the isopycnal of 36.38 kg/m3. (d)(e) the angles between the large-scale PV
gradient and the stationary or transient major eigenvector, respectively, on the
isopycnal of 36.38 kg/m3. (f) is the angle between the total major eigenvector
and the large-scale PV gradient on the isopycnal of 36.62 kg/m?
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Figure 14 The probability density function and vertical structure of the ab-
solute included angle between the (a) total, (b) stationary, and (c) transient
major eigenvectors and the large-scale PV gradient. (d)(e)(f) and (g)(h)(i) are
the same as (a)(b)(c), but for the results of the large-scale velocity vector and
topographic slope vector, respectively. The x-axis is the angle, and the y axis is
the label of the potential density layer. To ensure a sufficient number of samples,
only layers 9 (2 = 32.6 kg/m?) to 30 (2 = 37.17 kg/m?) are displayed
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